
Preface

A normalized positive linear functional ϕ on a unital ∗-algebra A is called

a state. A fundamental property of states is that the set of states forms a

convex set which is called a state space, particularly, a extreme point of the

state space is called a pure state. For example, A state ϕ on the n-by-n

matrix algebra Mn(C) is given by ϕ(a) = tr(ρa), a ∈ Mn(C) by using a

density matrix ρ = {x ∈ M+(n,C) | tr(x) = 1}, where M+(n,C) is the set

of positive semi-definite matrices, i.e.

M+(n,C) = {a ∈ Mn(C) | 〈ω, aω〉 ≥ 0, ∀ω ∈ Cn}.

The correspondence ϕ 7→ ρ is one to one affine. Thus the state space of

Mn(C) is equivalent to the set of density matrices as a convex set. A pure

state ϕp of Mn(C) given by ϕ(a) = 〈y, ay〉 , a ∈ Mn(C), ‖y‖ = 1, is called a

vector state.

A pair (A, ϕ) is called an algebraic probability space (cf. [1],[11]), or

sometimes a quantum probability space (cf. [24]) or a ∗-probability space
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(cf. [30]). Algebraic probability spaces are generalizations of algebras of

random variables, and their study leads to generalizations of various proba-

bilistic notions, particularly through applications of powerful techniques from

noncommutative geometry.

A state ϕ on A is called a tracial state if ϕ(ab) = ϕ(ba) for all a, b ∈ A.

The set of tracial states on a ∗-algebra A forms a convex set, called the

tracial state space. Determining extreme points of this convex set help us

understand the tracial state space.

In this thesis, we give a survey of extreme points of the tracial state

space for several coordinate algebras (polynomial algebras) of noncommu-

tative spaces. We study extreme points of the tracial state space of non-

commutative algebras in order to understand properties of noncommutative

algebras through comparing the tracial state space of commutative algebras

to the tracial state space of algebras deformed by complex parameters. In this

thesis, we focus in particular on θ-deformed 2m-planes Calg(R2m
θ ), m ∈ N,

and noncommutative 3-spheres Calg(S3
θ ).

Ordinarily, the investigation of these problems uses operator algebra tech-

niques for C∗-algebras or von Neumann algebras. We deliberately avoid this

approach, since many useful applications of free probability theory to combi-

natorics and random matrix theory use purely algebraically techniques. Thus

we construct and determine extreme points of tracial state spaces purely al-
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gebraically.

In Chapter 1, we introduce fundamental notions of algebraic probability

theory which are used in subsequent chapters. First, we introduce ∗-algebras

and their states and describe their fundamental properties. We describe

tracial states and extreme points of the tracial state space, and we give a

Jensen-type inequality for states on ∗-algebras as follows:

I. (Proposition 1.31) Let A be a unital ∗-algebra and ϕ be a state on A. For

all a ∈ A, we have ϕ((a∗a)n) ≥ ϕ(a∗a)n, ∀n ∈ N.

This inequality will help us evaluate the moment sequence of α∗α, where

α∗α is a self-adjoint element of the noncommutative 3-sphere Calg(S3
θ ).

In Chapter 2, we survey a construction of nontrivial tracial states of

the even-dimensional θ-deformed plane Calg(R2m
θ ), m ∈ N, θ = (θij). The ∗-

algebra Calg(R2m
θ ) corresponds to the unital ∗-algebra of complex polynomial

functions on the θ-deformed 2m-plane R2m
θ . θ-deformation is a deformation

of coordinate algebras using elements θij, i, j = 1, · · · ,m, of an m-by-m

skew symmetric matrix θ = (θij) as deformation parameters, in contrast to

the deformation parameter q ∈ C− {0} ordinarily used for quantum groups

or quantum enveloping algebras. Calg(R2m
θ ) is a fundamental example of

θ-deformations.

We first introduce a tracial state Ψ0 on Calg(R2m
θ ) as a trivial extreme

point of the tracial state space of Calg(R2m
θ ). We give a definition of Ψ0 using
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the notion of regular monomials, and we construct nontrivial tracial states

Ψi(1)···i(t), 1 ≤ i(1) < · · · < i(t) ≤ m, 1 ≤ t ≤ m from the viewpoint of

the notion. Moreover, we see that Ψi(1)···i(t) generalizes naturally to a tracial

state denoted Ψ
i(1)···i(t)
x1···xt , x1, · · · , xt > 0.

Set Ψ(2) = Ψ
i(1)i(2)
x1x2 , where 1 ≤ i(1) < i(2) ≤ m, x1, x2 > 0. Then we show

the following:

II. (Proposition 2.30) If θi(1)i(2) is irrational, then Ψ(2) is an extreme point of

the tracial state space of Calg(R2m
θ ).

The following is a direct consequence of Proposition 2.30.

III. (Proposition 2.34) Ψ
i(1)···i(t)
x1···xt , t ≥ 2, is an extreme point of the tracial

state space of Calg(R2m
θ ) if the deformation parameters θij, i, j = 1, · · · , m,

are irrational numbers satisfying
∑

i<j kijθij 6∈ Z≥0 for all integers kij such

that
∑

i<j |kij| 6= 0.

Chapter 3 is the core of the thesis. We apply the method of construction

of tracial states for Calg(R2m
θ ) to noncommutative 3-spheres Calg(S3

θ ), and

we determine the extreme points of the tracial state space of Calg(S3
θ ). We

first introduce the noncommutative 3-sphere Calg(S3
θ ) as a quotient algebra

of the θ-deformed 4-plane Calg(R4
θ). The ∗-algebra Calg(S3

θ ) corresponds

to the unital ∗-algebra of complex polynomials on the noncommutative 3-

sphere S3
θ . We construct a class of extreme points Ψα

t , Ψβ
t , Ψx, t ∈ C, |t| = 1,

0 < x < 1, of the tracial state space of Calg(S3
θ ), where α and β are generators
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of Calg(S3
θ ). Then Ψα

t , Ψβ
t are characters of Calg(S3

θ ).

For an algebraic probability space (A, ϕ), the moment sequence of a self-

adjoint element a ∈ A is defined by ϕ(ak), k = 1, 2, · · · . We study the

moment sequence of α∗α, as the moment sequence play a significant role in

the determination of the extreme points of the tracial state space of Calg(S3
θ ).

Specifically, we show that for an extreme points f of the tracial state space

of Calg(S3
θ ) with f(α∗α) = x, x ∈ (0, 1), f(X) is determined by the moment

sequence of α∗α for all X ∈ Calg(S3
θ ). Moreover, for a state Φ on Calg(S3

θ )

satisfying Φ(α∗α) = 1, the moment sequence of α∗α are Φ((α∗α)k) = 1, k ∈

N. In addition, Φ(X) is determined by {Φ(αk) : k ∈ N} for all X ∈ Calg(S3
θ ).

Finally, we completely determine the extreme points of the tracial state

of Calg(S3
θ ).

IV. (Theorem 3.31) The set of all extreme points of the tracial state space of

Calg(S3
θ ) equals the set {Ψx, Ψ

α
t , Ψβ

t : x ∈ (0, 1), t ∈ C, |t| = 1}.

More precisely, the extreme points of the tracial state space of Calg(S3
θ )

are given by three families of states, one parametrized by the interval (0, 1),

and the other two by the circle.
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Chapter 1

Algebraic Probability Theory

In this chapter, we prepare some fundamental notions of algebraic probability

theory so as to state the results of the thesis.

1.1 ∗-algebras

First, we define algebras over C.

DEFINITION 1.1. An algebra A over C is a complex vector space A with

a C-bilinear mapping A×A → A satisfying

a(bc) = (ab)c, λ(ab) = (λa)b = a(λb), ∀λ ∈ C, a, b ∈ A.

If A has a multiplicative identity element (which is called a unit) 1A ∈ A,

i.e. 1Aa = a1A = a, ∀a ∈ A, then we say that A is a unital algebra.
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In this thesis, we basically deal with unital algebras.

DEFINITION 1.2. Let A be an algebra. We say that A is commutative if

ab = ba, ∀a, b ∈ A, otherwise A is noncommutative.

LEMMA 1.3. A unital algebra A has a unique unit.

Proof. If A has units 1A, 1′A, then we have

1A = 1A1′A = 1′A1A = 1′A.

DEFINITION 1.4. Let A,B are unital algebras. A homomorphism between

A and B is a linear map f : A → B satisfying

1. f(ab) = f(a)f(b), ∀a, b ∈ A,

2. f(1A) = 1B.

If f is bijective, then f is called an isomorphism between A and B. And if

there exists an isomorphism between A and B, then we call A and B isomor-

phic.

DEFINITION 1.5. ∗-algebra A is an algebra, with a map ∗ : A → A,

a 7→ a∗ satisfying

1. (a∗)∗ = a,
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2. (ab)∗ = b∗a∗,

3. (λa + µb)∗ = λa∗ + µb∗, ∀λ, µ ∈ C, ∀a, b ∈ A.

The map ∗ is called the involution, and a∗ is called an adjoint element of a.

If a∗ = a, then we say that a is a self-adjoint element.

DEFINITION 1.6. Let A be a ∗-algebra. An element a ∈ A is called a

projection if a = a∗ = a2.

DEFINITION 1.7. Let A be a ∗-algebra and let B be a subset of A. We

say that B is a ∗-subalgebra of A, if the algebraic operations are closed when

algebraic operations of A are restricted to B.

DEFINITION 1.8. Let A,B are ∗-algebras and let f be a homomorphism

between A and B. If f(a∗) = f(a)∗, ∀a ∈ A, then f is called a ∗-homomorphism.

For a ∗-homomorphism f between A and B, if f is bijection, then f is called

a ∗-isomorphism. If there exists a ∗-isomorphism between A and B, then we

call A and B ∗-isomorphic.

DEFINITION 1.9. Let A be a ∗-algebra and I be an ideal of A. We say

that I is a ∗-ideal, if I satisfies a∗ ∈ I, ∀a ∈ I.

DEFINITION 1.10. Let A be a ∗-algebra and I be a ∗-ideal. The quotient
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∗-algebra A/I = {a + I : a ∈ A} = {[a] : a ∈ A} is defined by

λ[a] = [λa],

[a]∗ = [a∗],

[a] + [b] = [a + b],

[a][b] = [ab], ∀λ ∈ C, ∀a, b ∈ A.

1.2 States

Next, we define states on ∗-algebras.

DEFINITION 1.11. Let A be a unital ∗-algebra and ϕ be a functional

ϕ : A → C. We say that ϕ is a state on A if ϕ satisfies

1. ϕ(λa + µb) = λϕ(a) + µϕ(b), ∀λ, µ ∈ C, ∀a, b ∈ A,

2. ϕ(a∗a) ≥ 0, ∀a ∈ A,

3. ϕ(1A) = 1,

where 1A is a unit element of A.

DEFINITION 1.12. For linear functionals ϕ1, ϕ2 on A and λ ∈ C, a ∈ A,

we define addition and scalar multiplication as follows:

(ϕ1 + ϕ2)(a) = ϕ1(a) + ϕ2(a),

(λϕ1)(a) = λϕ1(a).
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Under the above operations, the set of all linear functionals on A becomes

a vector space. The vector space is called the dual space, which is usually

denoted as A∗.

DEFINITION 1.13. We denote the set of all states on A by S(A). S(A)

is called the state space of A. Clearly it holds S(A) ⊂ A∗.

LEMMA 1.14. S(A) is a convex set. Hence

λϕ1 + (1− λ)ϕ2 ∈ S(A)

for ϕ1, ϕ2 ∈ S(A), 0 ≤ λ ≤ 1.

Proof. We will prove in three steps.

First step: linearlity.

(λϕ1 + (1− λ)ϕ2) (µa + νb) = λϕ1(µa + νb) + (1− λ)ϕ2(µa + νb)

= µλϕ1(a) + νλϕ1(b) + µ(1− λ)ϕ2(a) + ν(1− λ)ϕ2(b)

= µ (λϕ1 + (1− λ)ϕ2) (a) + ν (λϕ1 + (1− λ)ϕ2) (b)

for µ, ν ∈ C, a, b ∈ A.

Second step: positivity.

(λϕ1 + (1− λ)ϕ2) (a∗a) = λϕ1(a
∗a) + (1− λ)ϕ2(a

∗a), ∀a ∈ A,

= λϕ1(a
∗a) + ϕ2(a

∗a)− λϕ2(a
∗a).
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Since 0 ≤ λ ≤ 1,

λϕ1(a
∗a) + ϕ2(a

∗a)− λϕ2(a
∗a) ≥ 0.

Third step: unity.

(λϕ1 + (1− λ)ϕ2) (1A) = λϕ1(1A) + (1− λ)ϕ2(1A)

= λ + (1− λ) = 1.

DEFINITION 1.15. An extreme point of state space is called a pure state.

The following relation is fundamental.

LEMMA 1.16. Let A be a unital ∗-algebra and ϕ be a state on A. Then

we have

ϕ (a∗) = ϕ(a), ∀a ∈ A.

Proof. By the positivity of states,

ϕ ((a + λ1A)∗(a + λ1A)) ≥ 0, a ∈ A, λ ∈ C.

For

(a + λ1A)∗ (a + λ1A) =
(
a∗ + λ1A

)
(a + λ1A)

= a∗a + λa∗ + λa + |λ|2 1A,
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since ϕ (a∗a) ≥ 0, ϕ(|λ|2 1A) ≥ 0,

λϕ (a∗) + λϕ (a) ∈ R.

Then we have

λϕ (a∗) + λϕ (a) = λϕ (a∗) + λϕ (a) = λϕ (a∗) + λϕ (a). (1.1)

By taking λ = 1,

ϕ (a∗) + ϕ (a) = ϕ (a∗) + ϕ (a). (1.2)

And by taking λ = i,

ϕ (a∗)− ϕ (a) = −ϕ (a∗) + ϕ (a). (1.3)

Eventually, by taking (1.2)+(1.3), we get ϕ (a) = ϕ (a).

The following corollary holds by the proof of Lemma 1.16.

COROLLARY 1.17. Let A be a unital ∗-algebra and ϕ be a positive linear

functional on A. Then we have

ϕ (a∗) = ϕ(a), ∀a ∈ A.

REMARK 1.18. Corollary 1.17 means that the relation ϕ (a∗) = ϕ(a),

∀a ∈ A holds without the normalized property; ϕ(1A) = 1.

LEMMA 1.19. Let A be a unital ∗-algebra and ϕ be a state on A. For

a ∈ A, if ϕ(a∗a) = 0, then ϕ(a) = 0.
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Proof. Suppose ϕ(a∗a) = 0. Since ϕ(a∗) = ϕ(a), we have

ϕ((1 + ra)∗(1 + ra)) = 1 + rϕ(a∗) + rϕ(a)

= 1 + 2Re(rϕ(a)).

If ϕ(a) 6= 0, then clearly there exists r ∈ C such that

1 + 2Re(rϕ(a)) < 0.

This contradicts the positivity of ϕ.

DEFINITION 1.20. Let A be a ∗-algebra and ϕ be a positive linear func-

tional on A. We say that ϕ is faithful if ϕ satisfies:

ϕ(a∗a) = 0, ∀a ∈ A ⇒ a = 0.

DEFINITION 1.21. A pair (A, ϕ) is called an algebraic probability space.

We say that a ∈ A is an algebraic random variable, and ϕ(a) is the mean of

a.

DEFINITION 1.22. Let (A, ϕ) be an algebraic probability space. For a ∈

A, if a∗ = a, then a is called a real random variable or a self-adjoint random

variable.

DEFINITION 1.23. Let (A, ϕ) be an algebraic probability space. We say

that a ∈ A is a unitary random variable if a∗a = aa∗ = 1A, and a ∈ A is a

normal random variable if a∗a = aa∗.
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1.3 Tracial states

DEFINITION 1.24. Let A be a unital algebra. A state ϕ is called a tracial

state if ϕ has the property: ϕ(ab) = ϕ(ba), ∀a, b ∈ A. The set of tracial

states of A is called the tracial state space of A.

The following holds as with Lemma 1.14.

LEMMA 1.25. The tracial state space of A forms a convex set.

DEFINITION 1.26. Let A be a unital algebra and let τ, ρ be positive linear

functionals on A. Define τ ≤ ρ if ρ− τ is a positive linear functional on A.

The following proposition is Lemma 3.4.6 in [19].

PROPOSITION 1.27. Let A be a unital ∗-algebra, let τ be a positive linear

functional on A satisfying τ(ab) = τ(ba) for all a, b ∈ A and ρ be an extreme

point of the tracial state space of A. If τ ≤ ρ, then τ is a scalar multiple of

ρ.

Proof. Since τ ≤ ρ,

0 ≤ τ(1A) ≤ 1.

For ∀a ∈ A, a 6= 1A, when τ(1A) = 0,

τ((a + r11A)∗(a + r11A)) = τ
(
a∗a + |r1|2 1A + r1a + r1a

∗)

= τ(a∗a) + r1τ(a) + r1τ(a∗),
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by Corollary 1.17,

τ((a + r11A)∗(a + r11A)) = τ(a∗a) + 2Re(r1τ(a)),

if τ(a) 6= 0, then there exists r1 ∈ C such that

τ((a + r11A)∗(a + r11A)) < 0. (1.4)

(1.4) is contradictory to the positivity of τ , so τ = 0. i.e. We have τ(a) = 0

for all a ∈ A. If τ(1A) = 1, then we have

(ρ− τ)(1A) = 0.

Then we get ρ − τ = 0 similar to the case of τ(1A) = 0. Thus ρ = τ . If

0 < τ(1A) < 1, then we have

ρ = (1− r2)ρ1 + r2ρ2,

but

r2 = τ(1A), ρ1 = (1− r2)
−1(ρ− τ), ρ2 = r−1

2 τ.

In fact,

ρ = (1− r2)ρ1 + r2ρ2

= (1− r2)(1− r2)
−1(ρ− τ) + r2r

−1
2 τ

= ρ.
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Note that ρ1, ρ2 are tracial states. ρ is an extreme point of the tracial state

space of A, so ρ2 = ρ, namely, we obtain τ = r2ρ.

This completes the proof of Proposition 1.27.

The primary description of lemma in [19] is as follows:

LEMMA 1.28. Let A be a unital ∗-algebra, let τ be a positive linear func-

tional on A and ρ be a pure state of A. If τ ≤ ρ, then τ is a scalar multiple

of ρ.

1.4 A Jensen-type inequality for states

Jensen’s inequality is known as an useful tool in many fields of mathematical

sciences, and various generalizations are discussed. Particularly, from the

analytic point of view, there are many research results.

Meanwhile, our main research interests are in pure algebraic aspects of

noncommutative probability theory. And so, in this section, we introduce

a Jensen-type inequality for states on unital ∗-algebras in an abstract alge-

braic setting. The inequality will be useful in the evaluation of the moment

sequence of a self-adjoint element of the noncommutative 3-sphere Calg(S3
θ ).

First, we recall a finite form of Jensen’s inequality.

LEMMA 1.29. ([12]) Let {λi}n
i=1 be positive numbers such that

∑n
i=1 λi =

1. For a convex function f, {xi}n
i=1 are in its domain. Then we have the
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following:

n∑
i=1

λif(xi) ≥ f

(
n∑

i=1

λixi

)
. (1.5)

REMARK 1.30. If n = 2 for (1.5), we get the definition of convex function.

In this section we give an algebraic Jensen-type inequality as follows:

PROPOSITION 1.31. ([27]) Let A be a unital ∗-algebra and ϕ a state on

A. For all a ∈ A, we have

ϕ((a∗a)n) ≥ ϕ(a∗a)n, ∀n ∈ N. (1.6)

Proof. We will prove the statement by mathematical induction. If ϕ(a∗a) =

0, then clearly the statement holds. i.e. we consider in case of ϕ(a∗a) > 0. If

n = 1, then (1.6) is trivially true. Let k be any natural number. We assume

inequalities: ϕ((a∗a)s) ≥ ϕ(a∗a)s for all s ≤ k.

First step.

When k = 2p− 1, ∀p ∈ N, we have

ϕ(((a∗a)p − ϕ(a∗a)p1A)∗((a∗a)p − ϕ(a∗a)p1A))

= ϕ((a∗a)2p) + ϕ(a∗a)2p − 2ϕ((a∗a)p)ϕ(a∗a)p ≥ 0 (1.7)

by the positivity of states. However since p ≤ k, it holds

ϕ((a∗a)p) ≥ ϕ(a∗a)p.
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Namely

ϕ(a∗a)2p − 2ϕ((a∗a)p)ϕ(a∗a)p ≤ −ϕ(a∗a)2p. (1.8)

It follows from (1.7) and (1.8) that

ϕ((a∗a)2p) ≥ ϕ(a∗a)2p.

Since 2p = k + 1, we get

ϕ((a∗a)k+1) ≥ ϕ(a∗a)k+1.

Second step.

When k = 2p, ∀p ∈ N, we have

ϕ((a(a∗a)p − aϕ(a∗a)p)∗(a(a∗a)p − aϕ(a∗a)p))

= ϕ((a∗a)2p+1) + ϕ(a∗a)2p+1 − 2ϕ((a∗a)p+1)ϕ(a∗a)p ≥ 0 (1.9)

by the property of the positivity of states. However since p + 1 ≤ k, it holds

ϕ((a∗a)p+1) ≥ ϕ(a∗a)P+1.

Namely

ϕ(a∗a)2p+1 − 2ϕ((a∗a)p+1)ϕ(a∗a)p ≤ −ϕ(a∗a)2p+1. (1.10)

It follows from (1.9) and (1.10) that

ϕ((a∗a)2p+1) ≥ ϕ(a∗a)2p+1.
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Since 2p + 1 = k + 1, we get

ϕ((a∗a)k+1) ≥ ϕ(a∗a)k+1. (1.11)

Eventually, the statement holds for all n ∈ N.

Let us recall that the set of states of an ∗-algebra A forms a convex set.

So, the functional
∑n

i=1 λiϕi is also a state when {ϕi}i are states on A and

{λi}i are real numbers such that
∑n

i=1 λi = 1, λi ≥ 0. Then we have the

following inequality for ∀a ∈ A from (1.6)

n∑
i=1

λiϕi ((a
∗a)m) ≥

(
n∑

i=1

λiϕi(a
∗a)

)m

, ∀m ∈ N. (1.12)

If each ϕi is multiplicative and putting ϕi(a
∗a) = xi, then (1.12) is repre-

sented as follows.

n∑
i=1

λix
m
i ≥

(
n∑

i=1

λixi

)m

, xi ≥ 0. (1.13)

The inequality (1.13) is a spacial case1 of a finite form of Jensen’s inequality

as described previously. In this meaning, (1.6) can be interpreted as a Jensen-

type.

1.5 A generalized Cauchy-Schwarz inequality

In this section, we show that (1.6) gives a generalization of the Cauchy-

Schwarz inequality for functionals. First, we recall the standard Cauthy-
1f(x) = xm in (1.5).
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Schwarz inequality for functionals.

PROPOSITION 1.32. Let A be a unital ∗-algebra and ϕ be a state on A.

For ∀a, b ∈ A we have

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b). (1.14)

Proof. Suppose that λ = xeiθ, ∀x ∈ R− {0} with the property:

eiθϕ(b∗a) = |ϕ(b∗a)| .

We have

ϕ ((λa + b)∗(λa + b)) = |λ|2 ϕ(a∗a) + λϕ(b∗a) + λϕ(a∗b) + ϕ(b∗b)

= x2ϕ(a∗a) + 2x |ϕ(b∗a)|+ ϕ(b∗b) ≥ 0.

If ϕ(a∗a) 6= 0, then we have

|ϕ(b∗a)|2 − ϕ(a∗a)ϕ(b∗b) ≤ 0,

from the discriminant of quadratic polynomial. So (1.14) holds. Meanwhile,

if ϕ(a∗a) = 0, we have

2x |ϕ(b∗a)|+ ϕ(b∗b) ≥ 0,

but x is arbitrary, so

|ϕ(b∗a)| = 0.

Hence (1.14) holds. This completes the proof of Proposition 1.32.
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It follows from (1.6), (1.14) that the following generalized Cauchy-Schwarz

inequality:

PROPOSITION 1.33.

|ϕ(a∗b)|2n ≤ ϕ((a∗a)n)ϕ((b∗b)n), ∀n ∈ N. (1.15)

The case when n = 1, the Cauchy-Schwarz inequality recovers from (1.15).

COROLLARY 1.34. If the case of b = 1A in (1.15), then we have

|ϕ(a)|2n ≤ ϕ((a∗a)n), ∀n ∈ N.

DEFINITION 1.35. The case when n = 1 in ϕ((a∗a)n)−|ϕ(a)|2n is called

the variance of a.

COROLLARY 1.36. If a is a self-adjoint element, i.e. a∗ = a, then we

have

ϕ(a)2n ≤ ϕ(a2n), ∀n ∈ N.

PROPOSITION 1.37. Let ∀(z1, · · · , zn), (w1, · · · , wn) ∈ Cn and ∀m ∈ N.

Then we have

∣∣∣∣∣
n∑

i=1

αiziwi

∣∣∣∣∣

2m

≤
n∑

i=1

αi |zi|2m
n∑

i=1

αi |wi|2m (1.16)

where
∑n

i=1 αi = 1, αi ≥ 0.
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Proof. An n-dimensional complex Euclidean space Cn becomes ∗-algebra

define by

z + w = (z1 + w1, · · · , zn + wn),

λz = (λz1, · · · , λzn), ∀λ ∈ C,

zw = (z1w1, · · · , znwn),

z∗ = (z1, · · · , zn).

Then ϕ on ∗-algebra Cn is described as follows:

ϕ(z) =
n∑

i=1

αizi,

n∑
i=1

αi = 1, αi ≥ 0. (1.17)

Substituting z, w, ϕ into (1.15), we obtain (1.16).

If the case of αi = 1/n (i = 1, · · · , n) is considered, then the following

inequality holds.

COROLLARY 1.38.

1

n2m−2

∣∣∣∣∣
n∑

i=1

ziwi

∣∣∣∣∣

2m

≤
n∑

i=1

|zi|2m
n∑

i=1

|wi|2m . (1.18)

The case when m = 1 in (1.18), the Cauchy-Schwarz inequality in Cn

with the standard inner product recovers.

An interesting problem will be to generalize other inequalies relate to

probability theory, for example, the Minkowski inequality.
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1.6 A generalized Jensen-type inequality

In this section, we describe a generalized Jensen-type inequality [28].

PROPOSITION 1.39. Let A be a ∗-algebra and let ϕ be a state on A.

Then, we have

ϕ((a∗a + b∗b)n) ≥ ϕ(a∗a + b∗b)n (1.19)

for ∀a, b ∈ A, ∀n ∈ N.

Proof. We prove the statement by induction on n. If n = 1, (1.19) trivially

holds. Let k be any natural number. We assume that the following inequality

holds for any natural number s ≤ k.

ϕ((a∗a + b∗b)s) ≥ ϕ(a∗a + b∗b)s.

We consider two cases whether k is odd or even.

Case 1.

If k = 2p− 1, p ∈ N, then we have

ϕ(((a∗a + b∗b)p − ϕ(a∗a + b∗b)p1A)∗((a∗a + b∗b)p − ϕ(a∗a + b∗b)p1A))

= ϕ((a∗a + b∗b)2p) + ϕ(a∗a + b∗b)2p − 2ϕ((a∗a + b∗b)p)ϕ(a∗a + b∗b)p ≥ 0

(1.20)
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by the positivity of states. Since p ≤ k,

ϕ((a∗a + b∗b)p) ≥ ϕ(a∗a + b∗b)p. (1.21)

(1.21) implies

ϕ((a∗a + b∗b)p)ϕ(a∗a + b∗b)p ≥ ϕ(a∗a + b∗b)2p. (1.22)

So, it follows from (1.20),(1.22) that

ϕ((a∗a + b∗b)2p) ≥ ϕ(a∗a + b∗b)2p.

Since k = 2p− 1, we get

ϕ((a∗a + b∗b)k+1) ≥ ϕ(a∗a + b∗b)k+1.

Case 2.

If k = 2p, p ∈ N, then we have

ϕ((a(a∗a + b∗b)p − aϕ(a∗a + b∗b)p)∗(a(a∗a + b∗b)p − aϕ(a∗a + b∗b)p))

= ϕ((a∗a + b∗b)pa∗a(a∗a + b∗b)p) + ϕ(a∗a)ϕ(a∗a + b∗b)2p

− ϕ((a∗a + b∗b)pa∗a)ϕ(a∗a + b∗b)p − ϕ(a∗a(a∗a + b∗b)p)ϕ(a∗a + b∗b)p ≥ 0,

(1.23)
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and

ϕ((b(a∗a + b∗b)p − bϕ(a∗a + b∗b)p)∗(b(a∗a + b∗b)p − bϕ(a∗a + b∗b)p))

= ϕ((a∗a + b∗b)pb∗b(a∗a + b∗b)p) + ϕ(b∗b)ϕ(a∗a + b∗b)2p

− ϕ((a∗a + b∗b)pb∗b)ϕ(a∗a + b∗b)p − ϕ(b∗b(a∗a + b∗b)p)ϕ(a∗a + b∗b)p ≥ 0

(1.24)

by the positivity of states. Then it follows from (1.23),(1.24) and the linearity

of states that

ϕ((a∗a + b∗b)2p+1) + ϕ(a∗a + b∗b)2p+1 − 2ϕ((a∗a + b∗b)p+1)ϕ(a∗a + b∗b)p ≥ 0.

(1.25)

Since p + 1 ≤ k,

ϕ((a∗a + b∗b)p+1) ≥ ϕ(a∗a + b∗b)p+1.

So

ϕ((a∗a + b∗b)p+1)ϕ(a∗a + b∗b)p ≥ ϕ(a∗a + b∗b)2p+1. (1.26)

Thus, by (1.25),(1.26),

ϕ((a∗a + b∗b)2p+1) ≥ ϕ(a∗a + b∗b)2p+1.

Since k = 2p, we get

ϕ((a∗a + b∗b)k+1) ≥ ϕ(a∗a + b∗b)k+1.

By Case 1 and Case 2, we obtain (1.19) for ∀n ∈ N.
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In (1.19), if b∗b = 0, then we get a Jensen type inequality ϕ((a∗a)n) ≥

ϕ(a∗a)n, ∀n ∈ N. So, the inequality (1.19) can be interpreted as a generalized

Jensen-type.

Moreover, Proposition 1.39 can be more generalized straightforwardly as

follows:

PROPOSITION 1.40. Let A be a unital ∗-algebra and ϕ be a state on A.

Then we have

ϕ((a∗1a1 + · · ·+ a∗mam)n) ≥ϕ(a∗1a1 + · · ·+ a∗mam)n,

∀ai ∈ A, i = 1, · · · ,m, ∀m, n ∈ N.

Proof. The proof is same as Proposition 1.39.
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Chapter 2

θ-deformed 2m-planes

A well-known deformation method for function algebras is q-deformation

using one parameter q ∈ C − {0}. Quantum groups (cf. [9], [13], [14]) or

quantum enveloping algebras are fundamental examples of q-deformations.

In contrast, θ-deformation is a deformation of coordinate algebras using

elements θij of an anti-symmetric real-valued matrix θ = (θij) as deformation

parameters, which was studied by Connes and Dubois-Violette in [4]. The

C∗-algebra C(Tm
θ ), ∀m ∈ N (cf. [32]) corresponds to the algebra of contin-

uous functions on the noncommutative torus Tm
θ , which is well-known as a

fundamental example of θ-deformations.

In this chapter, we restrict our attention to the θ-defomed 2m-planes

Calg(R2m
θ ), ∀m ∈ N. The ∗-algebra Calg(R2m

θ ) corresponds to the unital

∗-algebra of polynomial functions on the θ-deformed 2m-plane R2m
θ . The
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purpose of this chapter is to construct nontrivial tracial states on θ-defomed

2m-planes Calg(R2m
θ ).

NOTE 2.1. In Chapter 2, we use ¯ instead of ∗-operation in consideration

of the simplification of the description.

2.1 θ-deformed 2m-planes

We begin by recalling the definition of the θ-deformed 2m-plane Calg(R2m
θ ).

DEFINITION 2.2. Let Calg(R2m
θ ) be the unital ∗-algebra generated by m

elements zi, i = 1, · · · ,m, with relations:

zizj = λijzjzi,

z̄iz̄j = λij z̄j z̄i,

ziz̄j = λjiz̄jzi, 1 ≤ i, j ≤ m. (2.1)

Here λij is defined as λij = e2πiθij = λji, where θ = (θij) is an anti-symmetric

real-valued matrix of degree m.

We denote the unit element of Calg(R2m
θ ) by 1. The noncommutative

m-torus Calg(Tm
θ ), m ∈ N, is defined as a quotient ∗-algebra of Calg(R2m

θ ).

DEFINITION 2.3. Calg(Tm
θ ) is a quotient algebra of Calg(R2m

θ ) such that

Calg(Tm
θ ) = Calg(R2m

θ )/z̄1z1 = 1, · · · , z̄mzm = 1.
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The ∗-algebra Calg(Tm
θ ) corresponds to the algebra of complex polynomial

functions on Tm
θ .

2.2 Trivial state Ψ0 on Calg(R2m
θ )

We define a trivial state Ψ0 on Calg(R2m
θ ).

DEFINITION 2.4. Let n1, n
′
1, · · · , nm, n

′
m be in Z≥0, and consider the

monomial X = (z1)n1(z̄1)n
′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ ). Ψ0 is a linear

functional defined by

Ψ0(X) =





1, if n1 = n
′
1 = · · · = nm = n

′
m = 0,

0, otherwise

(2.2)

for X.

LEMMA 2.5. The functional Ψ0 is a pure state on Calg(R2m
θ ).

Proof. Since it is trivial that Ψ0 is a state, we only prove that Ψ0 is a pure

state.

We assume that there exists states ϕ1, ϕ2 on Calg(R2m
θ ) such that

Ψ0 = λϕ1 + (1− λ)ϕ2, 0 < λ < 1.

Let a be a monomial of Calg(R2m
θ ) such that a 6= 1. It suffices to prove that

ϕ1(a) = ϕ2(a) = 0 for that Ψ0 is a pure state. We have

0 = λϕ1(aa) + (1− λ)ϕ2(aa),
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but ϕ1, ϕ2 are states (i.e. ϕ1(aa), ϕ2(aa) ≥ 0), so

ϕ1(aa) = ϕ2(aa) = 0.

By Lemma 1.19, we get

ϕ1(a) = ϕ2(a) = 0.

Thus, we see that Ψ0 is a pure state on Calg(R2m
θ ).

We prepare some notions. Let t, i(1), · · · , i(t) be in N such that 1 ≤

i(1) < · · · < i(t) ≤ m, 1 ≤ t ≤ m.

DEFINITION 2.6. Let T i(1)···i(t) be the set of monomials formed by gen-

erators 1, zi(1), z̄i(1), · · · , zi(t), z̄i(t) ∈ Calg(R2m
θ ). Particularly, we denote the

set {1} by T 0.

EXAMPLE 2.7. 1, z̄1z̄3, z1z2 ∈ T 1·2·3.

DEFINITION 2.8. We say that X is regular in T i(1)···i(t) or simply we

say that X is regular, if there exists a monomial Y ∈ T i(1)···i(t) such that

X = λY Y, λ ∈ C− {0}.

EXAMPLE 2.9. A monomial X = z̄2z1z2z̄1 is regular in T 1·2. In fact, if

we set Y = z2z̄1 ∈ T 1·2, then it holds X = λ21Y Y .

We characterize this trivial functional Ψ0 from a little general viewpoints.

The functional Ψ0 can be expressed as follows by using the above terms.
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LEMMA 2.10.

Ψ0(X) =





φ(X), if X is regular in T 0,

0, otherwise

(2.3)

for any monomial X ∈ Calg(R2m
θ ).

2.3 Generalization of Ψ0

In this section, we generalize the funtional Ψ0 from a viewpoint of (2.3). We

consider a map φ : Calg(R2m
θ ) → C satisfying

φ(zizj) = λij, φ(zj z̄i) = λij, φ(ziz̄j) = λji,

φ(z̄j z̄i) = λji, φ(zjzi) = 1, φ(z̄jzi) = 1,

φ(z̄iz̄j) = 1, φ(z̄izj) = 1, φ(zi) = 0,

φ(z̄i) = 0, φ(1) = 1, 1 ≤ i ≤ j ≤ m. (2.4)

We put z1 = w1, z̄
1 = w2, · · · , zm = w2m−1, z̄

m = w2m, and let ι(1), · · · , ι(n)

be in N such that 1 ≤ ι(1), · · · , ι(n) ≤ 2m, where ι(1), · · · , ι(n) are allowed

overlapping. Furthermore, we require that

φ(wι(1) · · ·wι(n)) =
n∏

k<l

φ(wι(k)wι(l)) (2.5)

for the monomial A = wι(1) · · ·wι(n) of degree more than 2, and linearlity

such that

φ(λX + µY ) = λφ(X) + µφ(Y ), λ, µ ∈ C, X, Y ∈ Calg(R2m
θ ).
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LEMMA 2.11. φ is well-defined uniquely by (2.4) and (2.5) as a linear

functional.

Proof. It suffices to show following equalities based on (2.5).

φ(wι(1) · · ·wι(k)(w2p−1w2q−1 − λpqw2q−1w2p−1)wι(k+1) · · ·wι(n)) = 0,

φ(wι(1) · · ·wι(k)(w2pw2q − λpqw2qw2p)wι(k+1) · · ·wι(n)) = 0,

φ(wι(1) · · ·wι(k)(w2pw2q−1 − λqpw2q−1w2p)wι(k+1) · · ·wι(n)) = 0,

p, q, k ∈ N, 1 ≤ p, q ≤ m, 1 ≤ k ≤ n− 1. (2.6)

Note that w2p−1 = zp, w2p = z̄p, w2q−1 = zq, w2q = z̄q.

We show the first equation of (2.6).

φ(wι(1) · · ·wι(k)(w2p−1w2q−1 − λpqw2q−1w2p−1)wι(k+1) · · ·wι(n))

= φ(wι(1) · · ·wι(k)w2p−1w2q−1wι(k+1) · · ·wι(n))

− λpqφ(wι(1) · · ·wι(k)w2q−1w2p−1wι(k+1) · · ·wι(n)).

By (2.5),

= φ(w2p−1w2q−1)
k∏

e=1

φ(wι(e)w2p−1)φ(wι(e)w2q−1)

×
n∏

f=k+1

φ(w2p−1wι(f))φ(w2q−1wι(f))×
∏

1≤ι(g)<ι(g′ )≤n

wι(g)wι(g′)

−λpqφ(w2q−1w2p−1)
k∏

g=1

φ(wι(g)w2p−1)φ(wι(g)w2q−1)

×
n∏

h=k+1

φ(w2p−1wι(h))φ(w2q−1wι(h))×
∏

1≤ι(g)<ι(g′ )≤n

wι(g)wι(g′),
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so, to sum up,

= (φ(w2p−1w2q−1)− λpqφ(w2q−1w2p−1))
k∏

e=1

φ(wι(e)w2p−1)φ(wι(e)w2q−1)

×
n∏

f=k+1

φ(w2p−1wι(f))φ(w2q−1wι(f))×
∏

1≤ι(g)<ι(g′ )≤n

wι(g)wι(g′). (2.7)

Since φ(w2p−1w2q−1) = λpqφ(w2q−1w2p−1), it holds (2.7)= 0.

Hence the first equation is proved. The remaining are proved similarly.

So, it is clear that any such φ is uniquely determined as a linear functional.

Our intention is to generalize Ψ0 in accordance with the form of (2.3). We

define a functional Ψi(1)···i(t) on Calg(R2m
θ ). Suppose that n1, n

′
1, · · · , nm, n′m ∈

Z≥0.

DEFINITION 2.12. Let Ψi(1)···i(t) be the linear functional defined by

Ψi(1)···i(t)(X) =





φ(X), if X is regular in T i(1)···i(t),

0, otherwise

for the monomial X = (z1)n1(z̄1)n
′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ ).

In the following, we denote Ψi(1)···i(t) simply by Ψi.

REMARK 2.13. In definition 2.12, if T i(1)···i(t) = T 0, then Ψi(1)···i(t) = Ψ0.
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2.4 Tracial states Ψi

We now prove that Ψi is a tracial state on Calg(R2m
θ ). The following lemma

is fundamental.

LEMMA 2.14. We put z1 = w1, z̄
1 = w2, · · · , zm = w2m−1, z̄

m = w2m. Sup-

pose that X = wj(1) · · ·wj(k) ∈ T i(1)···i(t) for j(1), · · · , j(k) ∈ {1, · · · , 2m}, k ∈

N. Then we have

Ψi(XX) = 1. (2.8)

Proof. If X = 1, then (2.8) is obvious. Therefore, we assume that X 6= 1.

Let p, q be in N such that 1 ≤ q < p ≤ k. Then we get

Ψi(XX) = Ψi(w̄j(k) · · · w̄j(1)wj(1) · · ·wj(k))

= φ(w̄j(k) · · · w̄j(1)wj(1) · · ·wj(k))

=
∏

p6=q

φ(w̄j(p)w̄j(q))φ(wj(q)wj(p))︸ ︷︷ ︸
1

φ(w̄j(p)wj(q))φ(w̄j(q)wj(p))︸ ︷︷ ︸
1

= 1.

LEMMA 2.15. If X and Y are regular, then XY, XY are regular.

Note that the converse of Lemma 2.15 is not true in general.

PROPOSITION 2.16. If X and Y are regular, then we have

Ψi(XY ) = Ψi(X)Ψi(Y ). (2.9)
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Proof. If X or Y is a scalar multiplication of 1, then (2.9) is obvious.

Therefore, we assume X, Y 6= λ1, λ ∈ C − {0}. Let zj be one of elements

which forms X. Then z̄j is also one of elements which forms X. Similarly,

let zk, z̄k be elements which form Y . Then we obtain the following equality.

φ(zjzk)φ(zj z̄k)φ(z̄jzk)φ(z̄j z̄k) = 1.

Since the elements zj and zk are arbitrary, the result is given.

In relation to Proposition 2.16, we have the following:

LEMMA 2.17. If X is regular and Y is not regular, then

Ψi(XY ) = Ψi(XY ) = 0. (2.10)

Proof. If X is regular and Y is not regular, then XY, XY are not regular.

Namely, (2.10) is proved by Definition 2.12.

Ψi has the following property.

PROPOSITION 2.18. Ψi(xy) = Ψi(yx) for ∀x, y ∈ Calg(R2m
θ ).

Proof. By definition of Ψi, it suffices to consider the case that xy is regualr.

We put zj = e1, z̄
j = e2, z

k = e3, z̄
k = e4, j, k = 1, · · · ,m. Suppose that

k1, k2, k3, k4 ∈ {1, · · · , 4}, however i 6= j ⇒ ki 6= kj, i, j = 1, · · · , 4. Then it

is easy to see that

ek1ek2ek3ek4 = ek2ek3ek4ek1 = ek3ek4ek1ek2 = ek4ek1ek2ek3 .

Hence if X = xy is regular, then it holds xy = yx.
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By relations of Calg(R2m
θ ), it holds the following property concerned with

Ψi.

LEMMA 2.19. Let x be regular and let y be a monomial in Calg(R2m
θ ).

Then it holds

Ψi(xy) = Ψi(yx).

Proof. For zi, z̄i, zj, we have

ziz̄izj = zjziz̄i.

Thus we get the conclusition.

DEFINITION 2.20. Let X, Y be in T i(1)···i(t). We denote by X ∼ Y if XY

is regular.

The relation ∼ is an equivalence relation. We denote the equivalence class

of A by [A] for A ∈ T i(1)···i(t). Let deg(A) denote the degree of a monomial

A, and let [A]min be the subset of [A] such that

[A]min = {x ∈ [A] | deg(x) ≤ deg(y), ∀y ∈ [A]}.

LEMMA 2.21. Let X,Y be in T i(1)···i(t). If X � Y , then

Ψi(XY ) = 0.

Proof. If X � Y , then XY is not regular. i.e. Ψi(XY ) = 0.
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The following proposition is the core result in this section.

PROPOSITION 2.22. Ψi is a positive functional.

Proof. By Lemma 2.21 and definition of Ψi, it suffices to prove Ψi(XX) ≥ 0

for X =
∑k

t=1 rtxt, xp ∼ xq, p, q = 1, · · · , k, r1, · · · , rk ∈ C in order for Ψi to

be a positive functional. We can denote X by
∑k

t=1 r
′
tuyt, where u ∈ [xt]min,

y1, · · · , yk are regular, and r′1, · · · , r′k ∈ C. Then it follows from Proposition

2.16 and Lemma 2.19 that

Ψi(XX) = Ψi((
k∑

t=1

r̄
′
tȳtū)(

k∑
t=1

r
′
tuyt))

= Ψi(ūu)(
k∑

t=1

r̄
′
tΨ

i(ȳt))(
k∑

t=1

r
′
tΨ

i(yt))

= Ψi(ūu)(
k∑

t=1

r
′
tΨ

i(yt))(
k∑

t=1

r
′
tΨ

i(yt)) ≥ 0.

Thus it is proved that Ψi is a state on Calg(R2m
θ ).

It follows from Proposition 2.18 and Proposition 2.22 that the following

proposition.

PROPOSITION 2.23. Ψi is a tracial state on Calg(R2m
θ ).

2.5 Generalization of Ψi

Tracial state Ψi is generalized naturally as following. We define a linear func-

tional Ψ
i(1)···i(t)
x1···xt on Calg(R2m

θ ). Suppose that x1, · · · , xt > 0, n1, n
′
1 · · · , nm, n

′
m ∈
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Z≥0.

DEFINITION 2.24. Let Ψ
i(1)···i(t)
x1···xt be the linear functional defined by

Ψi(1)···i(t)
x1···xt

(X) =





x
ni(1)

1 · · · xni(t)

t φ(X), if X is regular in T i(1)···i(t),

0, otherwise

for the monomial X = (z1)n1(z̄1)n
′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ ).

In the following, we denote Ψ
i(1)···i(t)
x1···xt simply by Ψi

x. The functional Ψi is

restored from Ψi
x as follows:

REMARK 2.25. If x1 = · · · = xt = 1, then Ψi
x=Ψi.

We have the following:

PROPOSITION 2.26. If X and Y are regular, then

Ψi
x(XY ) = Ψi

x(X)Ψi
x(Y ).

Proof. Let X and Y be regular in T i(1)···i(t). Then X, Y can be represented

as follows:

X =c(z1)n1(z̄1)n1 · · · (zm)nm(z̄m)nm ,

Y =c
′
(z1)k1(z̄1)k1 · · · (zm)km(z̄m)km ,

c, c′ ∈ C− {0}, n1, · · · , nm, k1, · · · , km ∈ Z≥0.
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By Definition 2.24,

Ψi
x(XY ) = x

ni(1)

1 · · · xni(t)

t Ψi(X)× x
ki(1)

1 · · ·xki(t)

t Ψi(Y )

= Ψi
x(X)Ψi

x(Y ).

PROPOSITION 2.27. Ψi
x(xy) = Ψi

x(yx), ∀x, y ∈ Calg(R2m
θ ).

Proof. Same as Proposition 2.16.

Thus, we have the following:

PROPOSITION 2.28. Ψi
x is a tracial state on Calg(R2m

θ ).

REMARK 2.29. The unital ∗-algebra Calg(R2m+1
θ ) is defined by adding a

self-adjoint generator zm+1 to Calg(R2m
θ ) with relations zizm+1 = zm+1zi,

1 ≤ i ≤ m. We can construct tracial states on Calg(R2m+1
θ ) as with the case

of Calg(R2m
θ ).

2.6 Extreme points of the tracial state space

We would introduce extreme points of the tracial state space of Calg(R2m
θ ),

if deformation parameter θij, 1 ≤ i < j ≤ m, are irrational numbers. Let

Ψ(2) be the tracial state, which is assumed to be t = 2 in Ψ
i(1)···i(t)
x1···xt . Namely

it holds Ψ(2) = Ψ
i(1)i(2)
x1x2 , where 1 ≤ i(1) < i(2) ≤ m, x1, x2 > 0.
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PROPOSITION 2.30. If θi(1)i(2) is an irrational number, then Ψ(2) is an

extreme point of the tracial state space of Calg(R2m
θ ).

Proof. We assume that there exist tracial states Ψ1, Ψ2 on Calg(R2m
θ ) such

that

Ψ(2) = (1− s)Ψ1 + sΨ2, 0 < s < 1. (2.11)

We prove Proposition 2.30 in three steps.

First step.

Let K be a monomial formed from the set of generators

{z1, z̄1, · · · , zm, z̄m} − {zi(1), z̄i(1), zi(2), z̄i(2)}.

Suppose that L = KK. By definition of Ψ(2) and (2.11), we have

(1− s)Ψ1(L) + sΨ2(L) = 0.

Since a state is positive,

Ψ1(L) ≥ 0, Ψ2(L) ≥ 0.

Hence

Ψ1(L) = Ψ2(L) = 0.
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Let λ1, λ2 ∈ C − {0}, but assume that λ1, λ2 6= 0. We assume Ψ1(K) 6= 0.

Then we have

Ψ1((λ11 + λ2K)(λ11 + λ2K)) = |λ1|2 + |λ2|2Ψ1(KK) + 2Re(λ1λ2Ψ1(K))

= |λ1|2 + |λ2|2Ψ1(L) + 2Re(λ1λ2Ψ1(K))

= |λ1|2 + 2Re(λ1λ2Ψ1(K)) ≥ 0. (2.12)

However, if we take

λ2 = −λ1
1

Ψ1(K)
,

then we have

|λ1|2 + 2Re(λ1λ2Ψ1(K)) = −|λ1|2 < 0. (2.13)

(2.13) contradicts (2.12). Hence we get Ψ1(K) = 0. As with Ψ1, we get

Ψ2(K) = 0.

Second step.

Let M be regular in T i(1)i(2). Then we have

|Ψ(2)(M)|2 = Ψ(2)(MM)
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by definition of Ψ(2). Therefore, there exists ω, 0 ≤ ω < 2π, that satisfies

Ψ(2)((|Ψ(2)(M)|1 + eiωM)(|Ψ(2)(M)|1 + eiωM))

=
∣∣Ψ(2)(M)

∣∣2 + Ψ(2)(MM) + 2Re
(∣∣Ψ(2)(M)

∣∣ Ψ(2)(M)
)

= 2
∣∣Ψ(2)(M)

∣∣2 + 2Re
(
eiω

∣∣Ψ(2)(M)
∣∣ Ψ(2)(M)

)

= 0. (2.14)

(i.e. eiωΨ(2)(M) = −|Ψ(2)(M)|)

We denote |Ψ(2)(M)|1 + eiωM by S. By (2.11) and (2.14) we have

(1− s)Ψ1(SS) + sΨ2(SS) = 0.

However, since a state is positive

Ψ1(SS) ≥ 0, Ψ2(SS) ≥ 0.

Hence

Ψ1(SS) = Ψ2(SS) = 0.

Let r1, r2 ∈ C− {0}. Assuming that Ψ(2)(S) 6= 0, then we have

Ψ(2)((r11 + r2S)(r11 + r2S)) = |r1|2 + |r2|2 Ψ(2)(SS) + 2Re(r1r2Ψ
(2)(S))

= |r1|2 + 2Re(r1r2Ψ
(2)(S)) ≥ 0. (2.15)

However, if we take

r2 = − r1

Ψ(2)(S)
,
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then

|r1|2 + 2Re(r1r2Ψ
(2)(S)) = −|r1|2 < 0. (2.16)

(2.16) contradicts (2.15). Hence, we get

Ψ(2)(S) = 0.

In the similar way, we get

Ψ1(S) = Ψ2(S) = 0.

Consequently, we obtain

Ψ(2)(M) = Ψ1(M) = Ψ2(M).

Third step.

Suppose that P,Q ∈ T i(1)i(2) and P is not regular in T i(1)i(2). Then we have

Ψ1((PΨ1(QQ)− PQQ)(PΨ1(QQ)− PQQ))

= Ψ1(PP )Ψ1(QQ)2 + Ψ1(QQPPQQ)− 2Ψ1(PQQP )Ψ1(QQ)

= 0. (2.17)

By Lemma 1.19, we get the following as with the second step.

Ψ1(PQQ) = Ψ1(P )Ψ1(QQ). (2.18)
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Considering (2.18), We see that Ψ1(P ) = 0 in order for Ψ1 to be a tracial

state in the case that θi(1)i(2) is an irrational number. Let m,n be in natural

numbers. In fact, if Ψ1((z
i(1))m(zi(2))n) 6= 0, then we get

Ψ1((z
i(1))m(zi(2))n) 6= Ψ1((z

i(2))n(zi(1))m) (2.19)

since θi(1)i(2) is an irrational number. On the other hand, if Ψ1((z
i(1))m) 6= 0,

then (2.18) shows that

Ψ1((z
i(1))m)Ψ1((z̄

i(2))n(zi(2))n) = Ψ1((z
i(1))m(z̄i(2))n(zi(2))n) 6= 0.

Then we obtain

Ψ1((z
i(1))m(z̄i(2))n(zi(2))n) 6= Ψ1((z

i(2))n(zi(1))m(z̄i(2))n)

as well as (2.19). Eventually, it turns out in these cases that Ψ1 is not tracial.

This contradicts to that Ψ1 is a tracial state. Hence we see that Ψ1(P ) = 0

generally. As well as Ψ1, we see that Ψ2(P ) = 0.

Eventually we obtain

Ψ(2) = Ψ1 = Ψ2

from three steps. This completes the proof.

In relation to Proposition 2.30, we have the following:

COROLLARY 2.31. Let Aab be the quotient of Calg(R4
θ) by the two-sided

ideal generated by z̄1z1 − a1 and z̄2z2 − b1, a, b > 0. If θ12 is an irrational

number, then Aab has the unique tracial state.
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REMARK 2.32. For Aab, if a = b = 1, then Aab is a noncommutative

2-torus Calg(T2
θ).

Suppose that deformation parameters θij, i, j = 1, · · · ,m, of Calg(R2m
θ )

are irrational numbers and satisfy the following condition:

For any integers kij, i, j = 1, · · · , m, such that
∑

i<j |kij| 6= 0, θij satisfy

∑
i<j kijθij 6∈ Z≥0.

Then we have the following:

LEMMA 2.33. Let x, y be monomials of Calg(R2m
θ ) which both are not scalar

multiple of 1. If a monomial xy is not regular and xy is formed by two or

more different generators, then xy 6= yx.

Based on Lemma 2.33, the following holds.

PROPOSITION 2.34. If t ≥ 2 for a tracial state Ψi
x = Ψ

i(1)···i(t)
x1···xt , then Ψi

x

is an extreme point of the tracial state space of Calg(R2m
θ ).

Proof. Same as Proposition 2.30.

2.7 Pure states

We give non-trivial pure states on Calg(R2m
θ ). Suppose that n1, n

′
1 · · · , nm, n

′
m ∈

Z≥0, t ∈ C− {0}, k = 1, · · · ,m.
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DEFINITION 2.35. Let Φk
t be the linear functional defined by

Φk
t (X) =





tnk t̄n
′
k , if X ∈ T k,

0, otherwise

for the monomial X = (z1)n1(z̄1)n
′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ )

We have the following:

PROPOSITION 2.36. Φk
t is a pure state on Calg(R2m

θ ).

Proof. Suppose that Φk
t = (1 − s)Φ1 + sΦ2, 0 ≤ s ≤ 1, where Φ1, Φ2 are

states on Calg(R2m
θ ). If X = (z1)n1(z̄1)n

′
1 · · · (zm)nm(z̄m)n

′
m ∈ T k, then we

have

Φk
t ((X − tnk t̄n

′
k)(X − tnk t̄n

′
k)) = 0.

So, by the positivity of states and the equality Φk
t = (1− s)Φ1 + sΦ2,

Φ1((X − tnk t̄n
′
k)(X − tnk t̄n

′
k)) = Φ2((X − tnk t̄n

′
k)(X − tnk t̄n

′
k)) = 0. (2.20)

It follows from Lemma 1.19 and (2.20) that

Φ1(X) = Φ2(X) = tnk t̄n
′
k .

On the other hand, if X 6∈ T k, then Φk
t (XX) = 0. So we get Φ1(XX) =

Φ2(XX) = 0. By Lemma 1.19, Φk
t (X) = Φ1(X) = Φ2(X) = 0. Thus we

obtain Φk
t = Φ1 = Φ2.

41



Chapter 3

Noncommutative 3-spheres

In chapter 2, we studied tracial states on the θ-deformed 2m-plane Calg(R2m
θ ).

In this chapter, we restrict our attention to noncommutative 3-spheres Calg(S3
θ )

(cf. [4]) with irrational deformation parameters. The algebra Calg(S3
θ ) corre-

sponds to the unital ∗-algebra of polynomial functions on the noncommuta-

tive 3-sphere S3
θ . The main result of this chapter is to determine the extreme

points of the tracial state space of Calg(S3
θ ) completely.

3.1 Noncommutative 3-spheres

We consider the θ-defomed 2m-plane of dimension 4. Here we rewrite the

definition.

DEFINITION 3.1. Let Calg(R4
θ) be the unital ∗-algebra generated by two
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elements α, β with relations:

αβ = λβα, αβ∗ = λβ∗α, α∗α = αα∗, β∗β = ββ∗.

Here λ = e2πiθ with θ ∈ R−Q.

Let I be the two sided ideal of Calg(R4
θ) generated by the element α∗α +

β∗β − 1, where 1 is the unit element in Calg(R4
θ). Let π be the natural

projection from Calg(R4
θ) to Calg(R4

θ)/I :

π : Calg(R4
θ) → Calg(R4

θ)/I,

X 7→ X̃.

Then Calg(R4
θ)/I is a unital ∗-algebra with the well-defined product X̃Ỹ :=

X̃Y .

DEFINITION 3.2. The noncommutative 3-sphere is Calg(S3
θ ) := Calg(R4

θ)/I.

Thus Calg(S3
θ ) is a unital ∗-algebra generated by two elements α̃, β̃ with

the relations

α̃β̃ = λβ̃α̃, α̃β̃∗ = λβ̃∗α̃, α̃∗α̃ = α̃α̃∗, β̃∗β̃ = β̃β̃∗,

α̃∗α̃ + β̃∗β̃ = 1̃.

3.2 Extreme points of the tracial state space

In this section, we construct a class of extreme points Ψx, 0 < x < 1, of the

tracial state space of Calg(S3
θ ). First we consider a map φ : Calg(R4

θ) → C
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satisfying

φ(αβ) = λ, φ(βα∗) = λ, φ(αβ∗) = λ,

φ(β∗α∗) = λ, φ(βα) = 1, φ(β∗α) = 1,

φ(α∗β∗) = 1, φ(α∗β) = 1, φ(α∗α) = 1,

φ(αα∗) = 1, φ(β∗β) = 1, φ(ββ∗) = 1,

φ(1) = 1, φ(α) = φ(α∗) = 0, φ(β) = φ(β∗) = 0.

(3.1)

We put α = w1, α
∗ = w2, β = w3, β

∗ = w4. For i(1), · · · , i(n) ∈ N with

1 ≤ i(1), · · · , i(n) ≤ 4, we demand that φ satisfies

φ(wi(1) · · ·wi(n)) =
∏

1≤k<l≤n

φ(wi(k)wi(l)) (3.2)

for any monomial wi(1) · · ·wi(n) of degree more than two, and that φ be linear:

φ(λX + µY ) = λφ(X) + µφ(Y ), λ, µ ∈ C, X, Y ∈ Calg(R4
θ). (3.3)

LEMMA 3.3. φ is defined uniquely by (3.1), (3.2), and (3.3) as a linear

functional on Calg(R4
θ).

Proof. We must check that φ (X(αβ − λβα)Y ) = 0 for all monomials

X, Y ∈ Calg(R4
θ), as well as the corresponding equations for the other re-

44



lations in Definition 3.1. By (3.3), it suffices to show that

φ(wi(1) · · ·wi(k)(αβ − λβα)wi(k+1) · · ·wi(n)) = 0,

φ(wi(1) · · ·wi(k)(α
∗β − λβα∗)wi(k+1) · · ·wi(n)) = 0,

k, n ∈ N, 1 ≤ k ≤ n− 1. (3.4)

For the first equation of (3.4),

φ(wi(1) · · ·wi(k)(αβ − λβα)wi(k+1) · · ·wi(n))

= φ(wi(1) · · ·wi(k)αβwi(k+1) · · ·wi(n))− λφ(wi(1) · · ·wi(k)βαwi(k+1) · · ·wi(n))

= (φ(αβ)− λφ(βα))
k∏

e=1

φ(wi(e)α)φ(wi(e)β)
n∏

f=k+1

φ(αwi(f))φ(βwi(f))

×
∏

1≤g<g′≤n

φ(wi(g)wi(g
′
)) = 0

by (3.1) and (3.2). The second equation is proved similarly. It is clear by

(3.2) that any such φ is unique.

Fix x ∈ (0, 1) and let n1, n
′
1, n2, n

′
2 ∈ Z≥0 = {0} ∪ N.

DEFINITION 3.4. Let Ψx be the linear functional on Calg(S3
θ ) defined by

Ψx(X̃) =





xn1(1− x)n2φ(X), if n1 = n
′
1, n2 = n

′
2,

0, otherwise

for a monomial X̃ = α̃∗n1α̃n
′
1β̃∗n2 β̃n

′
2 ∈ Calg(S3

θ ).
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To justify the definition, we check that Ψx is well-defined by proving

Ψx(X̃(α̃∗α̃ + β̃∗β̃ − 1̃)Ỹ ) = 0

for X̃ = α̃∗n1α̃n
′
1 β̃∗n2 β̃n

′
2 , Ỹ = α̃∗n3α̃n

′
3 β̃∗n4 β̃n

′
4 ∈ Calg(S3

θ ). From Definition

3.4, it suffices to consider the case n1 = n′1, n2 = n′2, n3 = n′3, n4 = n′4.

Since β∗βα∗α = α∗αβ∗β, we have

Ψx(X̃(α̃∗α̃ + β̃∗β̃ − 1̃)Ỹ ) =Ψx(α̃
∗n1+n3+1α̃n1+n3+1β̃∗n2+n4 β̃n2+n4)

+Ψx(α̃
∗n1+n3α̃n1+n3 β̃∗n2+n4+1β̃n2+n4+1)

−Ψx(α̃
∗n1+n3α̃n1+n3 β̃∗n2+n4β̃n2+n4)

=xn1+n3+1(1− x)n2+n4φ(α∗n1+n3+1αn1+n3+1β∗n2+n4βn2+n4)

+xn1+n3(1− x)n2+n4+1φ(α∗n1+n3αn1+n3β∗n2+n4+1βn2+n4+1)

−xn1+n3(1− x)n2+n4φ(α∗n1+n3αn1+n3β∗n2+n4βn2+n4),

since φ(α∗β∗)φ(α∗β)φ(αβ∗)φ(αβ) = 1, we get

Ψx(X̃(α̃∗α̃ + β̃∗β̃ − 1̃)Ỹ )

= xn1+n3+1(1− x)n2+n4φ(α∗n1+n3αn1+n3β∗n2+n4βn2+n4)

+ xn1+n3(1− x)n2+n4+1φ(α∗n1+n3αn1+n3β∗n2+n4βn2+n4)

− xn1+n3(1− x)n2+n4φ(α∗n1+n3αn1+n3β∗n2+n4βn2+n4)

= (x + (1− x)− 1) xn1+n3(1− x)n2+n4φ(α∗n1+n3αn1+n3β∗n2+n4βn2+n4)

= 0
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by Lemma 3.3.

LEMMA 3.5. Ψx(1̃) = 1.

Proof.

Ψx(1̃) = Ψx(α̃
∗α̃ + β̃∗β̃)

= Ψx(α̃
∗α̃) + Ψx(β̃

∗β̃)

= xφ(α∗α) + (1− x)φ(β∗β)

= x + (1− x) = 1

NOTE 3.6. Henceforth, we denote X̃ ∈ Calg(S3
θ ) just by X for concise

description.

In chapter 2, we found extreme points of the tracial state space of θ-

deformed 2m-planes. The proof carries over to noncommutative 3-spheres.

PROPOSITION 3.7. For x ∈ (0, 1), Ψx is an extreme point of the tracial

state space of Calg(S3
θ ).

3.3 Pure states

Next we find pure states Ψα
t , Ψβ

t on Calg(S3
θ ), for t ∈ C, |t| = 1 and α, β are

generators of Calg(S3
θ ). Suppose that n1, n

′
1, n2, n

′
2 ∈ Z≥0.
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DEFINITION 3.8. Let Ψα
t be the linear functional on Calg(S3

θ ) defined by

Ψα
t (X) =





tn1tn
′
1 , if n2 = n′2 = 0,

0, otherwise

for a monomial X = α∗n1αn
′
1β∗n2βn

′
2 ∈ Calg(S3

θ ).

Let Ψβ
t be the linear functional on Calg(S3

θ ) defined by

Ψβ
t (X) =





tn2tn
′
2 , if n1 = n′1 = 0,

0, otherwise

for a monomial X = α∗n1αn
′
1β∗n2βn

′
2 ∈ Calg(S3

θ ).

PROPOSITION 3.9. Ψα
t , Ψβ

t are pure states on Calg(S3
θ ). Moreover, Ψα

t , Ψβ
t

are extreme points of the tracial state space of Calg(S3
θ ).

Proof. Proof of the first statement is same as Proposition 2.36.

We show the second statement. Since the tracial state space is a convex

subset of the state space, pure states in the tracial state space are extreme

points of the tracial state space. However, Ψα
t , Ψβ

t are clearly tracial states.

3.4 Moment sequences

In this section, we study the moment sequence of α∗α. We would find the

moment sequence plays a significant role for characterizing the tracial state
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space of Calg(S3
θ ).

DEFINITION 3.10. [1] Let (A, ϕ) be an algebraic probability space. We

say that ϕ(ak), k = 1, 2, · · · , is the moment sequence of a, if a is a self-adjoint

element1 of A. Particularly, ϕ(ak) is called a m-th moment of a.

DEFINITION 3.11. We say that X is a regular monomial in Calg(S3
θ ) or

simply we say that X is regular, if there exists a monomial Y ∈ Calg(S3
θ )

such that X = γY ∗Y, γ ∈ C− {0}.

PROPOSITION 3.12. Let Φ be a state on Calg(S3
θ ). For every regular

monomial b ∈ Calg(S3
θ ), Φ(b) is determined by the moment sequence of αα∗.

Proof. It follows from the spherical relation α∗α+β∗β = 1 and the binomial

theorem that

(β∗β)n =
n∑

k=0




n

k


 (−α∗α)k.

There exists r ∈ C− {0}, n1, n2 ∈ Z≥0 such that

b = r(α∗α)n1(β∗β)n2 .

Then

Φ(b) = Φ(r(α∗α)n1(β∗β)n2)

= rΦ((α∗α)n1

n2∑

k=0




n2

k


 (−α∗α)k). (3.5)

1i.e. a∗ = a.
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Obviously, (3.5) is determined by the moment sequence of α∗α.

LEMMA 3.13. For Ψx, the moment sequence of α∗α is Ψx((α
∗α)k) = xk.

For Ψα
t , the moment sequence of α∗α is Ψα

t ((α∗α)k) = 1, and for Ψβ
t , the

moment sequence of β∗β is Ψβ
t ((β∗β)k) = 1, k = 1, 2, · · · .

Proof. The proof is immediate.

Let Φ be a state on Calg(S3
θ ). It follows from (1.6) that

Φ((α∗α)k) ≥ Φ(α∗α)k,

Φ((β∗β)k) ≥ Φ(β∗β)k, ∀k ∈ N. (3.6)

COROLLARY 3.14. Let Φ be a state on Calg(S3
θ ). Then

Φ(α∗α) ≥ Φ((α∗α)2) ≥ Φ((α∗α)3) ≥ · · · , (3.7)

Φ(β∗β) ≥ Φ((β∗β)2) ≥ Φ((β∗β)3) ≥ · · · . (3.8)

Proof. For k ∈ N, k ≥ 2, we have

Φ((α∗α)k)) = Φ((α∗α)k−1α∗α)

= Φ((α∗α)k−1(1− β∗β))

= Φ((α∗α)k−1)− Φ((α∗α)k−1β∗β)

= Φ((α∗α)k−1)− Φ(β∗(α∗α)k−1β).

Since Φ(β∗(α∗α)k−1β) ≥ 0, we get

Φ((α∗α)k−1) ≥ Φ((α∗α)k)).
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The following proposition follows from (3.6),(3.7),(3.8).

PROPOSITION 3.15. Let Φ be a state on Calg(S3
θ ). If Φ(α∗α) = 1, then

the moment sequence of α∗α is Φ((α∗α)k) = 1, and the moment sequence of

β∗β is Φ((β∗β)k) = 0, k = 1, 2, · · · .

COROLLARY 3.16. Let Φ be a state on Calg(S3
θ ). If Φ(β∗β) = 1, then

the moment sequence of β∗β are Φ((β∗β)k) = 1, and the moment sequence

of α∗α is Φ((α∗α)k) = 0, k = 1, 2, · · · .

3.5 The extreme points

In this section, we determine the extreme points of the tracial state space of

Calg(S3
θ ).

LEMMA 3.17. Let f be an extreme point of the tracial state space of

Calg(S3
θ ). Then we have

f((α∗α)k) = f(α∗α)k, ∀k ∈ N.

Proof. Let f ′ be the linear functional on Calg(S3
θ ) defined by

f ′(X) := f(Xα∗α), ∀X ∈ Calg(S3
θ ).
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By the spherical relation α∗α + β∗β = 1 and the positivity of states, 0 ≤

f(α∗α) ≤ 1. Thus we get 0 ≤ f ′(1) ≤ 1. In addition, since it holds Xα∗α =

α∗αX for all X ∈ Calg(S3
θ ),

f ′(X∗X) = f(X∗Xα∗α) = f(X∗α∗αX) ≥ 0.

Hence f ′ is a positive linear functional on Calg(S3
θ ). We then have

f(X∗X)− f ′(X∗X) = f(X∗X)− f(X∗Xα∗α)

= f(X∗X(1− α∗α))

= f(X∗Xβ∗β)

= f(X∗β∗βX) ≥ 0.

Thus f ≥ f ′. It follows from Proposition 1.27 that there exists r ∈ [0, 1] such

that f ′ = rf . Therefore

f(Xα∗α) = f ′(X) = rf(X) = rf(1)f(X) = f ′(1)f(X) = f(α∗α)f(X).

(3.9)

For k ∈ N, it follows from (3.9) that

f((α∗α)k) = f(α∗α)f((α∗α)k−1) = f(α∗α)2f((α∗α)k−2) = · · · = f(α∗α)k.

COROLLARY 3.18. Let f be an extreme point of the tracial state space

of Calg(S3
θ ). Then we have

f((β∗β)k) = f(β∗β)k, ∀k ∈ N.
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The next proposition will be used in the proof of the main result2.

PROPOSITION 3.19. Let f be an extreme point of the tracial state space

of Calg(S3
θ ). If f(α∗α) = x for some x ∈ (0, 1), then f = Ψx.

Proof. By Lemma 3.17, we have

f((α∗α)k) = f(α∗α)k = xk

for k ∈ N. Let b be a regular monomial in Calg(S3
θ ). From Proposition 3.12,

it follows that

f(b) = Ψx(b).

Let P, Q be monomials of Calg(S3
θ ), but assume that P is not regular. We

prove that f(P ) = 0. We have

f((Pf(Q∗Q)− PQ∗Q)∗(Pf(Q∗Q)− PQ∗Q))

= f(P ∗P )f(Q∗Q)2 + f(Q∗QP ∗PQ∗Q)− 2f(P ∗QQ∗P )f(Q∗Q)

= 0.

It then follows from Lemma 1.19 that

f(PQ∗Q) = f(P )f(Q∗Q). (3.10)

Let m,n ∈ N. Suppose that f(αmβn) 6= 0. We have

f(αmβn) = λmnf(βnαm) = e2mnπiθf(βnαm) (3.11)

2Theorem 3.31.
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by the commutation relations αβ = λβα, where λ = e2πiθ. Since θ is irra-

tional, e2mnπiθ 6= 1, so we get f(αmβn) 6= f(βnαm). This contradicts the

tracial property of f . Hence, we get f(αmβn) = 0. On the other hand, if

f(αm) 6= 0, then (3.10) shows that

f(αm)f(β∗nβn) = f(αmβ∗nβn) 6= 0,

so arguing as above, we obtain f(αm) = 0. Thus we see in general that

f(P ) 6= 0 contradicts the tracial property of f . Hence

f(P ) = Ψx(P ) = 0.

i.e. f = Ψx. This completes the proof of Proposition 3.19.

COROLLARY 3.20. Let f be an extreme point of the tracial state space of

Calg(S3
θ ) with f(α∗α) = x, x ∈ (0, 1). It follows from the proof of Proposition

3.19 that for all X ∈ Calg(S3
θ ), f(X) is determined by the moment sequence

of α∗α.

The next two lemmas are needed for the proof of Proposition 3.25.

LEMMA 3.21. Let Φ be a state on Calg(S3
θ ) and let n1, n

′
1, n2, n

′
2 ∈ Z≥0

with either n2 ≥ 1 or n′2 ≥ 1. If Φ(α∗α) = 1, then

Φ(α∗n1αn′1β∗n2βn′2) = 0.
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Proof. It follows from Proposition 3.15 that

Φ((β∗n2βn′2)∗(β∗n2βn′2)) = 0.

First, if n1 = n′1 = 0, then Φ(β∗n2βn′2) = 0 by Lemma 1.19.

Next we consider the case n1 6= 0 or n′1 6= 0. By Proposition 3.15,

Φ((α∗n
′
1αn1)∗(α∗n

′
1αn1)) = 1.

It follows that if Φ(α∗n1αn′1β∗n2βn′2) 6= 0, there exists r2 ∈ C such that

Φ((α∗n
′
1αn1 + r2β

∗n2βn′2)∗(α∗n
′
1αn1 + r2β

∗n2βn′2))

= Φ((α∗n
′
1αn1)∗(α∗n

′
1αn1)) + |r2|2 Φ((β∗n2βn′2)∗(β∗n2βn′2))

+ 2Re
(
r2Φ(α∗n1αn′1β∗n2βn′2)

)

= 1 + 2Re
(
r2Φ(α∗n1αn′1β∗n2βn′2)

)
< 0, (3.12)

which contradicts the positivity of Φ. Thus we obtain

Φ(α∗n1αn′1β∗n2βn′2) = 0.

This completes the proof of Lemma 3.21.

COROLLARY 3.22. Let Φ be a state on Calg(S3
θ ) and let n1, n

′
1, n2, n

′
2 ∈

Z≥0 with either n1 ≥ 1 or n′1 ≥ 1. If Φ(β∗β) = 1, then

Φ(α∗n1αn′1β∗n2βn′2) = 0.

LEMMA 3.23. Let Φ be a state on Calg(S3
θ ). If |Φ(α∗n1αn′1)| = 1 for all

n1, n
′
1 ∈ Z≥0, then Φ = Ψα

t where t = Φ(α).
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Proof. Since |Φ(α∗n1αn′1)| = 1 for all n1, n
′
1 ∈ Z≥0, there exists ξ1, 0 ≤

ξ1 < 2π, such that

Φ((α∗ + eiξ1α)∗(α∗ + eiξ1α)) = 2Φ(α∗α) + 2Re(eiξ1Φ(α2))

= 2 + 2Re(eiξ1Φ(α2)) = 0, (3.13)

so, we have Re(eiξ1Φ(α2)) = −1. Since |Φ(α∗n1αn′1)| = 1 for all n1, n
′
1 ∈ Z≥0,

we get

eiξ1Φ(α2) = −1. (3.14)

By (3.13) and Lemma 1.19,

Φ(α∗) + eiξ1Φ(α) = 0. (3.15)

It follows from (3.14) that

eiξ1 = − 1

Φ(α2)
. (3.16)

By (3.15) and (3.16),

Φ(α∗)− 1

Φ(α2)
Φ(α) = 0,

so

Φ(α2) =
Φ(α)

Φ(α∗)
. (3.17)
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Since |Φ(α∗n1αn′1)| = 1 for all n1, n
′
1 ∈ Z≥0, we have |Φ(α∗)| = 1. Thus we

have

Φ(α2) = Φ(α)Φ(α∗) (3.18)

from (3.17). Hence, it follows from Lemma 1.16 and (3.18) that

Φ(α2) = Φ(α)2.

Let n ∈ N, n ≥ 2. Assume that Φ(αn) = Φ(α)n. Since |Φ(α∗n1αn′1)| = 1 for

all n1, n
′
1 ∈ Z≥0, there exists ξ2, 0 ≤ ξ2 < 2π, such that

Φ((α∗ + eiξ2αn)∗(α∗ + eiξ2αn)) = Φ(α∗α) + Φ(α∗nαn) + 2Re(eiξ2Φ(αn+1))

= 2 + 2Re(eiξ2Φ(αn+1)) = 0.

As in (3.14) and (3.15), we have

eiξ2Φ(αn+1) = −1,

Φ(α∗) + eiξ2Φ(αn) = 0. (3.19)

Since assumed Φ(αn) = Φ(α)n, (3.19) implies

eiξ2Φ(αn+1) = −1,

Φ(α∗) + eiξ2Φ(α)n = 0. (3.20)

By (3.20),

Φ(αn+1) =
Φ(α)n

Φ(α∗)
, (3.21)
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as in (3.18), we have

Φ(αn+1) = Φ(α)nΦ(α∗). (3.22)

From Lemma 1.16 and (3.22), we get

Φ(αn+1) = Φ(α)n+1.

Hence we obtain Φ(αk) = Φ(α)k for all k ∈ N. By Lemma 1.16, we also get

Φ(α∗k) = Φ(α∗)k for all k ∈ N.

Now we prove that

Φ(α∗n2αn′2) = Ψα
t (α∗n2αn′2) (3.23)

for all n2, n
′
2 ∈ N. It suffices to consider the case n2 ≥ n′2. Since |Φ(α∗n1αn′1)| =

1 for all n1, n
′
1, we have

Φ((α∗n2αn′2 − α∗(n2−n
′
2))∗(α∗n2αn′2 − α∗(n2−n

′
2)))

= Φ(α∗(n2+n′2)αn2+n′2) + Φ(α∗(n2−n′2)αn2−n′2)− 2Re(Φ(α∗n
′
2αn2)Φ(α∗(n2−n′2)))

= 2− 2Re(Φ(αn2α∗n2)) = 0.

Thus implies

Φ(α∗n2αn′2) = Φ(α∗(n2−n
′
2)) = t(n2−n′2) = Ψα

t (α∗n2αn′2) (3.24)

by Lemma 1.19, which proves (3.23). It now follows from (3.24) and Lemma

3.21 that Φ = Ψα
t .
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COROLLARY 3.24. Let Φ be a state on Calg(S3
θ ). If |Φ(β∗n2βn

′
2)| = 1 for

all n2, n
′
2 ∈ Z≥0, then Φ = Ψβ

t where t = Φ(β).

PROPOSITION 3.25. If f is an extreme point of the tracial state space

of Calg(S3
θ ) satisfying f(α∗α) = 1, then there exists t ∈ C, |t| = 1, such that

f = Ψα
t .

Proof. If |f(α)| > 0, there exits l, 0 ≤ l ≤ 2π, such that

f((α + eil1)∗(α + eil1)) = 2 + 2Re(e−ilf(α)) < 0.

This contradicts the positivity of states. Thus we have

0 ≤ |f(α)| ≤ 1. (3.25)

Then we have

f

(
(
1

2
1 +

1

2
α)∗(

1

2
1 +

1

2
α)

)
=

1

4
+

1

4
f(α∗α) +

1

2
Re(f(α))

=
1

2
+

1

2
Re(f(α)). (3.26)

By (3.25),(3.26), we obtain

0 ≤ f

(
(
1

2
1 +

1

2
α)∗(

1

2
1 +

1

2
α)

)
≤ 1. (3.27)

We denote
1

2
1 +

1

2
α by P . Let f ′ be the linear functional defined by

f ′(X) := f(XP ∗P ), ∀X ∈ Calg(S3
θ ).
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By (3.27),

0 ≤ f ′(1) ≤ 1.

It follows from Lemma 3.21 that

f ′(X∗X) = f(X∗XP ∗P ) = f(P ∗X∗XP ) ≥ 0

for all X ∈ Calg(S3
θ ), so f ′ is a positive linear functional on Calg(S3

θ ). For

X ∈ Calg(S3
θ ), we have

(f − f ′)(X∗X) = f(X∗X)− f ′(X∗X)

= f(X∗X)− f(X∗XP ∗P )

= f(X∗X)− f

(
X∗X

(
1

2
1 +

1

2
α∗

)(
1

2
1 +

1

2
α

))

= f(X∗X)− f

(
X∗X

(
1

4
1 +

1

4
α∗α +

1

4
α∗ +

1

4
α

))

=
3

4
f(X∗X)− 1

4
f(X∗Xα∗α)− 1

4
f(X∗Xα∗)− 1

4
f(X∗Xα).

(3.28)

By (3.9) and an assumption of Proposition 3.25,

f(X∗Xα∗α) = f(X∗X)f(α∗α) = 1. (3.29)

In addition, by Lemma 3.21,

f(X∗Xα) = f(αX∗X). (3.30)
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So we get

(f − f ′)(X∗X) =
1

2
f(X∗X)− 1

2
Re(f(X∗Xα)) (3.31)

from (3.28),(3.29),(3.30). We also have

f((X −Xα)∗(X −Xα)) = f((X∗ − α∗X∗)(X −Xα))

= f(X∗X + α∗X∗Xα− α∗X∗X −X∗Xα)

= f(X∗X) + f(α∗X∗Xα)− 2Re(f(X∗Xα)).

By Lemma 3.21,

f(α∗X∗Xα) = f(X∗Xα∗α), (3.32)

thus we have

f((X −Xα)∗(X −Xα)) = f(X∗X) + f(α∗X∗Xα)− 2Re(f(X∗Xα))

= f(X∗X) + f(X∗Xα∗α)− 2Re(f(X∗Xα))

= f(X∗X(1 + α∗α))− 2Re(f(X∗Xα))

= 2f(X∗X)− f(X∗Xβ∗β)− 2Re(f(X∗Xα))

≥ 0. (3.33)

However, by Lemma 3.21,

f(X∗Xβ∗β) = 0, (3.34)
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thus

(f − f ′)(X∗X) =
1

2
f(X∗X)− 1

2
Re(f(X∗Xα)) ≥ 0

from (3.31),(3.33),(3.34). Hence it holds

f ≥ f ′. (3.35)

It follows from (3.35) and Proposition 1.27 that there exists r ∈ [0, 1] such

that f ′ = rf . Then

f(XP ∗P ) = f ′(X) = rf(X) = rf(1)f(X) = f ′(1)f(X) = f(P ∗P )f(X).

(3.36)

Then we have

f(αP ∗P ) = f

(
α

(
1

2
1 +

1

2
α∗

)(
1

2
1 +

1

2
α

))

= f

(
α

(
1

4
1 +

1

4
α∗α +

1

4
α∗ +

1

4
α

))

=
1

4
f(α) +

1

4
f(αα∗α) +

1

4
f(α2) +

1

4
.

By (3.9),

f(αP ∗P ) =
1

4
f(α) +

1

4
f(α)f(α∗α) +

1

4
f(α2) +

1

4
.

In addition, by an assumption of Proposition 3.25,

f(αP ∗P ) =
1

2
f(α) +

1

4
f(α2) +

1

4
. (3.37)
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By (3.36),

f(αP ∗P ) = f(α)f(P ∗P )

= f(α)f

((
1

2
1 +

1

2
α∗

)(
1

2
1 +

1

2
α

))

= f(α)f

(
1

4
1 +

1

4
α∗α +

1

4
α∗ +

1

4
α

)

=
1

2
f(α) +

1

4
f(α)2 +

1

4
|f(α)|2. (3.38)

It follows from (3.37), (3.38) that

Im(f(α2)) = Im(f(α)2). (3.39)

We assume that eiξf(α) (0 ≤ ξ < 2π) is in {yi : y ∈ R, y ≥ 0}. Then

f((
1

2
1 +

1

2
eiξα)∗(

1

2
1 +

1

2
eiξα)) = f

(
1

4
1 +

1

4
α∗α +

1

4
eiξα +

1

4
e−iξα∗

)

=
1

4
+

1

4
f(α∗α).

Then, by an assumption of Proposition 3.25,

f((
1

2
1 +

1

2
eiξα)∗(

1

2
1 +

1

2
eiξα)) =

1

2
. (3.40)

We denote
1

2
1 +

1

2
eiξα by Q. Let f

′′
be the linear functional defined by

f
′′
(X) := f(XQ∗Q), ∀X ∈ Calg(S3

θ ).

By (3.40),

f
′′
(1) =

1

2
,
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and it follows from Lemma 3.21 that

f
′′
(X∗X) = f(X∗XQ∗Q) = f(Q∗X∗XQ) ≥ 0.

Hence f
′′

is a positive linear functional on Calg(S3
θ ). We have

(f − f
′′
)(X∗X) =f(X∗X)− f

′′
(X∗X)

=f(X∗X)− f(X∗XQ∗Q)

=f(X∗X)− f

(
X∗X

(
1

2
1 +

1

2
e−iξα∗

)(
1

2
1 +

1

2
eiξα

))

=f(X∗X)− f

(
X∗X

(
1

4
1 +

1

4
α∗α +

1

4
e−iξα∗ +

1

4
eiξα

))

=
3

4
f(X∗X)− 1

4
f(X∗Xα∗α)

− 1

4
e−iξf(X∗Xα∗)− 1

4
eiξf(X∗Xα).

Then, by (3.29),(3.30),

(f − f
′′
)(X∗X) =

1

2
f(X∗X)− 1

2
Re(eiξf(X∗Xα)).
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In addition, we have

f((X − eiξXα)∗(X − eiξXα))

= f((X∗ − e−iξα∗X∗)(X − eiξXα))

= f(X∗X + α∗X∗Xα− eiξX∗Xα− e−iξα∗X∗X)

= f(X∗X) + f(α∗X∗Xα)− 2Re(eiξf(X∗Xα))

= f(X∗X) + f(X∗Xα∗α)− 2Re(eiξf(X∗Xα))

= f(X∗X(1 + α∗α))− 2Re(eiξf(X∗Xα))

= 2f(X∗X)− f(X∗Xβ∗β)− 2Re(eiξf(X∗Xα))

≥ 0 (3.41)

from (3.32). By (3.34),(3.41), we get

1

2
f(X∗X)− 1

2
Re(eiξf(X∗Xα)) ≥ 0,

so (f − f
′′
)(X∗X) ≥ 0, i.e. f ≥ f

′′
. As above, there exists s ∈ [0, 1] such

that f
′′

= sf . Then

f(XQ∗Q) = f
′′
(X) = sf(X) = sf(1)f(X) = f

′′
(1)f(X) = f(Q∗Q)f(X).

(3.42)
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We have

eiξf(αQ∗Q) = eiξf

(
α

(
1

2
1 +

1

2
e−iξα∗

)(
1

2
1 +

1

2
eiξα

))

= eiξf

(
α

(
1

4
1 +

1

4
α∗α +

1

4
eiξα +

1

4
e−iξα∗

))

= eiξf

(
1

4
α +

1

4
αα∗α +

1

4
eiξα2 +

1

4
e−iξα∗α

)

=
1

4
eiξf(α) +

1

4
eiξf(αα∗α) +

1

4
e2iξf(α2) +

1

4
f(α∗α).

Then, by (3.9), and an assumption of Proposition 3.25,

eiξf(αQ∗Q) =
1

2
eiξf(α) +

1

4
e2iξf(α2) +

1

4
. (3.43)

In addition, (3.42) implies

eiξf(αQ∗Q) = eiξf(α)f(Q∗Q)

= eiξf(α)f

((
1

2
1 +

1

2
e−iξα∗

)(
1

2
1 +

1

2
eiξα

))

= eiξf(α)f

(
1

4
1 +

1

4
α∗α +

1

4
eiξα +

1

4
e−iξα∗

)

= eiξf(α)f

(
1

2
+

1

4
eiξf(α) +

1

4
e−iξf(α∗)

)

=
1

2
eiξf(α) +

1

4
e2iξf(α)2 +

1

4
|f(α)|2. (3.44)

By (3.37),(3.38), if f(α) = 0, then f(α2) = −1. It also follows from

(3.43),(3.44) that if f(α) = 0, then e2iξf(α2) = −1 for every ξ ∈ [0, 2π),

because for every such ξ, eiξf(α) is in {yi : y ∈ R, y ≥ 0}. This contradicts

f(α2) = −1. Hence f(α) 6= 0. Then for all ξ,

e2iξf(α)2 < 0, (3.45)
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since eiξf(α) is in {yi : y ∈ R, y > 0}. From (3.43),(3.44) and 0 ≤ |f(α)|2 ≤

1, it follows that

e2iξf(α2) < 0. (3.46)

By (3.39),(3.45),(3.46),

f(α2) = f(α)2. (3.47)

By (3.37),(3.38),(3.47), we obtain

|f(α)| = 1. (3.48)

Let n ∈ N. We assume that f(αs) = f(α)s for each natural number s ≤ n.

We have

f(αnP ∗P ) = f

(
αn

(
1

2
1 +

1

2
α∗

)(
1

2
1 +

1

2
α

))

= f

(
αn

(
1

4
1 +

1

4
α∗α +

1

2
α∗ +

1

2
α

))

=
1

4
f(αn) +

1

4
f(αnα∗α) +

1

2
f(αn−1α∗α) +

1

2
f(αn+1).

By (3.9),

f(αnP ∗P ) =
1

2
f(αn) +

1

4
f(αn+1) +

1

4
f(αn−1). (3.49)
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In addition, it follows from (3.36) that

f(αnP ∗P ) = f(αn)f(P ∗P )

= f(αn)f

(
(
1

2
1 +

1

2
α∗)

(
1

2
1 +

1

2
α

))

= f(αn)f

(
1

4
1 +

1

4
α∗α +

1

4
α∗ +

1

4
α

)

=
1

2
f(αn) +

1

4
f(αn)f(α∗) +

1

4
f(αn)f(α).

By an assumption f(αs) = f(α)s, s ≤ n,

f(αn)f(P ∗P ) =
1

2
f(αn) +

1

4
f(α)n+1 +

1

4
f(αn−1) |f(α)|2 .

By (3.48),

f(αn)f(P ∗P ) =
1

2
f(αn) +

1

4
f(α)n+1 +

1

4
f(αn−1). (3.50)

By (3.49),(3.50), we get f(αn+1) = f(α)n+1. Therefore,

f(αk) = f(α)k, k ∈ N. (3.51)

This implies f(α∗k) = f(α∗)k, k ∈ N, since f(α∗) = f(α). By (3.48),

|f(αk)| = |f(α∗k)| = 1, k ∈ N.

Set f(α) = t for t ∈ C, |t| = 1.

We now prove that

f(α∗n1αn′1) = Ψα
t (α∗n1αn′1) (3.52)
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for n1, n
′
1 ∈ N. It suffices to consider the case n1 ≥ n′1. It follows from

Proposition 3.15 that

f((α∗n1αn′1 − α∗(n1−n
′
1))∗(α∗n1αn′1 − α∗(n1−n

′
1)))

= f((α∗n
∗
1αn1 − α(n1−n′1))(α∗n1αn′1 − α∗(n1−n

′
1)))

= f(α∗(n1+n′1)α(n1+n′1)) + f(α∗(n1−n′1)α(n1−n′1))− 2f(α∗n1αn1)

= 0

By Lemma 1.19,

f(α∗n1αn′1) = f(α∗(n1−n
′
1)) = t(n1−n′1) = Ψα

t (α∗n1αn′1),

which proves (3.52). By (3.52) and Lemma 3.23, f = Ψα
t .

COROLLARY 3.26. Let f be an extreme point of the tracial state space

of Calg(S3
θ ) such that f(β∗β) = 1. Then there exists t ∈ C, |t| = 1, such that

f = Ψβ
t .

In fact, the following proposition holds.

PROPOSITION 3.27. If F is a pure state of the state space of Calg(S3
θ )

satisfying F(α∗α) = 1, then there exists t ∈ C, |t| = 1, such that F = Ψα
t .

Proof. The Proof is same as Proposition 3.25.

COROLLARY 3.28. If F is a pure state of the state space of Calg(S3
θ )

satisfying F(β∗β) = 1, then there exists t ∈ C, |t| = 1, such that F = Ψβ
t .
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It follows from Proposition 3.15 and Lemma 3.21 that the following propo-

sition.

PROPOSITION 3.29. Let Φ be a state on Calg(S3
θ ) satisfying Φ(α∗α) = 1.

For X ∈ Calg(S3
θ ), Φ(X) is determined by {Φ(αk) : k ∈ N}.

COROLLARY 3.30. Let Φ
′
be a state on Calg(S3

θ ) satisfying Φ
′
(β∗β) = 1.

For X ∈ Calg(S3
θ ), Φ

′
(X) is determined by {Φ′

(βk) : k ∈ N}.

By Proposition 3.19, Proposition 3.25 and Corollary 3.26, we have the

following result:

THEOREM 3.31. The set of all extreme points of the tracial state space

of Calg(S3
θ ) equals the set

{Ψx, Ψ
α
t , Ψβ

t : x ∈ (0, 1), t ∈ C, |t| = 1}.

For the noncommutative 3-sphere Calg(S3
θ ), the extreme points of the

tracial state space is given by three families of states, one parameterized by

the interval (0, 1), and the other two by the circle. The two circles correspond

to characters. An important problem considered immediatery is to study

the extreme points of the tracial state space of noncommutative spheres in

general dimension.

On the other hand, for the noncommutative 4-plane Calg(R4
θ) [25], the

extreme points of the tracial state space include at least four families of states.

70



Two of the families are parametrized by C − {0}, one by (0,∞) × (0,∞),

and one is just a point. Further detailed studies of the extreme points of the

tracial state space of Calg(R4
θ) are in progress.

An interesting problem is to consider the tracial state space of the non-

commutative 3-plane given by a noncommutative analogue of stereographic

projection from a 4-sphere as a natural intermediate case between Calg(S3
θ )

and Calg(R4
θ).
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