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Abstract 
 

Quantum computers (QC), if realized, can overwhelm the performance of conventional 

computers in a number of calculational tasks. A hydrogenic donor in silicon is one of the most 

promising candidates as a fundamental building block of QC referred to as a quantum bit (qubit) 

towards realization of future solid-state QC. Application of donors as qubits requires in-depth 

understanding of their structural, electronic, and magnetic properties. Moreover, control of their 

interactions with nuclear spins in silicon matrix is needed. 

The present thesis reports investigations of magnetic properties of lithium (Li) hydrogenic 

donor related centers in silicon by electron paramagnetic resonance (EPR) spectroscopy and 

dynamic nuclear polarization (DNP) of host 29Si using lithium related centers in isotopically 

controlled silicon. Lithium is the only non-substitutional hydrogenic donor in silicon that forms a 

complex pair with an oxygen atom very easily. Thanks to its low ionization energy and inverted 

ground state energy levels, long electronic spin decoherence time (T2) and short electron 

relaxation time (T1) that are favorable for construction of QC are expected. 

The present thesis is composed of six chapters. Chapter 1 is an introduction and 2 

provides a literature survey on lithium related centers in silicon. Chapter 3 provides basic 

principles of magnetic resonance. Chapter 4 discusses EPR of lithium related center in silicon. 

Significant narrowing of the isolated Li EPR and additional hyperfine structures of lithium-

oxygen (Li-O) centers were observed in isotopically enriched 28Si single crystals. Unexpected 

splitting was found reflecting the principal axis of the formally assigned trigonal g-tensor being 

3o tilted from <111> crystal axis, i.e., the g-tensor of the Li-O center actually has a monoclinic 

symmetry. Furthermore splitting of 7Li hyperfine lines into four components was observed at 

temperatures 3.5 K. These findings provided accurate knowledge of EPR frequencies of Li 

related centers that are needed for high fidelity operation of Li quantum bits in silicon. Chapter 5 

reports dynamic nuclear polarization (DNP) of 29Si nuclear spins induced by saturation of EPR 

transitions of lithium-related centers. Both isolated Li and Li-O complex centers showed strong 

EPR absorption lines in the temperature range 3.4-10 K and led to very efficient orientation of 



iv 
 
29Si nuclear spins. The temperature dependence and time constant of 29Si DNP are investigated in 

detail. The 29Si DNP of 0.72 % was achieved at 3.4 K by excitation of the Li-O forbidden EPR 

transition under illumination, corresponding to a ~352 fold increase with respect to the thermal 

equilibrium polarization. Possible strategies are discussed to obtain >5% 29Si DNP that is needed 

for realization of quantum computing. Chapter 6 provides conclusions and outlook. 
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Chapter 1 
 
Introduction 
 

1.1 Background and motivation 

 
Computational performance of classical computers is limited by the number of transistors that 

can be positioned on an integrated circuit. According to Moore’s law, there will be a time when 

the size of each transistor reduces to an atomic scale, which will not permit the classical physics 

to predict the behavior of the system. At the present technology the classical computer is unable 

to factor integers of more than 1000 bit in reasonable time frame even with the best algorithm. 

Hence the new concept of computer based on the principle of quantum mechanical effect is 

needed to be developed. In contrast to classical computing, quantum computing is based on the 

quantum mechanical principles such as superpositions and entanglements. The essence of a 

quantum computer is the use of quantum bits (qubits) where the quantum states can be 

represented by the superposition states of “spin up” (1) and “spin down” (0). Shor’s algorithm [1, 

2] of quantum computing is capable of prime factorization much faster than the classical 

computer. Other important applications include database search [3] and quantum mechanical 

simulation [4]. 

For the realization of quantum computers, there are five requirements outlined by Deutsch and 

DiVincenzo [5, 6]: 

1) Employment of a well characterized qubit in a physical structure. 

2) Initialization of the qubits into fiducial states such as |000.. ۧ or |111… ۧ. 

3) Long enough decoherence time of qubits to complete an algorithm. 
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4) Ability to perform an universal set of quantum gates. 

5) Ability to perform a qubit–specific measurement with high fidelity. 

A variety of quantum bits (qubits) have been proposed as potential candidates. They include 

electron spins in solids [7 – 11], trapped ions in vacuum [12], photons in air [13], charges or 

fluxes in superconducting circuits [14], ions in cavities [15], Bose–Einstein condensates [16], 

quantum dots [17], superconducting loops [18], excitons in solids [11, 19], nuclear spins in solids 

[6, 7, 20 – 23], etc. There is a group of researchers who believe that silicon based quantum 

computers [7, 24] are promising candidates for large scale quantum computers because of the 

availability of state–of–the–art silicon processing technologies that are essential for making the 

quantum computer integrated. A representing example of the silicon quantum computer was 

proposed by Kane [7]. Kane’s quantum computer utilizes an array of phosphorus donors as 

qubits which are embedded at a depth of 20 nm in a 28Si isotopically enriched silicon substrate. 

The quantum state of each qubit can be controlled by irradiation of rf–fields which induces 

magnetic resonance. Application of electrostatic bias at the surface just above each qubit (A–

Gate) tunes the hyperfine interaction strength to induce or not to induce the resonance that 

corresponds to a rotational or phase gate. Surface electrodes placed between the adjacent qubits 

(J–Gates) control electron–electron exchange interaction. By this control two–qubit operations 

between adjacent qubits can be performed selectively. Figure 1.1 (a) shows the Kane’s quantum 

computer architecture. Kane’s scheme faces three major challenges: 1) Placement of an array of 

phosphorus donors in silicon. 2) Formation of electrodes and calibration of interactions to 

achieve high fidelity gate operations. 3) Realization of a single nuclear spin measurement. 

Following Kane’s proposal, a number of silicon–based quantum computing schemes has been 

proposed. Among them, the idea of utilizing lithium donors is most relevant to this thesis. An 

interstitial lithium takes Td–site symmetry in silicon and has fivefold degenerate ground state 

1s(E + T2) with a fully symmetric state 1s(A1) separated by 1.76 meV. The site symmetry reduces 

from Td to D2d by application of uniaxial stress. The fivefold degenerate state then becomes non–

degenerate with the ground state an odd parity and the first excited state an even parity. A weak 

coupling between the opposite parity states by phonons induces relaxation from the first excited 

state to ground state in the time frame of the order of 1000 sec. This long relaxation gives an 

opportunity for the quantum information processing by application of controlled ac or dc 
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external stress. The quantum information processing based on lithium charge qubits was 

proposed by Smelyanskiy et al. [24]. In this scheme lithium donor atoms are embedded in a 

silicon single crystal with a separation distance of d = 100 nm. Chernyak et al. have shown that it 

is possible to fabricate the array of lithium atoms via electromigration technique [25]. This 

scheme utilizes three electrodes A1, B1, and C1 for the application of ac and dc electric fields in 

different stages. The piezoelectric film (light green) is deposited on n–type heavily doped 

nanowire (C1) to control the external stress on the array of Li atoms. The schematic 

representation of a lithium based quantum computer is shown in Fig. 1.1 (b). 

 

 
(a)                                                                       (b) 

Figure 1.1: (a) Schematic of Kane’s architecture. This scheme utilizes an array of phosphorus 

donors embedded at a depth of 25 nm from the surface of a 28Si single crystal. Neighboring 

qubits are separated by 20 nm. The A–gates are placed above qubits, while J–gates are placed 

between them. (b) Schematic representation of a Si:Li based quantum computing scheme. An 

array of lithium donors is placed between the electrodes A1 and B1 in an isotopically enriched 

silicon. The piezoelectric film (light green) is sandwich between electrode B1 and C1 to apply 

tailored pulses of stress. 

 

In this scheme the quantum logical operation does not rely on the single qubit read out operation 

but work on a long–range elastic–dipole interaction between qubits. The long range elastic–

dipole interaction depends on the inter–qubit distance R as R–3 or R–5. In the charge based 

quantum computer, decoherence rate is governed by the charge fluctuations in the surrounding 

environment. An error of the two–qubit gates due to decoherence is also small. In reality, 

relaxation of the charge traps induced by a shot noise leads to decoherence times that is 
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significantly shorter than the scheme based on spin of qubits. Therefore it is important to explore 

and understand the spin states of lithium in silicon. Lithium donors in isotopically enriched 28Si 

are of special interest because depletion of 29Si nuclear spins is expected to enlong decoherence 

time of lithium electron spins. 

 

1.2 Purpose of the present work 

 
The main purpose of this work is to study the symmetry and microstructure of lithium and 

lithium–oxygen centers in isotopically enriched 28Si samples. It is important to enhance our 

understanding of the lithium related centers in silicon because an isolated lithium interstitial 

shallow donor was also proposed to be an attractive candidate of a qubit in silicon [24]. 

However, it is not experimentally straightforward to introduce lithium atoms exclusively into 

isolated interstitial sites. Instead Li–O complexes that involve residual oxygen impurities are 

easily formed. The Li–O centers in silicon are also shallow donors with the ionization energy 

39.41 meV [26, 27]. Therefore, it is importance to understand the symmetry of magnetically 

active centers like Li–O centers especially in silicon that are depleted of 29Si nuclear spins, e.g., 

in isotopically enriched 28Si single crystals. 

In parallel, there are cases where depletion of 29Si nuclear spins is difficult or employment of 29Si 

nuclear spins as qubits is desired. In such a case, active control of 29Si nuclear spin states by 

manipulation of lithium electron spins is needed. Achieving the polarization 5 % and larger is 

required to initialize 29Si nuclear spin qubits at the beginning of quantum computing. Dynamic 

nuclear polarization (DNP) is one of promising methods to achieve a high degree of the 29Si 

nuclear polarization by transferring the equilibrium Boltzmann electron polarization to the 29Si 

nuclei. Obtaining high nuclear polarization by DNP requires low temperatures and strong 

magnetic fields. Previously carried out DNP experiments with phosphorus doped silicon 

achieved 29Si polarization of 0.28 % in a naturally abundant silicon sample at 12 K but this was 

limited by the long relaxation time of electrons bound to phosphorus donors (≈ 3×103 s at 1.2 K) 

[26, 27, 28]. Much shorter spin–lattice relaxation time expected for electrons bound to Li related 

centers in silicon at T < 10 K makes Li an attracting candidate as a 29Si DNP mediator. 

 



5 
 

1.3 Organization 

 
This thesis is organized as follows. Chapter 1 introduces the motivation and purpose of the 

dissertation. Chapter 2 is the literature review of lithium related centers in silicon. Here an 

unsolved problem related to symmetry of lithium related centers in silicon is identified. Chapter 

3 is an overview of the magnetic resonance principle. Chapter 4 shows the electron paramagnetic 

resonance (EPR) study of lithium related centers in isotopically controlled silicon. EPR of 

lithium related centers in naturally abundant silicon is shown in section 4.2.2. EPR of lithium 

related centers in a isotopically enriched 28Si sample is discussed in section 4.2.4. A new results 

concerning symmetry of Li–O complex is discussed in section 4.3. Chapter 5 shows the dynamic 

nuclear polarization (DNP) of 29Si nuclear spins by saturation of EPR forbidden transitions of 

lithium related centers. Dependences of the 29Si nuclei polarization on parameters such as 

temperature, saturation time, and magnetic field are discussed in section 5.2. Possible strategies 

to enhance the DNP further using Li related centers are discussed in section 5.3. Chapter 6 

provides conclusion. 
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Chapter 2 

 

Lithium in silicon 
 

2.1  Introduction 
 

A lithium related center forms a donor in silicon. They come in two forms; interstitial neutral 

lithium (Li0) and lithium–oxygen (Li–O) centers due to lithium’s strong affinity with oxygen. 

Ionization energies of Li0 and Li–O centers are 33 meV and 39 meV, respectively [31 – 33]. 

In 1939 Jackson and Kuhn investigated the hyperfine splitting and Zeeman splittings of the 

resonance line of the two stable isotopes of lithium. By means of the atomic beam absorption 

they observed 3 and 4 hyperfine lines for 6Li (I = 1) and 7Li (I = 3/2) isotopes, respectively, 

which was consistent with the relation 2I + 1 [34]. They calculated the nuclear magnetic 

moments to be 0.820 and 3.25 for 6Li and 7Li, respectively [34, 35]. The purposes of studying 

lithium in silicon in 1960s and 1970s were motivated by the developments of semiconductor 

detectors for nuclear physics [36 – 40], solar cells [33, 41], and marker to detect low 

concentrations of oxygen contents in silicon [36]. Other investigations [42 – 45] were devoted to 

the local placements of lithium in silicon, e.g. at the positions of to grown–in extended defects 

and clusters of the impurities. Further interest arose from the peculiarity of the lithium donor 

having a degenerate orbital ground state, which was systematically investigated by optical 

measurements [27] and electron spin resonance [46, 47]. 

The isolated neutral lithium (Li0) in silicon and germanium is mobile even at room temperature; 

it jumps from one interstitial equilibrium site to another site with very little lattice distortion due 

to its small ionic radius (0.60 Å) with respect to the host crystal element [48]. Therefore lithium 
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is a highly diffusive donor in silicon, e.g., diffusion coefficient of the order of 10–7 cm2 s–1 even 

at 500ºC [32]. Diffusion of lithium in silicon was extensively studied by measuring the position 

of a p–n junction as lithium impurities were diffused into p–type samples [49 – 51]. 

Pell investigated the interaction between the isolated interstitial lithium and electrically inactive 

interstitial oxygen in silicon [52] by the kinetic analysis of the precipitation process. The reaction 

between the lithium and oxygen is described by; 

 

LiO+ ֕ Li+ + O                                                          (2.1 a) 

 

Equation (2.1 a) can be written in terms of the concentrations and a dissociation constant, C: 

 

[LiO+]C = [Li+] [O]                                                  (2.1 b) 

 

where the dissociation constant being 4×1023 exp(–0.52q/kT) atom.cm–3. Ham’s theory of 

diffusion limited precipitation explained the behavior of the carrier concentration by lithium 

precipitation in silicon when the oxygen concentration was more than 1016 cm–3 [53]. Pell 

concluded that the precipitation of Li was easily overwhelmed by the interaction of lithium with 

oxygen. The lithium–oxygen center is a donor and is not mobile in silicon at room temperature. 

Pell measured the electrical conductivity vs. time subsequent to rapid quenching from high 

temperature at which lithium was diffused into the sample. Important findings are: 

I) The precipitation of Li in CZ silicon occurs when the Li concentration exceeds1017 

cm–3. Li form the Li–O centers when the concentration of Li is less than one fifth of 

the oxygen content. However lithium precipitates when its concentration reaches 

more than one fifth of the oxygen concentration. 

II) The lithium diffusion rate changes when Li form Li–O. 

III) Higher order of lithium oxygen complexes (LimOn+) exist at supersaturation of 

lithium. 

Pell investigated the possibility of producing a large volume of intrinsic silicon by diffusing 

lithium atoms into p–type silicon and drifting them in the ionic forms throughout the sample 

[54]. A successful production of a large volume of silicon in this manner led to very sensitive 
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nuclear detectors. The high diffusion coefficient of lithium in silicon was the key for the 

construction of Si:Li detectors. Lithium–oxygen interaction can be used to measure the oxygen 

content in silicon by probing the intensities of 9 μm infrared absorption [55, 56]. The 

precipitation rate of the Li–O center [53] can be used to measure the oxygen content down to 

1015 cm–3. 

 

2.2 Symmetry of lithium related centers 

 
Wert and Zener proposed the theory for diffusion of interstitial atoms in metals which can be 

extended to semiconductors [57]. It estimated the entropy of diffusion when the strain increases 

the entropy of the lattice [58]. Later, Swalin et al. proposed the theory for diffusion of 

substitutional donors in silicon` [59]. Weiser proposed a model to determine the symmetry of an 

interstitial natural donor [60]. Here it was assumed that a lattice distortion contributes by 10% to 

the activation energy of diffusion in a diamond lattice. Then they calculated the activation energy 

based on the interaction of the impurity with the host atoms. 

Figure 2.1 shows two preferential interstitial sites; (a) a tetrahedral site which is characterized by 

four nearest host atoms with the distance of 0.433a0 from the center, and six next–neighbors with 

the distance of 0.500a0, (b) a hexagonal site with the distance of 0.415a0 from the six host atoms, 

and 0.649a0 from the eight next–nearest neighbors, where a0 is the unit cell edge length [61]. The 

impurity atom in the crystal prefers an as high symmetry point as possible because at the 

symmetric site the impurity atom is equally far away from the host atoms so that the repulsive 

force will be minimal. This trend becomes more pronounce for the case of a small particle such 

as lithium. The repulsive energies Urep in eV of the lithium ion at the center of the tetrahedral and 

of hexagonal cavities are derived by Born–Mayer equation [62]; 

 

                   Urep = 4A exp(rL + rI – rT)/ρ + 6A exp(rL + rI – 1.15rT)/ρ,    (tetrahedral site)     (2.2 a) 

                   Urep = 6A exp(rL +rI – rH)/ρ + 8A exp(rL + rI – 1.56rH)/ρ,    (hexagonal site),     (2.2 b) 
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where, A = 0.63, rL = 0.117 nm is the effective radius of a silicon atom [63], rI = 0.06 nm is the 

ionic radius of the lithium atom [48], and rT and rH are distances from the center of each 

symmetry to the nearest host atom for the tetrahedral and hexagonal cases, respectively. 

From equation (2.2) it is estimated that the contribution to the repulsive force of the next–nearest 

neighbors in the tetrahedral case is 50 %, while in the case of hexagonal is only 2 %. The 

repulsive force at the hexagonal site due to the host atom is higher by 0.038 exp(rI / ρ) than the 

tetrahedral sits. Therefore the tetrahedral site is more preferable than the hexagonal site. If the 

lithium ion site away from the symmetric site, the polarization energy must be estimated. The 

polarization energy is expressed in terms of spherical harmonics (equation (2.3)) [64]. It is 

shown that the hexagonal site has the total polarization energy lower than the tetrahedral site by 

0.05 eV based on an equation; 

 

 
(a)                                                                (b) 

Figure 2.1: Atomic structure of a diamond type crystal with lattice constant a0. (a) Tetrahedral 

site symmetry with the nearest neighbors at 0.433a0, and the next–nearest neighbors at 0.500a0. 

(b) Hexagonal site symmetry with the nearest neighbors at 0.415a0 and the next–nearest 

neighbors at 0.649a0. 
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where, q is the charge of the particle, ߲ is the displacement of the charge from the center of the 

cavity of radius Re, and K is the dielectric constant of the material. 

Weiser found in his calculation that the electrostatic polarization energy dominates over the 

energy of overlap repulsion, so that the hexagonal site with its six silicon neighbors is favored 

over the tetrahedral site. In contrast to Weiser, theoretical calculation by Bellomonte et al. on the 

basis of localized vibration modes shows that the overlap repulsion dominates and the hexagonal 

site has higher overlap repulsion than the tetrahedral site because of the higher density of the 

hexagonal site [65, 66]. Therefore a detail study is needed to find out the site symmetry of Li in 

diamond type crystal. 

Aggarwal et al. were the first to study the excitation spectra of lithium related centers in silicon 

[27]. An excitation spectrum of lithium was observed in oxygen free silicon (FZ silicon) to 

conclude that the ground state was different from the substitutional site. The 1s(A1) state was 

found 1.8 meV above the 1s(E + T1) state. The excitation spectrum of Li–O centers in crucible 

grown silicon (oxygen concentration of the order of 1017 cm–3) was obtained and found that the 

ground state is the same as the substitutional donors. The 1s(E + T1) state situates 7.7 ± 0.1 meV 

above the 1s(A1) state. The site symmetry of the lithium–oxygen center and isolated lithium were 

tetrahedral (Td). 

0BFigure 2.2 (a) shows the excitation lines of isolated lithium recorded with externally applied 

stress ࡲሬሬԦ in [100] direction and polarization ࡱሬሬԦ of the light also in [100] direction [27]. Figure 2.2 

(b) shows the same spectroscopy with ࡱሬሬԦ  ٣  ሬሬԦ [27]. Figure 2.2 (c) shows a corresponding energyࡲ 

diagram [67, 68] and Table 2.1 shows corresponding energy spacings. If the chemical splitting 

for isolated lithium is zero, it is clear that the excitation lines will not split under the application 

of uniaxial stress. However as shown in Fig. 2.2 (c), the ground state splits into three 

components. With the above choice of ground–state structure, for the case of F ԡ [100] and F ԡ 

[110], the site symmetry of the interstitial lithium changes from Td to that of D2d and C2v, 

respectively [69]. 
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Figure 2.2: The effect of a [100] compression on the excitation spectrum of Li0 for the direction 

of light propagation (q) is along [011] for (a) E ԡ F and (b) E ┴ F. The dashed curves in (a) and 

(b) are for F = 0 (c) Splitting of the donor levels in silicon (not to scale) under a [100] 

compression for a finite 6Δc and with an "inverted" Group–V–like ground state. The vertical 

arrows indicate the allowed transitions. The capital letters labeling the levels denote the 

irreducible representations of Td and D2d to which the states belong [27]. 

 

Similarly, the Li–O center excitation spectra under uniaxial stress and excitation energy level 

diagram are shown in Fig. 2.3 (a) and (b). These excitation spectra are very similar to that of 

Group–V impurities [70 – 72]. The zero stress linewidths of Li–O and phosphorus are 0.025 and 

0.026 meV, respectively [72]. The energy level diagram is shown in Fig. 2.3 (c). 

In the framework of the effective–mass approximation and deformation potential theory, 

comparison of the excitation spectra under stress between substitutional donors and Li–O centers 

confirms that the site symmetry is tetrahedral (Td) in the absence of stress and that the lowest 

ground state of the Li–O centers is 1s(A1) [31, 67, 69, 73]. The chemical splitting of Li–O is 7.7 

meV. In conclusion, the excitation spectra of lithium related centers show that its site symmetry 

is tetrahedral (Td) instead of hexagonal. The ground–state of Li0 and Li–O center are 1s(E + T2) 

and 1s(A1), respectively. 
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Table 2.1: The energy of excited lines of isolated lithium (Li0) and lithium–oxygen centers (Li–

O) in meV.  x1, x2, x3, x4 a, b, and c are unidentified peaks. 

 

29BLi0 30BLi–O 

31BLabel 32BAssignment 33BEnergy 34BLabel 35BAssignment 36BEnergy

40B2p0 41B1s(E + T1) → 2p0 42B21.50 37B1s(E + T1) → 

2p± 

38B1s(E + T2) → 2p± 39B25.60 

46B1s(A1) → 2p± 47B1s(A1) → 2p± 48B24.50 43Bx1 44B? 45B26.63 

52B2p± 53B1s(E + T1) → 2p± 54B26.63 49B2p0 50B1s(A1) → 2p0 51B28.10 

58B3p0 59B1s(E + T1) → 3p0 60B27.51 55Bx2 56B? 57B29.08 

64B4p0 65B1s(E + T1) → 4p0 66B29.72 61Bx3 62B? 63B31.86 

70B3p± 71B1s(E + T1) → 3p± 72B29.91 67Bx4 68B? 69B32.45 

76B4p±, 5p0 77B1s(E + T1) → 4p±, 

5p0 

78B30.82 73B2p± 74B1s(A1) → 2p± 75B33.33 

82BA 83B? 84B32.12 79B3p0 80B1s(A1) → 3p0 81B34.14 

88B5p± 89B1s(E + T1) → 4p± 90B31.56 85B4p0 86B1s(A1) → 4p0 87B36.35 

94BB 95B? 96B31.94 91B3p± 92B1s(A1) → 3p± 93B36.51 

100BC 101B? 102B32.16 97B4p±, 5p0 98B1s(A1) → 4p±, 5p0 99B37.47 

103BIonization energy 104B32.81 105BIonization energy 106B39.41 
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Figure 2.3: The effect of a [100] compression on the excitation spectrum of Li–O center for the 

direction of light propagation (q) is along [011] for (a) E ԡ F and (b) E ┴ F. The dashed curves 

are for F = 0 (c) Splitting of the donor levels in silicon (not to scale) under a [100] compression 

for a finite 6Δc. The vertical arrows indicate the allowed transitions. The capital letters labeling 

the levels denote the irreducible representations of Td and D2d to which the states belong [27]. 

 

2.3 Electron paramagnetic resonance of lithium related centers 

 

2.3.1 Electron paramagnetic resonance of isolated lithium 

 
107BThe electron paramagnetic resonance (EPR) signal of lithium–doped silicon was first observed 

by Honig et al. in a sample containing 7 × 1016 cm–3 lithium atoms [74]. The absorption 

resonance line had the full width at half maximum (FWHM) of 0.15 mT and the isotropic g–

factor of 1.999 with the line shape being approximately Gaussian. Power saturation 

characteristics indicate inhomogeneous broadening with four calculated hyperfine lines of 0.01 

mT (theoretically estimated) linewidth overlapping and they unresolved in the inhomgeneously 
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broadened line. This situation was caused by the hyperfine interaction of the Li0 electron with 

surrounding 29Si nuclear spins [75, 76]. 

Watkins studied the orbital degeneracy of the electrons in lithium doped silicon [46]. The EPR 

and ENDOR spectra were detected by using 10, 14 and 20 GHz frequencies in absorption and 

dispersion modes. The EPR spectrum of the interstitial isolated lithium (Li0) under zero stress 

shows a powder like broad spectrum (Fig. 2.4) that consists of several overlapping lines. This 

confirms that the ground state is degenerate as in the case of shallow acceptors in silicon [77]. 

This powder like EPR spectrum was observable in the range of 1.5 – 20 K. The careful 

observation of the EPR spectrum intensity in the range of 1.5 – 4.2 K revealed that the integrated 

intensity was roughly constant when corrected for the l/T Boltzmann dependence. This behavior 

confirms that the population distribution of the degenerate ground state is according to the 

Boltzmann distribution. No significant difference was observed in the EPR spectra between 6Li 

and 7Li doped samples. The g–value for the isolated lithium center without external stress was 

between 1.998 and 1.999. 

 

 

Figure 2.4: EPR spectrum in lithium-doped 

(~1016 cm–3) vacuum floating–zone silicon 

at zero applied stress, Hԡ <100>, ν0 ~20 

kMc/sec: (a) absorption at 4.2 and 1.5 K, 

(b) derivative of dispersion at 1.5 K. [46]  
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108BA significant change was observed in the EPR spectrum by the application of compressive 

uniaxial stress along [100] or tensile stress along [110] directions. As the stress was increased 

from zero to 10 kg/cm2, broadening of the resonance spectrum and g–shifting towards higher 

values were observed. At the low stress, strain lifted mixed states are populated according to the 

Boltzmann factor. This thermal distribution varies by the distribution of strain parameters, 

because the energy level of 1s hydrogenic state of lithium varies as shown in Fig. 2.5. Because 

dynamic averaging between the ground and excited states occurs [78], for stress more than 10 

Kg/cm2, the EPR spectrum becomes narrower with increasing stress and demonstrates only one 

EPR absorption line. External stress applied along [00l] and tensile along [011] gives a single 

sharp line at high stresses, showing the lifting of the degeneracy (Fig. 2.5). This line is described 

by a tetragonal axial symmetry with the T2z ground state, with g–values 

 

                g║ = 1.9997 ± 0.0001 and g┴ = 1.9987 ± 0.0001.  

 

The EPR spectrum of lithium in mechanically damage silicon was intensively studied by Höhne. 

It was found that the narrow EPR spectrum emerged in the mechanically polished silicon similar 

to the case of applying uniaxial stress. The mechanical damage in the microregions causes slight 

deviation in the lithium position near the surface. Indeed it was shown later by Fisher et al. that 

the mechanical polishing of the silicon surface lead to application of an uniaxial stress [79]. 

114BAt 20 K and B0 ԡ [100], the observed spectrum can be estimated by the Lorentzian line shape. 

The spectrum at 1.5 K shows a steep slope at the high–field side towards the middle of the 

spectrum. This asymmetric line can be explained by Dyson effect [Neu73]. 

 

115BThe important features found by the EPR and ENDOR of isolated Li in silicon are as follows: 

1) 116BEPR data confirmed that the ground state is 5 fold degenerate and the valley–orbit 

splitting was inverted from the normal order. 

2) In the absence of strain, the ground state is composed of triplet and doublet states splitted 

by 0.1 – 0.2 cm–1 (1 – 2×10–5 eV). 
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(a)                                                                              (b) 

 

Figure 2.5: (a) Lithium donor EPR spectrum as a function of [00l] compressive stress (indicated 

values in kg/cm2) with H ԡ [l00], ν0 ~ 20 kMc/sec, and T = 1.5 K. (b) Energy levels of the 1s 

hydrogenic states of the lithium donor as a function of applied tetragonal strain eθ[46]. 

 

3) 118BA numbers of anisotropic lines were observed below 2.5 K at zero stress and their 

effective g–values (2.00 – 2.05) are larger than the single line found under stress. The 

fivefold orbital degeneracy will not be removed by the small stress but these g–values 

changes significantly by the stress of the order 1 – 10 kg/cm2.  

4) 119BA weak spin–orbit coupling among the T2 state and between the E and T2 states are 

observed with values |λ΄| ≈ 0.056 cm–1 and |λ| ≈ 0.01 – 0.02 cm–1, respectively. At zero 

stress the random strain may cause the splitting among the E and T2 which may be higher 

than |λ΄| and |λ| but less than gβB0. 

5) 120BUniaxial compression or tension removes the fivefold degeneracy of the ground state T2z 

representing the antisymmetrical combination of valleys on the z axis. The resonance 

under stress has the axial symmetry about [100] with gll = 1.9997 ± 0.0001 and g┴ = 

1.9987 ± 0.0001 that obeys the independent valley model and linewidth 0.13 mT of Li0 is 

inhomogeneously broadened by the 29Si hyperfine interaction. 
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6) The temperature dependence of 7Li and resolved 29Si hyperfine interaction are detected 

by ENDOR with 470 kg/cm2 [100] compressive stress and B0 ԡ [100]. It shows that the 
7Li hyperfine interaction varies from A/h ≈ 0.01 MHz at 1.3 K to A/h ≈ 0.1 MHz at 4 K. 

The temperature dependence confirms that the T2z is the ground state since the 7Li 

hyperfine interaction is nearly zero. The small non–zero value of 7Li hyperfine 

interaction is A/h ≈ 0.004 MHz when extrapolated to 0 K. 

 

2.3.2 Electron paramagnetic resonance of lithium–oxygen center 

 
123BFeher observed for the first time an EPR spectrum of Li–O centers in CZ grown silicon of the 

oxygen content ≈ 1017 cm–3. However, the Li–O center was not observed in FZ grown silicon 

[47] (Fig.2.6). A 9 GHz spectrometer was used to detect Li–O centers and the linewidth along 

[100] (2.3 ± 0.01 mT) is lower than that in the [110] direction. Therefore this center has the 

magnetic field direction dependent anisotropy. Later, with 22 GHz (K–band) EPR spectrometer, 

it was confirmed that two fine structures that had trigonal symmetries with the axial symmetry of 

the g–tensor were pointing along [111] direction. The two principle g–values were: 

 

124Bgll =g[111]= 1.9978 ± 0.0001 and g┴ = 1.9992 ± 0.0001. 

 

125BSince the lithium center lies along the [111] direction, an expected ratio of the resolved 

resonance line intensities are 3:1 and 1:1 in the [111] and [110] directions, respectively. The 

electron spin lattice relaxation time of Li–O centers at 1.25 K is of the order of 102 second that is 

much shorter than that of phosphorus [28]. 

126BThe hyperfine interactions (A/h) of the electron wave function with the 7Li and 6Li nuclei are 

0.845 MHz and 0.316 MHz, respectively [47, 80]. The hyperfine interaction constant is much 

smaller than those of other donors in silicon. Figure 2.6 shows the ENDOR signal from 7Li 

doped silicon (1016 cm–3) at temperature 1.25 K and magnetic field along [111] direction. They 

found two additional structures separated by 0.037 MHz from allowed transition peak positions 

of 7Li. This additional structure is due to the interaction between the electric field gradient and 

the quadrupole moment of Li nuclei. 
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127B  
(a)              128B(b) 

 

Figure 2.6: (a) Electron spin resonance signal from Li doped silicon with the magnetic field 

pointing along the different crystalline directions (~ 3 × 1016 Li/cm3, T = 1.25 K, νe ~ 22700 

Mc/sec). The splitting of lines are due to an anisotropic g–value. This indicates that the wave 

function of the donor electron does not have the tetrahedral symmetry. (b)The ENDOR signals 

from Li–doped silicon (νe ~ 9000 Mc/sec). The additional structure on the 7Li lines is due to a 

quadrupole interaction. 
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Chapter 3 
 
Magnetic resonance 
 
3.1  Introduction 
 
Magnetic resonance involves excitation of spins across Zeeman splitted levels. The field has 

developed as an extension of the Stern–Gerlach experiment [81, 82], which was one of the most 

famous experiments on the structure of matter in 1920s. It showed that an electron magnetic 

moment in an atom could take only discrete orientations in a magnetic field. Uhlenbeck and 

Goudsmit [83] linked the electron magnetic moment with the concept of electron spin angular 

momentum. The resulting energy of a hydrogen atom in a magnetic field was first studied by 

Breit and Rabi in 1931 [84]. Later Rabi et al. [85] studied the transitions between levels induced 

by oscillating magnetic field to discover the magnetic resonance. 

In 1945 an electron paramagnetic resonance (EPR) line was observed for the first time by 

Zavoisky in a CuCl2
. 2H2O sample [86, 87]. The electron spin resonance line was shown at 4.76 

mT at radiofrequency of 133 MHz with the electronic g–value of approximately 2. Zavoisky’s 

results were interpreted by Frenkel [88] as absorptions due to paramagnetic resonance of 

electrons. Around the same time, EPR studies were also undertaken in the United States [89] and 

in England [90]. Two decades later, a high field and high frequency (microwave) EPR 

spectrometer was developed by Galkin et al. [91], since the low field EPR did not provide 

sufficient spectra separations in certain demanding investigations. The advantage of the use of 

high frequencies and fields include suppression of the second order effect to simplify the EPR 

spectra and increase in orientation selectivity and sensitivity. Extensive effort followed to 

understand the mechanism of EPR theoretically [92, 93]. 
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3.2  Spins behaviors under magnetic field 

 

3.2.1 Semi-classical treatment 

 
Assume that a bar magnet is mounted with a frictionless bearing which could be turned at will. In 

the presence of time independent magnetic field B0, the bar magnet oscillates about its 

equilibrium axis. If the bearing was not frictionless, the oscillation damps out and the magnet lies 

along the magnetic field by giving the energy to the bearing. When the bar magnet has a angular 

momentum, it acts like a gyroscope. 

The equation of motion of the magnet is found by equating the torque with the rate of change of 

angular momentum J. 

 
ௗࡶ
ௗ௧

 ൌ ൈ ࣆ   ଴                                                                 (3.1)࡮

 

where µ = γJ. γ is the gyromagnetic ratio. 

 
ௗࣆ
ௗ௧

 ൌ ൈ ࣆ  ሺ࡮ߛ଴ሻ.                    (3.2) 

 

This equation tells us that at any instant the change in µ are perpendicular to both µ and B0. As 

shown in Fig 3.1 and consider that the tail of the vector µ is fixed and the tip of the vector is 

moving out of the paper. The angle θ between µ and B0 does not change and µ makes a cone. 

The time derivative of µ is ௗࣆ
ௗ௧

ൌ  ఋࣆ
ఋ௧

൅ ߱଴ ൈ  we can write equation (3.2) in terms of a ,ࣆ 

coordinate system rotating with arbitrary angular velocity ω0. 

 

                                                      ఋࣆ
ఋ௧

 ൅  ߱଴ ൈ ൌ ࣆ ࣆ  ൈ                            ଴࡮ߛ

                                                      ఋࣆ
 ఋ௧

 ൌ ࣆ  ൈ ሺ࡮ߛ଴ ൅ ߱଴ሻ.                                                       (3.3) 
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Figure 3.1: Representation of the relation between μ and B0 

for γ > 0 nuclei. The magnetic moment μ precesses around a 

static magnetic field B0 along the z–axis. 

 

 

 

Equation (3.3) informs that the motion of µ in the rotating coordinate system obeys the same 

equation as in the laboratory system, provided that it replaces the actual magnetic field B0 by an 

effective field Be 

 

ࢋ࡮ ൌ ଴࡮ ൅ ఠ
ఊ

                                                                  (3.4) 

 

The motion with respect to the laboratory is therefore that of a vector fixed in a set of axes which 

themselves rotate at ω = –γB0k. In other words, µ rotates with the angular velocity ω = –γB0k 

with respect to the laboratory coordinate system. The angular frequency γB0 is called the 

“Larmor Frequency”. 

 

3.2.2 Magnetization in a static and oscillating magnetic field 

 
In the absence of magnetic field, the bulk magnetization M is zero because the net magnetization 

is zero. When the ensemble of magnetic moment is exposed to a static and homogeneous 

magnetic field B0, in the absence of relaxation, M is moving according to the equation of motion 

(3.1) 

 
ௗۻ
ௗ௧

ൌ ۻߛ ൈ  ଴                                                               (3.5)࡮
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where γ is the electronic or nuclear gyromagnetic ratio equals to gβe,n/ћ. Considering B0 along z–

axis, equation (3.5) becomes 

 
ௗெೣ

ௗ௧
 ൌ   ௬ܯ଴࡮ߛ 

ௗெ೤

ௗ௧
ൌ െ࡮ߛ଴ܯ௫                                                            (3.6) 

ௗெ೥
ௗ௧

ൌ 0. 

 

The solutions of equation (3.6) are 

 

௫ܯ ൌ ୄܯ 
଴ܿ࡮߱ݏ݋బݐ  

௬ܯ ൌ ୄܯ 
଴࡮߱݊݅ݏబ(3.7)                                                         ݐ 

௭ܯ ൌ ௭ܯ 
଴ . 

 

Above equations give an idea that M precessess about B0 with an angular frequency ߱࡮బ ൌ

 െ࡮ߛ଴(the classical larmor frequency), if M⊥
0 is non–zero. The longitudinal magnetization Mz is 

constant. 

Let us now consider the relaxation effects. When the magnetic field is subjected to sudden 

changes in its magnitude or direction, then Mx, My, and Mz relax to their equilibrium values at 

different rates. If the static magnetic field suddenly turns on (B0 = 0 at t = t0), then the population 

difference between the two levels ΔN is governed by the strength of the static magnetic field and 

temperature obeying the Boltzmaan distribution. Therefore Mz follows an exponential rise with 

time (Fig. 3.2). The characteristics time at which Mz relaxes to its thermal equilibrium value is 

defined by longitudinal relaxation time T1, also called spin lattice relaxation time. The transverse 

components of magnetization, Mx and My, relax with the same rate constants, which are the 

inverse of a characteristic time T2 called the transverse relaxation time. Thus 
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ௗெೣ
ௗ௧

ൌ ௬ܯ଴࡮ߛ െ ெೣ

మ்
  

ௗெ೤

ௗ௧
ൌ  െ࡮ߛ଴ܯ௫ െ ெ೤

మ்
                                                    (3.8) 

ௗெ೥
ௗ௧

ൌ  ெ೥
బି ெ೥

భ்
 . 

 

The above equations are known as Bloch equations [94]. The solution of these empirical 

equations feature the decay of the components Mx and My to zero. Note that both T1 and T2 are 

empirical bulk properties. Now we consider the effect of the oscillating magnetic field on the 

each component of the magnetization. 

 

 

 

Figure 3.2: Behavior of the magnetization Mz when a magnetic field B0 lying along z–axis is 

abruptly increased from zero to a magnitude B` at time t = t0. T1 is the longitudinal relaxation 

time. 

The transition can be induced between the two magnetic–energy levels when an oscillating 

magnetic field (B1) is introduced perpendicular to the static magnetic field (B0). A sinusoidally 

varying monochromatic field B1 is introduced with components 
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B
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yφ

y

B1
φ

x

xφ

B0

z

B1x = B1 cos ωt   

B1y = B1 sin ωt                                                                (3.9) 

B1z = 0. 

 

With the addition of the terms for these components, the complete equations of the motion are 

  
ௗெೣ

ௗ௧
ൌ ௬ܯ଴ܤሺߛ െ ଵܤ sin ௭ሻܯݐ߱ െ  ெೣ

మ்
  

ௗெ೤

ௗ௧
ൌ  െߛሺܤଵ cos ௭ܯݐ߱ െ ௫ܯ଴ܤ െ ெ೤

మ்
                                   (3.10) 

ௗெ೥
ௗ௧

ൌ ଵܤሺߛ sin ௫ܯݐ߱ െ ଵܤ cos ௬ሻܯݐ߱ ൅ ெ೥
బି ெ೥

భ்
,  

 

where ω represents the component along the z–axis. ω may be a positive or negative. One 

alternating component rotates in the same direction as the magnetic moment precession and 

another component precesses in the opposite direction. Here the anticlockwise component is 

neglected. Because M is continuously precessing about B0, it is easier to visualize the time 

dependence of M if we switch to a rotating frame coordinate. The components of M in the 

rotating frame are given by Mxφ, Mxφ, and Mz. The Bloch equations in the rotating frame are; 

 

 

 

 

                     Figure 3.3: Diagram showing the rotating frame 

(dashed lines) in relation to an axis system fixed 

in space. This frame rotates at an angular 

frequency ω with the same sense as the rotation 

of B1. 
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ௗெ೤ഝ
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ௗெ೥
ௗ௧

 ൌ  െܤߛଵܯ௬థ െ ெ೥ିெ೥
బ
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 . 

 

3.2.3 Steady state solution of the Bloch equation  

 
Equation (3.11) is a set of coupled linear differential equations with constant coefficients. The 

steady–state solutions are; 

 

௫థܯ ൌ  െܯ௭
଴ ఊ஻భሺఠ࡮బିఠሻ మ்

మ

ଵାሺఠ࡮బିఠሻమ
మ்
మା ఊమ࡮భ

మ
భ் మ்

  

௬థܯ ൌ  ൅ܯ௭
଴ ఊ࡮భ మ்

ଵାሺఠ࡮బିఠሻమ
మ்
మା ఊమ࡮భ

మ
భ் మ்

                                       (3.12) 

௭ܯ ൌ  ൅ܯ௭
଴ ଵ ା ሺఠ࡮బିఠሻమ

మ்
మ

ଵାሺఠ࡮బିఠሻమ
మ்
మା ఊమ࡮భ

మ
భ் మ்

 . 

 

Note that the response Mxφ is in phase with B1, whereas Myφ is 90˚ out of phase. The magnitudes 

of Mxφ and Myφ tend to be small compared to that of Mz
0. For sufficiently small values of B1, the 

term in each denominator may be neglected. This power–saturation term predicts that M 

vanishes as B1 increases. Note that only the half of the radiation–energy density is effective in 

inducing transitions. The effects of the oscillating field B1 are often described in terms of 

dynamic susceptibilities χ′ and χ′′ (often called the “Bloch susceptibilities”). The magnetization 

M is related to the applied magnetic field B0 by a dimensionless proportionality factor χ with the 

relations 
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M = χH = χB0/κμ0                                                      (3.13) 

Mz
0 = χ0B0/κμ0 = ½γβΔN/V                                          (3.14) 

 

where μ0, κ and ΔN are the permeability, the relative permeability and steady state population. χ0 

is the static magnetic susceptibility κμ0Nvg2β2/4kbT. Here Nv is the number of spins in the total 

sample volume v and β is the Bohr magneton. χ and κ are isotropic. Then, with equations (3.13) 

and (3.14), we can define dynamic susceptibilities via 

 

χ′ = κμ0Mxφ/B1   

χ′′ = – κμ0Myφ/B1                                                          (3.15)  

 

where B1 is the half the amplitude of the linearly polarized excitation field. Thus 

 

߯ᇱ ൌ  ߯଴ ఠಳబሺఠಳబି ఠሻ మ்
మ

ଵାሺఠಳబି ఠሻమ
మ்
మାఊమ஻భ

మ
భ் మ்

               

߯ᇱᇱ ൌ  ߯଴ ఠಳబ మ்

ଵାሺఠಳబି ఠሻమ
మ்
మାఊమ஻భ

మ
భ் మ்

 .                                            (3.16) 

 

Note that χ′′ = χ′/ [(ωB - ω)T2] depends on B0, and B1. Figure 3.4 illustrates the frequency profile 

of χ′ and χ′′ under non–saturating conditions. Equation (3.10) are not correct for small static 

field B0 (i.e., B0 ≤ B1) since the susceptibilities do not vanish at ωB = 0. The power Pa(ω) 

absorption of the linearly polarized excitation field by the magnetic system (equation (3.9)) is 

 

௔ܲሺ߱ሻ ൌ  ఠఞᇱᇱ஻భ
మ

ఓబ௏
                                                            (3.17) 
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Figure 3.4: In-phase (χ′) and out – of – phase (χ′′) components of dynamic magnetic 

susceptibilities versus the angular frequency deviation [95]. 

 

3.3 Spin–spin interaction 

 
The presence of a group of spins (S = ½ or I ≥ ½) around one particular spin may result in a 

number of interactions. The most important interaction between the spin and the surrounding 

spins is the dipolar interaction, contact hyperfine interaction, exchange interaction, and 

quadrupolar interaction. When the dipolar interaction dominates between the nuclear spins and 

nuclear and electron spins, the linewidth of nuclear magnetic resonance and electron 

paramagnetic resonance broaden, respectively. The contact interaction between donor electron 

wave functions and nuclear spins are often referred to as the contact hyperfine interaction. The 

contact hyperfine interaction between the electrons and 29Si nuclei is responsible for the 29Si 

nuclear spin–lattice relaxation mechanism [96]. When the donor concentration is more than 1017 

cm-3, it causes a significant electron wave function overlaps. Therefore the exchange interaction 

χ′ χ′′
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occurs. Quadrupole interaction becomes relevant when the nuclear spin is greater than ½. The 

interaction between the electric field gradient and quadrupole moment leads to emergence of 

forbidden transitions. 

 

3.3.1 Dipolar interaction 

 
Classically, the dipolar interaction energy depends on the relative orientation of the magnetic 

moments. Consider a case that two magnetic dipoles, μ1 and μ2, are placed at an angle θ, and at a 

distance r as shown in Fig. 3.5. This is the case between 29Si nuclei and electron spins in a strong 

magnetic field. The interaction energy E between the two magnetic moments is 

 

ܧ ൌ  ఓభఓమ
௥య െ  ଷሺఓభ.௥ሻሺఓమ.௥ሻ

௥ఱ .                                              (3.18) 
 

μ1 and μ2 are considered as operators in the quantum mechanical treatment. Substitution of γiћIi 

into μi makes the Hamiltonian in the form; 

 

࣢ௗ ൌ  ԰మఊభఊమ
௥య ቂܫଵ. ଶܫ െ ଷሺூభ.௥ሻሺூమ.௥ሻ

௥మ ቃ.                                             (3.19) 

 

In the spherical coordinate system the Hamiltonian becomes, 

 
࣢ௗ ൌ  ԰మఊభఊమ

௥య ሾܣ ൅ ܤ ൅ ܥ ൅ ܦ ൅ ܧ ൅  ሿ                                  (3.20)ܨ

 
where, 
 

ൌ ܣ ଶ௭ሺ1ܫ ଵ௭ܫ  െ  ሻߠଶݏ݋3ܿ

ൌ ܤ                                                  െ ଵ
ସ

ሺܫଵ
ା ܫଶ

ି ൅ ଵܫ
ଶܫ ି

ା ሻሺ1 െ   ሻߠଶݏ݋3ܿ

ൌ ܥ  െ
3
2 ሺܫଵ

ା ܫଶ௭ ൅ ଶܫ ଵ௭ܫ
ାሻି݁ߠݏ݋ܿߠ݊݅ݏ௜ఝ 
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ିሻି݁ߠݏ݋ܿߠ݊݅ݏ௜ఝ        

ൌ ܧ  െ ଷ
ସ

ሺܫଵ
ା ܫଶ

ାሻ݊݅ݏଶି݁ߠଶ௜ఝ 

ൌ ܨ                                                  െ ଷ
ସ

ሺܫଵ
ଶܫ ି

ିሻ݊݅ݏଶ݁ߠଶ௜ఝ 

 

 
 

                                         (a)                                                                    (b) 

 

Figure 3.5: (a) Schematic representation of the dipolar interaction between two spins. A vector 

joining the spins at a distance r makes an angle θ with static magnetic field B0. (b) The energy 

level diagram for the two identical spins. The Zeeman Hamiltonian ࣢z = γћB0I2z corresponds to 

interaction with static magnetic field B0. The dashed lines joining the states show the matrix 

elements. 

 

where I+ = Ix + iIy and I– = Ix – iIy are the rising and lowering operators, respectively, that satisfy 

the commutation relations ሾܫ௭, േሿܫ  ൌ  േܫേ ሾܫା, ሿିܫ ൌ  .௭ܫ2

To understand the meaning of the term A – F, we shall consider a simple example of one I = ½ 

nuclear spin interacting with one S = ½ electron spin. It is convenient to denote the state m1 = 

+½, and m2 = –½ by notation |+ –ۧ. The energy level diagram and matrix elements connecting 

them are shown in Fig. 3.5 (b). I1zI2z is proportional to the term A that is a diagonal term. This 
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means it connects the same energy levels (|m1m2ۧ with ۦm1m2|ሻ. On the other hand the term B 

causes simultaneous flips of the two spins because of the term ܫଵ
ା ܫଶ

ି ൅ ଵܫ
ଶܫ ି

ା. In view of the fact 

that the terms C and D each flips one spin only, they join the states differ by the energy ћω0. The 

terms E and F connect states differ by the energy 2ћω0. The terms B, E and F are responsible for 

forbidden transitions in EPR, i.e. flip–flop and flip–flip transitions. Such forbidden transitions 

play important roles in the dynamic nuclear polarization of 29Si nuclear spins by lithium EPR 

(sec. 5. 2. 2). 

Sum of the terms A and B gives what it is called ࣢ௗ
଴: 

                                                  

࣢ௗ
଴ ൌ ଵ

ଶ
ఊమ԰మ

௥య ሺ1 െ ଶ௭ܫଵ௭ܫሻሺ3ߠଶݏ݋3ܿ െ ܫଵ.  ଶሻ                           (3.21)ܫ
 

It is important to note that certain values of ࣢ௗ
଴ are positive (magnetic energy increasing) and 

certain values of ࣢ௗ
଴ are negative (magnetic energy decreasing). The term involving the (3cos2θ 

– 1) in equation (3.21) is of particular importance. For a fixed value of r, this term causes the 

interaction energy to dependent highly on the angle θ. However the value of this term vanishes 

when cos2θ = 1/3, i.e., θ = 54◦ and 144◦. For these particular angles, the dipolar interaction 

disappears even when the spins are close to each other in space. They are called “magic angles” 

and employed frequently in NMR to suppress the dipolar broadenings. Such a measurement is 

known as the “magic angle spinning”. 

 

3.3.2 Contact hyperfine interaction 

 
The contact interaction arises when wave functions of two objects overlap in space. The most 

important cases are overlaps between electron and nuclear spins and between electron and 

electron spins. 

The contact interaction between electron and nucleus spins is known as the Fermi contact 

interaction. The Fermi contact interaction is also called donor hyperfine interaction. The total 

spin Hamiltonian between one electron spin and one donor nuclear spin is given by 
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࣢෡ ൌ ଴࡮௘ߚ݃ መܵ െ ݃௡ߚ௡࡮଴ܫመ ൅ ܣ଴ܫመ መܵ .                           (3.22) 

 

The term A0 is called the isotropic hyperfine coupling constant 

 

଴ܣ ൌ  ଼గ
ଷ

 ԰ߛ௘ߛ௡|߰ሺ0ሻ|ଶ,                                               (3.23) 

 

where ћ, γe,n and │ψ (0)│2 are the reduced Planck’s constant, gyromagnetic ratio of electron and 

nuclear spins, and the donor wave function amplitude at the donor center, respectively. The 

ionization energies, hyperfine line splitting [97, 98], and the values of the wave function 

amplitude at the impurity center are summarized in Table 3.1 for donors in silicon [99]. 

Lithium has the lowest ionization energy with the ground state T2z. Since the ground state T2z has 

the p character, the contact hyperfine interaction becomes very small leading to a very narrow 

EPR lines. 

 

Table 3.1: Experimental values of the ionization energy, nuclear magnetonsa), the hyperfine line 

separations, and theoretical estimation of │ψ (0)│2 for different donors in silicon. 

 

Donor Ionization Energy (meV) Nuclear Magneton (μ/μN) ΔH (mT) │ψ (0)│2 (1024 cm-3) 
7Li 33 3.25 0.0036 1.7 
31P 44 1.13 4.2 44 

75As 49 1.5 22.8 110 
121Sb 39 3.4 34.5 110 

a) Nuclear magnetic moment in units of the nuclear magneton μN 
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3.3.3 Exchange interaction 

 
The exchange interaction is a non–classical effect. It occurs when wave functions of two or more 

identical particles overlap. It results in either increase or decrease in the expectation values of the 

energy. Discussions of the terms that contribute to the exchange interaction are beyond the scope 

of this work but can be found in [MS80]. In general the spin exchange interaction is given by 

 

࣢௘௫ ൌ  ଵܵ
 ଴ܵଶ                                                              (3.25)ܬ்

 

where J0 = tr(J)/3 is the isotropic electron–exchange coupling constant. When the lithium donor 

concentration in silicon is higher than 1017 cm-3, the lithium donor wave functions overlap. At 

such a high concentration, the hopping conduction delocalizes the electrons. However the lithium 

samples employed in this study are in the range of 1016 cm-3 and the exchange interaction 

becomes least important. 

 

3.3.4 Quadrupolar interaction 

 
The quadrupolar interaction, referred to as the quadrupolar coupling, exists only for nuclear spins 

with I > ½. A nucleus with I > ½ has a non–spherical charge distribution, and the electric 

quadrupole moment of the nucleus interacts strongly with the electric field gradients generated 

by the surrounding electrons. This is called quadrupole interaction. The electron spin resonance 

spectrum show (2S) (2I + 1) number of peaks, when the crystal field is negligible and the 

external filed is parallel to the symmetry axis. Otherwise many forbidden lines are observed. The 

selection rule states that transitions │M, mۧ ֕ │M–1, m–1ۧ and │M, m–1ۧ ֕ │M–1, mۧ are 

forbidden. Since lithium has two stable isotopes, 6Li (I = 1) and 7Li (I = 3/2), it is possible to 

observe 4 and 2, (6 and 4) forbidden lines for 6Li (7Li) nuclei for the condition Δm = ±1 and Δm 

= ±2, respectively. This interaction leads to the appearance of the forbidden EPR transition peaks 

as shown in Fig 3.6 [100]. 
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Figure 3.6: Schematic representations of the energy level diagram for the M (1/2 1/2– ֐) 

interacting with 6Li (I = 1) and 6Li (I = 3/2) nuclei donors in silicon. The possible number and 

relative positions of allowed, [ΔM = ±1 (black line)] and forbidden hyperfine transition, [Δm = 

±1 (red dashed line) and Δm = ±2 (green dashed line)] are shown. 
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Chapter 4 

 

Electron paramagnetic resonance of 

lithium related centers in isotopically 

controlled silicon 

 

4.1 Electron paramagnetic resonance and spin lattice relaxation 

 
This chapter investigates the symmetry of lithium related centers using an EPR spectrometer. 

When a single S = ½ electron spin is concerned, the interaction between the electron spin 

magnetic moment with the magnetic field B0, lifts the degeneracy and splits the level into two 

with the magnetic quantum number ms = + ½ and ms = – ½, corresponding to spin up and spin 

down, respectively, as shown in Fig. (4.1). Population of the two spin states ms = ½ and ms = –½ 

are represented by N+ and N–, respectively. The population difference between the states is ΔN = 

N+ – N–. 

 

N+ = ½ (N – ΔN)                                                    

N– = ½ (N + ΔN)                                                            (4.1) 

 

where N is the total number of spins. 
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Figure 4.1: Two level spin system at temperature T and magnetic field B0. N½ and N–½ are the 

number of spins occupying the upper and lower energy levels, respectively. W↑ and W↓ are the 

transition probabilities per unit time for upward and downward transitions, respectively, ΔE is 

the energy separation of the two levels, and B1 is the excitation field amplitude with the 

frequency ν. 

 

Since it has been assumed that the spins are isolated from each other, the rate equation for this 

kinetics system is, 

 
ௗ∆ே

ௗ௧
ൌ  െ2 ିܹܰ ՛ ൅2 ିܹܰ ՝                                                     (4.2) 

 

where W↑ and W↓ are the transition probability per unit time for upward and downward 

transitions respectively. 

  

The first and second terms on the right side are the rate of upward and downward transitions, 

respectively. The factor 2 appears because one upward or downward transition changes ΔN by 2. 

The equation (4.2) can be rewritten as 

  
ௗ∆ே

ௗ௧
ൌ ܰሺܹ ՝  െ ܹ ՛ሻ െ ∆ܰሺܹ ՝  ൅ ܹ ՛ሻ                                                

ൌ ቀܰ ௐ՝ି ௐ՛
ௐ՝ ାௐ՛

െ ∆ܰቁ ሺܹ ՝  ൅ܹ ՛ሻ .                                 (4.3) 

ms = +1/2

ms = –1/2

W↑ W↓
ΔE

B (ν)
B0

1
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Under the steady state ቀௗ∆ே
ௗ௧

ൌ 0ቁ, we obtain, 

 

ΔNss = N+
ss – N–

ss                                                                                                

ൌ ܰ ௐ՝ ି ௐ՛
ௐ՝ ାௐ՛

  

ௗ∆ே
ௗ௧

ൌ ሺ∆ܰ௦௦ െ ∆ܰሻሺܹ ՝  ൅ ܹ ՛ሻ                                   (4.4) 

 

where ΔNss is the steady state population difference. The quantity (W↓ + W↑)–1 has a dimension 

of time and is known as the relaxation time T1. Thus, the equation (4.4) becomes 

 

                                                        ௗ∆ே
ௗ௧

ൌ  ேೞೞି ∆ே

భ்
                                                           

 ∆ܰ ൌ ܰ௦௦ሺ1 െ ݁
ି௧

భ்ൗ ሻ                                                 (4.5) 

 

By combining the rate equations for a transition induced by the applied alternative field B1(ν) in 

the thermal equilibrium process, we find 

 
ௗ∆ே

ௗ௧
ൌ െ2ܹܰ௦௦ ൅  ேೞೞି∆ே

భ்
                                             (4.6) 

 

where W is the mean transition probability per unit time induced by field B1(ν) between the states 

ms = + ½ and ms = – ½. The mean transition probability is proportional to the square of the 

alternating magnetic field (W ∝ B1
2). The steady state of equation (4.6) is 

 

∆ܰ ൌ  ேೞೞ

ଵାଶௐ భ்
 .                                                             (4.7) 

 

Therefore as long as 2WT1 << 1, ΔN = Nss and the absorption of energy from the alternating field 

does not disturb the population much from their thermal equilibrium value. The rate of 

absorption energy is given by 
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ௗா
ௗ௧

 ൌ  ∆ܰ԰ܹ߱ ൌ ܰ௦௦԰߱ ௐ
ଵ ାଶௐ భ்

 .                                (4.8) 

 

The absorption rate by the electron increases with increasing the alternating magnetic field 

amplitude as long as 2WT1 << 1. When W ~ ½T1, there is a limiting point of power at which the 

ability of the sample to dissipate energy from its spin to its lattice saturate. This behavior is 

regarded as the saturation of spin system. These considerations lead to the following expression 

for the electron spin–lattice relaxation rate constant: 

 

                                                            ଵܶ ൌ ଵ
ଶ మ்ఊ೐

మ࡮భ
మ .                                                                  (4.9) 

 

4.2 Electron paramagnetic resonance of lithium related centers 

 

4.2.1 Sample preparation 

 
A n–type FZ naturally abundant silicon (4.7% 29Si nuclei) sample and a isotopically enriched 
28Si sample with 28Si concentration 99.991% grown along <100> direction and having the 

resistivity of 2000 Ωcm were used for the lithium diffusion. Prior to the lithium diffusion, the 

silicon wafers were mechanically polished using rotary polisher (model no: ML150P) with the 

1900 mesh slurry. The polishing was done in three different rotation speeds 150, 120 and 60 

rpm. Polishing with the 1900 mesh size creates the roughness of order of 10–100 µm. This rough 

surface helps the evaporated lithium atoms to stick more effectively to the silicon surface. 

Lithium diffusion was performed at UC Berkeley using a thermal evaporator equipped with in–

situ diffusion annealing capability. A heater is attached to the top of the sample holder as shown 

in the Fig. 4.2. To prevent the oxidation of lithium pallet, it was kept immersed in the oil and put 

inside the thermal evaporator just before evacuation of the thermal evaporator. Lithium 

evaporation was done at 10–6 mbar. The sample holder was heated just after evaporation of 

lithium. The sample holder is heated till its temperature reached 450ºC and the temperature was 

kept constant at the same level for 15 min with the assumption that sample and sample holder 

have the same temperature. After the lithium diffusion, the sample is immediately quenched in  
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Figure 4.2: Schematic diagram of the thermal evaporator. The evaporation of lithium is done at 

10-6 mbar vacuum. 

 

 

 

 

 

 

 

 

 
(a)                                                               (b) 

 

Figure 4.3: (a) An X–band JOEL JES–RE3X ESR spectrometer equipped with a cylindrical 

cavity. (b) Schematic diagram of Oxford ER4118CF He gas flow cryostat. 
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an ethanol bath to prevent immediate formation of Li–O complexes. This lithium diffused silicon 

sample was labeled as Si:Li0. Part of the lithium diffused silicon wafer was put inside the 

ampoule and sealed with the vacuum up to 10–5 mbar. The ampoule sealed silicon sample was 

annealed at 450ºC for 45 min in an electric furnace. By this annealing lithium–oxygen complexes 

were formed. Such a sample was labeled as Si:Li–O. 

Both the lithium diffused and annealed silicon samples were etched by a HF:HNO3 = 1:3 

solution for 2 min to remove the surface damage prior to the EPR measurement. Two X–band 

EPR spectrometers were employed; JEOL, JES–RE3X and Bruker E500. An Oxford He gas flow 

cryostat was used to control the sample temperature in the range of 3.4 – 50 K. Figure 4.3 show 

the EPR spectrometer and the schematic diagram of the Oxford He gas flow cryostat. 

 

4.2.2 EPR spectra in naturally abundant silicon 

 
Second derivative line shape of EPR absorption spectra observed in silicon after diffusion of Li 

atoms at 450oC for 15 min are shown in Fig. 4.4 (a). This sample is labeled as natSi:Li0. The 

angular dependence of this EPR spectrum (Fig. 4.4 (b)) shows an axially symmetric g–tensor 

about <100> with the components g|| = g[100] = 1.9996±0.0001 and g⊥ = 1.9986±0.0001, which are 

in good agreement with the previously reported values for neutral Li atoms (Li0) occupying 

tetrahedral interstitial positions [46]. It should be noted that the EPR spectra shown in Fig. 4.4 

(a) are recorded without application of external stress that was needed to obtain such spectra in 

the earlier studies [46]. The existence of uniaxial stress in the direction perpendicular to the 

silicon surface after mechanical grinding was demonstrated previously [79, 78 and 101]. 

However, we observe the signal shown in Fig. 4.4 (a) even after sufficient chemical etching of 

the surfaces to remove such stress. The possible reason for this spectrum is due to some residual 

stress exist perpendicular to [100] direction even after chemical polishing in bulk crystal or better 

crystal which removes the degeneracy of ground state of lithium atom. This signal can be 

detected at temperatures below 20 K and its intensity continues to increase all the way down to 

3.4 K, which was the lowest temperature employed in this study. 
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Isolated lithium shows considerably narrower linewidth of 0.05–0.13 mT in naturally abundant 

silicon. The theoretical calculation performed by Kohn shows that the linewidth ܪ∆ۃଶۄଵ
ଶൗ  

depends proportionally to the ݊ିଷ
ଶൗ , where n is the square root of the ratio of the effective–mass 

binding energy (29 meV) and actual Li binding energy (33 meV) [31]. This effect itself reduces 

the resonance linewidth by a factor of 0.8 than other donors. Moreover, since the ground state of 

lithium wave function has the p–character, the hyperfine interaction is surpressed. Therefore, the 

EPR linewidth of Li is very sharp. 

 

 
(a)                                                                   (b) 

 

Figure 4.4: (a) EPR spectra of Li0 center detected in the second derivative mode with different 

orientation of magnetic field B0 indicated in the Figure. (b) The angular dependence of EPR 

signals position where θ is the angle between the symmetry axis <100> and applied magnetic 

field direction. 

 

An additional EPR lines emerge in the Li diffused samples immediately after annealing at 450ºC 

for 45 min labeled (I) in Fig. 4.5 (a). Moreover, these EPR centers are not stable at room 

temperature and change their character over the time period of days and are labeled (II) and (III) 

in Fig. 4.5 (a). One broad and stable peak labeled (III) is observed and that is used for further 

analysis for symmetry consideration. The variation of this broad line at different orientations of 

the crystal in the magnetic field agrees with those indentified as Li–O center [68] and marked as 
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natSi:Li–O. The angular dependence of natSi:Li–O EPR spectrum (Fig. 4.5 (b)) shows trigonal 

symmetry (C3v) with an axially symmetric g–tensor about <111> with the components g|| = g[111] 

=1.9979±0.0001 and g⊥=1.9990±0.0001. 

 

 
(a)                                                                           (b) 

 

Figure 4.5: (a) EPR spectra detected in the second derivative of absorption mode: (I) 

immediately after 45 min annealing at 450oC, (II) after two days, and (III) after 4 weeks.  The 

peak (III) arises from Li–O center. (b) The angular dependence of natSi:Li–O center signal 

position where θ is the angle between symmetry axis <111> and applied magnetic field direction. 

 

The variation of the EPR spectra with the time after the second annealing can be related to slow 

relaxation of lattice stress in the sample and, probably, to slow but mobile Li even at room 

temperature after the second annealing. Li atoms may tend to stabilize themselves near 

interstitial oxygen to form Li–O centers. The concentration of paramagnetic Li–O centers 

estimated from the EPR line intensities in comparison with the reference sample (Si:P 

concentration 1016 cm–3) is around 2×1016 cm–3 which is below the typical concentration 5×1016 

cm–3 of oxygen in FZ silicon. 
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4.2.3 Temperature and power dependence of EPR spectra 

 
Figure 4.6 shows the temperature and power dependences of the EPR signal amplitudes for 

different samples (natSi:Li0 and natSi:Li–O). Below 10 K, the EPR intensity of the isolated Li 

increases whereas that of Li–O centers decreases. The temperature dependence of the Li–O EPR 

intensity decreases below 10 K, and is explained by longer electron spin–lattice relaxation time 

(T1e) than that for Li0 centers [28]. T1e time of Li–O center is 100 sec at 1.25 K [47], whereas Li0 

center is 12 μsec at 2.1 K [SPT+08]. Dependence of the peak–to–peak first derivative amplitude 

on microwave power is shown in Fig. 4.6 (b). High microwave power is required in case of 

isolated lithium (Li0) compared to Li–O center because of its short relaxation time T1e. This can 

be understood by equation (4.9) which shows that saturation power is limited by the relaxation 

time. 

 

 
                                      (a)                                                                     (b) 

 

Figure 4.6: The dependences of the EPR line amplitudes on the (a) temperature and (b) power of 

samples containing Li0 ( ) and Li–O ( ) centers in dark and under illumination for Li–O center 

( ). 
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The saturation behavior of EPR spectrum in all investigated samples shows that EPR spectrum is 

inhomogeneously broadened. Inhomogeneous broadening is due to presence of background 29Si 

in naturally abundant silicon. To overcome this effect it is preferred to use isotopically controlled 

silicon. 
 

4.2.4 EPR spectra of lithium related center in 28Si isotopically enrich 

silicon 

 
We observe significant narrowing in isolated lithium EPR spectrum in 28Si:Li0 sample. The 

angular dependence and temperature dependence of EPR spectrum are similar to those observed 

in natSi:Li0 sample as shown in Fig. 4.4 (b) and Fig. 4.6 (a). The intensity of Li0 EPR spectrum 

decreases under illumination. The second derivative EPR linewidth of Li0 detected along 

different crystalline orientations in 28Si:Li0 sample was only ~ 0.025 mT. Figure 4.7 shows the 

comparison between the EPR spectrum of natSi:Li0 and 28Si:Li0 which is significantly narrower 

than 0.05 – 0.13 mT found for natSi:Li0. No hyperfine structure of Li0 in 28Si:Li0 was observed. 

Since the ground state of Li0 is not a singlet lithium donor electron wave function at the nucleus 

|߰ᇱሺ0ሻ|ଶ ؄ 0.002 × 1024 cm–3 is 250 times smaller than that of phosphorus [97]. The previous 

ENDOR investigation found that the hyperfine interaction  A(7Li) for Li0 varied with temperature 

from 0.07 MHz at 3 K to 0.1 MHz at 4 K corresponding to hyperfine splitting from 0.0025 to 

0.0036 mT, respectively [46]. Such hyperfine splitting was not detectable in the present study 

since it was at least one order of magnitude smaller than the EPR linewidth. The linewidth 

comparison for the Li0 and Li–O centers in naturally abundant silicon and 28Si isotopically 

enriched silicon is listed in Table 4.1. 
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Figure 4.7: EPR spectra of the Li0 center in natSi:Li0 (black line) and 28Si:Li0 (red line) for B0 צ 

[100]. The spectrum was detected in the second derivative mode at 3.2 K, with νe = 9.0512 GHz 

and microwave power = 12 μW. 

 

In the temperature range 8 – 14 K, another EPR signal of “trigonal symmetry” attributed to Li–O 

center [47] with well resolved 7Li hyperfine structure is observed in 28Si:Li0. The maximum Li–

O EPR intensity in dark is achieved around 10 – 12 K. At lower temperatures, due to the increase 

of the spin lattice relaxation time with decreasing temperature (up to 102 sec below 3.1 K [47]), 

Li–O EPR intensity decreases in dark. Here illumination of above band gap light is found to be 

effective in decreasing the spin lattice relaxation time due to spin exchange between the 

photoexcited conduction electrons and donor electrons leads to enhance the EPR signal [103, 

104] in combination with the low microwave power (~ 12μW) to avoid the saturation of the EPR 

transition. The Li–O EPR spectra detected in 28Si:Li–O and natSi:Li–O are shown in Fig. 4.8 to 

illustrate the striking difference between these two. The spectrum detected on 28Si:Li–O sample 

show significant reduction in inhomogeneous broadening to show the hyperfine structures 

similar to the case of EPR of 28Si:P and  28Si:B [105, 106]. 
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Table 4.1: Li0 and Li–O linewidths of the naturally abundant silicon and 28Si isotopically 

enriched silicon. 

 
Donor Linewidth (mT) 

natSi:Li0 0.13 
28Si:Li0 0.025 

natSi:Li–O 0.23 
28Si:Li–O 0.03 

 

 
 
                              (a)                                                                            (b) 

Figure 4.8: (a) The Li–O EPR spectra recorded with 28Si:Li0 and natSi:Li–O under illumination at 

4.2 K, B0 ||<111>, and νe= 9.3973 GHz. The low–field group is composed of twelve overlapping 
7Li hyperfine structures oriented along three equivalent directions along <111> that are not 

parallel to B0. The high–field group is composed of four 7Li hyperfine structures originating 

from the centers oriented along one of four <111> directions parallel to B0. (b) Four red balls 

along <111> crystallographic directions represent microstructure of Li–O complexes due to 7Li 

or 6Li isotopes. 
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Li–O hyperfine interaction due to the 7Li isotope (nuclear spin I = 3/2, natural abundance 

92.41%) is A(7Li) = 0.845 MHz [80, 47] corresponding to splitting of ~0.03 mT. This splitting is 

isotropic within our experimental error leading to the appearance of four equidistant hyperfine 

lines marked as high–field in Fig. 4.8. The four lines appear by the usual relation 2I+1 of the Li–

O centers oriented along one of the four equivalent <111> orientations that are parallel to the 

direction of B0 as shown in Fig. 4.8. The EPR signal marked as low–field in Fig. 4.8 consists of 

twelve overlapping lines due to the slight misorientation of the sample with respect to the B0 

direction employed in the EPR measurements. Otherwise four hyperfine lines would have been 

expected. 

 

4.3 Monoclinic symmetry of Li–O centers 

 
Figure 4.9 shows unexpected splitting of the high–field group of four lines at different angles of 

magnetic field directions around the <111> axis. The weak line in the center of spectrum shown 

in Fig. 4.9 originates from the hyperfine structure due to the 6Li isotope (spin I=1, abundance 

7.59%). This splitting cannot be explained by misorientation of the sample and/or interaction of 

the 7Li nuclei quadrupole moment with the gradient of the electric field because such effects do 

not lead to appearance of the forbidden EPR transition peaks at the energy lower than the lowest 

energy allowed transition nor after the highest energy allowed transition [107]. Therefore, 

reasonable explanation of the splitting of the high–filed EPR lines under rotation is the symmetry 

the centers being lower than trigonal symmetry. The possible reason for lower symmetry of Li–O 

center is the displacement of lithium nuclei from [111] crystal axis due to the interaction between 

two 7Li nuclei or lattice distortion due to formation of Li–O complex at interstitial site.  

The angular dependence of the g–factors for the high–field part of EPR spectra is shown in Fig. 

4.10. Solid lines are the calculated angular dependences with ~3o deviation of axial symmetry 

axis from the [111] crystal axis towards [011] in the )011(  plane with g1=g2=1.9994 and 

g3=1.9978. These g–tensor component values are close to those determined in Reference [47]. It 

corresponds to the monoclinic symmetry of the g–tensor having the principal axis g1 along ]011[

, angle θ ≈ 58o between g3 axis and [001] direction, and orthogonality g2 ⊥ g1, g3 [108]. Such 
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symmetry describes experimentally observed splitting of the EPR lines by two components with 

the intensity ratio 1:2 when B0 is exactly in the {110} plane and by three components with equal 

intensities under small misorientation of the sample. Within the experimental accuracy these 

parameters describe very well the positions of all EPR lines recorded at B||<100> and B||<110>. 

 

 
 

                                (a)                                                                 (b) 

Figure 4.9: (a) The high–filed group of EPR spectra detected under illumination at 4.2 K of 
28Si:Li–O in three different orientations (I) B0 along –20° from [111] towards [001] (II) B0 along 

[111] (III) B0 along +20° from [111] towards [011]. T = 4.2 K and νe = 9.0512 GHz. The high-

field group of lines consists of hyperfine due to 7Li (4 lines) and 6Li (3 lines) isotopes. (b) 

Schematic representation of 3 degree misorientation of the Li–O center from <111> towards 

[011] crystallographic plane. 
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Figure 4.10: The angular dependence of the Li–O g–factors recorded with 28Si:Li–O under 

illumination at 4.2 K.  Solid lines are the fitting of the experimental points ( ) as described in the 

text. 

Additional structure in the Li–O EPR signal was found in 28Si:Li0 at temperatures below 4 K 

with B0||<111> and under illumination (Fig. 4.11). Each of four high–field 7Li hyperfine EPR 

lines has four additional components spaced by 0.004 mT. The structures become much more 

complicated for other B0 directions due to the increasing number of lines reflecting the 

monoclinic symmetry. Such additional structure with four lines can arise from the hyperfine 

interaction with other distant 7Li nuclei. However, an additional structure observed in the 7Li 

ENDOR spectrum was reported by G. Feher attributed to the quadrupole interaction [47 and 

107]. Further investigations are needed to identify the origin of this structure. 
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Figure 4.11 An additional structure appearing among each 7Li hyperfine line with the equal 

spacing of 0.004mT only for temperatures below 3.5 K. Here B0||<111>, microwave field power 

=12 μW, and νe =9.39526 GHz. The spectrum taken at 3.15 K shows such additional structures 

while that taken at 3.5 K doesn’t. 

 

4.4 Summary 

 
The EPR spectrum of the Li related donor center in FZ Si was observed at T = 3.4 – 20 K 

implying that Li0 has a shorter electron spin lattice relaxation time than that of phosphorus. 

Isotope enrichment of the silicon host single crystal with the nuclear-spin-free 28Si stable isotope 

removed the inhomogeneous broadening of EPR lines originating from isolated interstitial 

lithium (Li0) donors and lithium-oxygen (Li–O) complex centers. The hyperfine structures 

normally hidden by inhomogeneous broadening are made visible. Analysis of such hyperfine 

structures reveals that the g-tensor of the Li–O complexes exhibits the monoclinic symmetry. At 

temperatures below 3.5 K, additional splitting of the 7Li EPR lines of Li–O is observed. 
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Chapter 5 

 

Dynamic nuclear polarization of 29Si nuclei 

induced by Li and Li–O centers in silicon 
 

5.1 Dynamic nuclear orientation 

 

5.1.1 Nuclear orientation 

 

Consider an assembly of identical nuclei in which each is characterized by an angular 

momentum Iћ and associated with the magnetic moment ܯሬሬԦ ൌ  ԰ܫߛԦ, where ћ and γ are the 

reduced Planck’s constant and the nuclear gyromagnetic ratio, respectively. Gyromagnetic ratio 

is either positive or negative depending on the nature of nuclei and inversely proportional to the 

nuclear mass. 

Suppose a simple case, when a nucleus with nuclear spin I = ½ and positive gyromagnetic ratio 

is placed in an external magnetic field B0 along the z–axis. For this system there exist 2I + 1 = 2 

eigenstates. The nuclear magnetic moment always couples with the external magnetic field with 

the energy called eigenvalue Em. This eigenvalue Em is known as the Zeeman energy and given 

by 

 

௠ܧ ൌ  െܯ௠ሬሬሬሬሬሬԦ .  ଴ሬሬሬሬԦ .                                                           (5.1)ܤ
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B0 ≠ 0Em = γnβB0

m = +½

m = –½

)2/exp( 0 kTBgN nβ−=−

)2/exp( 0 kTBgN nβ=+

Figure 5.1 shows the energy levels diagram of I = ½ spins under external magnetic field at 

temperature T. The number N+ and N– represent the “spin up” and “spin down” populations of 

the quantum states, respectively. Boltzmann statistics determines the population among the 

eigenstates which is proportional to exp (–Em/kBT), where kBT is the thermal energy. The thermal 

equilibrium polarization can be given by the following equation 

 

௡ܲ ൌ  ேశି ேష
ேశାேష

ൌ ଴ܤߚሺ݄݃݊ܽݐ 2݇ܶ⁄ ሻ                                           (5.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Energy levels and occupations at I = ½ spin states in a static magnetic field B0 and 

constant temperature T. For B0 > 0, the thermal equilibrium polarization is tanh (gβB0/2kT). 

The nuclear polarization at room temperature and 7 T are typically of the order of 10–5 to 10–7. 

Such low polarization is due to the thermal energy being much larger than the Zeeman energy. 

Thus appreciable polarization can be obtained only for very large field and very low temperature 

by this “brute force” method. However even with the use of available NMR in market at 21 T 

and liq. He temperature (4.2 K), the maximum polarization of 29Si nuclei can reach 10–4. 

However this is not sufficient for the application of quantum computers and spintronics. 

An above mentioned method is known as the static equilibrium method [109, 110]. In late 1950s, 

Overhauser [111], Jeffries [112], and Abragam [113 and 114] showed an efficient method for the 
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polarization of nuclei. The dynamic nuclei polarization (DNP) of the 29Si nuclei was 

demonstrated for the first time by Abragam in silicon doped with phosphorus N(P) ≈ 5×1016 cm–3 

[115]. The DNP enhancement (E) of 30 corresponding to a nuclear polarization (Pn) of 0.048 % 

was observed under saturation of the phosphorus electron paramagnetic resonance (EPR) lines 

by microwave field at 4.2 K [115]. Much lower DNP enhancement of E = 4.6 was observed in 

similar silicon crystals at 6 K but a large enhancement E = 511 corresponding to 29Si nuclei 

polarization 0.28 % was achieved at 12 K in an naturally abundant silicon crystal (4.7% 29Si 

nuclei) with the phosphorus concentration 1016 cm–3 [29, 30]. To achieve higher DNP degrees, it 

is prefer to saturate the EPR transition at low temperatures. However long electron spin–lattice 

relaxation time of phosphorus limits 29Si nuclei to polarize at low temperatures. The short 

electron spin–lattice relaxation time of lithium related centers give a prospect to polarize the 29Si 

nuclei at low temperature. Therefore, we investigate the dynamic nuclear polarization of 29Si 

nuclei due to lithium related centers in silicon. There are several mechanisms for DNP, among 

them solid effect phenomena were observed in all investigated sample. For this reason I will 

discuss the solid effect mechanism in the next section. 

 

5.1.2 Solid effect 

 
A magnetically dilute solid containing N electron spin (S = ½) and n nuclear spin (I = ½) is 

placed in a microwave cavity at magnetic field B0 and low temperature T. This system is 

represented by the energy level diagram in Fig. 5.2 and eigenstates are labeled by the zero order 

magnetic quantum number |M, mۧ. The eigenstate energy levels are shown in Fig. 5.2, where Ω = 

gβB0/kT and Σ = gnβB0/kT are the electron spin and nuclear spin thermal equilibrium 

polarizations, respectively. The spin Hamiltonian for the entire sample can be expressed as 

 

                            ࣢ ൌ ߚ݃ ∑ .଴࡮ ௟ܵ െ  ݃௡ߚ ∑ .଴࡮ ௠ܫ ൅  ∑ ௠ܸ௟ ൅  ∑ ܷ௠௡௠வ௡௠.௟௠௟                   (5.3) 

 

where Sl and Im are the lth electron and mth nuclei, respectively in the lattice. The terms in 

equation (5.3) represent the electron Zeeman, nuclear Zeeman, electron–nuclear and nuclear–

nuclear interaction, respectively. Since the sample consisting of dilute electron spins ½ (N << n) 
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quadrupole interaction and electron–electron interaction are neglected. The third term contains 

the contact and dipole–dipole interactions. Therefore, the Hamiltonian for the third term is; 

 

                                     ௠ܸ௟ ൌ . ௠ܫ . ௠௟ܣ ௟ܵ െ  ఊ೐ఊ೙ఉమ

௥೘೗
య ൤ܫ௠. ௟ܵ െ ଷሺூ೘.௥೘೗ሻሺௌ೗.௥೗೘ሻ

௥೗೘
మ ൨                          (5.4) 

 

where rlm is the displacement vector between Im and Sl and Alm are the tensor. For a convenience, 

consider only single pair of Im,Sl and assume that the first term of equation (5.4) is negligible. 

Therefore dipole coupling between Im and Sl plays an significant role for this system. The second 

term includes operator products of the form I±.S± and I±.Sט (see equation (3.20)) which allow for 

the admix of the zero–order states and allow for additional transitions of type Iz, Sz → Iz ± 1, Sz ± 

1 (flip–flip transition) and Iz, Sz → Iz ± 1, Sz 1 ט (flip–flop transition), respectively. Therefore the 

forbidden transition allows us to flip the nuclear spin under microwave irradiation. To realize 

this process, it is needed to consider the relaxation rate of the each process under microwave 

irradiation. 

The effective relaxation in this system under the microwave irradiation field corresponds to the 

transition ΔM = 1, Δm = 0 i.e., electron spin flips only. This rate is α1 per sec. The flip–flop (ΔM 

= 1, Δm = –1) and flip–flip (ΔM = 1, Δm = 1) relaxation rates are α2 and α3, respectively. The 

forbidden transition relaxation rate is slower than electron spin flip transition rate α1 by a factor 

σ. 

 

ߪ                                                                      ൌ ଷ
ଵ଴

ቀఊ೐ఉ
௥యு

ቁ
ଶ
 .                                                      (5.5) 

 

Nuclear spin relaxation (ΔM = 0, Δm = 1) occurs at rate α4. In general at low temperature (4.2 K) 

nuclear spin relaxation rate is three orders slower than α1. Both α2 and α3 represent the flipping 

of nuclear spins through the electron spin flipping. 

The thermal equilibrium population in column (I) is according to equation (5.2) leading to the 

static nuclear polarization 

 

଴ܲ ൌ tanhሺ2/ߑሻ  ൎ  ௡/2݇ܶ .                                      (5.2)ߥ݄
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Figure 5.2: Magnetic energy level diagram and relaxation rate for the nuclear spin (I = ½) and 

the electron spins (S = ½) that are dipolar coupled in a dilute magnetic system. The relative 

populations are shown; in column (I) for thermal equilibrium, in columns II and III for dynamic 

nuclear polarization by saturation of forbidden transition (flip–flop (ΔM = 1, Δm = –1) or flip–

flip (ΔM = 1, Δm = 1)), and (IV) for saturation of allowed transition leading to zero polarization. 

 

We fix the magnetic field at the flip–flop transition which is one of the forbidden transitions in 

EPR. A strong microwave irradiation is used to induce the transitions between energy levels |½,–

½ۧ and |–½,½ۧ (flip–flop transition) and flip–flip transitions between |½,½ۧ and |–½,–½ۧ. The 

population will be determined by the electron spin relaxation rate because α1 >> α2 = α3. 

Therefore the population of |½,½ۧ and |–½,–½ۧ states will be maintained at e–Ω and eΩ, 

respectively. These dynamic populations yield a nuclear polarization 
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                                  ܲ ൌ ሺΩ/2ሻ݄݊ܽݐ ൌ ௘/2݇ܶሻߥሺ݄ ݄݊ܽݐ ൎ  ௘/2݇ܶ                                   (5.7)ߥ݄

 

which is larger than P0 by the ratio νe/νn = γe/γn. Instead, if we saturate the flip–flip transition, the 

population of column (II) in Fig. 5.2 yields P = tanh(Ω/2). The polarization is equal but in 

reversed in sign compared to column (III). Saturation of the allowed transition at magnetic field 

B0 equalizes all the populations since α2 = α3. The nuclear polarization is zero, in this case. 

 

5.1.3 Leakage factor 

 
Assume that the microwave irradiation is set at the flip–flop transition and the strength of the 

source is such that the flip–flop transition rate (α2) is much greater than the nuclear relaxation 

rate (α4). 

For a magnetically dilute system a small number of electron spins must interact with a large 

number n/N of nuclear spins. Consider first, a nuclear spin I that is ½. The entire electron spins S 

being ½, the spin I could only do a flip–flip transition, which is forbidden as it is off–resonance. 

On the other hand, a spin I that is –½ may do a flip–flop with a spin S that is ½, ending in a 

situation where I is ½ and S is –½. This spin S, which is now –½, is dangers for all the I spins 

that are ½, since it could bring one of them to –½ through a forced flip–flop. In other words, it is 

essential for effective solid effect that each electron spin mutually flip a total number of n/N of 

nuclear spin via saturation of forbidden transition in time less than T1n. To do this electron must 

have a relaxation time T1e < NT1n/n. Taking into account the above effect the leakage factor can 

be described as 

 

݂ ൌ  ቀ ௡

భ்೙
ቁ ቀ ே

భ்೐
ቁ

ିଵ
                                                  (5.8) 

 

where f is known as the leakage factor and T1n and T1e are the nuclear and electron spin lattice 

relaxation times, respectively. If the leakage factor is close to 1, the leakage factor will be a 

bottleneck in the in the enhancement (E) process by the following relation [116] 
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ܧ ൌ ௠௔௫ܧ  ቀ ଵ
ଵା௙

ቁ ,                                                          (5.9) 

 

where Emax is the maximum enhancement. 

 

5.2 Dynamic nuclear polarization of 29Si nuclei due to lithium related 

center 

 

5.2.1 Experimental procedure 

 
Naturally abundant silicon single crystal was grown along <100> direction and was cut in such a 

way that the face of the sample surface was (100), and the long axis was along [11ത0] crystal axis. 

Magnetic field rotates in (110) plane in such a way that it allows us to set the magnetic field 

parallel to the [100], [111] and [110] direction simply by rotation 0, 55, and 90 degrees, 

respectively as shown in Fig. 5.3. natSi:Li0 and natSi:Li–O sample were prepared in the same way 

as mention in section 4.3.1. Before recording EPR spectra, both samples natSi:Li0 and natSi:Li–O 

were etched in (HF + HNO3) for 2 min to remove the surface defects. The EPR detection and 

DNP parameters for the isolated lithium and Li–O complex are listed in Table 5.1. 

To perform DNP experiments, the EPR signal is saturated at high microwave power by fixing the 

magnetic field (Bsat) at one point in the resonance line and at fixed temperature. Saturation was 

from 10 to 600 min to polarize 29Si nuclear spins via solid effect. The transfer of the polarized 

sample from EPR to pulse nuclear magnetic resonance (NMR) spectrometers is performed with a 

disc permanent magnet placed on top of the sample to avoid the fast nuclear spin lattice 

relaxation in zero magnetic field. 

Spinsight software that comes with the NMR spectrometer runs a pulse program that is written in 

p–code language. This program is used to apply pulse sequence and provide control of the 

electronic gates. If we turn on B1 for a short time, the effective magnetic moment of 29Si nuclei 

after DNP would precess through an angle θ = γB1Δt, where γ and Δt are the gyromagnetic ratio 

and pulse duration, respectively. After the π/2 pulse, the net magnetization will precesses in the 
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Figure 5.3: Schematic representation of major axes of our measurement. The external magnetic 

field (B0) rotates in (110) plane in such a way that magnetic field is parallel to [001], [111] and 

[110] directions and the angle on goniometer shows 0 degree, 55 degree and 90 degree, 

respectively. 

X–Y plane, if there is any inhomogeneity in the static magnetic field B0, the large ensemble of 

spins along X–Y plane in a sample will decay. The rate of this decay is termed T2
*, and depends 

primarily on the field inhomogeneity and intrinsic decoherence time, T2. We record this decay 

with time. This signal is called as a free induction decay signal (FID signal). The Fourier 

transformation will give 29Si NMR signal. At π/2 pulse the 29Si NMR intensity will be maximal. 

In order to decide the pulse length, we use powder of the naturally abundant silicon sample. 

After getting the π/2 pulse length, next step is to get the 29Si NMR intensity at 300 K and 7 T. 

This value is known as the thermal equilibrium value. Each time we measure the 29Si NMR 

signal after the DNP process, we calculate the degree of polarization and enhancement by using 

following expression; 

 

ሻܧሺ ݐ݄݊݁݉݁ܿ݊ܽ݊ܧ               ൌ  ேெோ ூ௡௧௘௡௦௜௧௬ವಿು
ேெோ ௜௡௧௘௡௦௜௧௬೅೓೐ೝ೘ೌ೗ ೐೜ೠ೔೗೔್ೝ೔ೠ೘

்
ଷ଴଴ ௄

଻ T
஻బ

                                   (5.10) 
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             DNP degreeሺ ௡ܲ
௦௦ሻ ൌ ൈ ܧ  ଴        (5.11)ܤ ݀݊ܽ ܶ ݐܽ ݊݋݅ݐܽݖ݅ݎ݈ܽ݋݌ ݉ݑ݅ݎܾ݈݅݅ݑݍ݁ ݈ܽ݉ݎ݄݁ܶ

 

where T and B0 are the temperature and magnetic field at which DNP was performed, 

respectively. 

 

Table 5.1: Typical values for the detection of EPR signal and DNP condition is listed for Li0 and 

Li–O center in naturally abundance silicon. 

Experimental parameters Electron paramagnetic 

Resonance  

Dynamic nuclear 

polarization  

Center Field (B0 / Bsat) 322 mT ≈ 323 mT 

Sweep Width ± 4 mT --- 

Temperature (T) 3.4 – 20 K 3.4 – 20 K 

Modulation Field 0.1 mT 0.1 mT 

Power 1 mW 10 – 200 mW 

Frequency 9.05 GHz 9.05 GHz 

Saturation Time ---- 0.1 – 10 hr 

 

5.2.2 Saturation time dependence of 29Si NMR signal 

 
The 29Si NMR signals detected after DNP were 102 – 103 times stronger than the signal detected 

from the control sample, i.e., the same sample without DNP but after keeping it in the magnetic 

field of 7 T at room temperature for 10–20 h. In this case the equilibrium Boltzmann nuclear 

polarization is Pn0 ≅ 4.8×10–4 %. The increase of NMR signals with the DNP time (t), i.e., 

duration of saturation in the EPR spectrometer, is shown in Fig. 5.4. These dependences are 

exponential and allow us to determine the nuclear polarization time T1n and DNP degree Pss
n by 

the extrapolation of the curves to the infinite saturation time. Such values for the lowest 

temperature obtained in this study T = 3.4 K are summarized in the Table 5.2. The DNP 

enhancement Ess was determined with respect to the equilibrium nuclear spin polarization in the 

same magnetic field (≈323 mT). The Li–O centers EPR intensity is twice as high under band gap 

illumination compared to in dark for the temperature range 3.4 – 10 K. The possible reasons for 
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the change in EPR intensity are the increase in the absorption rate due to reduction in T1e because 

the spin exchange between the photoexcited conduction electrons and donor electrons and 

enhancement in the Li–O donor concentration under illumination. Due to reduction in T1e, fast 

mutual flipping of electron and 29Si nuclear spin under saturation of forbidden transitions 

increases the effective DNP degree. The DNP degree also depends on the leakage factor which is 

proportional to T1e [116]. Therefore the maximum DNP degree obtained in this study Pss
n = 0.72 

% was achieved at 3.4 K using Li–O EPR saturation of forbidden transition performed with 

halogen lamp illumination. The enhanced DNP degree under illumination was the combine effect 

of the reduced T1e and donor concentration increment. 

 

 
 

Figure 5.4: The DNP degree, Pn, vs. EPR saturation time, t, obtained without illumination at 

T=3.4 K in the samples containing Li0 ( ) and Li-O ( ) centers and in the sample with Li-O 

center under illumination ( ). 
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A ten times shorter nuclear polarization time T1n observed in the samples containing Li0 centers 

in comparison with the DNP caused by Li–O (Table 5.2) can also be attributed to shorter 

electron spin–lattice relaxation time T1e of Li0. The nuclear relaxation rate1/T1n is proportional to 

the concentration of paramagnetic centers N and to 1/T1e [29, 109, 114]. Because concentrations 

of paramagnetic centers in our samples are approximately the same, the nuclear polarization time 

is determined by the electron spin–relaxation time which is shorter for Li0 centers. 

 

Table 5.2: The experimental result of 29Si nuclei DNP is summarized. Temperature (Ts) and 

direction of polarization is listed and the polarization time T1n, DNP degree Pss
 obtained by 

extrapolation fitting to infinite saturation time, and DNP enhancement Ess for Li0, Li–O center in 

dark and light is mention. 

 

 

5.2.3 Temperature and power dependence of 29Si NMR signal 

 
To get better 29Si nuclei polarization degree we need to perform dynamic nuclei polarization 

technique at lower temperature. Figure 5.5 shows the temperature and power dependence of the 
29Si DNP degree for natSi:Li0 and natSi:Li–O samples. We have discussed the EPR signal intensity 

temperature dependence of Li0 and Li–O center in chapter 4. The lithium related center shows 

short relaxation time [47, 102] and possible to detect the DNP below 7 K. The temperature 

Sample Ts (K) Orientation T1n (h) Pss
n (%) Ess 

natSi:Li0  <100> 0.35 0.17 85 

3.4 <111> 0.33 0.35 170 

 <110> 0.4 0.28 97 
natSi:Li–O (dark) 

3.4 <100> 3.0 0.46 225 

 <110> 3.5 0.29 145 

natSi:Li–O (light) 3.4 <100> 3.0 0.72 352 

 <110> 2.7 0.48 235 
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dependence of the DNP degree for isolate lithium (Li0), lithium–oxygen (Li–O) center under 

dark and illumination correlates well with the temperature dependences of the intensity of EPR 

spectra [see Fig. 4.6 (a)]. 

29Si DNP degree varies roughly linearly with the microwave power in case of Li0 that shows due 

to shorter electron spin lattice relaxation time, therefore it needs more power to saturate the 

electron spin resonance line to get better 29Si nuclei polarization. Where as in case of Li–O 

center under illumination has shorter relaxation due to spin exchange with conduction electron 

and require more power to saturate EPR transition. Therefore Li0 and Li–O center under light 

needs more microwave power to saturate the EPR forbidden transition. 

 
(a)                                                                              (b) 

Figure 5.5: The dependences of the 29Si NMR intensity on the (a) temperature and (b) power of 

samples containing Li0 ( ) and Li–O ( ) centers under dark and with illumination for Li–O 

center ( ). 

The efficiency of DNP can be defined as the degree of the equilibrium electron spin polarization 

that is transferred to nuclear spins by the DNP process, i.e., k = Pn
ss/Pe0. Figure 5.6 shows the 

dependence of k on the equilibrium electron polarization, which depends linearly on 1/T for all 

the experimental conditions (B0 = 320 mT, T = 3.4 – 20 K). The 29Si DNP degree of Li–O 

complex under dark and light in the temperature range 3.4 – 10 K (Fig. 5.5 (a)) is higher than 

those of isolated Li as listed the DNP degree in Table 5.2. This reflects the highest DNP 
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efficiency of Li–O at 10 K because Pe0 decreases exponentially with increasing temperature. The 

decrease in the DNP efficiency of Li–O at T < 10 K is due to the increase of the electron spin 

lattice relaxation time. The decrease in the efficiency of Li–O at T > 10 K is caused by ionization 

of the shallow donor levels. To evaluate the DNP efficiency quantitatively need to know the 

exact value of T1 and number of donor under illumination whereas we evaluate the DNP 

efficiency qualitatively that confirm that at low temperature higher degree of electron 

polarization produce higher degree of polarization. 

 

 

 

Figure 5.6: The DNP efficiency k, vs. equilibrium electron spin polarization degree (Pe0), for 

samples containing Li0 ( ), Li–O ( ) under dark and illumination ( ). 

 

5.2.4 Field dependence of 29Si NMR signal 

 
DNP of 29Si nuclear spins was observed in all of the investigated samples under saturation of 

EPR lines of both the Li0 and Li–O centers. Figure 5.7 shows the enhanced 29Si NMR signal 

intensities (red open circles) after saturation of the Li0 EPR transition in the magnetic field given 
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by the horizontal axis. Figure 5.7 also shows the EPR lines intensity (black solid curve) for 

comparison. 

Figure 5.8 shows the same plot for the Li–O centers in different orientation and under light and 

dark. If Overhauser effect is a dominate mechanism in our sample the peak of 29Si NMR signal 

should appear at Bsat – B0 = 0. The fact is that it is not the case in both Fig. 5.7 and 5.8 gives 

clear evidence that the DNP of 29Si nuclei is the result of the solid effect which is due to the 

saturation of electron spin resonance forbidden transition. The experimental error in the peak 

position of 29Si NMR intensity is 0.01 mT which is sufficient to distinguish the mechanism of 

DNP of 29Si nuclei. For the possibility of contribution of Overhauser effect is overruled because 

Overhauser effect only possible for concentrations range of 5 × 1017 cm–3. The shift, ΔB±, of the 

forbidden “flip–flop” and “flip–flip” transitions from the center of ESR line for B0 ≅323 mT is 

approximately ΔB± = Bsat – B0 = ± B0(γn/γe) ≈ ±0.1 mT for the 29Si nuclei. Indeed, for the case of 

the DNP with Li0 centers, the spacing between maximal positive and negative. 

 

 
 

Figure 5.7: The increased (> 0) or decreased (< 0) 29Si NMR signal intensities ( ) after 

saturation of the Li0 EPR transition in the magnetic field given by the horizontal axis and the 

direction indicated in the Figure. The horizontal axis shows the deviation of the magnetic field 

Bsat from the field B0 that gives the maximum of Li0 EPR line. The solid curves show the first 

derivative of the Li0 EPR absorption lines. The 29Si NMR signals were acquired at T = 300 K and 

B0 = 7 T after microwave saturation with microwave power of 200 mW during 10 minutes at Ts 

= 3.4 K. The positive and negative signs of the NMR signals correspond to DNP in the opposite 

and the same directions with respect to equilibrium nuclear polarization. 
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Figure 5.8: The dependences of the 29Si NMR signal intensity is represented by ( ) after 10 min 

of EPR line saturation on the deviation of the magnetic field Bsat from the center of the Li–O 

EPR line B0 and the first derivative of the EPR line (solid lines) without illumination and under 

illumination at the orientation of magnetic field along <100> and <110> crystal axis. 

 
DNP–NMR signals slightly exceed the Li0 EPR linewidth that is narrower than 0.2 mT. This is a 

typical case of the so–called partly resolved solid–effect [116], where forbidden flip–flop and 

flip–flip transitions occur at the magnetic field just outside of the EPR linewidth. This explains 

why the dependence of the DNP–NMR signals does not follow exactly the EPR first derivative 

line–shape of the Li0 center (Fig. 5.7). On the other hand the EPR linewidth of the Li–O center is 

much larger than that of Li0 and the NMR intensity shape agrees very well with the EPR first 
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derivative line–shape (Fig. 5.8). In this case the flip–flop and flip–flip transitions are buried 

within the linewidth of the inhomogeneously broadened EPR peak. 

 

5.3 Towards further improvement of DNP using Li related centers 
 

We have observed that EPR spectrum of the Li related center was not fully saturated at 200 mW 

microwave power due to its short T1e and the EPR line showing inhomogeneous broadening 

characteristics. So, it would be desirable to use higher microwave power to saturate transitions, 

which would help to achieve higher nuclear spin polarizations and lower nuclear polarization 

time (T1n). Moreover, the differential solid effect due to inhomogeneous broadening reduces the 

polarization in our system [116], which can be overcome by using integrated solid effect (ISE) 

[117] or by the nuclear spin orientation via electron spin locking (NOVEL) method [118]. 

NOVEL can be more effective than ISE for Li related centers due to its short T1e. On the other 

hand, Li – O center is more efficient for the case of integrated solid effect.  

The broadening of the Li0 EPR lines is caused by random internal stress. Applying external 

uniaxial stress the Li0 EPR line width can be reduced significantly and a higher DNP can be 

achieved [46]. 

28Si isotopically enrich samples can also be used to eliminate the inhomogeneous broadening of 

the EPR lines of Li related centers. We can also achieve higher polarization of 29Si using samples 

with donor concentration ~1017 cm–3, as shown by Dementyev et al. where they have reported 

10.0±3.4 % 29Si polarization by donor electrons via the Overhauser mechanism within 

exchange–coupled donor clusters in phosphorus and antimony doped single crystal silicon [119]. 

Lithium can be a good candidate for the above mechanism as its short electron spin lattice 

relaxation time allows for working at much lower temperatures. Higher magnetic fields at lower 

temperatures lead to higher electron polarization that can interact with 29Si nuclei. 
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5.4 Summary 

 
The EPR spectrum of the Li related donor center in FZ Si that was observed in the 3.4–20 K 

range under absorption mode allows us to perform the DNP experiment at low temperature. The 

temperature and power dependence of 29Si NMR intensity confirm that the T1e of Li and Li–O 

complex under light has shorter relaxation than the Li–O complex under dark. The field 

dependence of 29Si nuclei polarization was investigated in detail to show that the DNP was 

dominated by the solid effect for both neutral Li and Li–O complex centers. Higher DNP of 29Si 

nuclei produced by Li related centers than those by phosphorus was observed at low temperature 

(3.4 K). Saturation of the Li–O complex EPR transition under illumination gives a 352 fold 

enhancement and 0.72 % polarization of 29Si nuclei. 
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Chapter 6 

 

Conclusion 

 
The present thesis reported investigations of magnetic properties of lithium (Li) hydrogenic 

donor related centers in silicon by electron paramagnetic resonance (EPR) spectroscopy and 

interaction of Li–related centers with host 29Si nuclear spins by nuclear magnetic resonance 

(NMR) spectroscopy. Lithium is the only non–substitutional hydrogenic donor in silicon that 

forms a complex pair with an oxygen atom very easily. 

       Significant narrowing of the isolated Li EPR and additional hyperfine structures of lithium–

oxygen (Li–O) centers were observed in isotopically enriched 28Si single crystals. Unexpected 

splitting was found reflecting the principal axis of the formally assigned trigonal g–tensor being 

3o tilted from <111> crystal axis, i.e., the g–tensor of the Li–-O center actually has a monoclinic 

symmetry. Furthermore splitting of 7Li hyperfine lines into four components was observed at 

temperatures 3.5 K. These findings provided accurate knowledge of EPR frequencies of Li 

related centers that are needed for high fidelity operation of Li quantum bits in silicon. 

       Dynamic nuclear polarization (DNP) of 29Si nuclear spins were induced by saturation of 

EPR transitions of lithium–related centers. Both isolated Li and Li–O complex centers showed 

strong EPR absorption lines in the temperature range 3.4–10 K and led to very efficient 

orientation of 29Si nuclear spins. The temperature dependence and time constant of 29Si DNP are 

investigated in detail. The 29Si DNP of 0.72 % was achieved at 3.4 K by excitation of the Li-O 

forbidden EPR transition under illumination, corresponding to a ~352 fold increase with respect 
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to the thermal equilibrium polarization. Possible strategies are discussed to obtain >5% 29Si DNP 

that is needed for realization of quantum computing. 
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