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Resource allocation and channel estimation techniques for OFDMA systems

Abstract

Wireless communications are ubiquitous. People are no longer just checking email from

wireless devices. Multimedia services are in very high demand, while the quality of mul-

timedia services is increasing, the data transmission speeds are not advancing proportion-

ately. This puts enormous pressure on the wireless service providers to constantly increase

the throughput. The 4th generation wireless systems are been designed to address this

throughput demand. Orthogonal-frequency-division-multiplexing (OFDM) technology is

being chosen as one of the PHY/MAC layer of the 4th generation networks due to number

of advantages it provides and high throughput being one of them. Although OFDM is able

to provide increased throughput in theory, in practice it is difficult to achieve this limit. Re-

source allocation is the technique that allocates bandwidth, power, etc., to users, such that

the system throughput is increased, while at the same time user quality-of-service (QoS) is

maintained.

In this dissertation we focus our study mainly on two areas related to the OFDM

technology: resource allocation and channel estimation. Resource allocation is a fundamen-

tal process that basically allocates data bits to subcarriers. This is an important process

since the bandwidth and power is limited, resource allocation algorithm needs to allocate as

much data as possible, at the same time satisfying different constraints, including time con-

straint. Next we study the process of channel estimation in OFDM systems, since channel

estimations, or users frequency responses, are the most important information for the op-

erations in the PHY, including resource allocation. Resource allocation algorithms require,

among other information, accurate estimations of users channels to make proper resource

allocations.

Chapter 1 presents an introduction to the OFDM system with its theoretical back-

ground. The resource allocation fundamentals are presented with some simulation results
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Abstract v

showing the importance of proper resource allocation and also the nature of the complex-

ity of the problem. We also introduce the channel estimation fundamentals of the OFDM

system. Channel estimation is important in OFDM systems which use coherent demodula-

tion, multiple-input-multiple-output (MIMO), antenna selection and many other techniques.

Most of all, channel estimations are required for proper resource allocation. Resource al-

location algorithms rely heavily on the channel estimations to allocate subcarriers, power,

modulation and coding levels, etc., to achieve larger throughput and QoS. A discussion on

importance of channel estimations and the complexity involved with the process is discussed

here.

Chapter 2 presents our proposed low complexity resource allocation technique

using a user ranking procedure to address the complexity issue of the channel estimation in

OFDM systems,. This technique takes user channel characteristics into account and define

several attributes. Fuzzy set theory is used on these attributes to prioritize the users. The

proposed methodology is flexible in the sense that it can be used with different attributes

to customize to the system parameters and required performance.

Chapter 3 explains the proposed steady-state Kalman filter for the channel esti-

mation in OFDM systems. Conventional Kalman filters are used in OFDM systems for

channel estimation due to their simplicity and the ability to operate in non-stationary envi-

ronments. Nevertheless, Kalman filters are quite computationally complex due to a matrix

inversion present in the calculation. In OFDM systems, channel estimations are required to

perform in frequency domain and this could become a computational burden. The proposed

steady-state Kalman filter uses channel and system characteristics to simplify the problem

to a scalar level. In addition to reduced complexity, the steady-state Kalman filter is able

to avoid the convergence period, and thus, providing better performance.

Chapter 4 presents a statistical analysis of the quantization noise present in an end-
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to-end OFDM link. Quantization noise is present in every digital communication system,

and although the higher resolutions of currently available quantizers are able to reduce

the quantization noise to negligible levels, this higher resolution comes at a high power

consumption cost. With newer systems integrating MIMO, the effect of power consumption

of the quantizers are going to more severe as parallel radio-frequency (RF) links are required.

Here we identify the effect of system model on the quantization noise. An analysis on how

the signal PDF is changing from the transmitter to the receiver end, and how it affects the

quantization noise is given. This study is motivated by the Kalman filter channel estimation,

where the noise statistics are treated as an important parameter that needs to be known.

Chapter 5 concludes this dissertation with an overall discussion of the OFDM

techniques discussed.
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Chapter 1

Introduction

1.1 Generations of Wireless Communications

21st century is seeing the dawning of the 4th Generation (4G) of wireless com-

munications systems. Wireless communications have come a long way since using analog

techniques in the 1G networks. It migrated to the digital domain in the early 1990’s which

marked the 2G. Global System for Mobile Communication, or more popularly known as

GSM, was first introduced in the 2G and (with added modifications) still is the most used

mobile technology in the world. GSM was carried over to the 3G with added technology

such as Enhanced Data rates for GSM Evolution (EDGE). Code Division Multiple Access

(CDMA) technique is the new entry in to the 3G networks, with different flavors of it, such

as CDMA2000 and Wideband direct sequence CDMA (WCDMA), deployed worldwide. In

this dissertation I focus on the newest generation of the wireless communications, the 4-th

generation, specifically the Orthogonal Frequency Division Multiplexing (OFDM),which is

the underlying PHY technology. An introductory discussion about OFDM is given in the

next section.

Fig. 1.1 shows the evolution of the wireless communications networks in respect

1
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Figure 1.1: Generations of Wireless networks

to throughput and supported mobility. As evident from the figure, 2G networks had very

limited throughput but mobility was well supported. Moving on to 3G networks saw an

increase in throughput, but it varied upon the magnitude of the mobility. Finally, 4G

networks surpassed the 100Mbps throughput mark with mobility receiving special attention,

for example with the IEEE802.16e standard.

1.1.1 From 2G to 3G

Although marching towards the 4G, majority of the mobile subscribers are still

using GSM-based 2G to 2.5G systems. For example, currently about 2.3 billion subscribers

belong to GSM, while CDMA has 450 million [1]. 1G systems were analog and designed

to support only voice services [2]. Frequency-division-duplex (FDD) is used in these sys-

tems. Advanced Mobile Phone Services (AMPS) was the popular 1G system, which also

had competitors like Total Access Communications Standard (TACS) and Nordic Mobile
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Telephone (NMT). These systems soon proved inadequate and wireless services entered to

2G in early 1990. GSM and CDMA-based IS-95 were the first technologies in this genera-

tion. In addition to being a digital system, these technologies also provided Simple Message

Service (SMS) and data. The data rates were in the range of 9.6∼14.4kbps [3]. Over the

years many technologies were included in to the 2G systems to increase its data rate. For

example, General Packet Radio Services (GPRS) and High Speed Circuit Switched Data

(HSCSD) helped 2G networks achieving data rates up to 384kbps.

3G services mainly focused on providing higher data rates. It was realized that

packet access was the solution for the growing need of consumer requirements. 2G systems

started as circuit-data systems, but GPRS and CDMAOne technologies (which are regarded

as 2.5G) pushed the systems in to the packet data domain. So it was inevitable that 3G sys-

tems are all packet oriented. WCDMA saw the start of 3G systems. WCDMA, CDMA2000

and EDGE are the three main technologies in 3G [4]. EDGE is a technology built on top

of GSM and is backward-compatible. Although built on top of GSM, EDGE belongs to 3G

according to International Telecommunication Union (ITU) [5]. These networks initially

supported speeds up to 2Mbps [3]. Like 2G, 3G also saw different enhancements added on

to it, in particular, High Speed Downlink Packet Access (HSDPA) and Evolution Data Opti-

mized (EV-DO). Data rates were substantially increased, with HSDPA taking the data rate

up to a theoretical maximum of 14.4Mbps(quadrature-amplitude-modulation) [6]. Release-

7 of 3GPP makes provision for up to 64-QAM in the downlink (release-6 supported only up

to 16-QAM) which drives the data rate to about 21Mbps [7]. Original EV-DO supported

data rates up to 2.4Mbps in a 1.25Mhz bandwidth, while Revision-A and Revision-B as

increased the data rates to 3.1Mbps and 4.9Mbps, respectively. At this moment 3G has

come quite a long way from its initial 2Mbps and the thus saw the migration in to the

next-generation.
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1.1.2 The Fourth Generation

As 2G was the point of entry in to the digital domain, 4G is the entry in to a

native all IP domain. Main aspect of 3G networks is the multimedia services, but the

recent explosion of multimedia services have proved too much to handle for the traditional

3G networks. With a clearly defined list of objectives, 4G networks are aiming to address

the throughput problems of the existing networks. Among others, following objectives are

the main priorities of the this newest generation [8]:

• Very high throughput.

• Usability: anytime, anywhere, with any technology

• Seamless connectivity across heterogeneous networks.

• Delivery of high quality multimedia contents.

• Compatibility with existing wireless standards.

• An all IP network.

There are three major candidates in the 4G technologies, IEEE802.16 (WiMAX

and it’s variants), Long Term Evolution (LTE) and Ultra Mobile Broadband (UMB) [1].

Each of these technologies are backed by different sets of industry giants and they aim to

serve a specific market. 3GPP, the group responsible for GSM, is developing LTE, and

has the advantage of easier migration to 4G for the existing GSM-based systems. UMB

is from 3GPP-2, the consortium for CDMA-based systems. Hence, UMB provides easier

migration for the CDMA-based systems to the next-generation. IEEE802.16 or WiMAX,

on the other hand, does not provide an easier migration to the next-generation to existing

operators and that seems to be hurting its’ adoption. Nevertheless, number of WiMAX
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systems are starting to be deployed throughout the world. Whichever is the technology, all

these promise one major thing, high data rates. With the use of technologies like Multiple

Input, Multiple Output (MIMO), the data rates are going to reach well over 100Mbps, with

WiMAX II set to give 1Gbps for stationary users.

1.2 Introduction to OFDM

OFDM is in basic terms a form FDM. In the conventional FDM systems, each

frequency band is separated from other frequency bands by a guard band placed in-between.

This is depicted in the top figure of Fig. 1.2. The function of the guard band is to eliminate

the Inter Carrier Interference (ICI), i.e. interference from neighboring frequency bands. In

the context of OFDM, a frequency band is referred to as a subcarrier, so I will use it from

hereon. OFDM, on the other hand, has its subcarriers overlapping (bottom of Fig. 1.2).

This, evidently increases the spectrum efficiency, which is one of the primary advantages of

OFDM. But since the subcarriers are overlapping, a special mechanism is needed to avoid

this ICI. OFDM avoids ICI by using the orthogonality property. Orthogonality between an

exponential set is defined as

1

Ts

∫ (n+1)Ts

nTs

exp(j2πfkt)exp(j2πfnt) ∗ dt = δnk (1.1)

where Ts is the symbol period. Therefore, by choosing the subcarrier frequencies to be

multiples of 1
Ts

, interference between subcarriers can be completely avoided. The mecha-

nism of modulating data symbols in such a way that the transmitting waveform will have

orthogonal subcarriers can be referred to as OFDM. OFDM achieves this through Discrete

Fourier Transform (DFT). DFT, one of the transformations in the Fourier Transformations

(FT) family, is essentially the transformation from time-domain to the frequency-domain.
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Figure 1.2: Conventional FDM vs. OFDM

Mathematically it is

X(k) =
N−1∑

n=0

x(n)exp

(

−j2π
nk

N

)

k = 0, 1, . . . , N − 1 (1.2)

where x(n) is the time-domain values, which are sampled from the continuous time-domain

signal x(t). In the case of OFDM transmission, frequency-domain values are put in to the

time-domain. So the operation is the inverse, or Inverse DFT (IDFT),

x(n) =
1

N

N−1∑

k=0

X(k)exp

(

j2π
nk

N

)

n = 0, 1, . . . , N − 1 (1.3)

It can, therefore be seen that OFDM takes N complex data points and transmits them si-

multaneously in one symbol. I call x(n), n = 0, 1, . . . , N−1 as a single OFDM symbol. Next

section describes the main components of an OFDM transmitter through to the receiver.
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Figure 1.3: OFDM transceiver link

1.2.1 OFDM Link Components

Fig. 1.3 shows the main components of an OFDM transmitter-receiver link. Each

component is described in the following.

Serial-to-Parallel conversion

The responsibility of the PHY of the Open System Interconnection (OSI) model

is to transmit the data coming from the higher layers on to the transmission medium. Data

coming in to the PHY is in the form of bits, i.e. in zeros and ones. PHY takes these bits

and converts them in to a form that can be efficiently transmitted. This is modulation.

The data are received in serial form, but OFDM transmits, or modulates, N data points

at once. Therefore this serial bit stream is converted to N parallel data streams by the

serial-to-parallel converter component. If the serial bit stream data rate is RSbps, then the

data rate of each parallel stream will be RP = RS

N
.
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Symbol mapping

The N parallel bit streams are sent to a symbol mapper. This component modu-

lates the incoming bits in to symbols, according to a certain modulation scheme. In OFDM,

adaptive modulation is possible, i.e. each parallel bit stream can be modulated with a dif-

ferent modulation scheme. OFDM usually employs QAM as its base modulation scheme,

and uses 4-QAM (QPSK), 16-QAM and 64-QAM adaptively on each stream individually.

The output of the symbol mapper, therefore, will be N complex values, corresponding to

each of the N input streams. These N complex values are the data points which will be

transmitted.

Inverse Discrete Fourier Transformation

This is the heart of the OFDM, the IDFT, transforming the N complex frequency-

domain values on to the time-domain. The N complex values from the symbol mapper are

fed in to the N inputs of the IDFT component. In OFDM terms, this is called putting the

data on to subcarriers. The IDFT basically modulates the input N (complex) data-points

in to N orthogonal subcarriers, so it can be transmitted without interference from other

overlapping subcarriers. In the output of the IDFT, again N complex values are the time-

domain values which will be transmitted. These N points will then be parallel-to-serial

converted to be transmitted as a single OFDM symbol. The data points are spaced Ts

N

seconds apart.

Cyclic Prefix Insertion

Cyclic Prefix (CP) serves a very important purpose for OFDM and so a separate

section is reserved for it later in the chapter. The basic functionality of the CP is to avoid

ISI. When a signal is transmitted through a multipath channel, ISI is inherently present if
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the symbols are not adequately spaced. In the case of OFDM this is more difficult because

the OFDM symbol is much longer than the channel delay and the multipath delay. Deferring

the explanation to the later section, CP insertion only will be briefly discussed here. CP

Insertion is the simple process of taking the last NCP (> L − 1, where L is the number of

multipaths) values of the the IDFT points and appending it to the beginning of the data

stream.

Digital-to-Analog Conversion and Frequency Up Conversion

This is the last stage of the RF front end. The serial data stream will be Digital to

Analog Converted (DAC) and then multiplied by a high frequency carrier to be transmitted.

DAC can be performed by passing the data through a Low Pass Filter (LPF).

Discrete Fourier Transform

At the receiver end, the processes of the transmitter is reversed. DFT module

transforms the time-domain data samples in to the frequency-domain. Assuming no distor-

tion is caused during transmission, parallel-to-serial converter will output the original data

stream of the transmitter.

Theory of Cyclic Prefix

In this section I present the mathematics behind the Cyclic Prefix. CP is famous as

the technique of avoiding ISI in OFDM, but it also performs an important task of preserving

the orthogonality of subcarriers when linearly convolved through the multipath channel, as

discussed below.

Considering an N-point FFT system, a block of data points X = [x0 x1 . . . xN−1],

is to be transmitted during a symbol time. The data vector X is sent to an IDFT module.
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The operation of the DFT can be represented by the following matrix:

[F]k,m =
1√
N

e−j2π km
N , k, m = 0, 1, . . . .N − 1, (1.4)

where (k, m) denotes the (k + 1, m + 1)th entry in the DFT matrix F.

Then the transmitted data vector after the IDFT operation is

x = FHX. (1.5)

The normalization factor 1√
N

takes care of the total bit energy as it is the same as the

original vector x because FFH = FHF.

Assuming the channel length is L, the OFDM symbol requires a CP of length

NCP ≥ (L − 1). Then the total symbol length is N̄ = N + NCP .

After the (linear) convolution through the channel and removal of the CP, the

received signal (at the input to the DFT module) can be written,

y = Hx + n (1.6)

where n is the AWGN noise vector. The channel matrix H is a circulant matrix due to the

insertion of the CP in the transmitted data vector and can be written as,

H =














h0 hN−1 · · · h1

h1 h0 · · · h2

...
...

. . .
...

hN−1 hN−2 · · · h0














(1.7)

Here hi is the channel impulse response and hi = 0 for L ≤ i ≤ (N − 1).

Circulant matrices have an important property that the eigenvectors of a circulant

matrix of a given size are the columns of the discrete Fourier transform matrix of the same

size.
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Therefore,

H = FHHEigF (1.8)

Thus,

FHFH = HEig = diag(H0, H1, . . . , HN−1) (1.9)

where,

Hn =
L−1∑

l=0

hlexp

(

−j2π
nl

N

)

, n = 0, 1, . . . .N − 1. (1.10)

Therefore, Hn is just the frequency response of the nth subcarrier and hence, the

eigenvalues of H are the frequency responses of the channel.

Then, going back to the received signal vector, y = Hx + n, sending this received

data vector through the DFT [9],

Y = Fy

= F(Hx + n)

= F(HFHX + n

= FHFHX + Fn

= HX + ñ

(1.11)

Here H = HEig and that the statistical properties of n = Fn = ñ.

Therefore, the insertion of the CP helps OFDM receivers easily decode the trans-

mitted date vector by a simple inverse DFT operation (single-tap equalization).

1.3 Resource Allocation in OFDM

Resource allocation is an important part of any wireless communication system,

because bandwidth is a very expensive resource to any service provider. And it is very scarce.
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There is only a certain bandwidth that could be used for consumer communications. On top

of that, there is a strict limit imposed by regional regulatory committees, like the Federal

Communications Commission (FCC) of the United States, on the maximum transmission

power. This means that there is a strict upper bound on the SNR that can be provided by

the base station to the end terminals. The throughput is hence upper bounded and base

stations need to employ many complicated techniques to get to close to that upper bound.

This is the challenge of resource allocation.

OFDMA has been chosen as the PHY/MAC technology for the next-generation

broadband wireless communication systems [10]. It is selected on the promise of higher

throughput for the next generation systems which are at present facing severe throughput

demands. Recent explosion of smartphones has changed the traffic usage patterns of the

existing networks that it has become difficult to provide the guaranteed QoS to the end

users. Migration of traditional broadcast services like internet radio and TV into the IP

domain has made things worse due to their high bandwidth consumption. It is our objective

to address the efficient serving of broadcast services to end users of a multiuser system such

as OFDMA, in a resource efficient manner.

OFDMA is capable of very high throughput at its’ maximum theoretical perfor-

mance. In practical deployments it is very difficult to achieve these performance levels due

to limited RF bandwidth and transmission power restrictions and channel fading. There-

fore, resource allocation in OFDMA networks has been a deeply researched area. There are

many parameters to consider and the optimal resource allocation is a NP-hard problem that

is mathematically difficult to solve [11], and hence researchers are resolving to sub-optimal

schemes[12]. The main objectives of any resource allocation scheme must be:

• Maximizing system throughput
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• Minimizing transmit power

• Maintaining QoS across all users

Earlier resource allocation research worked mainly in the PHY of OFDMA [12].

But it was realized that resource allocation techniques need to consider both PHY and

MAC of OFDMA to provide a sustainable solution to the stringent QoS requirements of

recent services which are not only bandwidth sensitive but also delay sensitive.

1.3.1 Complexity and Optimal Solution

Resource allocation in an OFDMA system is a highly complex task to be performed

optimally. This is because of the many parameters in an OFDMA system which must be

fine tuned to achieve the optimal solution. In principal these parameters are:

• Multiple users

• Time-varying channel conditions of each user

• Transmit power constraint

• Multiple modulation and coding levels

• Different QoS requirements

These parameters and constraints make the optimal resource allocation a highly non-linear

optimization problem that is mathematically very complex. Furthermore, the resource

allocation is a process which needs to be performed each OFDM symbol period, which

makes it an even more difficult problem.
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1.3.2 Optimal Bit Loading

The optimal bit loading strategy is the technique that would load the maximum

possible number of bits on to a given set of subcarriers under a total power constraint. For

an OFDM system, this technique is known as water-filling. The transmission power is not a

linear function of the number of bits, therefore, when loading bits on to subcarriers, it must

be done granularly, i.e. bit-by-bit, for each subcarrier while choosing the subcarrier which

requires the least amount of power to load a bit. The algorithm for water-filling is[13] [14],

Water-filling algorithm

begin

Initialize

ck = 1, ∆Pk,ck
= 0, PT = 0;

while PT ≤ PMAX do

for k := 1 to K do

calculate ∆Pk,ck
;

end

k∗ = argmink∆Pk,ck
;

ck∗ = ck∗ + 1;

PT = PT + ∆Pk,ck
;

end

end

where ∆Pk,ck
= Pk,c − Pk,c−1.
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1.3.3 Water-Filling vs Greedy-Allocation

The water-filling algorithm takes each subcarrier and calculates how much addi-

tional power is required to load a bit on to each subcarrier, and then chooses the subcarrier

which requires the least power and allocates a bit. The process is repeated until the maxi-

mum transmission power is reached. This algorithm is computationally intensive since the

power needs to be calculated for each subcarrier in a per-bit basis. The computational time

can be prohibitive for real-time processing with increased number of subcarriers and power

levels. On the other hand, the easiest resource allocation method is the Greedy allocation

method. There can be several alternatives of Greedy algorithms [14] [15], but as the name

simply implies that a good subcarrier consumes more resources. The Greedy algorithm

takes subcarriers in the order of their channel gains, better subcarriers first, and allocates

the highest possible number of bits on to that subcarrier. An example subcarrier allocation

scenario is depicted in Figs. 1.4, 1.5 and 1.6. The uniform power allocation is the case

where the total transmission power is equally distributed among the subcarriers. In these

simulations, total power is kept constant and the bit loading is done by modulations levels,

instead of bit-by-bit. Modulation levels used in these are QPSK, 16-QAM and 64-QAM,

which transmit 2, 4 and 6 bits, respectively. Fig. 1.4 shows the Greedy method and Fig. 1.5

shows the same method with power distributed among subcarriers equally. The Greedy

method, as can be seen from Fig. 1.5 has allocated the highest number of bits to better

subcarriers, while only few subcarriers are allocated with 2 and 4 bits. This is because

more power is wasted in allocating the maximum amount of bits on to the subcarriers with

better gain. Uniform power distribution scheme shows even worse performance. Only 2-bit

allocations are possible in the best subcarriers available. This is because when the power is

distributed uniformly, the fraction of the power available to each subcarrier is not enough

for loading bits. The water-filling method, on the other hand, shows much higher bit load-
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Figure 1.4: Greedy subcarrier allocation

Figure 1.5: Greedy subcarrier allocation - uniform power distribution
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Figure 1.6: Water-filling subcarrier allocation

ing on to the subcarriers. Substantially higher number of subcarriers are allocated bits in

this scheme. A point to note is that in the water-flling method, none of the subcarriers are

assigned 6-bits. Instead, many subcarriers, except for ones in deep fade, are allocated with

2-bits. The stringent SNR requirement of higher-order modulation levels make it resource

efficient to allocate many low-gain subcarriers with lower number of bits than allocating

few good subcarriers with high number of bits.

1.3.4 OFDMA Resource Allocation - A Combinatorial Optimization Prob-

lem

The Water-filling method discussed in the previous section considers an OFDM

system, or a single-user system. In an OFDMA system, where resources needs to be allo-

cated to multiple users, the allocation problem becomes extremely complex. The optimal



Chapter 1: Introduction 18

solution of water-filling for the OFDM is no longer optimal in an OFDMA system because

only one user can be allocated to a subcarrier at one symbol period. Furthermore, the

optimal solution is not the allocation strategy that transmits more bits. When multiple

users are present, the system needs to satisfy the QoS requirements of the users. Each

user has a different QoS requirement. And the allocation strategy should try to provide

the necessary bit allocations such that the QoS requirements are met. Resource allocation

in an OFDMA system is a combinatorial optimization problem that could have different

objectives and constraints. For example, in the water-filling algorithm of previous section,

the objective was to maximize the number of bits with an upper bound on the transmission

power. Another approach would be to minimize the transmission power with the constraint

of satisfying user QOS requirements.

The allocation problem of minimizing the transmission power with the constraint of

satisfying user data requirements can be stated as a Lagrangian optimization as follows [12]:

Minimize f(P) =
N∑

n=1

K∑

k=1

Pk,n

s.t.
N∑

n=1

ck,n ≥ Rk, ∀k ∈ {1, 2, . . . , K}
(1.12)

Here Rk is the rate requirement of user k. The optimization state as above is difficult to

analyze because the power constraint is a function of the number of bits on it and only one

user is able to use a single subcarrier. To make the optimization mathematically tractable,

a subcarrier usage indicator, ρk,n needs to be introduced, which is defined

ρk,n =







1 if ck,n 6= 0

0 if ck,n = 0

(1.13)

provides a notion of time-sharing of a subcarrier among the users.
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Then ( 1.12) can be restated as,

Minimize f(P) =
N∑

n=1

K∑

k=1

ρk,nPk,n

s.t.
N∑

n=1

ρk,nck,n = Rk, ∀k ∈ {1, 2, . . . , K}

K∑

k=1

ρk,n = 1, ∀n ∈ {1, 2, . . . , N}

(1.14)

where

Pk,n =
1

h2
k,n

.
N0

3

[

Q−1

(
Pe

4

)]2

(2ck,n − 1) , (1.15)

is the transmission power on subcarrier k for user n. Here ρk,n acts as a sharing factor

among users for each subcarrier. But since subcarriers are utilized exclusively among users,

ρk,n is allowed to have values of 0 or 1 only. Then the problem comes down to the original

problem of ( 1.12).

Then the Lagrangian is,

L (P, λ, σ) =

N∑

n=1

K∑

k=1

ρk,nPk,n−
N∑

n=1

λn

(
K∑

k=1

ρk,nck,n − Rn

)

+

N∑

n=1

σk

(
N∑

n=1

ρk,n − 1

)

, (1.16)

where λ and σ are the vectors of Lagrangian multipliers. The conditions are then,

∂L
∂ck,n

= ρk,nP ′
k,n + λnρk,n = 0. (1.17)

∂L
∂λn

= λn

(
K∑

k=1

ρk,nck,n − Rn

)

= 0. (1.18)

∂L
∂σk

= σk

(
N∑

n=1

ρk,n − 1

)

= 0. (1.19)

The equations given above is a framework for finding the optimal solution and modifications

are necessary to find an optimal result. For example, the values of ck,n and ρk,n are allowed

to vary in the range [0 M ] and [0 1], respectively. But in the allocation, ρk,n can only
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get values 0 or 1, and ck,n can only have the discrete values of modulation levels used in

the system.

Water-filling, greedy and Lagrangian methods described above are the resource

allocation strategies that reside on the extremes of the complexities. For practical systems

however, these schemes are not feasible and hence a plethora of research have gone and

are still going in to introducing sub-optimal resource allocation schemes, which have less

complexity to be able to implement in real-time systems and also provides acceptable per-

formance. In chapter 2 I introduce the proposed low complexity resource allocation scheme

for OFDMA systems.

1.4 Channel estimation in OFDM systems

Channel estimation is very important in any communication system. The impor-

tance of it is far more exceeded in the case of wireless communications because the channel

often changes and accurate channel estimations are required for coherent demodulation of

the data signal. Additionally, accurate channel estimations are required by a number of

important technologies used in wireless communications, such as,

• Adaptive modulation

• Adaptive power control

• Adaptive antenna combining

• Space-time decoding

As with most every other major technique in OFDM, channel estimation is required for

resource allocation too, but is often taken for granted. In the previous chapters, I allocated

resources to users depending primarily on the subcarrier gains. In section 1.3.3 I presented
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the superiority of the water-filling algorithm as the optimal bit-loading technique for OFDM

systems. The water-filling algorithm is solely based on the subcarrier channel gains. If these

values are not accurate, as we will see later in simulations results, that both power is wasted

and BER performance is degraded. Therefore, in this chapter I introduce this importance

technique of channel estimation.

1.4.1 Categories of Channel Estimation

Channel estimation can be broadly divided in to several categories as shown in

Fig. 1.7. These categories show two main approaches taken in channel estimation tech-

niques. These techniques are not limited to wireless situations and are employed in wired

communications as well. The categorization to blind and non-blind estimations fundamen-

tally refer to whether the estimator has access to pilot data or not. Pilot data are which

sent by the transmitter for the use at the receiver for number of purposes. Among other

uses, pilot data are used by the receiver for channel estimation, frequency synchronization

and time synchronization. Although use of pilots are an efficient and easier way to estimate

the channel, pilot data reduce spectrum efficiency since no user data can be sent in these

symbols. Nevertheless, use of pilot data for channel estimation eases the estimation process

as explained next.

Blind channel estimation

Blind channel estimation, as the name implies, estimates the channel blindly. This

category of techniques relies primarily on the channel and signal statistics for the estimation

of the channel. Therefore, a large number of data are required for a good estimation and

the procedure is also mathematically complex. For these reasons, blind channel estimation

methods are not used in practical mobile systems, because they are unable to provide
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Figure 1.7: Channel estimation techniques

accurate estimations in fast-varying channel conditions. I will discuss non-blind channel

estimation techniques in this chapter because they are used in practical systems, especially

in WLAN and WiMAX systems.

Non-Blind channel estimation

Non-blind channel estimation, on the other hand, makes use of data in the received

signal. In this category of channel estimators, the transmitter sends a sequence of symbols

known at the receiver, called pilot symbols, and the receiver can estimate the channel by

the state of the received pilot symbols. Non-blind channel estimation techniques can be

further divided into two more sub-categories: Decision Directed Channel Estimation and

Data Aided Channel Estimation [16].

Decision Directed Channel Estimation (DDCE) In DDCE, current symbol

is decoded using a channel estimate derived from the previous symbol. The current channel

is estimated using the newly decoded symbol, which was decoded using the channel estimates

from the previous symbol. Therefore, DDCE inherently has the disadvantage of using an
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outdated channel estimate. If the channel is stationary or very slowly-varying, then this

procedure would not pose a problem, but in fast-varying cases, DDCE poses a disadvantage,

as error propagation can occur. To circumvent this, number of methods are used. For

example, DDCE requires an initial channel estimate. This usually is obtained from a pilot-

sequence of subcarriers and a data-aided channel estimation technique (which I discuss

next). One way to improve the DDCE performance is to send pilot-sequences periodically,

so that the channel estimations can be updated accurately at regular intervals. In addition,

channel coding and interleaving techniques can also be incorporated.

Data Aided Channel Estimation (DACE) DACE is the widely used tech-

nique in most practical systems. This category of techniques make use of pilot symbols,

i.e. symbols which are known to the receiver. Other than that, pilot symbols can also have

special properties such as having a constellation of constant modulus in order to simplify

the estimation process. Pilot symbols or in the case of OFDM, pilot subcarriers, are further

divided in to two categories:

• Block-type pilots

• Comb-type pilots

Block-type pilots are sent as a symbol of all pilots and comb-type pilots are uniformly

distributed among the data subcarriers. These two types of pilot subcarriers are graphically

depicted in Fig. 1.8.

Fig. 1.8 shows four types of pilot subcarriers defined in the IEEE802.16 stan-

dard [17]:

• Preamble - A symbol of all pilots sent at the beginning of each OFDM frame. In

addition to channel estimation, this pilot symbol, the preamble, is also used for time
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Figure 1.8: Pilot subcarrier types of IEEE802.16 standard

and frequency clock synchronizations.

• Midamble - Similar to the preamble, but is sent in the middle of the symbol.

• Constant position pilots - These pilots are sent with each symbol and are spread

uniformly throughout the frequency spectrum. Receivers can use interpolation/extrapolation

techniques to estimate the channel gain of the data subcarriers.

• Variable position pilots - These pilots are sent among the remaining subcarriers.

The position of these pilots could be according to a certain pattern (ex. moving

diagonally) or could be inserted to aid certain receivers to cope of different channel

conditions

From the above four types of pilot subcarrier types, we can identify preambles

and midambles as block-type pilots and constant positions pilots as comb-type pilots. It is

evident that the insertion of pilot subcarriers hinders spectral efficiency since no data can be
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sent in these subcarriers, but as the support for vehicular mobility with dense constellations

are increased, pilots are unavoidable.

In the comb-type pilots, pilot subcarriers are inserted at some distance apart. The

minimum distance of these pilot subcarriers is a function of the channel delay as is given by

Dfreq ≤ 1

τMAX∆fd

(1.20)

where τMAX is the maximum channel delay and ∆fd is the subcarrier spacing. This minimum

distance needs to be maintained to capture the channel variations in the frequency-spectrum.

Similarly, there is a maximum-delay between pilots which is

Dtime ≤
1

2fDMAX
Ts

(1.21)

where fDMAX
is the maximum Doppler spread and Ts is the OFDM symbol time.

1.4.2 Channel Estimation Techniques

Channel estimation can be performed using a number of different techniques, each

with its’ advantages and disadvantages. Nevertheless, these methods can be categorized in

to two main types of techniques:

• Least Squares estimation (LS)

• Minimum Mean Squared Estimation (MMSE)

Least-squares estimation

LS is the easiest of the two techniques, and gives the worst performance. If received

signal after DFT on the kth subcarrier of the nth symbol is

Yk,n = Xk,nHk,n + Wk,n (1.22)
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Then the LS estimate of Hk,n is

Ĥk,n =
Yk,n

Xk,n

= Hk,n + W̄k,n,

(1.23)

where W̄k,n =
Wk,n

Xk,n
. In matrix notation, the vector of the LS channel estimate can be

written

ĤLS = X−1Y (1.24)

Here I have taken X as a diagonal matrix of dimensions N ×N . The above LS estimation is

performed in the frequency-domain. The same procedure can be done in the time-domain

as well. Using the DFT matrix F introduced in section 1.2.1, this can be written [16]

H = Fh, (1.25)

where h is the N × 1 vector of CIR. Then ( 1.22) can be written

Y = XFh + W. (1.26)

Then the time-domain LS estimate is given by

Ĥ = QLSF
HXHY, (1.27)

where

QLS =
(
FHXHXF

)−1
. (1.28)

When the channel length is not taken into consideration, both time and frequency domain

LS estimates are the same. On the other hand, when the channel length L is known,

this can be taken into account and the dimension of matrix F can be reduced and hence

the noise performance is improved due to zeroing the unnecessary values. LS estimation
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minimizes (Y − XFh)H (Y − XFh) [18]. It is apparent from the above discussion that the

LS channel estimation does not consider channel noise at all and this is the main reason

LS estimation performs poorly, especially in the low SNR regions. On the other hand, LS

estimation requires no additional information, such as channel or signal statistics, therefore

is suitable to use in mobile situations where these statistics frequently change or are not

readily available [19].

Use of decision-directed channel estimation approach

Here, using the notation of LS estimation above, I briefly present the DDCE

approach. Since block-type pilots are sent periodically, it is necessary to update the channel

estimations of the subcarriers until the next block-pilot symbol. DDCE can be used with

LS for this purpose. After the reception of the block-pilot, say the nth symbol, the receiver

estimates the channel gain of the kth subcarrier as

Ĥk,n =
Yk,n

Xk,n

. (1.29)

This is used as the initial channel estimate. Then, the next symbol, which is a data symbol,

is decoded as follows:

X̂k,n+1 =
Yk,n+1

Ĥk,n

. (1.30)

I use the hat notation to indicate that this is an estimation of the data symbol. This

estimation is then fed to a symbol demapper, where X̂k,n+1 is mapped to a constellation

point. The demapper, for example, could use minimum distance criterion to choose the

corresponding constellation point. Denoting this mapped value as XMAP
k,n+1, the channel

estimation for the (n + 1)th symbol can be updated as

Ĥk,n+1 =
Yk,n

XMAP
k,n+1

. (1.31)
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Then Ĥk,n+1 is used to estimate the next data symbol X̂k,n+2, and so on. It is clear that

this DDCE technique can degrade performance if the channel changes during the symbol

time. The symbol estimate X̂k,n+1 will be incorrect and the symbol demapper will map it to

a different symbol than transmitted. Then the subsequent channel update will be incorrect,

and hence sequence of data and channel updates will be erroneous. This error propagation

makes DDCE unattractive in fast-varying channel conditions, and comb-type pilots with

interpolation/extrapolation gives better performance [18].

Minimum Mean Squared Error Estimation (MMSE)

MMSE is considered to be the optimal, or in practical cases near-optimal channel

estimation method. The technique used in OFDM channel estimation is the linear MMSE

(LMMSE) and I briefly introduce it here since the proposed channel estimation method

in chapter 3 is on the LMMSE-based Kalman filter. LMMSE is optimal in the sense of

minimizing the Mean Squared Error (MSE) when AWGN noise is present. Unlike LS

estimation, LMMSE uses second order statistics of the channel and the signal and also the

operating SNR [16], and thus can be computationally complex as we see later in the section.

Due its’ importance in channel estimation, I present the definition of LMMSE here.

If Y = [y(1), y(2), . . . , y(N)] is the received signal vector and we wish to estimate

the vector θ = [θ(1), θ(2), . . . , θ(P )], LMMSE finds the coefficients ai, i = 1, 2, . . . , (N + 1),

such that

θ̂i =
N−1∑

n=0

ai,ny(n) + ai,N (1.32)

that minimizes the MSE

MSE
(

θ̂i

)

= E

[(

θi − θ̂i

)2
]

, i = 1, 2, . . . , P. (1.33)
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Then the LMMSE estimator is

θ̂i = E (θi) + CθiyC
−1
yy (y − E (y)) , (1.34)

where C denotes the correlation function. The minimization over all the scalar θi gives the

minimum MSE. Therefore, the LMMSE estimator for the vector θ is

θ̂ =














E (θ1)

E (θ2)

...

E (θP )














+














Cθ1yC
−1
yy (y − E (y))

Cθ2yC
−1
yy (y − E (y))

...

CθP yC
−1
yy (y − E (y))














= E (θ) + CθyC
−1
yy (y − E (y)) .

(1.35)

Channel estimation with comb-type pilots

Here I present the mathematics of using LMMSE to estimate the channel with

comb-type pilots. In the case of comb-type pilots, assuming the pilot subcarriers are equi-

spaced, the received signal at the pilot subcarriers (after DFT) can be written

Y = XHp + W. (1.36)

I assume a total of P pilot subcarriers are present and the Y,Hp and W are vectors of

length P , while X is a P × P diagonal matrix. The objective of the LMMSE estimator is

to estimate the N × 1 vector of subcarriers H. Using the fact that the channel gains are

zero-mean Gaussian, I invoke ( 1.35) to give

ĤLMMSE = RHY R−1
Y Y Y (1.37)
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Evaluating the correlation terms gives,

RHY = E
[

(H − E[H]) (Y − E[Y])H
]

= E
[

H (XHp + W)H
]

= E
[
HHH

p XH + HWH
]

= XHRHHp

(1.38)

RY Y = E
[

(XHp + W) (XHp + W)H
]

= E
[
XHpH

H
p XH + XHpW

H + WHH
p XH + WWH

]

= XXHRHpHp + σ2
W I

(1.39)

Substituting and after some algebraic manipulations we get,

ĤLMMSE = RHHp

(

RHpHp + σ2
W

(
XXH

)−1
)−1

ĤLS, (1.40)

where ĤLS = X−1Y is the LS estimation of the pilot subcarriers. We see in ( 1.40) that

LMMSE estimation takes subcarrier frequency correlation and also noise statistics in to

account. For this reason LMMSE gives better performance compared to LS estimation,

especially in the low SNR region.

Complexity reduction of LMMSE

The superior performance of LMMSE over LS estimation comes at a computational

cost. The matrix inversion
(
XXH

)−1
of ( 1.40) is computationally prohibitive for number

of reasons: 1) The matrix dimension increases with the increasing number of subcarriers, 2)

the inversion needs to be performed each time X changes. A simple yet effective solution is

presented in [20] for the block-type pilot case, where the expectation of
(
XXH

)−1
is used

instead. On the assumption that same constellation is used on all tones, which is a proper
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assumption [17], the expectation of the inverse can be written

E
[(

XXH
)−1

]

= E
[
|1/xk|2

]
I, (1.41)

where xk is dependent on the chosen constellation. Then the modified LMMSE estimator

is given by

ĤLMMSE = RHH

(

RHH +
β

SNR
I

)−1

ĤLS, (1.42)

where

SNR =
E

[
|xk|2

]

σ2
W

, (1.43)

and

β = E
[
|xk|2

]
E

[
|1/xk|2

]
. (1.44)

As can be seen from ( 1.42), the LMMSE estimation is no longer a function of X and the

channel correlation RHH is a function of the channel power-delay-profile (PDP) [16] and

thus changes very slowly. Therefore, the argument of the inversion does not change as long as

the operating SNR stays constant. This modification brings about a substantial reduction

in computational complexity. Nevertheless, the expression still needs to be recalculated

whenever the channel PDP changes, or the more frequent case of change of operating SNR.

To further simplify the calculation, a singular-value-decomposition (SVD) based

method can be used [20]. The SVD method is used on the realization that the number of

significant singular values of the channel cross-correlation matrix is related the the number

of significant channel taps of the channel impulse response. The number of significant

channel taps are much less than the number of subcarriers and this fact has been used to

simplify the estimation further. Writing the SVD of RHH as

RHH = UΛUH , (1.45)
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where U is a unitary matrix and Λ is the diagonal matrix of singular values λ0, λ1, . . . , λN−1

in descending order, where N is the number of (pilot) subcarriers. Then the LMMSE

estimator is shown to be,

ĤLMMSE = U∆UHĤLS, (1.46)

where ∆ is the diagonal matrix where the entries are given by

δi,i =







λi

λi+
β

SNR

i = 0, 1, 2, . . . , p − 1

0 ı = 0, p, p + 1, . . . , N − 1

(1.47)

Here p is the number of significant singular values. Since p is dependent on the number

of long-term significant channel taps, this decomposition of the channel correlation func-

tion reduces the computation substantially due to the much less number of channel taps

compared to the number of subcarriers.

1.4.3 Sequential LMMSE Channel Estimation for OFDM - Kalman Fil-

tering

In case of OFDM, sequential estimation cannot be done in the conventional sense,

since the receiver needs to wait for all the N samples to send to the DFT block. But channel

estimation in OFDM can benefit from the sequential LMMSE procedure by realizing the

channel variation as a Gauss-Markov model. The method is known as Kalman filtering.

Kalman filers are an extension of the LMMSE filters but avoids the disadvantages of complex

LMMSE estimators.

The first step is to model the channel, which is the unknown vector to be estimated,

as a Gauss-Markov model as follows:

Hn = AHn−1 + Dn (1.48)
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Assuming we are estimating N subcarriers, Hn is a N × 1 vector of subcarrier gains at

time instant n, and A is N × N matrix which relates the subcarrier gains of the previous

instant, n−1, to the current instant, n. This matrix is called the state-transition matrix, as

it transits the previous state of the channel to the current state. The additive noise vector

Dn are white Gaussing noise components with a PDF Dn ∼ N(0,Qn). Qn is its’ covariance

matrix and Dn is considered independent for each time instant. The received signal is

Yn = XnHn + Wn. (1.49)

The received vector Yn is of dimension N × 1 and Xn is the N × N diagonal matrix of

pilot symbols and Wn is the N × N diagonal matrix of the AWGN noise with covariance

matrix RWW = σ2
W I. The process of estimating the channel by way of Kalman filtering is

as follows:

• Prediction - Similar to the sequential LMMSE, Kalman filtering process starts by

predicting the current vector to be estimated, Hn.

Ĥn|n−1 = AĤn−1|n−1. (1.50)

Here the transition matrix is used to predict the current values by the previously

estimated values.

• Minimum prediction MSE matrix - This step involves predicting the minimum

MSE from the previous value.

Mn|n−1 = AMn−1|n−1A
T + Qn. (1.51)

MSE’s are defined as

Mn|n−1 = E

[(

Hn − Ĥn|n−1

)2
]

Mn|n = E

[(

Hn − Ĥn|n
)2

] (1.52)
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• Kalman gain matrix - The important calculation. The Kalman gain matrix is

determined as

Kn = Mn|n−1X
T
n

(
σ2

W I + XnMn|n−1X
T
n

)−1
. (1.53)

This step is similar to the gain correction of the sequential LMMSE estimator.

• Correction - This is the step where the values are estimated, i.e. the filter output.

It is given by

Ĥn|n = Ĥn|n−1 + Kn

(

Yn − XnĤn|n−1

)

. (1.54)

Recall from sequential LMMSE that, the value inside the parentheses,
(

Yn − XnĤn|n−1

)

,

is the innovation. Since Ĥn|n−1 is the predicted channel gain vector, XnĤn|n−1 is the

predicted current data, or Ŷn|n−1. Therefore, the correction step is multiplying the

innovation by the Kalman gain and then adding it to the predicted channel gains

vector.

• Minimum MSE matrix - Second step of Kalman filtering is predicting the minimum

MSE. In this final step, the predicted MSE of step two is used to calculate the current

MSE.

Mn|n = (I − KnXn)Mn|n−1 (1.55)

The five steps above are the Kalman filtering and it can be initialized by the values

Ĥ−1|−1 = E [H] and M−1|−1 = RHH , or simply initialize to zero. The initial value af-

fects the convergence period of the filter, an issue I tackle when I discuss the proposed

modified Kalman filter.

Things to note about the Kalman filter are,
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• It does not need the channel covariance, RHH (except for initialization, where zero

can be used).

• Unlike LMMSE, matrix inversion is required for the Kalman gain calculation.

• An Auto Regressive (AR) model can be used to model the behavior of the channel by

any order-p.

• Although channel covariance matrix is not required, variance of the driving-noise is

needed. This could not be available at the filter and this issue is considered in the

proposed Kalman filter in chapter 3

1.4.4 Channel Estimation and Resource Allocation in OFDM Systems

As mentioned in the beginning of this chapter, channel estimation is an important

process for wireless communications, including resource allocation. In this last section

I provide a brief discussion on the effects of channel estimation with simulated figures.

Figs. 1.9- 1.15 show these results with figures obtained by simulating an example scenario.

Resource allocation, as I discussed in the earlier chapters, is allocating system

resources, which includes not only power and subcarriers but also modulation and coding

levels, such that the users in the system can be provided with their required QoS. If the

number of users in the system is small or there is an abundance of transmission power,

resource allocation is a very easy task and channel estimations would not be critical in-

formation. Unfortunately, this is never the case, especially in broadband wireless systems.

Resources are scarce and the channel estimations are critical for a sustainable system.

As an example, Fig. 1.9 shows a simulation of Rayleigh fading channel for 500

symbol durations with a Doppler frequency of 100Hz. The dashed lines show the estimated

channel from a conventional Kalman filter at a SNR of 15dB. Clearly the channel is not
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Figure 1.9: Channel estimation of a Rayleigh faded channel with Kalman filter

perfectly estimated. It is an impossible task. At some symbol instants the channel is

estimated higher than its’ real value, while at other times it is estimated to be less. It

is important that the channel be estimated as close to the true channel as possible. As I

discussed earlier in the section 1.3 on resource allocation techniques such as water-filling

algorithm, the channel estimates are always considered to be perfect, which is hardly the

case. The impact of these imperfect channel estimations are two-fold: First, when the

channel is over-estimated, the resource allocation algorithm allocates a lower transmission

power than required, or a higher modulation level than possible, resulting in increased BER

at the receiver. Secondly, when the channel is under-estimated, more power than necessary

is allocated to the subcarrier, wasting transmission power, which could be allocated on a

different subcarrier to transmit more data.
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Figure 1.10: Received BER for a 128 subcarrier system under distorted channel estimations

1.4.5 Channel Estimation and BER

An example scenario is shown in Fig. 1.10 for a 128 subcarrier system with a

required BER of 10−4. The blue dots shows the allocated subcarriers and the required

BER, while the red dots show the received BER. The resource allocation strategy used here

is water-filling. It is evident that while some subcarriers received a better BER, others are

worse than the expected BER. Depending on the application used, a worse than required

BER would mean that the data packet will need to be re-transmitted, further wasting

system resources.

Channel estimation is important for coherent detection and becomes crucial for

higher modulation levels. Fig. 1.11 shows constellation captures for 512 subcarriers with

16-QAM. The signal is normalized for unity mean energy at the transmitter. Fig. 1.12

shows a similar constellation capture for the 64-QAM level. Both these modulation levels

are used in the IEEE802.16 standard on the downlink [17].
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Figure 1.11: Received constellation of a 16-QAM under channel estimation errors

Figure 1.12: Received constellation of a 64-QAM under channel estimation errors



Chapter 1: Introduction 39

In both the cases the complex channels have been distorted with an additive Gaus-

sian noise to reflect channel estimation errors. And it is apparent how accurate channel esti-

mations are important, especially for higher modulation levels. The 64-QAM constellation

capture shows that more received points spread in to neighbor decision regions, increasing

BER.

1.4.6 Channel Estimation Complexity and Frequency

Channel estimation is a complex process. The complexity comes from both the

amount of required statistical information, as is for the case with LMMSE, and also from

the number of calculations to perform [21], such as matrix inversions. Channel estimation is

a process that would be required to perform on each received symbol. On the downlink, de-

pending on the Down Link Map (DL-MAP) [17], the receiver will need to estimate channels

on the symbols/subcarriers destined for itself. For the IEEE802.16e standard, an OFDM

symbol has a duration of 102.9µs. It is extremely difficult to perform complex mathematics

in this small time duration, especially because it is not possible to implement these mathe-

matical functions in hardware. Therefore, channel estimations are usually carried out once

per number of symbols, and the channel in-between the estimations are obtained through

interpolations. Since our proposed scheme presented in chapter 3 is based on Kalman fil-

tering, here I show two examples of using a conventional Kalman filter to estimate channel

with 5 symbols apart.

Fig. 1.13 show a channel with a Doppler frequency of 10Hz while a 150Hz scenario

is depicted in Fig. 1.15. The blue dashed line shows the true channel, red line shows the

channel estimation through the Kalman filter in each symbol, and the black line is when the

channel is estimated every 5 symbols. Between channel estimations, the previous channel

estimation is used. As expected, the higher Doppler rate requires more frequent channel
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Figure 1.13: Channel estimation every 5 symbols with Kalman filter - 10Hz

Figure 1.14: Channel estimation every 5 symbols with Kalman filter - 150Hz



Chapter 1: Introduction 41

estimations to track the fast variations of the channel, which is consistent with ( 1.21)

introduced in sec. 1.4.1.

Therefore, it is important to find techniques which offer reduced complexity in the

estimation process. Kalman filter is less complex in the fact that it requires less second-

order statistics but it still requires a matrix inversion. In chapter 3 I propose a modified

Kalman filter which takes into account certain channel and pilot signal properties to reduce

the calculation complexity of the channel estimation, and in the process also increases the

performance over the conventional Kalman filter.

1.5 Position of the Study

This section summarizes the position of the studies included in the dissertaion.

It provides an overview of the motivation for the study, the proposed scheme and the

performance of the scheme.
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Table 1.1: Problems of existing schemes and the contribution of the proposed schemes

Chapter 2 Topic Low complexity resource allocation algorithm by mul-
tiple attribute weighing and user ranking for OFDMA
systems

Problems of exist-
ing research

Existing schemes are either highly complex in calcu-
lations or iterative in nature which have a longer con-
vergence period. These schemes can be practically not
feasible to implement since resource allocation needs
to be performed frame-by-frame.

Proposed method Users in the system are ranked according to a multi-
attribute criterion which identifies users priority. The
attributes can be defined according to the required
performance metric.

Effect of proposed
scheme

Competitive results are obtained against other low-
complexity resource allocation schemes.

Chapter 3 Topic Steady-state Kalman filtering for channel estimation
in OFDM systems for Rayleigh Fading Channels

Problems of exist-
ing research

Conventional Kalman filters have a five-step process
which needs to performed in each filtering iteration
and the matrix inversion in the Kalman gain calcula-
tion step becomes a calculation burden.

Proposed method A steady-state Kalman filter is proposed, which elim-
inates the transient period and operates at the con-
verged state, enhancing performance. Kalman gain
calculation is performed only once for the duration of
the channel stationarity.

Effect of proposed
scheme

The conventional five-step process is reduced to two.
Kalman gain is calculated only once for the duration of
the channel stationarity, which substantially reduces
the number of calculations. Dynamic calculation of
the channel driving noise keeps the filter operating at
the optimal state.

Chapter 4 Topic Analysis Quantization Noise in an End-to-End OFDM
Link

Problems of exist-
ing research

Quantization noise is often taken as having an uni-
formly distributed PDF. But theory shows this condi-
tion is only achieved when certain conditions are met
and it is mainly a function of the input signal PDF.

Proposed method An analysis is performed to examine the statistical
properties of the signal in an OFDM link, from trans-
mitter to receiver. Signal statistics are obtained as
functions of transceiver and channel parameters.

Effect of proposed
scheme

The theoretical derivation shows strong agreement to
simulated results, meaning that the derived results can
be used in a system to determine the quantization
noise at the receiver as a function of the transceiver
and channel parameters. Using the results, optimal
receiver conditions can be chosen accordingly.
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Figure 1.15: Chapter flow of the thesis



Chapter 2

Low complexity resource allocation

algorithm by multiple attribute

weighing and user ranking for

OFDMA systems

Proposed low complexity resource allocation algorithm for OFDMA systems is

introduced in this chapter. As discussed in the previous chapters, an optimal solution

for resource allocation in OFDMA systems is mathematically heavy in complexity and

hence is not feasible to use in practical systems. Our motivation in the proposed scheme

is to develop an algorithm for subcarrier allocation in OFDMA systems without complex

calculations and many iterative loops which makes the algorithms inappropriate real-time

resource allocation. I make an entrance to the proposed scheme by discussing the channel

transfer function characteristics, which will be the main consideration in our proposed

scheme. Then I discuss about user ranking, different user attributes and multiple attribute

44
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decision making. Finally I introduce our proposed resource allocation algorithms.

2.1 Introduction

Different resource allocation techniques have been proposed. In [12], Wong et

al introduce the idea of using Lagrangian Relaxation (LR) technique to carrier allocation

problem of the multiuser OFDM, which I discussed in section 1.3.4. The authors assume

a constant data rate for users. Data rate is taken to be a constraint and the scheme is

optimized for minimum power. This is a combinatorial minimization where the variables

are relaxed to take values [0, 1] to make the calculations feasible. In [22] Ergen et al propose

a fair resource allocation scheme together with two improvement modules. The subcarriers

and bits are allocated by taking users in order and allocating the subcarrier which needs

the least power to transmit data at the highest modulation level. The modulation levels are

decremented according to the maximum power constraint. System load is not considered

and user dropping is not mentioned explicitly in this algorithm. This allocation takes an

iterative approach until the rate requirements are satisfied for the given power constraint.

After the resources are allocated the scheme runs two improvements modules to swap bits

and subcarriers between users to reduce power. These algorithms are iterative and become

very exhaustive with increasing user or subcarrier numbers.

In practical systems, the approach taken is less complicated than the schemes

mentioned above. In IEEE802.16 WirelessMAN standard two types of subcarrier alloca-

tion schemes are employed [23]: (1) Distributed subcarrier permutation and (2) Adjacent

subcarrier permutation. In the Distributed subcarrier permutation allocation scheme, sub-

carriers are chosen according to a permutation algorithm and grouped together to form

subchannels. The subcarriers are chosen to a subchannel in a manner that the channel
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diversity is exploited. Therefore fast fading channel users can have advantage in distributed

subcarrier permutation scheme. In the adjacent subcarrier permutation scheme, adjacent

subcarriers are grouped together to form subchannels. This method is simple and effective

for slow fading channel users. After subchannelization, these subchannels are assigned to

different users in the system. These schemes give less computational overhead and make it

feasible to adopt in real-time communications. Although these methods are simple, because

of the reduced optimality, system performances such as throughput or power levels might

be degraded.

Existing schemes, such as mentioned above, need complex iterations for the al-

gorithms to converge. To avoid the iterative looping in the algorithm, it is desirable to

introduce a ranking to the users depending on different characteristics of their channel

transfer function and take users according to their rank for carrier allocation. Use of dif-

ferent channel characteristics (attributes as I will call it later) can be justified as follows:

For example, one user will have a relatively small number of high gain subcarriers and large

portion of average to low gain subcarriers, while another user will have slowly varying spec-

trum of relatively good subcarrier as shown in Fig. 2.1. And as depicted in the figure by the

dashed lines, both two users have almost same average channel gain. Due to this effect of

diversity, user with the low number of good subcarriers should be given priority to choose

subcarriers, because the selection of subcarriers available to that user is less than that of

the other user. This fact motivated us to exploit the channel characteristics more when

determining the order of the users taken for subcarrier allocation. I take an effort to exploit

these different attributes of users’ channel characteristics, as explained later, and determine

how important each user needs to get his best subcarriers to reduce the overall transmission

power. Another target is the reduction of the complexity of the existing schemes. Most

of the conventional proposed schemes need intensive search and swap algorithms to con-
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Figure 2.1: Diversity of channel characteristics

verge. The main reason for this is because when subcarriers are allocated to users, they

are allocated according to either their average channel gain or highest channel gain or by

taking users/subcarriers in an order. This requires the need for searching and swapping

subcarriers between users to reduce the transmission power or provide the required QoS,

because subcarriers are allocated in a simple manner in the first assignment. Therefore it

is important to find a scheme which could assign subcarriers to users in a more efficient but

yet simple manner.

I propose a computationally efficient sub-optimal subcarrier allocation algorithm

for an OFDMA system by avoiding complex iterations and calculations used in classical

water-filling algorithms. Our scheme adopts a user ranking method where I give a value of

priority for each user in the system. The rank of a user indication of how important it is

for that particular user to get priority over other users when obtaining subcarriers. I use

characteristics such as carrier gain decrease rate and deviation from the mean channel gain

of the system in determining rank for each user. Then I use a multiple attribute weighing
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mechanism to combine the different values obtained for each user and arrive at a single value,

the rank. Our proposed scheme is simulated in comparison with other mathematically

efficient subcarrier allocation schemes as well as with the conventional greedy allocation

schemes. It is shown that the proposed method demonstrates competitive results with the

conventional schemes.

2.2 User ranking algorithm

Consider a system with M users and N subcarriers. Hi(n) indicates channel gain

of user i in subcarrier n. Channel gain Hi(n) is indicated as the amplitude. Estimation of

Hi(n) can be determined by the received power, but in the scheme I assume that the base

station is capable of predicting the frequency response in amplitude of each user ahead of

scheduling transmissions or that the available channel estimation is valid. Cmax denotes

the maximum allowable number of bits on a subcarrier and Ci is the total required number

of bits by user i.

2.2.1 User Attributes

As was discussed in the introduction, average channel gain of a user does not

convey enough information. To understand a users’ channel as possibly as I can, in this

paper I define three attributes (goals):

• Average channel gain

• Carrier gain decrease rate

• Variation from mean system channel gain

By defining these three attributes of a users channel, I try to understand the channel of

each user better, and determine how important each user needs to get priority in choosing
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subcarriers.

Average channel gain - W1

This measurement is chosen to give a fair overall indication of the users channel.

Wi,1 =

∑N
n=1

N
, i = 1, 2, . . . , M. (2.1)

Carrier gain decrease rate - W2

In this attribute I try to get an indication of the rate of decrease of a users channel

gain. Here, sort the users channel gains in decreasing order and check how much the channel

gain drops from the highest gain carrier to some constant number of subcarriers. Here, I

can get an indication of how many good carriers a user has. If the value is large, it indicates

there is a large drop in gain and thus the user has only few good carriers, and if it is a low

value that indicates the user has fair amount of high gain carriers. With this I am able to

give preference to users who have only few good carriers, because these users need to be

allocated to the available few good subcarriers.

begin

Initialize

∀i,Ω ←− {}

for k := 1 to N do

sorti(k) = max Hi(n), n /∈ Ω

Ω ←− n

end

end
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Wi,2 = sorti(k) = sorti(1) − sorti(const), ∀i, (2.2)

where const is chosen in the simulation.

Variation from mean system channel gain - W3

This attribute is defined to give a measurement of an individual users channel

profile in relative to the channels of all the users in the system. As defined in ( 2.1), Wi,1

used in attribute W1 indicates individual users average channel gain over N subcarriers at

the base station.

Eq. 2.3 is the average channel gain of all the M users in the system. Therefore,

I make use of attribute W3 to determine which users have more deviation from ξ and give

these users more priority. This is done by the non-linear shape of the bell function expressed

in ( 2.4). Fig. 2.2 shows a graphical representation of the bell function in ( 2.4). As can

be seen from the plotted curves, variable m controls the vertical steepness of the graph

while n controls the horizontal flatness of the graph. I used values of -2 and -1 for m and

n respectively in the simulations.

ξ =

∑M
i=1 Wi,1

M
(2.3)

Wi,3 =







(
1 + (Wi,1 − ξ)−m

)−n
if Wi,1 ≤ ξ

−
(
1 + (Wi,1 − ξ)−m

)−n
if Wi,1 > ξ

(2.4)

Using a bell function as above and changing its curvature with provides the ability to place

a certain users average channel relative to all the other users in the system. As discussed

previously, a user’s average frequency response does not provide an adequate indication

of the users distribution of the channel gains. But when the average frequency response

deviates considerably from the system average, it provides an important indication of that
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Figure 2.2: Graphical representation of the bell function

channel. If a users average frequency response deviates considerably to the either end, it

could mean that the user has a very poor channel response, or the users has a very good

channel response. The latter case, for example, could happen when a user is very close to

the base station or a line-of-sight path exists from the transmitter. In these cases, those

particular users must be given priority accordingly. If a user has a very poor channel

response, he should be give priority over other users who have average channel response

relative to the system. Similarly, for a user with a very good channel response compared

to the system average, does not need to get priority because the subcarriers are on average

much better than most of the users in the system. This differentiability is the function I

seek by using the bell function in attribute W3.

These attributes are then used to construct the M × 3 goal membership value

matrix G:

Gi,j = Wi,j , i = 1, 2, . . . , M, j = 1, 2, 3. (2.5)

This matrix indicates how well or how weakly each user attains the goals.
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2.2.2 User Information Feedback

The three attributes defined earlier are used to get a better understanding of the

users channel frequency response. Although I am using three attributes, the algorithm only

requires the information of each users channel frequency response. Then the attributes are

calculated by using the frequency response. The users only feedback the channel frequency

response only. The base station can then calculate all three attributes from the frequency

response of every user.In the proposed scheme the users feedback their channel frequency

response only. The attributes are calculated purely from each users frequency response. If

more additional information can be sent, the algorithm can use this information for better

allocation strategies by defining new attributes to utilize the new information. For example,

if users send their mobility speeds, or the type of service in use (ex: VoIP, media streaming,

browser data, etc.), the algorithm can make better choices by using these information. This

also gives the opportunity for sustainable resource allocation method, for example, instead

of allocating resources independently in each symbol, user QoS, and delay constraints, etc.,

can be utilized for a better resource allocation strategy, but increases the amount of feedback

required from the users.

Quantization of feedback information and be performed to reduce the amount of

user channel information sent to base station. In this proposed scheme quantization is not

considered. As is the case with many resource allocation schemes, I assumed that the base

station has perfect channel frequency response of all the users in the system. If user channel

state information is quantized, the effect of it would be two-fold. First, since attributes are

calculated using the frequency response, quantized frequency response values would not

yield accurate rankings among users. Although quantized frequency responses will affect

the attribute calculations, since every users’ frequency response is mutually independent,

provided the quantization resolution is high enough, the impact of the quantization would
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not reflect strongly on the final rankings. Secondly, although the ranking would not be

affected substantially by the quantization of channel state information, when data and power

are allocated to the subcarriers, if accurate channel frequency response is not available,

degradation could occur as I have demonstrated in sections 1.4.4 and 1.4.5 of the thesis.

Therefore, in simulations it is important to isolate these two phenomena to obtain a proper

quantification of the effect quantization of channel state information would have on the

resource allocation scheme.

2.2.3 Multiple Attribute Decision Making and Goal Weighing

Multiple attribute decision making is a topic discussed in fuzzy set theory. This

concept is used in situations to find an optimal alternative for a number of given goals [24] [25].

I consider utilizing the concept of multiple attribute decision making in our scheme. I use the

attributes defined in section 2.2.1 as the multiple attributes and make a decision depending

on the values; that is find a rank.

Another method incorporated in the scheme is to individually weigh the impor-

tance of each attribute. Saaty [24] proposes a scheme for the goal weighing and Yager [25]

improves it to be used in multiple attribute decision making. The attributes considered

in the scheme are not equally important. Some are important than others depending on

different factors. By using Saatys method in our scheme, I am able to further improve

the effectiveness by assigning different weights to each goal. Another reason for using the

goal weighing scheme is that, the attributes used in the scheme can be changed to suit

different situations (ex. different QoS policies). And by this goal weighing scheme, you can

control different goals priority. For example, in our algorithm, our objective is to reduce

transmission power. But in a different scheme, the objective would be to give priority to

a special user class and can change the weights accordingly to obtain the necessary goals.
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The weights therefore, are defined according to the attributes. They reflect the relative

importance of attributes and not the user requirements. If satisfying user requirements are

the final objective of the algorithm, then the attributes should be defined accordingly to

reflect this fact and then weights are determined for the attributes. Therefore, the weights

are not directly related to the user requirements, but are related through the system at-

tributes. The goal weights are calculated as follows: First construct a 3-by-3 weight matrix

WM which indicates the relative importance of each goal. Hence WMi,j indicates the im-

portance of goal i compared to goal j and WMj,i = 1
WMi,j

. Therefore WM is a diagonal

matrix with upper diagonal entries being the reciprocal of lower diagonal matrix. The value

of WMi,j is taken between 1 to 9 with 9 being the most important. After obtaining WM , I

construct the column matrix WMI . WMI is the column matrix of the eigenvector matrix

of WM which corresponds to the highest eigenvalue. WMI is then normalized to 1. After

normalization, WMI represents the weights of the three goals [25].

2.2.4 Data Commensuration

After constructing G, it is necessary to normalize the membership values because

they are generally incommensurate. Different attributes have different value ranges, hence

need to shift them to a common range of values. For data commensuration I use the method

used in [26] for benefit criterion:

Gi,j =
Gi,j − Gmax

Gmax − Gmin

, (2.6)

where Gmin and Gmax are minimum and maximum values of the matrix, respectively.

2.2.5 Rank Determination

Then move onto rank the users according to their membership values in matrix G.

After commensuration of the data in matrix G, I need to take the power of each of these
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membership values with the normalized weight matrix values in WMI . Then to obtain the

rank matrix R, intersect the values by row in matrix G: the minimum value on each row

should be chosen. This is illustrated in Fig. 2.3 where Ri is a column matrix of M entries,

Figure 2.3: Rank determination of users

each value corresponding to a user. These entry values of Ri are the ranks of users.

Ri = min G
Wj

i,j , i = 1, 2, . . . , M, j = 1, 2, 3. (2.7)

Higher membership value gives that user a higher rank or a higher priority. I will then

arrange the rank values in descending order and call it Rai, i = 1, . . . , M . Therefore Ra1 has

the highest rank value and RaM has the lowest rank value. Next the subcarrier allocation

algorithm is described.

2.3 Algorithms for the Proposed Scheme

In our scheme, when the system is overloaded and needs to drop users, I drop users

who have both low average channel gains and low data requirements. By dropping users

with low average gain the overall system transmit power can be reduced, while dropping

users with low data rate helps to effectively utilize the bandwidth. I use a similar approach

to determining user drop ranks as was with Ri. The goals are channel gain and data rate,

and the weights are taken as unity for both goals. I call the users drop rank as UDi.
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2.3.1 Proposed Subcarrier Allocation Algorithm

Figs. 2.4∼2.6 show the proposed subcarrier allocation algorithm. In the first phase,

shown in Fig. 2.4, total system subcarrier requirement is calculated, and if the system is

overloaded users are dropped according to their user drop rank. During the next phase

(Fig. 2.5), subcarriers are allocated to users according to their rank and in the final phase

(Fig. 2.6), available unallocated subcarriers are assigned to users.

Subcarrier allocation algorithm in Figs. 2.5 and 2.6 converges with a maximum

number of iterations equal to the amount of system subcarriers. In the above subcarrier

allocation algorithm, I take users in decreasing order of rank and assign the required carriers.

The shape of the users channel frequency response depends on the multipath Rayleigh

fading characteristic of the channel. When a users channel profile is changing slowly as

shown in Fig 2.8, the user can request a continuous block of subcarriers since many high

gain subcarriers tend to be grouped closer. When the number of users increases, channel

amplitudes might be correlated more and many users may have good subcarriers in the

same band. Thus, by allowing one user to take all the best subcarriers it needs, other users

who have similar channel amplitudes will be left with no better subcarriers. Therefore, to

give fairness to users, the subcarrier allocation to users is done in several iterations, i.e. in

first iteration, take a user according to its rank, and allocate a fraction of the subcarriers

it needs and then proceed to the next user. The optimum number of iterations depends on

number of users and user channel conditions and in the simulations I used two iterations.

In the final part of the algorithm I allocate unassigned carriers to users. In our

proposed scheme, to allocate the unallocated carriers, users are taken from the reverse

order of ranks; they are the users who are taken from the lowest rank. Because I assign

the required minimum subcarriers to users depending on the highest rank users, the users

who are low ranked might have been unable to get most of their best carriers. This is more



Chapter 2: Low complexity resource allocation algorithm by multiple attribute weighing and
user ranking for OFDMA systems 57

Figure 2.4: User dropping if system overloaded

Figure 2.5: Subcarrier allocation
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Figure 2.6: Unallocated subcarrier allocation

significant when the number of users increases. Therefore, when allocating the unallocated

carriers, I take users who were low ranked and assign carriers one by one. Hence, in this

scheme I can avoid further calculations in the allocation loop, such as measuring the water

filling value of each users subcarriers in each loop, that need to be performed iteratively

until all subcarriers are assigned. Also the number of iterations for the proposed scheme is

low and upper bounded by the number of subcarriers, as explained in the next section. A

complete flow chart of the algorithm is given in Fig. 2.7.

2.3.2 Rank Re-Calculation under User Movement

The attributes are defined from the perspective of the system as whole, and they

are aimed to achieve the final objective of the system. In our proposed system it is the

reduction of transmission power. Therefore, I defined the attributes to reflect this objective.

The weights adjust the importance of the attributes, and therefore the values of weights

are only related to the attributes defined. The movements of the users are not directly

related to the attributes (i.e. I did not define attributes which depends on user mobility).
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Figure 2.7: Flow-chart of the algorithm
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Therefore, for the defined attributes of the proposed system, the mobility of the users

does not affect the weights and they can be kept constant. In a practical system, some

users maybe stationary, while other users are moving. In this case, the values of the rows

corresponding to the moving users of the goal membership matrix changes, because the

frequency responses change. In this case, the ranks of these particular moving users also

change, effectively changing the ranks of all the users in the system. But in this case, the

ranks of only the moving users need to be calculated again. This is because the rank of a

user is a relative value only. Not an absolute value between 1 and M (if M is the number of

users in the system). The absolute ranks are obtained by sorting the relative ranks. And in

the next iteration of resource allocation, the algorithm assign resources based on the new

absolute ranks.

2.4 Simulation Results and Discussion

This section shows the simulated results of the proposed scheme. The proposed

scheme is simulated and compared with the Bandwidth-assignment-based-on-SNR + Rate-

Craving-Greedy (BABS+RCG) and Bandwidth-assignment-based-on-SNR + Amplitude-

Craving-Algorithm (BABS+ACG) algorithms proposed in [27]. BABS algorithm deter-

mines the number of subcarriers needed by a user to manage the subcarrier requirement of

the whole system. If the system is overloaded, BABS algorithm drops users with lower sub-

carrier needs until the subcarrier requirement of the system is reduced to the supportable

limit. On the other hand, if the system has extra subcarriers, BABS algorithm distributes

these extra subcarriers to users by using a rate-power function. RCG/ACG algorithms as-

sign the number of subcarriers to the users determined by the BABS algorithm. If the system

has extra subcarriers, some users may have more subcarriers than they need. In this case
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they can distribute their bits and reduce the transmission power. I choose BABS+RCG and

BABS+ACG algorithms for our simulations because they show, although lower, but very

competitive results with LR algorithm [12] and RC algorithms and also it has significantly

low complexity compared to LR and RC algorithms. LR and RC algorithms can achieve

near-optimal results. BABS+RCG algorithm is a sub-optimal rate-craving algorithm, while

BABS+ACG is a simpler version of BABS+RCG. Rate-Craving (RC) algorithms involve

finding the shortest path in an M-node graph by re-calculating the graph weights in each

iteration [27]. The complexity of such algorithms is high and therefore BABS+RCG algo-

rithm is introduced to simplify the search for a single-node. Table 2.1 shows the simulations

parameters for the proposed scheme. Ai,j is the relative weights of the attribute i over at-

tribute j. Parameters given in Table 2.1 are the values used in the weight matrix described

in section 2.2. Users are divided into three traffic types; Type A, B and C. Type A traffic is

defined for users requiring a constant and high bandwidth of 1.5Mbps, while type B traffic

users are assigned a constant bandwidth of 350 kbps. Type C users are assigned data rates

uniformly distributed with a mean of 50 kbps. Type A is assigned 30% of the users while

30% is allocated to type B and the rest of the users are allocated to type C. I used these

types of data traffics to keep in accordance with the reference scheme [27]. The data rate

requirement of each user for each symbol period is determined by dividing the desired data

rate by the symbol rate.

Resource allocation policy is as follows: Each user gets the minimum amount of

subcarriers needed to transmit its’ data. The minimum number of subcarriers is a function

of the maximum modulation level. After allocating all the required subcarriers to the users

in the system, if additional unallocated subcarriers are available, then those are distributed

among the users (taking users by reverse rank). After the subcarriers are allocated to

each user, then s suitable allocation method can be used to distribute the required bits
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Table 2.1: Parameters used in the simulation

Parameter Values

A12 1/3
A13 1/3
A23 5

Propagation model COST 231

Channel Rayleigh Fading

Number of Subcarriers 512

Symbol rate 9.6 KSymbols/s

Highest modulation level 64-QAM

Number of users 10 100

on to the assigned subcarriers of the respective users. In the simulations, each user is

assigned a fixed amount of data to be transmitted during each symbol. All of these data

bits are then loaded on to the subcarriers allocated by the proposed resource allocation

algorithm. I used the water-filling method to load the bits on to the subcarriers since it

gives the lowest transmission power required. Same water-filling method is used to load bits

in the simulated conventional schemes as well to maintain fairness in the results. Any other

efficient bit-loading scheme can be used too. Since the purpose of the proposed scheme is

to demonstrate the effect of ranking method and the resulting subcarrier allocation using

the ranks of users, any bit loading algorithm can be used for comparative purposes.

Transmit power is calculated by the following equations [12]:

P (n, c, BER) =
f(c, BER)

H(n)2

f(c, BER) =
N0

3

[

Q−1

(
Pe

4

)]2

(2c − 1) ,

(2.8)

where Q(.) is the Gaussian tail function defined as:

Q(x) =
1√
2π

∫ ∞

x

e(− t2

2
)dt. (2.9)

Thermal noise, N0, is taken as 10−5 and a target bit error rate of 105 is considered. Adaptive

modulation of bits up to 6 bits (64-QAM) per subcarrier is considered. Since I implement
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Figure 2.8: A slowly-fluctuating channel

bit-by-bit water-filling on subcarriers to minimize power, I assume that a subcarrier can be

modulated with {1, 2, . . . , 6} bits adaptively by BPSK, QPSK, 8PSK, 16QAM, 32QAM and

64QAM. Our main objective is to reduce transmission power based on frequency response

of the users and error rate is maintained at a constant level, therefore coding is not imple-

mented in the scheme. When allocating bits to subcarriers, I use water-filling to allocate

subcarriers bit-by-bit, by calculating which one of the assigned subcarriers needs the least

power to carry one more bit and allocating that bit to the chosen subcarrier. This process

is done until all the required bits are loaded onto the subcarriers. The required threshold

SINR is calculated by ( 2.10) below, where c is the number of bits transmitting on the

particular subcarrier.

γ =

[

Q−1

(
Pe

4

)]2 (2c − 1)

3
(2.10)

Figs. 2.8 and 2.9 show two channel profiles as examples of small-scale frequency-

selective fading in our simulations. Fig. 2.8 shows a slowly-fluctuating channel, i.e. a
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Figure 2.9: A rapidly-fluctuating channel

channel with a frequency response along the considered bandwidth changing slowly, while

a rapidly-fluctuating frequency response is shown in Fig. 2.9. Slowly-fluctuating channel

is created by using a maximum multipath delay of 5% of the input symbol duration, and

for the rapidly-fluctuating channels a maximum multipath delay of 80% of the symbol

duration is considered. And for the average channel frequency response, I create channels

with frequency response with a maximum multipath delay of 25% of the symbol duration,

and the number of multipaths and path gains are chosen according to each channel type to

avoid channel pattern repetition.

Simulated results in Fig. 2.11 is obtained for a system with all users having similar

channel frequency response shown in Fig. 2.8. For other simulations the users are assigned

with average frequency responses. Propagation loss with a cell radius of 500m in COST 231

suburban model with isotropic antennas are considered in the simulation. All the parame-

ters of the COST 231 model are taken in accordance with the IEEE802.16e standard [28].
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Figure 2.10: Required transmission power versus number of users

Users are distributed uniformly in the cell area and frequency-selective Rayleigh fading is

considered. A system with 512 subcarriers and users who might have both slowly-varying

and rapidly-varying channels are used. It is assumed in the simulation that all the subcar-

riers are used for data transfer.

Fig. 2.10 shows the transmission power needed by 4 schemes, the conventional

greedy algorithm, BABS+RCG, BABS+ACG and the proposed scheme. The normalized

channel gains of users and random carrier selection of the ACG algorithm outperform the

Greedy algorithm by giving better chances to users with low channel gains and also avoid the

channel correlation of users. Giving priority to users by only considering average channel

values as well as the lack of ability to distribute extra subcarriers make the greedy al-

gorithm give the worst performance with significantly higher required transmission power.

BABS+ACG algorithm performs better than the greedy algorithm, but the proposed scheme

and the BABS+RCG scheme give the best results. The proposed and BABS+RCG schemes
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Figure 2.11: Required transmission power versus number of users for different channel
profiles

gives identical performance in terms of average transmission power, while the BABS+ACG

requires about 105% more transmission power on average than the former two schemes. It

should be noted that these results can vary depending on the channel characteristics of the

users and data rates used in the simulations.

Fig. 2.11 depicts the required power for the 3 main schemes, BABS+RCG, BABS+

ACG and the proposed scheme for the extreme channel cases, i.e., simulated with all

users in the system having similar channel characteristics, either slowly-fluctuating chan-

nels (Fig. 2.8) or rapidly-fluctuating channels(Fig. 2.9). This is in contrast to simulation

depicted in Fig. 2.10, where the simulated channels are of average fluctuations. As can be

seen from the straight lines, which shows the performance for slowly-fluctuating channels,

the required transmission power is higher than that for the rapidly-fluctuating channels,

shown by dotted lines. Comparing with Fig. 2.10 it can be seen that the required transmis-

sion powers for rapidly-fluctuating channels are lower. The reason for this can be explained
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as follows: When all the users in the system have slowly-fluctuating channels, there is a high

probability that many users will have high correlation with each others channel amplitudes.

Therefore, many users will have high and low gain channels in the same range. But since

only one user is assigned to a single channel, few users will share the better carriers while

other users will be allocated less gain carriers. Therefore higher power requirements should

be expected when all the users have slowly-varying channels. As for the RCG algorithm, the

neighbor search and swap are not effective enough to find better allocations, therefore some

users get more favored over others. The reason for the transmission power to not increase

after about 60 users is because the number of subcarriers is kept constant. In this case,

there is an upper bound on the maximum transferable data throughput, and therefore some

users are dropped when the total required throughput is higher than the maximum system

throughput. For this reason, although number of users is increasing, the transmission power

does not keep increasing with the number of users, because there is a maximum amount of

data the system can transmit. This value of saturation depends on the number of users,

number of subcarriers and data rate requirements of the users in the system.

The power requirements for different subcarrier numbers (64,128, 256, 512 and

1024) are simulated in Fig. 2.12. Here the number of users is chosen for each subcarrier

number to fully load the system for each scheme. As can be seen from the figure, greedy

algorithm gives the worst performance followed by the BABS+ACG algorithm. In this case

BABS+RCG algorithm gives slightly better results than the proposed scheme. It should be

noted that the performances can vary depending on the number of users and the user data

traffic.

The transmission powers shown in the previous figures are higher than supported

in a practical system. This is because in the simulations there was no limit imposed on

the maximum transmission power. The objective of the simulations were to determine if
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Figure 2.12: Required transmission power verses number of subcarriers

the use of ranking system would reduce the required transmission compared to the other

conventional schemes simulated. Therefore, we calculated the ’total’ required transmission

power for a given set of users and their data rates. In the simulations, users were assigned

three data rates. And each of the users, who are not dropped because of insufficient system

capacity (in terms of number of subcarriers) get all of their data transmitted. Maximum

number of bits on a subcarrier is limited to 6, and the system transmits up to this amount

of bits on a subcarrier to fulfill user requirement. Therefore the transmission power shows

a higher value. In a practical system there will be a maximum transmission power, system-

basis or per-subcarrier-basis, and all the data of users will not be transmitted. Since the

objective of the proposed system is to reduce the overall system transmission power, the

value of transmission power in the simulations serves only as a relative value for the com-

parison purposes with the conventional schemes. Next, the individual performances of the

three attributes are defined.
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Figure 2.13: Performance difference of attributes verses number of users

Figs. 2.13 and 2.14 show the performance differences by using individual at-

tributes. I take each attribute separately and determine the attribute values for each user.

Since multiple attributes are not used in these figures, no weighing is performed. To clearly

show the variation of the performances of each attribute, I take the difference of the re-

sults. For example, curve Attr.1-Attr.2 shows the required transmission power by attribute

1 subtracted by attribute 2.

Fig. 2.13 shows the power requirement differences for different user numbers in

a 512 subcarrier system. The schemes perform similarly for smaller number of users and

fluctuate when the numbers of users are increasing. Performance of attribute 1 decreases

with the increasing number of users while attribute 2 and 3 shows similar performances.

Attribute 1 is able to give competitive performance with small user numbers, but when the

number of users is increasing, average channel gain of the user does not give good channel

information, while attribute 2 and 3 are able to exploit the channels more efficiently and
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Figure 2.14: Performance difference of attributes verses number of users for different channel
profiles

give higher performance. As can be seen from the dotted curves, by multiple attribute

weighing, the proposed scheme is able to obtain an overall better result.

Fig. 2.14 shows the difference of attribute performances for the slowly-fluctuating

and rapidly-fluctuating channel profiles. Dotted lines depict the slowly-fluctuating channels

while straight lines show the results for rapidly-fluctuating channels. Important observations

are that the performance difference is higher for the slowly-fluctuating channel, and that

for lower number of users the attributes perform similarly. As number of users increases,

the performance of attribute 1 diminishes, while the performances of attribute 2 and 3

remain similar throughout all the number of users. Also it can be seen that for the rapidly-

fluctuating channel, all attributes perform in a similar manner. It is found from Figs. 2.13

and 2.14 that different attributes perform differently for varying system parameters and the

appropriate weighing gives an efficient way to obtain an overall better result. When the users

in the system have slowly-varying channels, average channel gain of the user does not give
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Figure 2.15: Number of additions and multiplications verses number of users

a good indication of the users channel, since channel amplitudes of users are correlated.

Therefore, attribute 1 is not able to perform efficiently with increasing number of users,

however, when users have rapidly-varying channels, the uncorrelated channel amplitudes of

the users can be efficiently exploited and all the attributes give similar results.

Therefore, by multiple attribute weighing, the proposed scheme is able to obtain an

overall good result. We see that using all attributes collectively with weight tuning gives an

overall better result. The attributes and weights can be adjusted for the system to perform

at a satisfactory performance level at all times, or they could be adjusted dynamically

depending on the system state.

Fig. 2.15 shows the number of additions and multiplications needed by the RCG

and the proposed algorithms and also the number of iterations for the RCG algorithm.

Number of iterations shown in the figures denotes the number of iterations which the RCG

algorithm has to loop itself until the convergence. RCG algorithm in the first step takes
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Figure 2.16: Number of addition and multiplications versus the number of subcarriers

the status of the subcarriers one by one and assigns each subcarrier to a user. In the

first step, users with better channel conditions might be assigned more subcarriers than

they are supposed to have, while some users will not be assigned the minimum number

of subcarriers they need. Thus, in the second step, RCG algorithm takes extra subcarrier

from users who have been allocated more subcarriers than needed in the first step, and

re-assigns these extra subcarriers to users who have not been allocated sufficient number of

subcarriers. RCG algorithm converges when all users are allocated their determined number

of subcarriers. The amount of calculations in each iteration is a constant. On the other

hand, the number of iterations for the convergence is not constant, since it depends on the

channel response of the users in the system. Therefore, to show the complexity in terms of

number of additions and multiplications required, I show the average number of additions

and multiplications needed for the algorithm convergence verses number of users and number

of subcarriers, respectively. Proposed algorithm only needs to iterate for the allocation of
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unallocated subcarriers and it is comparatively negligible to the RCG algorithm, thus is not

shown in the figure. The numbers of additions are large for the RCG algorithm, especially

when the number of users is smaller. In the case of small number of users, lot of subcarriers

are distributed among a fewer number of users and these subcarriers must be swapped

back to other users. Two cases for the number of multiplications needed by the RCG

algorithm are considered; with lookup and without lookup. As mentioned previously, RCG

algorithm allocates and swaps subcarriers by a rate-power function which uses each users

water-filling coefficient for the particular subcarrier. Thus, water-filling coefficients must

be calculated for each user for each subcarrier. Therefore, to simplify the algorithm, each

users water-filling coefficients are stored in a table and during each iteration the algorithm

looks up the coefficient in the table instead of calculating it. This case is shown in the

with lookup curve. The without lookup curve shows the number of multiplications it needs

when the water-filling coefficients are not stored but calculated during each iteration. As

can be seen from the without lookup curve, the RCG algorithm requires a large number

of multiplications for the convergence. From the figure, it is observed that the number of

multiplications needed by the RCG algorithm is smaller than that of the proposed scheme

when the algorithm is run with table lookup. Few points are worth mentioning about this

case: when implementing table lookup, it is necessary to calculate and store (MxN) values

in a table, and then, during each iteration, the algorithm has to lookup the table and obtain

the coefficients for two users and perform an addition. As the graph shows, RCG algorithm

needs a large number of iterations, and the efficiency of the algorithm decreases when it

is necessary to lookup and retrieve values from a table. The proposed algorithm needs to

iterate only if there are unallocated subcarriers, and the allocation only needs to know the

rank of the user and no further calculations are necessary.

Fig. 2.16 shows the similar case as Fig. 2.15 but with the increasing number of
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subcarriers. I simulate for 64, 128, 256, 512 and 1024 subcarriers. Similar to Fig. 2.15, the

number of calculations is larger for the RCG algorithm and it increases with the increasing

number of users. Therefore, the efficiency of proposed algorithm over RCG algorithm is

evident from the amounts of information to store, calculations and iterations. It should be

mentioned that, the performance results of these algorithms depend on number of factors

such as channel profiles of users, number of users in the system and required data rates of

users.

Considering the number of calculations from a practical point of view, resource

allocations need to be fast, and therefore if a hardware implementation is used, the amount

of calculations can become a calculation burden. If, fixed-point arithmetic hardware is

used opposed to a floating-point hardware (for cost reasons), then it can be more complex

since register overflows, etc. need to be taken care of, and this adds additional delay to

the calculations. On the other hand, if the with-lookup method is used, the water-filling

coefficients are stored in memory. These memory values are then read in each iteration. As

an example, Fig. 2.15 shows that the RCG algorithm requires about 105 iterations in each

step. In a DSP for example, each memory read could take one cycle. The RCG algorithm

requires four water-filling coefficients in each iteration, which could take up to four cycles

of delay (assuming only one memory bank). Therefore, from a calculation and delay point

of view, the conventional scheme seems to be high in complexity.

2.5 Conclusion

The proposed a user ranking technique which completely avoids complex computa-

tions and iterations. The scheme allows efficient resource allocation with reduced transmis-

sion power and increased bandwidth utilization. The employed multi-attribute technique
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allows for defining suitable attributes for the required performance metric. The ability to

weight these attributes gives extended flexibility in handling the importance of the various

attributes. Simulation results show good performance compared to the two low complexity

resource allocation algorithms used. Proposed scheme constantly gave better results than

the BABS+ACG algorithm and gave similar results to that of BABS+RCG scheme. Al-

though giving similar results to that of the BABS+RCG scheme, from the perspective of

calculation complexity, the proposed scheme has a higher complexity. The proposed scheme

avoids iterations and the number of calculations are bounded by the number of subcarriers

and the users, unlike the RCG scheme which needs iterations for the convergence, and also

the convergence rate is dependent on the user channel conditions. Therefore, the proposed

scheme is able to achieve a resource allocation scheme with reduced complexity, and also

provides the flexibility for system objective and attribute weighing.



Chapter 3

Steady-state Kalman filtering for

OFDM systems

in Rayleigh Fading Channels

3.1 Introduction

In section 1.4.4 I discussed the importance of channel estimation for OFDM sys-

tems, in particular for resource allocation algorithms and section 1.4.5 show an example of

how incorrect channel estimations degrade the receiver performance. Section 1.3.1 discussed

that resource allocation is a complex task and in chapter 2 I proposed a low complexity

resource allocation scheme. Channel estimation too is a complex process as explained in

sections 1.4.2 and 1.4.6 and the estimation accuracy affects the system performance [29].

In this chapter, I introduce a steady-state Kalman filter, which has reduced complexity

compared to the conventional Kalman filter, and also gives better performance since the

proposed filter avoids the convergence period.

76
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Least Squares Estimation (LSE), Maximum Likelihood Estimation (MLE) and

Minimum Mean Squared Estimation (MMSE) are the main techniques employed in channel

estimation. Kalman filters can be categorized as an extension of the MMSE. Although

MMSE gives superior performance over others, it is calculationally complex due to the

matrix inversion in the calculation, as is the case with vector Kalman filters.

Kalman filters can be seen as a subset of MMSE filters. In fact, a Kalman filter

behaves as a sequential MMSE filter. However, Kalman filter has the important feature

of being able to handle non-stationary channels, in contrast to the conventional MMSE

filters [30]. Apart from the ability to handle non-stationary channels, which makes Kalman

filters very useful in mobile environments, it needs minimal channel statistics. This is an

obvious advantage in practical situations where the advanced channel statistics are not

easily available. Although Kalman filter is a better alternative to the MMSE, it still has a

considerable amount of calculation complexity involved in calculating the Kalman gain.

In [31], the author has used the conventional Kalman filtering with an initial LSE

to reduce estimator variance, and recursive calculations of noise variances are performed.

The complexity of the Kalman filtering is thus increased over the conventional method by

using recursive noise variance and Kalman gain calculations. In [32], the authors propose a

modified Kalman filter for channel estimation and tracking of OFDM systems. A simplified

estimation for driving noise covariance matrix is derived on the assumption that the channel

has equal power, and a recursive estimator for the auto-regressive model fading parameter

is obtained by partial differentiation that would minimize the MSE. The calculation still

requires the matrix inversion as in the conventional Kalman filter and the computational

complexity is further increased by the recursive calculations of parameters which need to

be determined in each sample. Although Kalman filters are researched in the context of

OFDM channel estimation, a steady-state Kalman filter approach could not be found in the
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literature to the best of our knowledge. By exploiting the pilot subcarrier characteristics

of OFDM, the calculation complexity of the conventional filtering approach can be greatly

reduced as we can transform the vector Kalman filtering to scalar domain without losing

general functionality. And this lets us easily derive the steady-state Kalman gain which

is quite difficult for the case of conventional Kalman filtering. Furthermore, even though

the channel statistic requirement is minimal in Kalman filters, it still needs the knowledge

of AWGN noise variance and the channel driving noise variance. I will further extend our

scheme to perform in the absence of knowledge of these two parameters by utilizing SNR,

which is a value measurable easily by most receivers.

3.2 Conventional Kalman Filtering and Problem Formula-

tion

I consider a OFDM system with N subcarriers and assume that all the subcarriers

are used for data transmission, excluding the DC, null or guard subcarriers. A bit stream

is serial-to-parallel multiplexed and modulated to Xn = [xn,0, xn,1, · · · , xn,N−1] complex

points. Subscripts xn,k denote the kth data point of the nth symbol. These N complex

modulation points are then input to a inverse discrete-Fourier-transform (IDFT) block.

The output of the IDFT block is then parallel-to-serial converted and the CP is added to

mitigate the effects of ISI. Then it is digital to analog converted before transmitting over the

channel. The time-domain signal received during the nth symbol period, after the removal

of guard interval, can be expressed as:

Yn(t) =
1√
N

N−1∑

k=0

xn,khn,ke
j2πnk

N + wn(t). (3.1)

Here 0 < t ≤ (N − 1) and hn,k denotes the Rayleigh fading complex channel gain of

subcarrier k during symbol period n and is considered constant during the symbol period.
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Figure 3.1: Time-frequency resource grid of a partial downlink frame

I assume a constant channel for the symbol period, and thus can disregard the Inter Carrier

Inference (ICI) appearing after the DFT operation. With a properly defined CP we can

assume the transmitted signal, after removal of the guard interval, is cyclically convoluted

and thus the received signal after the DFT for the symbol period n can be expressed in

matrix form as:

Ỹn = X̃nHn + w̃n. (3.2)

Here X̃n is a NxN diagonal matrix with Xn on its diagonal. w̃n is AWGN noise vector

with probability density function (PDF) wn ∼ N (0, Cn), where Cn is the covariance ma-

trix. Hn is the channel transfer function defined as, Hn = [hn,0, hn,1, · · · , hn,N−1]
T . T

denotes the matrix transpose. Kalman filtering is a non-blind estimation and thus the

filtering is performed on signals with known information. I assume a system with N sub-

carriers and of which P subcarriers are used as pilot subcarriers in the downlink. Inter-

polation/extrapolation can then be used to measure the channel at other subcarriers from
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the estimated pilot subcarriers. The set of pilot subcarriers which can be filtered with the

Kalman filter is graphically depicted in Fig. 3.1. It shows part of a downlink frame of

a typical OFDM system, where the colored circles show pilot subcarriers. Kalman filter-

ing in general needs to perform the filtering on pilot samples received at regular intervals.

Filtering is not straightforward when the received pilot positions are variable. Therefore,

to arrive at a steady-state filter, I assume that the Kalman filtering is performed on a

constant position pilot set of P subcarriers, thus enabling our scheme to be employed to

filter preambles or constant pilots in the full usage of subcarriers (FUSC) permutation in

the IEEE802.16e standard, since these pilots are sent at regular intervals. Furthermore,

the proposed steady-state filter can easily be used with the preambles, midambles or pilot

subcarriers of the IEEE802.16e standard which has fixed position pilots throughout the

downlink frame [17]. Now ( 3.2) will be modified as Ỹ P
n = X̃P

n HP
n + w̃P

n to distinguish

the received signals from the pilot subcarriers. Here X̃P
n =

[
xn,p0

, xn,p1
, · · · , xn,pP−1

]
which

denotes the complex data values of the pilot subcarriers at the corresponding positions and

HP
n =

[
hn,p0

, hn,p1
, · · · , hn,pP−1

]
is the corresponding channel transfer function of the pilot

subcarriers, with X̃P
n ⊆ X̃n and HP

n ⊆ H̃n . For example, if filtering on the preambles or

midambles X̃P
n = X̃n and HP

n = H̃n, otherwise X̃P
n and HP

n will contain entries correspond-

ing to a set of constant pilot subcarriers. The channel will be defined as a dynamic model

using an order-1 AR process.

HP
n = AHP

n−1 + dn. (3.3)

A is the P × P state-transition matrix which defines how the (n − 1)th channel state is

correlated with the nth state of the channel. dn is the Px1 driving noise vector with a

PDF dn ∼ N (0, Qn), where Qn is the corresponding covariance matrix [30]. For clarity I

will change ( 3.2) as Ỹ P
n = X̃P

n HP
n + w̃n to distinguish the received signals from the pilot
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Figure 3.2: Convergence rates of Kalman gain for different SNR values

subcarriers.

Kalman filtering has five steps associated with it as explained earlier in sec-

tion 1.4.3: 1) prediction, 2) minimum prediction MSE calculation, 3) Kalman gain cal-

culation, 4) correction and 5) minimum MSE calculation. In the conventional Kalman

filtering, these five steps must be performed for each data sample received, of which, three

steps are for the calculation of the Kalman gain. Vector Kalman filtering involves a matrix

inversion in the Kalman gain calculation as shown in ( 3.4) [30]:

Kn =
Mn|n−1X̃

P H

n

Cn + X̃P
n Mn|n−1X̃P H

n

. (3.4)

Here H denotes the Hermitian transpose. Kn is a P × P diagonal matrix with its

diagonal entries giving the Kalman gain of sample n and Mn|n−1 is the minimum prediction

MSE (i.e. minimum MSE at n given minimum MSE at (n−1) ). The calculation complexity
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of ( 3.4) grows with the increasing matrix dimension and the need to calculate this matrix

for each input data sample becomes a very high calculation burden, specifically with a

matrix inversion involved. However, for the case of a stationary channel, the Kalman gain

converges to a constant value, i.e. its steady − state value. Fig. 3.3 shows the convergence

rate of the Kalman gain for different SNR values. At this steady-state value Kalman filter

gives the optimal estimations. Therefore we see that the benefits of the steady-state filtering

are two-fold. First is the substantially reduced number of computations required, achieved

by eliminating number of steps required from Kalman filtering process mentioned earlier

in the section. Second advantage is that since the proposed steady-state filter is operating

in the converged state of the filter, it always operates at the optimum condition, while

the conventional filter needs to be operated through a convergence period to arrive at the

steady-state. This gives an additional performance margin when filtering directly at the

steady-state than that compared to the conventional Kalman filtering.

It can be seen that to achieve the convergence and to arrive at the steady-state,

the Kalman filter needs to be operated in a stationary channel and also the filter parameters

need to be constant for the duration of the filtering. When this requirement is not met such

as with the variable pilots whose time and frequency positions are varying, Kalman filtering

becomes complicated since it requires dynamic parameter variation from symbol-to-symbol

which is not easily realized in practical systems. In this scenario the state transition matrix

A and the driving noise covariance matrix Qn vary for each filtering step. Due to this

variation of filter parameters the Kalman filter will not enter a converged state even for

a stationary channel. This is true for sequential filters in general. Therefore, to obtain

a steady-state Kalman filter, we concentrate on filtering of pilots which are received at

constant positions and intervals as shown in the Fig. 3.1, i.e. steady-state filtering can

be performed on either of the preamble, midamble or constant pilot subcarrier sets. The
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scheme can also be easily utilized to filter all three sets of pilot patters by defining separate

steady-state Kalman gains for each pattern with the corresponding model parameters. I

show that finding the steady-state Kalman gain is a trivial task. This does not hamper the

complexity of symbol-by-symbol filtering because during each symbol, only one particular

type of pilot is filtered.

Observing ( 3.4), we can see that the variability of Kalman gain is dependent on

the variation of the minimum prediction MSE only, while other parameters remain constant

for a stationary channel. Thus by finding the steady-state minimum prediction MSE we

can get the steady-state Kalman gain by substitution. Minimum prediction MSE is in turn

a function of minimum MSE, which is a function of Kalman gain. To find the steady-

state value I substitute for minimum MSE and again substitute for Kalman gain. Then at

steady-state we have, Mn+1|n = Mn|n−1 = M̃ . This results in an expression for steady-state

minimum prediction MSE M̃ :

M̃ = AM̃AH − AM̃X̃P H

n

(

Cn + X̃P
n M̃X̃P H

n

)−1
X̃P

n M̃AH + Qn. (3.5)

Here ( 3.5) is in the form of a Riccati equation [33] and therefore solving for M̃ becomes

a problem of solving a Riccati equation. Solving Riccati equations is a complex process

and different techniques have been implemented. For example, in [34] the authors have

derived an eigenvector solution while the author of [35] has used a Schur vector approach

instead of eigenvectors. Other methods include solving scalar polynomials and calculation

by iterations [36]. Apart from the calculation complexity, these methods have the drawback

of not solving M̃ for an explicit expression. Thus if we use any of the aforementioned

methods to solve for M̃ we would have to stop our process at that because it is not possible

to manipulate the solution further, and hence we cannot extend the solution for performing

without the knowledge of the driving noise variance. Our objective in this paper is to find
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the steady-state Kalman gain which can greatly reduce the calculation burden in filtering.

In addition, operation without the driving noise variance knowledge makes the scheme very

efficient in practical situations. Therefore, we need to simplify the equation such that the

matrix inversion in ( 3.5) can be eliminated and we can obtain an explicit solution for

M̃ in terms of A, X̃P
n , Cn and Qn. In the next section I will consider the pilot subcarrier

characteristics of the OFDM system and how it effects the behavior of the Kalman filtering

process. Then I will show that the vector Kalman filtering can be reduced to a much simpler

version, which will help us solve for the steady-state Kalman gain easily.

3.3 Proposed Steady-State Kalman-Filter

Previous section discussed how the Kalman filter converges to a steady-state in

stationary channel conditions after an initial transient period. I showed how this Kalman

gain can be directly determined by solving the Riccati equation in ( 3.5) for the steady-state

minimum prediction MSE. Due to the computational complexities in solving ( 3.5), in this

section I propose how this complexity can be avoided in the case of OFDM transmission,

specifically to the IEEE802.16e standard by utilizing the characteristics of pilot subcarri-

ers used in OFDM. Then I explain transforming the Kalman filter from the conventional

vector domain to the scalar domain and still easily obtain the same functionality. In the

scalar domain we can easily derive a closed-form expression for the steady-state minimum

prediction MSE. Then obtaining the steady-state Kalman gain matrix becomes a trivial

task. I then proceed to derive the steady-state Kalman gain with SNR which will omit the

requirement of knowing the driving noise variance of the dynamic channel model. I will

show in section3.5 that accurate value of driving noise variance is very important for the

proper operation of the Kalman filter and that the proposed method can easily track the
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variance and change the parameter dynamically.

In most communication systems pilot subcarriers have the characteristic of having

a lower order modulation level. In this chapter I will focus on the IEEE802.16e standard.

This standard proposes the use of QPSK as the modulation level for the pilot subcarriers,

meaning having only (1 + j1), (1 − j1), (−1 + j1), (−1 − j1) in the modulation alphabet for

the pilot subcarriers. Consider the following facts:

• 1.The channel model is an AR-1. Then the state-transition matrix becomes a diag-

onal matrix, because current state of the channel is only dependent on the previous

state of the channel. The state-transition value characterizes the rate of change from

the previous symbol to the current symbol. Therefore, this value can be seen as the

time-correlation of the subcarrier and thus depends on the Doppler frequency. Since

all the subcarriers undergo the same Doppler frequency, the time-correlation of all

the subcarriers are the same. For this reason, the state-transition value is the same

constant for all the subcarriers.Thus, the state-transition matrix A will be a diagonal

matrix, giving A = αI, where α is a scalar value depicting the transition value and I

is the identity matrix.

• The AWGN noise and the driving noise of the channel model are independent Gaus-

sian noises, uncorrelated with each subcarrier. Also these noises are the same for all

the subcarriers. Therefore, the covariance matrices of the AWGN noise and the driv-

ing noise are diagonal matrices with each matrix having the same noise value, which

lets us write the covariance matrices Qn and Cn as Qn = σ2
uI and Cn = σ2

nI. σ2
u and

σ2
n are driving noise and AWGN noise variances, respectively.
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• Therefore, we have A, X̃P
n , Qn and Cn all as diagonal matrices, then from Kalman

filter definition for the minimum prediction MSE matrix Mn|n−1, becomes a diagonal

matrix. The diagonal entries of Mn|n−1 will correspond to the different pilot subcarrier

modulation alphabet. Later I will see that for QPSK modulation, all the diagonal

entries will have the same value at the steady-state condition.

Therefore, the state-transition matrix and the noise covariance matrices will be of

the form:













a 0 · · · 0

0 a · · · 0

...
...

. . .
...

0 0 · · · a














(3.6)

and













σ2 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σ2














(3.7)

When these three (state-transition, AWGN noise and driving noise) matrices are

diagonal, the resulting Kalman gain matrix is diagonal too. And we see that each entry in

the Kalman gain matrix diagonal is a function of the state-transition constant, AWGN noise

variance, driving noise variance and pilot symbol. Since the state-transition value, AWGN

and driving noise variances are same for all the subcarriers as discussed earlier; each value

of the Kalman gain differs by the pilot symbol value. Therefore, we are able to simplify the

conventional problem of finding the Kalman gain matrix by finding the individual Kalman

gains for each subcarrier, which only depends on the data (pilot) symbol. Thus the original
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vector problem is solved as a scalar problem. With the above facts we can deduce that

the Kalman gain is a diagonal matrix with diagonal entries corresponding to the particular

modulation alphabet, which for the case of QPSK is only four distinct values. Therefore, we

can easily construct the Kalman gain matrix since the receiver has the complete knowledge of

the pilot data sequence. Hence can greatly reduce the complexity of Kalman gain calculation

by finding the entries in the matrix separately since we only need to determine few values

(depending on the pilot subcarrier modulation format), regardless of the number of pilot

subcarriers in the system.

AR-1 channel model and the state-transition value

A brief explanation about the AR-1 channel model and its’ corresponding Kalman

filter state-transition value is given here. All the constants of the state-transition matrix is

taken as the same constant a as shown in eq. 3.6. This is due to the following reasoning:

The conventional Kalman filter is built on the assumption that the transition model of the

signal being measured is a Gauss-Markov model. Based on this model, the channel, i.e. the

subcarrier in the proposed OFDM case, takes the form [30]

hn = −
p

∑

k=1

αkhn−k + un (3.8)

where subscript n denotes the current time instant and u is the driving noise. Driving

noise is a zero-mean Gaussian variable which models the random error of the system. This

model is a pth-order Auto-Regressive (AR-p) model. In the proposed method, I assumed

the channel to be an order-1 AR model. Therefore, the channel model becomes,

hn = αhn−1 + un (3.9)

The purpose of the state-transition constant a is to define how much the current value

will be similar to the previous value. In essence, this is the time-correlation between the
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samples. Therefore, for example, in the case of a subcarrier, if the transmitter-receiver link

is stationary, the time-correlation between the current and previous samples will be unity.

On the other hand, if the transmitter and/or the receiver is moving, the subcarrier value

will change from sample to sample. Then, this rate of change will be proportional to the

magnitude of mobility. If it is fast, then there will be less correlation between samples and

vice versa.

For a wide-sense stationary uncorrelated scattering (WSSUS) channel, this time-

correlation between Rayleigh faded samples is given by the zeroth-order Bessel function of

the first-kind [9],

E [h(t)h(t − τ)] = J0 (2πfdτ) (3.10)

Therefore, the correlation coefficient, or the state-transition constant, is a function of the

product fdτ , the Doppler frequency and the delay between samples, respectively. For the

case of OFDM, if we are estimating the channel each symbol, the correlation becomes

E [hnhn−1] = J0 (2πfdTs) (3.11)

where Ts is the symbol duration. Considering the time of an OFDM symbol and maximum

practical Doppler frequencies, it can be seen that correlation coefficient is a value greater

than zero. Therefore, the value of the state-transition constant is a function of the Doppler

frequency and the symbol duration, thus, is same for all the subcarriers.

In a multipath channel, the frequency-response is frequency-selective for an OFDM

system due to the narrow bandwidth subcarriers. And for a mobile scenario, the channel

frequency response, or the subcarrier gains, changes with time; from symbol to symbol.

This change of values is what the Kalman filter is trying to track, or estimate. In this case,

some subcarriers values will increase in the next symbol, while other subcarriers decrease.

This increase and decrease is of course not independent from subcarrier to subcarrier as
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Figure 3.3: Effect of state-transition value on Kalman filtering

there is frequency-correlation between them. For the context of our study I do not consider

any frequency-time correlation between subcarriers.

The state-transition constant, as discussed earlier, measures the correlation be-

tween samples, and does not indicate a positive or negative transition between samples.

Tracking of this positive or negative transition is performed by the Kalman filter. Kalman

filter, as most estimation filters such as least-mean squares (LMS) or recursive-least-squares

(RLS), tracks the signal by a learning process, aided by the pilot data. Of the five steps

involved with the Kalman filter, the first step is the prediction. Kalman filter uses the

state-transition value to predict the current value. Then in the fourth step, which is the

correction step, Kalman filter utilizes the Kalman gain and pilot data to correct the pre-

diction. Figure below depicts tracking of a subcarrier using a Kalman filter. The blue line

shows the true channel and the red dashed line depicts the Kalman filter estimation.

The property to note is the higher fluctuations at the turning points and lesser
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fluctuations in the straight regions. When the subcarrier is either increasing or decreasing

steadily, the filter is able to track it better, because the value follows the prediction closely.

Therefore we see better estimations of the subcarrier. At turning points, there are higher

fluctuations, i.e. the estimations are not correct. The pattern followed by the subcarrier

(increasing or decreasing) is changed and the previous symbol value does not provide a

correct prediction of the current value. Hence the estimations are erroneous and we see

relatively large fluctuations. During this period the Kalman filter tries to learn and adjust.

Then again when the channel settles to a linear period, the estimations are again accurate

and fluctuations are minimal. Therefore, the state-transition constant serves as a prediction

parameter for the current value from the previous value. From the prediction the Kalman

filter refines its estimation by using the pilot data and the actual received value. Thus, the

state-transition value is a constant for all the subcarriers in the OFDM system, and the

increasing or decreasing nature of the channel is tracked and estimated by the Kalman filter

using received signal and known information such as the pilot data and the noise variances.

3.3.1 Simplification to the scalar form

As I explained in the previous section, we can easily construct the Kalman gain

matrix by finding the individual values of its diagonal. This lets us transform our Kalman

filter problem from matrix domain to scalar domain and process the filtering considering

a single subcarrier case. The scalar domain equations will be defined next which can be

derived from transforming the vector Kalman equations. Subcarrier index is redundant and

will be dropped from hereon, and filtering of a pilot subcarrier is implied.

Dynamic channel model

hn = αhn−1 + un. (3.12)
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Received signal

yn = βhn + qn. (3.13)

Prediction

ĥn|n−1 = αĥn−1|n−1. (3.14)

Minimum prediction MSE

mn|n−1 = α2mn−1|n−1 + σ2
u. (3.15)

Kalman gain

kn =
β∗mn|n−1

σ2
n + |β|2mn|n−1

. (3.16)

Correction

ĥn|n = ĥn|n−1 + kn

(

yn − βĥn|n−1

)

. (3.17)

Minimum MSE

mn|n = mn|n−1 (1 − βkn) . (3.18)

Here h̃n|n−1 depicts the estimated value of h at time n given estimation at time (n − 1).

un is the driving noise and AWGN noise of the channel is given by qn, both of which

are independent variables to hn. β is the complex pilot subcarrier symbol corresponding

to either of the set {(1 + j1), (1 − j1), (−1 + j1), (−1 − j1)} for QPSK and ∗ depicts the

complex conjugate. Rest of the notations are the scalar form of the previously defined

parameters. Then we can derive the scalar form of ( 3.5) to find the steady-state minimum

prediction MSE as:

m̃ =
α2σ2

nm̃

σ2
n + |β|2m̃ + σ2

u. (3.19)
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Then Eq.( 3.12) can be re-arranged to the following quadratic equation:

|β|2m̃2 +
(
σ2

n

(
1 − α2

)
− |β|2σ2

u

)
m̃ − σ2

nσ2
u = 0. (3.20)

Solving for the roots:

m̃ =
−

(
σ2

n

(
1 − α2

)
− |β|2σ2

u

)

2|β|2 ±
√

(σ2
n (1 − α2) − |β|2σ2

u) + 4|β|2σ2
nσ2

u

2|β|2 . (3.21)

Here we have the steady-state minimum prediction MSE for a particular pilot

subcarrier symbol of β. Inspecting the above equation further reveals that for the case of

QPSK modulated symbols, steady-state minimum prediction MSE, m̃, is a constant for all

the β. ( 3.21) gives two roots hence we need to find the one corresponding to the steady-

state minimum prediction MSE. Although we perform complex channel filtering, examining

the coefficients of the equation shows that the discriminant evaluates to a positive value,

resulting in real roots. If we write ( 3.20) as a′m̃2+b′m̃+c′ = 0, and assume the solutions of

( 3.21) are m̃1 and m̃2, they can be written as: m̃1 =
(

c′

a′

)
1

m̃2
. Examining the coefficients

of ( 3.20) we see that the ratio
(

c′

a′

)

= −σ2
nσ2

u

|β|2 always takes a negative value and hence the

roots m̃1 and m̃2 will always be of opposite signs. Considering MSE is a positive value,

the desired solution from ( 3.21) is the one corresponding to the positive sign. Finally, the

steady-state Kalman gain can be obtained by substituting m̃ in to mn|n−1 of ( 3.16). The

steady-state Kalman gain found will be equal to the Kalman gain of that of the conventional

Kalman filter in the converged state.

3.3.2 Steady-State Kalman Filtering in the Absence of Noise Variance

Statistics

Inspecting ( 3.21) we see that to solve for the steady-state minimum prediction

MSE we need the knowledge of driving noise variance σ2
u and AWGN noise variance σ2

n.

Accurately determining the driving noise variance is difficult in a practical situation. In this
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section I will implement calculating ( 3.21) without the explicit knowledge of σ2
u by showing

that the channel driving noise variance can be realized from system parameters such as

noise power and SNR. I assume the knowledge of σ2
n. According to the IEEE802.16e stan-

dard, the receiver must have the capability to measure received-signal-strength-indicator

(RSSI) and carrier-to-interference-noise-ratio (CINR). When requested by the base station,

it is mandatory for the subscriber station to measure RSSI/CINR and report them via

RES-RSP messages [37]. Also, CINR conveys more information than the RSSI, including

interference and noise levels and the receiver can measure the noise figure from the downlink

preamble [38]. Therefore, I can safely assume that the receiver has the ability to accurately

measure σ2
n and received SNR and with this assumption we will proceed to calculate σ2

u.

Determination of Steady-State Minimum Prediction MSE with σ2
n and SNR

To find an expression for the driving noise variance, I first determine the variance

of the channel in the dynamic channel model given in ( 3.12):

E [hnh∗
n] = E

[
α2hn−1h

∗
n−1 + unu∗

n

]
. (3.22)

Since channel gain and driving noise are independent variables and channel can

be modeled as zero-mean Gaussian, we can obtain the following expression for the channel

variance:

σ2
h =

σ2
u

1 − α2
. (3.23)

Similarly, calculating the variance of ( 3.13) we can get the expression:

E
[
|y|2

]
= |β|2σ2

h + σ2
n. (3.24)

Since the received signal can be modeled as a stationary stochastic process, the power of

the signal can be defined as the autocorrelation at the origin, Ryy(0). Thus, we can take

the power of the received signal as, Py = Ryy(0) = E
[
|y|2

]
.
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Therefore, the received SNR can be defined as

SNR =
σ2

y

σ2
n

, (3.25)

where σ2
y is the received signal variance. Substituting Eqs.( 3.23) and ( 3.25) to ( 3.24) we

can obtain the following expression for the driving noise variance:

σ2
u =

σ2
n

(
1 − α2

)
(SNR − 1)

|β|2 . (3.26)

Therefore, given accurate values of AWGN noise variance and received SNR, driv-

ing noise variance can be estimated from ( 3.26). It can be seen that σ2
u depends on SNR,

and thus changes frequently with variables such as Doppler shift. Therefore, for optimal

performance, Kalman filter needs to dynamically track the change of σ2
u for the estimator to

perform optimally. Finally, substituting ( 3.26) in to ( 3.21) gives the steady-state minimum

prediction MSE as follows:

m̃steady = σ2
n

[(
α2 − 1

)
(2 − SNR)

2|β|2 +

√

[(1 − α2) (2 − SNR)]2 + 4 (1 − α2) (SNR − 1)

2|β|2



 .

(3.27)

Substituting m̃steady found above to Kalman gain calculation in ( 3.16) gives the steady-

state Kalman gain. Hence, use of ( 3.27) gives the increased filter performance by operating

in the steady-state and provides an efficient mechanism for dynamically tracking the driving

noise variance changes. Finally, substituting for β in ( 3.16) we can find the corresponding

Kalman gains individually and then easily construct the Kalman gain matrix, as will be

further discussed in the following section.

3.4 Usage and Advantages of Steady-State Kalman gain

Kalman gain can be calculated offline, i.e. no need to observe data samples.

Therefore, we can calculate the steady-state Kalman gain as discussed in the proposed
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scheme once and use this value throughout the filtering process as long as the channel is

stationary. A change in channel or SNR will only cause ( 3.27) to be re-calculated. In

the case of QPSK modulated pilot subcarriers as in IEEE802.16e, constructing the steady-

state Kalman gain matrix Kn can be easily done by calculating four scalar Kalman gains

individually. Since the receiver has the complete knowledge of the pilot data sequence,

constructing the Kalman matrix is a trivial task of placing the corresponding Kalman gain

in the appropriate diagonal position of the matrix diagonal. This greatly reduces the calcu-

lation complexity of the channel estimator because the Kalman filtering steps of minimum

prediction MSE calculation and minimum MSE calculation can be avoided altogether. And

more importantly this method does not need to perform any matrix inversions, which can

get very computationally demanding for large matrix dimensions.

Kalman filters give optimal performance in stationary channels under the steady-

state condition. Therefore, our proposed method has the advantage of operating with better

performance, given accurate values of σ2
n and SNR without having a convergence period.

As ( 3.26) shows, the optimal value of σ2
u depends on parameters such as Doppler frequency

and channel conditions. Thus, for proper operation of the filter, the value of σ2
u needs

to be dynamically changed with changing parameters. Use of ( 3.27) presents an efficient

method to track these changes easily with SNR and σ2
n and operates the filter at the desired

condition. In the following section we will see how filter performance can be substantially

degraded if we do not operate the filter at the proper value. A particular steady-state

Kalman gain applies to a certain channel condition and when the existing channel condition

changes, steady-state Kalman gain needs to be changed too. In the conventional Kalman

filter, when the channel condition changes, i.e. when the channel is non-stationary, the

filter needs to go through the transient period to converge to the steady-state Kalman

gain corresponding to the new channel conditions. However, with the proposed steady-
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state scheme, the scheme can directly calculate the steady-state Kalman gain without the

need to go through the transient period to converge. Therefore, in non-stationary channel

conditions, the proposed scheme has the added advantage of being able to filter with the

optimal Kalman gain.

Finally, in the conventional vector Kalman filtering, Kalman gain at each data

sample is calculated from the Kalman gain of the previous sample. In each of the mul-

tiplication/division operations, there is a degree of round-off error involved. When this

continues for each sample, the errors produce a certain margin of error in the filter perfor-

mance. This is eliminated in the proposed method by only calculating the Kalman gain

once (for the duration of the stationarity).

3.5 Numerical Results and Discussion

This section discusses the simulation results. Simulation parameters are as shown

in Table. 3.1. I simulate three schemes; conventional Kalman filter, the proposed scheme

with steady-state Kalman filtering calculated from ( 3.21) (proposed-1) and proposed scheme

with steady-state Kalman gain calculated from ( 3.27) (proposed-2) using the SNR to eval-

uate σ2
u for the filtering. In the figures proposed schemes are depicted with filled markers,

while the markers corresponding to the conventional scheme are non-filled. Furthermore, in

Fig. 3.5 10Hz Doppler is depicted with solid lines and dashed lines are used for the 100Hz

Doppler. Results are obtained through Monte Carlo simulations and in each iteration of

the simulation, I estimate channel for a duration of 500 symbols. A multipath channel is

considered. The channel delay is kept constant while the number of multipaths and power

delay profile were changed in each realization of the channel. Each subcarrier was modu-

lated with a random QPSK data symbol and tracked independently as the scalar nature of
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the simplified model can determine each Kalman gain individually. Each subcarrier is then

estimated in the time-domain to calculate the average filter performance.

Performance of each method is calculated according to the following criteria:

∆(dB) = 10log10

[∑P−1
i=0 |ĥi − hi|2
∑P−1

i=0 |hi|2

]

. (3.28)

Table 3.1: Simulation parameters

Parameter Value

Initial parameters: ĥ1|−1, m1|−1 0

Symbol time 100µs
Doppler frequencies 10Hz, 100Hz
Propagation model ITU-A Vehicular
Number of symbols per filtering 500

Here ĥi denotes the estimated channel value while hi is the corresponding true

value. Fig. 3.4 shows the performance of conventional Kalman filter and the proposed-1

scheme for a range of σ2
u (by simulations I verify that 0.0001 ∼ 0.05 range for σ2

u includes

the maximum performance point for our simulation parameters). We simulate at a SNR

of 5dB and Doppler shifts of 10Hz and 100Hz. A pattern can be observed as to the filter

performance with the varying values of σ2
u. On the average I can see that the performance of

the proposed-1 scheme is better than the conventional scheme for complete range of σ2
u values

simulated. An important observation is that the point of maximum performance (minimum

value) changes with the Doppler frequency. For the conventional scheme, the maximum

performance is observed at σ2
u=0.0095 for the 10Hz Doppler frequency and σ2

u=0.0255 for the

100Hz case. As is evident from Fig. 3.4, filter performance is highly dependent on the value

of σ2
u, especially when the value is lower than the optimal point of operation, the performance

degrades rapidly. In the proposed-1 scheme, the filter gives maximum performance at

σ2
u=0.0070 for the 10Hz Doppler case, while σ2

u=0.0230 gives the maximum performance

for the 100Hz situation. However, if the filtering for the 100Hz Doppler frequency signal is
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performed at the σ2
u value corresponding to the 10Hz Doppler case for example, the filter

performance degrades by 5.72dB from the maximum performance.Therefore it is necessary

for the filter to dynamically track the signal and operate at the correct driving noise variance

since a small offset can degrade the performance substantially. Fig. 3.4 further shows

that the rate of performance degradation is different when the driving noise variance is

decreased or increased from the optimal point. Numerical calculations show that the rate

of degradation lies in close proximity for both the conventional and proposed schemes when

the variance is either increased or decreased. It is clear from the figure that this rate

of degradation is higher when σ2
u is reduced from the optimal point than it is increased.

The channel is modeled as an AR-1 model ( 3.3) and the driving noise value represents

the random noise-like behavior present in the time-varying channel that is inherent in a

Rayleigh fading channel. When σ2
u approaches zero, it translates to predicting the minimum

MSE( 3.15) based only on the state transition value α and the random behavior is assumed

to be non-existent. Thus the performance degrades rapidly when driving noise variance

approach zero. Although the performance degrades when σ2
u is increased from the optimal

point, the degradation is not rapid because the variance term present in the model helps

account for the independent fluctuation present in the channel. Furthermore, we see that

at very low values of σ2
u both the conventional and proposed schemes perform similarly.

Fig: 3.5 shows the performance of all three schemes against different received

SNR’s. For the conventional scheme and the proposed-1 scheme, the performances depicted

in the graph are those of the best case, i.e. in the simulations I exhaustively searched for

the maximum performance point for the range of σ2
u values. As depicted, both the pro-

posed schemes give better filter performance than the conventional filter. For the 10Hz

Doppler frequency there is an average performance margin of 2.30dB between the conven-

tional scheme and the proposed-1 scheme, while for the 100Hz Doppler shift, the average
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Figure 3.4: Filter performance for varying driving noise variances simulated at 10dB received
SNR.

performance margin narrows to 0.98dB, for the SNR range of 2dB to 20dB. Proposed-1

and proposed-2 schemes give similar performance with the former giving slightly better

results at higher received SNR’s. Since the performance of proposed-1 scheme is obtained

through exhaustive search, it can be taken as the optimal filter performance for the sim-

ulation parameters I used. Therefore, by observing that the proposed-2 scheme is giving

very similar results to that of the proposed-1 scheme, we can deduce that the steady-state

minimum prediction MSE found from ( 3.27) does indeed provide an accurate estimation.

On average there is a performance gap of 0.11dB and 0.30dB for 10Hz and 100Hz Doppler

frequencies, respectively. The likely reason for this slight reduction in performance is the

usage of Eqs.( 3.25) and( 3.26). Although by definition I have assumed the channel and the

received signal to be zero-mean variables but in the simulations, I determine received SNR

by calculating the variance of the noise added signal as defined in ( 3.25) and filtering is

performed on 500 symbol-time blocks of data in each iteration.The variance is calculated
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Figure 3.5: Filter performances for varying received SNRs.

as unbiased sample variance, which can have an offset from the true variance for a finite

data block. Therefore, in simulation there is a certain degree of discrepancy present from

the theoretical optimal value of σ2
u defined in ( 3.26). And as we saw in Fig. 3.4, a small

deviation of σ2
u from the optimal operating point can degrade the performance. Although

proposed-2 scheme performs slightly lower than proposed-1 scheme, it must be noted that

the performances of the proposed-1 scheme (and conventional scheme) depicted in Fig: 3.5 is

that of the best case as discussed above, which is obtained through simulating the schemes

for σ2
u increments as small as 0.0005. Therefore, from a computational and performance

point of view, proposed-2 scheme gives the best performance. The simulation results of

Fig. 3.5 above are when the values of average received SNR and noise variance are known

accurately at the receiver to calculate the driving noise variance. Although this method

provides the accurate value of the driving noise variance, number of parameters such as

average received SNR and noise variance σ2
n must be evaluated accurately. If the receiver is
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unable to accurately determine these values, the optimal driving noise variance cannot be

calculated and the filter will not be operating at the best operating state. Furthermore, in

simulations I calculated the received SNR beforehand and used this value for the filtering.

In practice the filtering needs to be performed in real-time. In such a case, if the previously

measured average SNR is different from the signal samples currently receiving, there might

be a performance degradation since the value of σ2
u is different from the current optimal

value. However, it is possible to minimize this degradation by properly increasing the rate

of average SNR calculation or operating with a margin on the value of driving noise vari-

ance to ensure that it will be greater than the optimal value, since a value less than the

optimal value will degrade the performance considerably compared to a value greater than

the optimal value as we saw in Fig. 3.4.

Finally, calculation complexity of the schemes is presented here since reducing the

complexity is the major objective of the proposed schemes. For better understanding of the

calculations involved in the conventional and proposed schemes, I determine the complexity

in terms of the number of multiplications(divisions) and additions(subtractions). For the

calculation of the square-root in Eqs.( 3.21) and ( 3.27), Newton’s method is used since it

would allow us to explicitly determine the number of multiplications and additions required

for the calculation. Also I consider 10 iterations for the Newton’s method for the square-

root calculation which would provide a good estimation. Furthermore, complex calculations

are considered when determining the number of calculations. Table. 3.2 shows the number

of multiplications and additions involved for each simulated method.

We see from the table that the matrix inversions, which requires a power of 3 term,

dominates the computational complexity. Fig. 3.6 depicts the number of multiplications

needed for the conventional scheme for varying FFT sizes of the IEEE802.16e standard.

Values within the parentheses show the number of pilot subcarriers for each FFT size.
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Figure 3.6: Number of multiplications for the conventional scheme for different number of
pilot subcarriers.

Table 3.2: Calculation complexity of the conventional and proposed schemes

Scheme Number of × Number of + Calculation freq.

Conventional 4P 3 + 24P 4P 3 + 19P Each data sample

Proposed-1 63 28 Once for the duration
of the channel
stationarityProposed-2 70 33

It is clear from the Fig. 3.6 that conventional Kalman filtering needs a large amount of

calculations to be performed during each filtering step. Thus, the proposed method provides

better performance while requiring only a fraction of the calculations compared to the

conventional Kalman filter.
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3.6 Conclusion

Kalman filters give their optimum performance at the steady-state condition and

lot of computational complexity can be eliminated by determining this steady-state Kalman

gain. However, in the conventional vector Kalman filtering it involves solving a Riccati

equation to be solved to obtain the steady-state Kalman gain, which is computationally

complex. In this chapter, I have derived a steady-state Kalman filter for the OFDM sys-

tems by transforming the vector Kalman filtering into the scalar form. This is possible by

realizing properties of the OFDM system, specifically for the IEEE802.16e standard. In

this case steady-state Kalman gain can be easily determined. The calculation complexity is

greatly reduced by calculating the Kalman gain only once in each period of the stationary

channel, as opposed to in each data sample in the conventional filter. Furthermore, the value

of channel driving noise variance σ2
u is also determined as a function of SNR which needs

to be dynamically changed with the signal condition for the optimum filter performance.

The proposed scheme operates with significantly less computation complexity and the sim-

ulations results show that it achieves a substantial performance gain over the conventional

scheme.



Chapter 4

Analysis of Quantization Noise in

an End-to-End OFDM Link

In sec. 1.4 channel estimation for OFDM is discussed, which indicated how the

errors in channel estimations can effect the resource allocation process. In chapter 3 it is

shown that the AWGN noise and the driving noise affects the channel estimation process.

And all these noises affect the performance of the system. In this chapter I analyze another

form of noise that is inherently present in any communication system: quantization noise.

Quantization noise arises due to quantization of the signal, which occurs mainly in

the Analog to Digital Converter (ADC) and Digital to Analog Converters (DAC). Quanti-

zation noise can also occur in other components of the transceiver, including low-pass-filter

[39] and the FFT module [40], but in this chapter I am considering the quantization noise

arising from the DAC of the transmitter and the ADC of the receiver, since other quanti-

zation noises are not controllable to the designer. The objective of this study is to analyze

how different components in an OFDM link affects the signal and their dependence on the

resulting quantization noise. Quantization noise is often not regarded in the noise budget,

104
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but if the resolution of the quantizer is not high enough, it can be shown that the quantiza-

tion noise is a function not only of the quantizer resolution, but also of the channel. Since

wireless transceivers are required to operate in different channel conditions, this study pro-

vides an analytical mean to determine the quantization noise depending on the operating

system. Noise present at the receiver

Quantization noise is generally considered as an independent additive noise with

an uniform distribution between [− q
2 , q

2 ], where q is the quantization step size. This is

called the pseudo quantization noise (PQN) model. Although this model can be used to

model the noise characteristics in certain situations it has a distinct difference in the output

signal PDF. It has been shown in [41] that the PQN model is applicable only when the

input signal Characteristic Function (CF) has a certain property, namely it has to satisfy

the Quantization Theorem III (QT-III). When the input signal CF does not satisfy QT-III,

the quantization noise is no longer uniformly distributed and differs from the PQN model.

Furthermore, overflow conditions introduce clipping noise which is no longer restricted to

the quantization step size.

Therefore, quantization noise has a strong dependence on the quantizing signal

PDF. To properly determine and control the magnitude of the quantization noise, it is

important to determine the statistics of the quantizing signal. Having knowledge of the

quantizing signal statistics at the receiver provides with the ability to design a quantizer

with required dynamic range and quantization step size, for a given performance metric. The

quantizer is an integral part of the system and if the dynamic range and the quantization step

size, which define the resolution or the number of bits of the quantizer, is not determined

properly, the quantizer can have a profound affect on the system performance. In this

chapter I analyze the signal flow from the transmitter to the receiver and determine its

statistical properties and their dependence on the quantization noise. The results give an
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analytical means to determine an optimal quantizer resolution.

In [42], Dardari analyzed the the joint effects of clipping and quantization for an

OFDM receiver. Only ADC has been considered and the effects are characterized in the

spectral domain. Similarly, [43] also performed a quantization noise analysis for only the

ADC component. Here the clipping plus granular noise is evaluated for the receiver ADC

for an arbitrary dynamic range and a quantization step size. Statistical properties are not

derived in these studies. Analysis in [44] also calculates the required ADC resolution for a

Discrete Multitone (DMT) system, again considering only the receiver end of the link.

Quantizer performance is measured by its resolution, which is the number of bits,

and the sampling rate. The amount power consumed is proportional to both the resolution

and sampling rate [45]. For example, in [46] it is shown that a IEEE802.11a transceiver

operating at 54Mbps uses about 21% of the power on the digital-to-analog (DAC) circuitry,

while the ADC consumes up to 47% of the power. Generally, a ADC used in such receivers

consume power in the order of 1-3.7mW/MHz [47]. It is apparent, thus, the quantizer

drains a significant portion of the device power. Furthermore, the effective resolution of

the quantizer is less than the stated resolution. This is because other noise sources such

as circuit noise, aperture noise and comparator ambiguity are present in addition to the

quantization noise [48], which further increases the required resolution of the quantizer.

Therefore, from a power consumption point of view it is important to carefully choose the

quantizer resolution which will give an optimal trade-off between performance and power

consumption.
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Figure 4.1: End-to-end signal flow of a typical OFDM system

4.1 Signal Statistics Analysis

The signal reaching the receiver goes through a number of operations and trans-

formations, and finally through a multipath fading channel, before arriving at the receiver.

The signal is transformed and it’s statistical properties are changed during this process

and noises are added to the signal which degrade the SNR. Quantization noise contributes

to the noise present in a received signal and it is our objective to theoretically obtain the

quantization noise power present at the receiver.

Fig. 4.1 shows a schematic of the signal flow from the IFFT module at the trans-

mitter to the FFT module at the receiver. In order to determine the quantization noise,

I analyze the statistics of the signal at point A through point D shown in the figure. It

should be noted that the analysis is performed on the baseband signal. At points A and

E there are quantization noise components arising from the FFT modules [40], but they

are not considered in this analysis. It is also important to note that the signal at consid-

eration is complex-valued, but quantization needs to be performed separately for the real

and imaginary parts of this signal. Hence, the throughput analysis will consider only one

stream of the signal (real or imaginary). The statistics are the same for both.

The IFFT output signal is fed to a DAC to be transmitted through the channel.
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The DAC is modeled as a cascade of a quantizer and a low-pass filter (LPF) [41]. The LPF

produces a smooth signal to be transmitted. The quantization noise at B arises from the

quantizer Q1. Filter coefficient quantization is present at the LPF but I will not consider it

here since it manifests itself as changes to the filter response such as passband ripples and

stopband attenuations, rather than a source of additive noise [39].

At this point it is required to determine the statistics of the quantized output signal

from the DAC. From a mathematical point of view, the order of the cascade of the quantizer

and the LPF can be interchanged without changing the statistical properties of the resulting

DAC signal. A LPF followed by a quantizer arrangement simplifies the derivation of output

signal statistics. Thus, for analytical purpose I assume that in the DAC, the signal first

passes through the LPF and then quantized.

Input to DAC is the IFFT output, which is a set of N random (complex) num-

bers to be transmitted at sampling intervals of Ts seconds. IFFT input is a zero-mean

(non-Gaussian) signal and from Central Limit theorem (CLT) that the output is a zero-

mean Gaussian vector XIFFT = [X0, X1, . . . , XN−1]. LPF is a linear transformation of the

input signal and therefore, the output signal will be Gaussian. I need to determine the

transformation of the signal mean and the covariance, which can be derived from [49]:

E {Y (t)} = mX

∫

h (τ) dτ = mXH (0)

E {Y (t) Y (t + τ)}

=

∫ ∫

h (s) h (r)RX (τ + s − r) dsdr,

(4.1)

where Y (t) is the output signal, h(t) is the time-domain filter response with it’s frequency

transfer function H(f) and RX(τ) is the autocorrelation function of the input signal. It is

clear from ( 4.1) that low-pass filtered signal will have zero mean but the autocorrelation

is not directly determined. Since the signal is manipulated in its discrete form at sampling
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instants, it is easier to determine the statistical properties of the signal autocorrelation when

transformations are represented in the discrete form. I define the discretization parameter

η = Ts

∆ with ∆ → ∞ corresponding to the continuous case. Let IFFT output be arranged

as X = [X0,X1, . . . ,XN−1]
T , then the LPF transformation can be written,

YLPF = HX, (4.2)

where H is the M ×N∆ convolution matrix of the LPF and YLPF is the M element output

vector. Assuming the filter spans [−PTs, PTs] in duration for a positive integer P , we have

M = (2P∆ + N). Transformation matrix H can be defined by a Toeplitz structure as

follows:

H =










00 01 · · · 0k · · · 0N−1

h h · · · h · · · h

0N−1 0N−2 · · · 0N−(k+1) · · · 00










(4.3)

where 0k is a k × 1 vector of zeros and

h = [h(−P∆η), · · · , h((P∆ − 1)η), h(P∆η)]T , (4.4)

is the (2P∆+1) element vector of the filter response where h(·) is the filter impulse response

defined in ( 4.1). The IFFT output can be interleaved by sampling times by defining

Xk = [Xk 0T
∆−1], where Xk is the k-th IFFT output.

Defining the LPF transformation as above, I am able to determine the PDF of

YLPF as [50],

fYLPF
(y) = fX(H−1y). (4.5)

Since X is a zero-mean random vector,

fYLPF
(y) =

1

(2π)
M
2 |CX| 12

exp

[

−1

2
yT (HCXHT )−1y

]

(4.6)
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Therefore, the LPF output is a zero-mean Gaussian random vector with covariance CYLPF
=

(HCXHT ), where CX is the N∆×N∆ covariance matrix of X. If required H can be made

square by appending zero row vectors. Since X is a zero-interleaved vector of zero-mean

independent Gaussian random variables XIFFT, CX is a diagonal matrix with its entries

given by,

diag(CX) = [σ2
X0

0∆−1 σ2
X1

0∆−1 · · ·σ2
XN−1

0∆−1], (4.7)

with σ2
Xk

the variance of Xk and I assume σ2
X0

= σ2
X1

= · · · = σ2
XN−1

= σ2
X

.

Next step is the quantization. As was shown earlier, the quantized signal PDF of

a Gaussian input is not Gaussian, rather a Gaussian-shaped impulsive PDF given by [41],

fYQ1
(y) =

∞∑

m=−∞
δ(y − mq1)

∫ mq1+
q1
2

mq1− q1
2

fYLPF
(y)dy, (4.8)

where fYLPF
(y) is the Gaussian input PDF and q1 is the quantization step size of Q1. The

Q1 output is clearly not Gaussian distributed. Top of Fig. 4.2 shows the histogram of a

single realization of a 1024-point IFFT output corresponding to a 64-QAM input data.

The figure below shows the histogram of the corresponding quantized IFFT output with a

quantization step size of q1 = 0.1σX. It is evident that the histogram is not continuous in

its range because of the quantizing intervals. Furthermore, the frequencies of the histogram

of the quantized data are increased due to a range of values stacking up in to a single bin.

Although the distribution of the quantized data is not Gaussian, we see later that only the

knowledge of the mean and the variance of this distribution is adequate for the analysis. To

find these quantities characteristic functions (CF) are used. CF of fYQ1
(y) can be expressed

as

ΦYQ1
(ω) =

∞∑

l=−∞
ΦYLPF

(ω + lΨ)sinc

(
q1(ω + lΨ)

2

)

, (4.9)
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where Ψ = 2π
q1

. From ( 4.6) we have, for the vector case with zero-mean,

ΦYLPF
(ω) = exp

(

−1

2
ω

TCYLPF
ω

)

. (4.10)

For the Gaussian input, [41] has shown that the PQN model is very closely satisfied and

therefore the moments of fYQ1
(y) is well approximated by

drΦYQ1
(ω)

drω
=

drΦYLPF(ω)

drω
+ Mr, (4.11)

where Mr is the moment difference. From ( 4.11) we have M1 = 0 and M2 =
q2
1

12 giving,

E
{
Y2

Q1

}
= E

{
Y2

LPF

}
+

q2
1

12
. (4.12)

Hence, the DAC output signal is zero-mean with covariance matrix

CYQ1
= (HCXHT ) +

q2
1

12
IM×N . (4.13)

Therefore, although the input signal to DAC is a set of independent random variables, the

output is a jointly distributed set of random variables with covariance matrix CYQ1
.

The next stage of the signal flow is the transmission. A wideband Rayleigh fading

channel with sample-spaced paths is considered. Each received signal component at the

receiver is a complex-number with the real and imaginary components being zero-mean

Gaussian random variables. This is due to the superposition of multiple independent ran-

dom variables, or the CLT. But since our transmission signal is jointly distributed, direct

application of the CLT to determine statistical properties of the received signal is not pos-

sible. Since signals are processed in their discrete form at the receiver, I analyze the signal

at its sampling instants.

I consider a low-pass Nyquist filter in the LPF stage with the impulse response

characteristics h(0) = 1 and h(lTs) = 0, l = ±1,±2, . . .. Then, from ( 4.3) and ( 4.7), the

covariance matrix CYQ1
has the following properties:

CYQ1
(l∆, l∆) = σ2

X +
q2
1

12
, l = 0, 1, . . . , N − 1, (4.14)



Chapter 4: Analysis of Quantization Noise in an End-to-End OFDM Link 112

Figure 4.2: Histograms of an IFFT output (above) and quantized version of it (below).

CYQ1
(k∆, l∆) = 0, k 6= l, k, l = 0, 1, . . . , N − 1, (4.15)

where CYQ1
(k, l) is the (k, l)-th element of CYQ1

starting from zero. Thus, we have that

the transmitting signal is an independent random variable at the sampling instants with

variance σ2
YQ1

= σ2
X

+
q2
1

12 . It should be noted here that the transmitting signal statistics are

altered from the quantization process and it depends on the quantization step size.

4.1.1 Multipath Propagation

This section determines the change of signal statistics during the next stage of the

signal flow, multipath propagation. The propagation over the wideband Rayleigh fading



Chapter 4: Analysis of Quantization Noise in an End-to-End OFDM Link 113

channel can be expressed as [51],

yRX(t) =
L−1∑

k=0

Ake
(−j2πf0τk)yTX(t − τk), (4.16)

where yRX(t) is the received complex baseband signal, yTX(t) is the transmitted signal and

is complex with its real and imaginary components coming from separate LPF stages.

Multipath component’s complex fading coefficient and delay are given by Ak, where Ak is

Rayleigh distributed and τk, respectively. Passband frequency is f0 and L is the number of

multipath components. Omitting the phase rotation, after sampling the received signal of

( 4.16) at the proper intervals, a discrete-time sample can be decomposed to a combination

of complex terms as

yBB(lTs) =

L−1∑

k=0

(ar,k + jai,k) (yr,k + jyi,k)

=

(
∑

k

ar,kyr,k −
∑

k

ai,kyi,k

)

︸ ︷︷ ︸

Iy(lTs)

+ j

(
∑

k

ar,kyi,k +
∑

k

ai,kyr,k

)

︸ ︷︷ ︸

Qy(lTs)

,

(4.17)

where subscripts r and i denote the corresponding real and imaginary components, re-

spectively. The received signal points yBB(lTs) is complex with in-phase and quadrature

components given by Iy(lTs) and Qy(lTs). As with the transmitter, I consider either the

real or the imaginary part for the quantization noise analysis. To apply CLT to each sum-

mation I first need to find the mean and variance of the product terms akxk. Each of the

four products has the same statistics. Mean is given by,

E {AYQ1} =

∫

ay fAYQ1
(a, y)dady

=

∫

ay fA(a)fYQ1
(y)dady = E {A}E {YQ1} = 0,

(4.18)
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where I use the independence of the variables. Similarly the variance can be calculated as,

E
{
A2Y 2

Q1

}
=

∫

a2y2fAYQ1
(a, y)dady

= E
{
A2

}
E

{
Y 2
Q1

}
= σ2

chanσ
2
YQ1

,

(4.19)

where E
{
A2

}
= σ2

chan is the variance of the channel. Therefore, from CLT we have that the

∑

k akyk terms are zero-mean with variance σ2
Σ = Lσ2

YQ1
σ2
chan. Next, to find the statistics of

Iy(t) and Qy(t), we need to determine the statistics of difference and summation of Gaussian

variables, respectively. We have as the CF of the
∑

k akyk terms [52],

ΦΣ(ω) = exp

(

−1

2
σ2
Σω

2

)

. (4.20)

To find the CF of the difference of two such variables, from the definition of CF

ΦIy(ω) = E
{

ejω(Σ−Σ)
}

. (4.21)

Using the independence of the terms,

ΦIy(ω) = ΦΣ(ω)ΦΣ(−ω) =

[

exp

(

−1

2
σ2
Σω

2

)]2

. (4.22)

Similarly, for the summation of terms, the CF is

ΦQy(ω) =

[

exp

(

−1

2
σ2
Σω

2

)]2

= ΦIy(ω). (4.23)

Therefore, the statistics of Iy(t) and Qy(t) components are identical. Their mean is found

from the CF to be

E
{
ΦIy(ω)

}
=

1

j

dΦIy(ω)

dω

∣
∣
∣
∣
∣
ω=0

= 0. (4.24)

Finally, variance is found from

E
{

Φ2
Iy

(ω)
}

=
1

j2

d2ΦIy(ω)

d2ω

∣
∣
∣
∣
∣
ω=0

= 2σ2
Σ = 2Lσ2

YQ1
σ2
chan.

(4.25)
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The mean and variance statistics obtained in ( 4.24) and ( 4.25) for difference of products

in Iy(t), are applied identically to the summation of products in Qy(t).

Finally, the signal is corrupted with i.i.d additive white Gaussian noise (AWGN).

AWGN is zero-mean Gaussian and it is added to the multipath component which I found

earlier to be zero-mean Gaussian. This addition of two independent Gaussian random

variables results in a received Gaussian distributed signal vector YRX with the following

PDF:

fYRX
(y) =

1

(2π)
M
2 |CRX| 12

exp

[

−1

2
yTC−1

RX
y

]

, (4.26)

where CRX is the covariance matrix of YRX given by

CRX =

(

2Lσ2
cha

(

σ2
X +

q2
1

12

)

+ σ2
n

)

IN×N , (4.27)

with σ2
n denoting AWGN noise variance and IN×N is a N × N identity matrix.

4.2 Quantization Noise Analysis

Quantization noise introduced at the ADC quantizer is determined here. Granular

noise only and clipping (overflow) plus granular noise cases are considered separately.

Quantization noise differs from the PQN model described earlier if the CF of the
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input signal does not satisfy Quantization theorem-III, which states the following [41]:

QuantizationTheorem − III

if

Φx(lΨ) = 0, l = 1, 2, . . .

then the quantization noise would have the CF

Φv(lΨ) = sinc
(qω

2

)

,

and its PDF would be

fv(x) =







1
q

if x 6 q/2

0 elsewhere.

Therefore, the input signal to the DAC does not comply with the requirements of QT-III

although they are shown to exhibit very small deviation from the PQN model. Nevertheless,

to make our analysis general, I will consider the general form of the quantization noise power

which is given by

E
{
v2

}
=

q2

12
+

q2

π2

∞∑

l=1

ℜ{Φ(lΨ)} (−1)l

l2
, (4.28)

where E
{
v2

}
is the quantization noise variance and q is the quantization step size. ℜ{Φ(•)}

is the real part of the CF of the input signal.

Fortunately, as I determined in the earlier section, both the input signals to the

quantizers Q1 and Q2 (Fig. 4.1), X and YRX, are Gaussian signals which have a CF of the

kind

ΦGauss(t) = exp

(

−1

2
σ2

xt2
)

(4.29)

for the zero-mean case. Due to the symmetry and the fast decay of the Gaussian PDF, the

quantization noise power expression can be simplified to

E
{
v2

}
=

q2

12
− q2

π2
exp

(

−2π2

(
σ2

x

q

)2
)

. (4.30)
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The uniform quantization noise therefore deviates from the PQN model depending on the

magnitude of the ratio of input signal variance to the quantization step size. Smaller

quantization step size can make the quantization noise power similar to the PQN model.

4.2.1 Quantization noise at the transmitter

For the zero-mean Gaussian DAC input signal X, we have its CF

ΦX(t) = exp

(

−1

2
σ2
Xt2

)

, (4.31)

and the power of the quantization noise introduced at the DAC, vQ1
, is then given by,

E
{
v2
Q1

}
=

q2
1

12
+ − q2

1

π2
exp

(

−2π2

(
σ2
X

q1

)2
)

. (4.32)

4.2.2 Quantization noise at the Receiver

Signal yRX(t) is received with the PDF given in ( 4.26) and is sampled and then

quantized at quantizer Q2. Following types of quantization noises for the ADC Q2 are

considered: 1) uniform quantization noise, vQ2,UQ, and 2) floating-point quantization noise,

vQ2,FQ and 3) uniform quantization noise with overflow. It should be reminded that in the

analyses of quantization noise in the transmitter, uniform quantization with no overflow

was considered. From ( 4.28) we can calculate the uniform quantization noise to be

E
{
v2
Q2,UQ

}
=

q2
2

12
− q2

2

π2
exp

(

−2π2

(

σ2
YRx

q2
2

))

, (4.33)

where q2
2 is the quantization step size of Q2 and σ2

YRX
is the scalar quantity of CRX, which

is the received signal variance. Under the conditions that the input signal is zero-mean

Gaussian, [41] states the floating point quantization noise to be given by

E
{
v2
Q2,FQ

}
= (2.16)E

{
v2
PQN

}
E

{
Y2

Rx

Θ2

}

, (4.34)
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where E
{
v2
PQN

}
=

q2
2

12 is the PQN model quantization noise. By definition Θ
∆
= 2pq2 and p

is the number of bits of the mantissa. Then ( 4.34) can be simplified to give

E
{
v2
Q2,FQ

}
= (0.180)2−2pE

{
Y2

Rx

}

= (0.180)2−2p

(

2Lσ2
cha

(

σ2
X +

q2
1

12

)

+ σ2
n

)

.

(4.35)

Thus, we see that the uniform quantization noise and floating-point quantization noise is a

dependent on both transceiver and channel parameters.

Quantization noise with overflow

In ( 4.33) I assumed a quantizer with no overflow. But from the PDF given in

( 4.26) it can be seen that the received signal has much higher variance and it is possible

that overflowing will occur which will give additional clipping noise over the granular noise I

considered. From the equations derived earlier, it is possible to design an ADC for a certain

dynamic range that clips a particular percentage of the PDF tails.

We can find the dynamic range [−RADC, RADC] that will clip a tolerable fraction of

the received signal PDF tails and quantizes a QFRAC fraction of the signal. The range can

then be found by using the symmetry of the PDF,

∫ RADC

−RADC

fYRX
(y) = P (−RADC ≤ y ≤ RADC) = QFRAC. (4.36)

Since FYRX
(y), CDF of fYRX

(y), is an odd function, we have

∫ RADC

−RADC

fYRX
(y) = 2FYRX

(RADC) = 1 + erf

(
RADC

σYRX

√
2

)

. (4.37)

Above equation can be solved for a required RADC. The resulting quantization noise differs

from the PQN model, even for a CF satisfying QT-III, due to the clipping. The noise can

be found the following way.

E
{
v2
Q2

}
=

∫ ∞

−∞
(x − Q2(x))2 fYRX

(x)dx. (4.38)
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Using symmetry of the PDF, we can decompose the above to include the dynamic range as,

E
{
v2
Q2

}
= 2

∫ ∞

RADC

(x − RADC)
2 fYRX

(x)dx

︸ ︷︷ ︸

Nclip

+ 2

QL−1
∑

n=0

∫ xn+1

xn

(x − Q2(x))2 fYRX
(x)dx

︸ ︷︷ ︸

Ngran

,

(4.39)

where QL = RADC/q2 is the number of quantization levels in each half of the dynamic range.

Considering a midriser -type quantizer, Q2(x) =
(

2n+1
2

)
q2, for xn ≤ x ≤ xn+1. I divide the

quantization noise in to granular noise and clipping noise components, given respectively by,

Ngran and Nclip. Expanding ( 4.39) and with a bit of manipulations I obtain the following

expressions for the quantization noises.

Nclip = 2RADC

{
RADC

2

(

1 − erf

(
RADC

σYRX

√
2

))

+ χ(RADC)

+ R2
ADC χ(RADC) +

σ2
YRX

2

(

1 − erf

(
RADC

σYRX

√
2

))}

,

(4.40)

Ngran = 2

QL−1
∑

n=0

{(
2n + 1

2

)2

q2
2 [FYRX

(xn+1) − FYRX
(xn)]

− (2n + 1) q2χ(ϕ)

∣
∣
∣
∣
∣

xn+1

xn

− ϕ2 χ(ϕ)

∣
∣
∣
∣
∣

xn+1

xn

+ σ2
YRX

[FYRX
(xn+1) − FYRX

(xn)]

}

,

(4.41)

with χ(ϕ) defined as

χ(ϕ) =
σ2
YRX

√

2πσ2
YRX

(

e
− ϕ2

2σ2
YRX

)

. (4.42)

The quantization step size q2 can be derived from evaluating ( 4.41) numerically.

Therefore, following the above procedure, it is possible to design a receiver ADC according

to the transceiver and propagation channel characteristics and a required receiver perfor-

mance such as the BER. Also it provides an analytical method to determine the effect of

quantization noise for a given set of device and link parameters.
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4.3 Simulation results and performance evaluation

Simulations are performed to first determine the validity of the theoretical model

derived in section 4.1 with simulated transmission scenarios. Then the effect of quantization

noise on BER is simulated under different system parameters.

4.3.1 Validity of the model

Fig. 4.3 shows results of the received signal variance for FFT sizes of 512, 1024

and 2048 points with 64-QAM modulation level obtained through Monte Carlo simulations.

Quantization step size q1 and AWGN noise are kept constant. The dashed lines show

the theoretical value I derived for the received signal variance in ( 4.27) and the markers

show the corresponding values obtained from the simulations. A good agreement between

the theoretical values and simulated results can be observed. It is further seen that the

discrepancy with the theoretical value reduces with the increasing number of data points

(large FFT).

Fig. 4.4 shows the deviation of the simulated results for the theoretical model as a

function of the quantization step size. Simulations of Fig. 4.3 used a constant transmitter

quantization step size of q1 = 0.5σX and it showed a good agreement between theoretical

and simulated values. Here I change q1 from 0.1σX to 3.0σX and repeat the simulations

while keeping other parameters constant. The solid lines show the theoretical value and

the dashed lines show the simulated results. Curves show that the theoretical values are

tightly held until the quantization step size is increased to about 2.0σX, after which point

the simulated results start to deviate from the theoretical limit. The larger quantization

step size effectively reduces the number of quantizer bins and the output PDF starts to

deviate more from the Gaussian shape. This effect is much more apparent by observing

that the rate of deviation is larger for the smaller FFT size. At a particular step size, the
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Figure 4.3: Comparison of the theoretical model for σ2
YRX

against the results of simulated

transmissions

Figure 4.4: Deviation of the simulated results from the theoretical model at larger quanti-
zation step sizes
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Figure 4.5: BER performance of the uniform quantizer for varying quantizer resolutions

deviation is higher for the 512-point FFT compared to the 1024- or 2048-point FFTs. It

should be noted, that although simulated, step sizes as large as 2.0σX are not practical

quantizer resolutions as it introduces a large quantization noise that results in undesirable

error rates as can be seen from the following section. Considering Figs. 4.3 and 4.4, we can

assume that the theoretical results derived can model a practical transmission accurately.

4.3.2 Effect on BER performance

The following simulations show the quantization effect on the BER performance. A

1024-point FFT with 64-QAM is used in the simulations with the transmitter quantization

step size kept constant at q1 = 0.5σX. Fig. 4.5 shows the effect of receiver quantization step

size q2 on the BER for an uniform quantizer without overflow. The step size q2 is decreased

from 0.2σYRX
to 0.05σYRX

. The curves show the effect of increasing the quantizer resolution.

At a BER level of 10−8, increasing q2 from 0.2σYRX
to 0.1σYRX

gives a SNR gain of 4dB,
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Figure 4.6: BER performance of the uniform quantizer for q2 = 0.25σX and q2 = 0.1σX for
different number of multipaths

while further doubling the resolution to 0.05σYRX
only improves the SNR by about 0.6dB.

The effect of quantizer resolution on BER is thus nonlinear and the figure shows that it

also depends on the operating SNR. Therefore, the quantizer resolution can be set to the

required receiver performance using the results of the previous section without unnecessarily

increasing the resolution. Fig. 4.6 shows the effect of number of channel multipaths on the

uniform quantization noise. The BER curves are shown for q2 = 0.25σYRX
(denoted by

dashed lines) and q2 = 0.1σYRX
(denoted by solid lines) for values of L=8, 16 and 24. The

AWGN only case is shown in solid line without markers for comparison. Results show how

the increasing number multipaths has a degrading effect on the BER performance through

the increase of σYRX
in ( 4.27). Effect of number of multipaths is higher for the larger

quantization step size compared to q2 = 0.1σYRX
. For example, at a BER level of 10−8,

0.4dB of SNR is lost when the number of multipaths is increased from 8 to 16 for the step

size of 0.1σYRX
and when it is increased to 0.25σYRX

, an irreducible error floor is introduced
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Figure 4.7: BER performance of the floating-point quantizer for b=3 bits and b=4 bits
resolutions

and is not even able to achieve the specified BER. Also it is apparent that this multipath

effect on BER is higher in the higher SNR regime than at the lower values. Hence, the

quantizer resolution can be chosen for the propagation channel and the operating SNR.

Finally, Fig. 4.7 shows a similar case as Fig. 4.6 but for a floating-point quantizer at the

receiver for different resolutions. Dashed lines show a 3-bit mantissa and a 4-bit mantissa

is shown by solid lines. A similar performance pattern as the uniform quantizer is observed

here. BER performance degrades with the increasing number of multipaths as expected and

this effect is higher for the lower resolution 3-bit mantissa. For the same BER level when

number of multipaths is increased from 8 to 16 for the 3-bit mantissa, 1.2dB of SNR is lost.

This degradation is reduced to 0.3dB when the quantizer resolution is increased by 1-bit.

To depict the BER performance as a function of the mantissa size, the figure also includes

the performance of the 2-bit mantissa for L=16 shown in the dashed line without markers.

Similar to the previous uniform quantizer, the 2-bit resolution results in an irreducible error
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floor. It is also apparent that the BER performance is again nonlinear with the quantizer

resolution. Therefore, similar to the uniform quantizer, a better operating resolution for

the floating-point quantizer can be chosen for the system parameters.

An increased resolution quantizer can suppress the effect of quantization noise

to negligible levels but as discussed earlier, it affects the sampling rate and power con-

sumption, and also the resolution has a direct contribution to the device complexity, heat

dissipation, die size, signal bus width, etc., which are important considerations in a small-

scale device [53]. It is more critical when these devices employ MIMO systems which require

several RF links operating in parallel. With the very close approximations obtained from

the theoretical model, the results presented in section 4.1 can be used effectively to find

an optimal quantizer resolution for the systems’ operational parameters and the required

receiver performance.

4.4 Conclusion

Statistics of the signal at various stages of the transmission in an OFDM link and

determined how the properties of the transceivers and the channel affect the quantization

noise is analyzed. Quantizer resolution affects the receiver BER performance and at the

same time is proportional to the power consumption. Therefore, operating the quantizer at

an optimal resolution can maintain the required receiver performance without consuming

device power unnecessarily. The presented analysis is from a theoretical point of view and

various other external factors could alter the statistics of the signal as well. But the detailed

process provides an initial estimate of the quantization noise at the receiver for fundamental

system parameters, and can be used as lower bound on the quantization noise. This allows

for an estimation of the BER at the receiver.



Chapter 5

Conclusion

In this dissertation I looked in two of the main processes involved in an OFDM

system: resource allocation and channel estimation. In the first chapter, an introduction

in to OFDM is given, where I discussed the functionality of the main components of an

OFDM link. It was followed by an introduction to the problem of resource allocation.

Resource allocation is an important functionality since it is the process which is

responsible to provide the required QoS to the end users. Resource allocation techniques

need to consider a large number of system and user parameters in the process, and hence

an optimal solution is often mathematically intractable. For this reason, resource allocation

schemes in OFDMA systems are always sub-optimal. The reason for sub-optimality is not

only of the mathematical complexity, it is also due to the amount of calculations that

need to be performed for every OFDM frame. Due to the high frequency that the resource

allocation algorithm requires to be run, often simple schemes are used in practice. Chapter 2

presented our proposed low-complexity resource allocation scheme. It uses a multi-attribute

decision making criterion used in Fuzzy set theory to rank users accordingly. This ranking

process is able to determine which users should be given priority in resource allocation. The
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weighting process used adds more flexibility to the scheme since it is able to prioritize the

attributes. The proposed scheme is able to easily adapt to different system parameters and

performance criterion easily by change of attributes and weights.

In chapter 3 discussed the proposed steady-state Kalman filter for channel esti-

mation in OFDM systems in Rayleigh fading channels. Kalman filters are efficient channel

estimators such that they are a subset of LMMSE estimators, sequential and requires less

second-order statistics. This is highly desirable in mobile situations where the channel is

constantly changing the statistical information are not readily available. Although Kalman

filters do not require many statistical information, the calculation complexity is still rather

high due to a matrix inversion present in the algorithm. Since the channel estimations

are required to be performed frequently, this complexity can become prohibitive, especially

when the number of subcarriers are large. To alleviate this problem, I identified that for

a stationary channel, it is possible to avoid the complex calculations and the iterations by

realizing system properties of the OFDM system. Specifically for the IEEE802.16e stan-

dard, the proposed method transforms the matrix problem to a scalar problem and then

calculations becomes trivial. Not only the number of calculations are substantially reduced,

the proposed method is able to increase performance by avoiding the convergence period

present in conventional Kalman filters. Extending the scheme a step further, I designed it

to utilize the operational SNR and derive the driving noise variance, which is required for

the filtering process. This further simplifies the algorithm and at the same time provides

an effective method to dynamically change the system to optimal operational status.

Chapter 4 is a theoretical analysis of the quantization noise in an OFDM link.

Quantization noise is often disregarded in analyses, but I show that depending on the

transmitter/receiver quantizer resolution and the propagating channel, the quantization

noise will not be negligible. Quantization noise is not only a function of the resolution but
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depends also on the input signal statistics. The statics of the signal is transformed during the

transmission from the transmitter to the receiver. Here I study these transformations and

determine how they affect the quantization noise at the receiver end. Quantizers consume a

substantial amount of power and it is proportional to the quantizer resolution. If the system

and channel are known, the theoretical study provides the ability to find the optimum

quantizer resolution for a required receiver performance. The simulation results show that

the derived theoretical model agrees strongly with a simulated scenario. As Kalman filtering

requires noise statistics, this analysis provides a method to determine the quantization noise

in the receiver and take it in to account in the channel estimation process.

As concluding remarks, the future work of this line of research will be a cross-

layered approach to resource allocation. The resource allocation methods discussed in this

report do not consider the factors such as the packet delay and broadcast services. These

factors are going to play a considerable role in the next-generation traffic and sustainable

resource allocation schemes need to be proposed. The demand for throughput will keep

increasing while the wireless access will not be able to keep up and become a bottleneck.

Therefore, new trends of user traffic needs to be identified and incorporated in to the

resource allocation schemes.
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