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Chapter 1   

 

General Introduction 
 
 

1.1 .  Computational Simulation as Theoretical Experiment 

To predict and control natural phenomena is an ultimate aim of science. However, 

chemistry is traditionally a science developed by the accumulation of experience and 

experimental results, and predictions could be proposed only by experimental rules for a 

long time. Theoretical chemistry is one of the methods to be able to predict natural 

phenomena with computer simulation. This method has mainly two advantages. One is 

to be able to predict natural phenomena safely and inexpensively even if the 

experimental condition is too hard or appurtenances of experiments are too expensive. 

The other is to be able to observe invisible properties from experiments.  

These predictions and analyses can be obtained by the wavefunctions, which can be 

obtained by solving the Schrödinger equation for the target systems. However, 

according to Dr. P. A. M. Dirac [1], „The underlying physical laws necessary for the 
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mathematical theory of a large part of physics and the whole of chemistry are thus 

completely known, and the difficulty is only that the exact application of these laws 

leads to equations much too complicated to be soluble.‟ To resolve this grave dilemma, 

many theoretical chemists have made a great effort to solve the Schrödinger equation 

using adequate approximations and algorithms. Many theoretical analysis methods have 

been developed for us to predict natural phenomena and observe invisible properties. 

Even in the present day, there still are many problems that have not been resolved.  

 In this dissertation, the author focuses on photo-absorption and emission intensity of 

lanthanide systems, which are one of the most difficult systems to solve their 

Schrödinger equation exactly. Additionally, the origin of intensities is the property that 

cannot be observed with experiment. The author has developed a computational method 

to calculate intensities with reducing the amount of computational efforts and 

established methods of analysis of the origin of photo-absorption and emission 

intensities. 

 

1.2. General Background of this Dissertation 

Firstly, a brief introduction on chemical properties, especially optical properties, of 

lanthanide systems is given. Secondly, the chemical properties which should be 

contained in the ab initio calculations of these systems are explained. 
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1.2.1. Lanthanide Chemistry 

Lanthanide systems have attracted increasing attention from their potential 

applications as various materials [2]-[4]: optical or magnetic devices, catalysts of 

chemical reactions, metal alloys for hydrogen storage and so on. The lanthanide series 

consist of the 14 elements with atomic number 58 through 71, from cerium to lutetium. 

They are contained in the f-block elements. All the electronic configurations of 

lanthanide trivalent ions are 1s
2
2s

2
2p

6
3s

2
3p

6
3d

10
4s

2
4p

6
4d

10
4f

N
5s

2
5p

6
 and only the 

number of 4f electrons N increases as the atomic number increases as shown in Table 

1-1. The radial distributions of 4f, 5s, 5p, and 5d orbitals of praseodymium and 

europium trivalent ion (Pr
3+

 and Eu
3+

) are shown in Figure 1-1. As is clear from Figure 

1-1, open-shell 4f electrons are shielded by the closed-shell 5s and 5p electrons from 

outside. Therefore, the 4f electrons behave as core-like electrons and are affected little 

from surrounding environment. This is the most important point that determines the 

character of lanthanide systems. 
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Table 1-1 : Electronic configurations of lanthanide trivalent ions 

Atomic 

Number 
Name Ln 

Electronic configurations 

of neutral Ln 

Number of 4f 

electrons of Ln
3+

 

58 Cerium Ce 1s
2…4f

1
5s

2
5p

6
5d

1
6s

2
 1 

59 Praseodymium Pr 1s
2…4f

3
5s

2
5p

6
6s

2
 2 

60 Neodymium Nd 1s
2…4f

4
5s

2
5p

6
6s

2
 3 

61 Promethium Pm 1s
2…4f

5
5s

2
5p

6
6s

2
 4 

62 Samarium Sm 1s
2…4f

6
5s

2
5p

6
6s

2
 5 

63 Europium Eu 1s
2…4f

7
5s

2
5p

6
6s

2
 6 

64 Gadolinium Gd 1s
2…4f

7
5s

2
5p

6
5d

1
6s

2
 7 

65 Terbium Tb 1s
2…4f

9
5s

2
5p

6
6s

2
 8 

66 Dysprosium Dy 1s
2…4f

10
5s

2
5p

6
6s

2
 9 

67 Holmium Ho 1s
2…4f

11
5s

2
5p

6
6s

2
 10 

68 Erbium Er 1s
2…4f

12
5s

2
5p

6
6s

2
 11 

69 Thulium Tm 1s
2…4f

13
5s

2
5p

6
6s

2
 12 

70 Ytterbium Yb 1s
2…4f

14
5s

2
5p

6
6s

2
 13 

71 Lutetium Lu 1s
2…4f

14
5s

2
5p

6
5d

1
6s

2
 14 

 

 

  

 Figure 1-1 : Plots of the radial functions rR(r) vs r (in a.u.) for Pr
3+

 and Eu
3+

. Pink, 

blue, green, and red lines are those of 4f, 5s, 5p and 5d orbitals, respectively.  
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One of the characteristic properties of lanthanides is “lanthanide contraction” [5]. For 

each consecutive atom the nuclear charge increases by one unit, accompanied by a 

corresponding increase in the number of electrons present in the 4f orbitals surrounding 

the nucleus. The 4f electrons shield very imperfectly each other from the increased 

positive charge of the nucleus, so that the effective nuclear charge attracting each 

electron steadily increases through the lanthanide elements, resulting in successive 

reductions of the atomic and ionic radii. Therefore, it is generally observed in lanthanide 

systems that the distance between lanthanide and ligands and also the ionic radius 

decrease as the atomic number of lanthanide increases. The similarity in ionic radius 

between adjacent lanthanide elements makes it difficult to separate them from each 

other in naturally occurring ores and other mixtures. 

Another character is similarity of chemical properties. Because 4f electrons cannot 

bind to ligands directly due to the small size, lanthanide complexes are usually held 

together by ionic bonds. This character causes the flexibility of the structures and the 

variety of coordination numbers of lanthanide complexes from 2 through 12, which is 

one of the reasons of difficulty in determination of the structures [5].  

 The last point to be emphasized here is the presence of unpaired 4f electrons. Due to 

the presence of unpaired electron spin, lanthanide systems have various spin 

multiplicities and are used extensively as magnetic materials. Additionally, the presence 
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of open-shell 4f electrons causes a number of 4f
N
 states whose absorption or emission 

wavelengths are present in the visible, near infrared, and near ultraviolet regions [5]. In 

recent years, these optical properties of lanthanide have been applied in multiple areas. 

However, their mechanisms have been discussed only on the base of the traditional 

crystal field theory, and they have not entirely been clarified. Therefore, the properties 

of electronic transitions between these 4f
N
 states are explained in the following sections. 

 

1.2.2. f-f Transition 

As mentioned in the previous section, lanthanide systems have a number of 4f
N
 states. 

Intra-4f
N
 electronic transitions are called “f-f transitions” and used for many optical 

materials, such as lasers, fibers, optical displays, biosensors and so on [2]-[4]. The 

typical oscillator strengths of f-f transitions are as small as 10
-6

 because these are 

Laporte forbidden transitions. However, f-f transitions have useful properties for optics 

because the absorption and emission spectra have peaks in visible, near infrared and 

near ultraviolet regions and the peaks are sharp even in crystal fields because 4f 

electrons are affected little by surrounding environment due to the shielding effect of 5s 

and 5p electrons.  

The oscillator strengths of f-f transitions have long been investigated with 

semi-empirical theory called the Judd-Ofelt theory [6],[7], whose idea will be explained 
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in the following sections. According to the recent review [8], this theory has been used 

in about 800 investigations to report intensities of lanthanide systems. Since this theory 

is based on the traditional crystal field theory and the technique of angular momentum 

coupling scheme, it can be considered that the essential properties of f-f transition 

usually come from the crystal field generated by the surrounding environment. 

 

1.2.3. Hypersensitive Transition 

As mentioned in the previous section, 4f electrons are affected little by surrounding 

environment because they are well shielded by the closed-shell 5s and 5p electrons from 

outside. Therefore, the crystal-field splittings are smaller than the spin-orbit (SO) 

splittings, and the electronic states of lanthanide trivalent ion (Ln
3+

) in crystal-fields are 

usually similar to those of free Ln
3+

.  

In spite of the shielding effect, there are some exceptional f-f transitions whose 

oscillator strengths are very sensitive to a small change of surrounding environment. 

These transitions have been called “hypersensitive transitions” by Jørgensen and Judd 

[9] and have been extensively studied [8]. It is well known from previous experimental 

studies that the hypersensitive transitions obey the selection rules as 2J , 2L  

and 0S , and that their oscillator strengths are usually enhanced greatly compared 

with those of Ln
3+

 in aqueous solution. Especially, Gruen et al. [10],[11]
 
observed that 
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the oscillator strengths of hypersensitive transitions in gaseous lanthanide trihalide 

(LnX3) molecules were much larger than those of Ln
3+

 in solutions or crystals, though 

their wavelengths were not changed very much. Because the original Judd-Ofelt theory 

could not explain this phenomenon, several models were proposed for explanation of 

hypersensitivity. Among them, dynamic-coupling (DC) model [12]-[15] could explain 

the oscillator strengths of hypersensitive transitions in LnX3 molecules qualitatively. 

However, their mechanisms have been discussed even in recent years and still competed 

with one another. One of the reasons why the comprehensive explanation for the origin 

of hypersensitive transitions has not been proposed is because all the previous 

theoretical studies were based on the semi-empirical models, which could contain only 

particular effects selectively and artificially in ad hoc manner. Therefore, if all the 

effects can be considered simultaneously, the comprehensive mechanism of 

hypersensitive transitions must be consolidated. For resolving such a problem, 

theoretical chemistry, especially “ab initio calculation”, which can be carried out 

without empirical parameters, must be a powerful and trusted tool.  

 

1.2.4. Difficulty of Ab Initio Calculations in Lanthanide Systems 

 In spite of the increasing needs for theoretical prediction and analyses of the origin of  

f-f transitions, especially of hypersensitive transitions, there were only several ab initio 
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studies about structure of LnX3 [16]-[21] or f-f and f-d transitions [22],[23], and no 

studies about hypersensitive transitions. One of the reasons is the difficulty of ab initio 

electronic state calculations of lanthanide systems. Because several approximations are 

applied even in “ab initio” methods, adequate methods must be selected to reproduce 

the physical picture in each case. The author focuses on especially two points that must 

be considered in the calculation of 4f
N
 states of lanthanide systems. 

 Firstly, lanthanide atoms are heavy atoms. They cause the difficulty of ab initio 

calculations because the numbers of electrons are from 58 to 71, which are too many to 

be calculated directly, and the relativistic effects cannot be neglected [24]. These 

problems can be resolved by applying the relativistic effective core potential (RECP) 

methods [24], which replace the complicated effects of the core electrons with effective 

potentials, the so-called pseudopotentials. This method has two advantages. One is to be 

able to reduce the computational efforts by reducing the number of electrons and the 

basis set size. The other is to be able to include relativistic and other effects in the 

pseudopotentials. In addition, the spin-orbit term HSO, which is a part of the relativistic 

effects, is added to the Hamiltonian to allow the mixing of different spin multiplicity 

configurations. 

Secondly, 4f orbitals are quasi-degenerate even in crystal fields because 4f electrons 

are affected little from surrounding environment due to the shielding effect from outer 
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5s and 5p electrons [5]. Therefore, electronic correlation, especially static correlation, 

must be considered because 4f
N
 wavefunctions cannot be described well only with a 

small number of Slater determinants. To contain these effects into ab initio calculations 

effectively, the author selects the multi-reference spin-orbit configuration interaction 

(MRSOCI) calculation [25] with RECP method in this study.  

 

1.3. Concrete Subjects of this Dissertation 

As can be seen from the previous sections, there is a growing need for ab initio study 

about f-f transition intensities, especially for ab initio analyses about the origin of f-f 

intensities and hypersensitivity. In this study, the author aims at “the first” quantitative 

ab initio calculations of oscillator strengths of f-f transitions and at identifying the 

origin of hypersensitivity. The author focuses attention on the f-f transitions of LnX3 

molecules (Ln = Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I), whose 

oscillator strengths of hypersensitive transitions are much larger than those of Ln
3+

 in 

aquo. To contain both the relativistic and the electronic correlation effects effectively, 

the MRSOCI method are employed in this study.  

However, when the author started this subject of research, their computational efforts 

were too demanding to compute oscillator strengths with the existing program, though 

the target systems are only four-atom molecules. To solve this problem, the author 



14 

coded and attached a new program to compute the transition density matrix with the 

graphical unitary group approach (GUGA) to the COLUMBUS program package and 

succeeded to calculate the oscillator strengths quantitatively by using this program.  

In chapter 3, the author examines the previous hypothesizes about the origin of f-f 

hypersensitive transition intensities based on the MRSOCI calculation results. Firstly, 

the author focuses on the hypothesis considering the effect of molecular vibrations and 

f-d mixing, and refutes them. Additionally, the author decomposes the oscillator 

strengths of f-f transitions to clarify which configurations affect the intensities mostly 

and notices that the effect mentioned in the DC model has a dominant contribution to 

the f-f intensities. 

 To examine the effect considered in the DC model more closely, the author focuses 

two kinds of Judd-Ofelt intensity parameters(ab) and (dc) in chapter 4. If the 

oscillator strengths can be explained only by the DC model, the JO intensity parameters 

(ab), which can be extracted from ab initio data, must show an essentially the same 

behavior as (dc), which is derived from the DC model. The results suggest that the 

overall behaviors of (ab) can be understood roughly by the DC model and the 

polarization shielding effect.  

Finally, the author observes the spatial distribution functions of the transition 

densities and the transition dipole moments and gives a comprehensive explanation for 
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the origin of f-f hypersensitive transitions using the time-dependent and 

time-independent languages in chapter 5. Furthermore, the relative phase between the 

contributions considered in the JO theory and the DC model are examined and the 

contribution from ligand-to-metal charge transfer, which was neglected in previous 

models, is also clarified for the first time. 
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Chapter 2   

 

Theoretical Background 
 

In this chapter, the author presents the explanation on the theoretical ideas and 

methods used in this study. A brief history of investigations for f-f transition and 

hypersensitive transition intensities based on semi-empirical method is given in the 

section 2.1. After that, the ab initio calculation method of oscillator strengths is 

explained in section 2.2 and the algorithm to reduce computational efforts significantly 

is outlined in section 2.3. 

 

2.1.  Previous Theories for f-f Transition and Hypersensitivity 

2.1.1. Judd-Ofelt theory 

2.1.1.1 4f
N
 Wavefunction and Dipole Moment Matrix Element 

Judd [6] and independently Ofelt [7] presented treatises about the calculation method 

for Laporte forbidden f-f transition intensities of lanthanide systems with coupling 

scheme of angular momentum. The basic idea is that f-f transitions can be allowed 
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because of the mixing of opposite parity configurations, such as 4f
N-1

5d or 4f
N-1

g, to 4f
N 

states due to the presence of odd parity crystal field generated by the point charges on 

ligands. Here, the author presents a brief review of the Judd-Ofelt coupling scheme. 

Firstly, a 4f
N
 state is written by 


M

N

M JMlaA  , (1) 

where A is a crystal-field level, l
N
 is configuration,  is the additional quantum numbers 

that are necessary to define a level uniquely, J is the total angular momentum, M is the 

quantum number of the projection Jz of J, and aM are coefficients arising from crystal 

field mixing. 

When odd parity crystal field Vodd is presented, this 4f
N
 state are perturbed as 












K

N

M

N
M

K

MJlnlMJlnbJMla

KEAE

AVK
KAB

 11

odd

)()(

)()( , (2a) 

)()(

)(
)(

odd
11

JlnEJE

AVMJlnl
MJlnb

N











 ,

 

(2b) 

where K

 

are the opposite parity intra-Ln excitation configurations, such as 4f
N-1

5d or 

4f
N-1

g. Here, odd parity crystal field Vodd is expressed as  

   
qk j

jjkq
k
jkq

qk

k
qkq YrAAV

,,

)(
odd ,ˆ D , (3) 

where )(ˆ k

qD  is tensor of odd rank k with components q ( kq  ,,1,0  ), Akq is 

crystal-field coefficient, 
k

jr  is radial distance of electron j (to the k-th power) from the 
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lanthanide nucleus, and  jjkqY  ,  is a spherical tensor operator of rank k containing 

the angular coordinates of electron j.  

Secondly, the transition dipole moment between perturbed wavefunctions B and B’ can 

be written as 



































K K

NN

K M M

N

M

N

K M M

N

M

N

M M

N

MM

N

MJllMJlbMJlbMJll

MJlaMJlbMJll

MJllMJlbaJMl

MJlaaJMl

BB



















11)1(11

)1(11

11)1(

)1(

)1(

)(ˆ)(

ˆ)(

)(ˆ

ˆ
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D

D

D
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D

 (4) 

Here, the first and the fourth terms cancel because they are the matrix elements between 

the same parity configurations. Thus, eq.(4) can be rewritten as 












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(5) 

It is not easy to calculate eq.(5) which contains the summations: M, M’, k, q, ”, J”, 

M”, n’, l’. Therefore, several approximations are applied to evaluate eq.(5) in the 

following section. 
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2.1.1.2. Approximations 

The main suggestion made by Judd and Ofelt is that the presence of 

MJlnlMJlnl NN    1111 )()(

 

makes it possible to apply “the closure 

procedure”. It is a scheme of approximation that perturbing excitation configurations are 

regarded as degenerate. If the excitation energy of each perturbing configuration 

l
N-1

(n’l’) can be regarded much larger than that of l
N
, following two approximations can 

be applied: (i) the excitation energy of perturbing configuration E(n’l’”J”) is invariant 

with respect to n’, l’, ” and J” and (ii) the energy denominators of eq.(5) 

E(J)-E(n’l’”J”) and E(’J’)-E(n’l’”J”) are replaced by the single energy 

difference (n’l’). 

As the result of these approximations, eq. (5) can be expressed as  
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where Akq is the crystal-field coefficient as already defined in eq. (3), and  
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(7) 

The summation in eq. (7) runs over all values on n’ and l’ consistent with l
N-1

(n’l’) 

being an excited configuration. 

The matrix element in eq. (6) can be expressed as a sum over reduced matrix elements 

involving Russell-Saunders coupled states: 
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Application of the Wigner-Eckart theorem, which is one of the standard tensor operator 

techniques, results in 
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It is possible to carry out expansions of the type 
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where )( LSh   are the expansion coefficients to express the reduced matrix element as 
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The doubly reduced matrix elements LSlLSl NN   )(
U  have been tabulated by 

Nielson and Koster. Finally, the induced electric dipole matrix element between two 

states B and B’ of the f
N
 configuration in eq. (5) can be written as 
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2.1.1.3. Selection Rule for Induced Electric Dipole Transition 

From the triangle conditions of 3-j symbol and 6-j symbol in eq. (7) and eq.(12), 

several selection rules for induced electric dipole transitions can be derived as follows: 

(a)  = 0, 2, 4, 6. According to the triangle condition for the triad indicated in underlined 

quantum numbers in 








lll

k

'

1 
 in eq.(7), one has llll   . The selection 

rule follows directly from the fact that  is even and l = 3. 

(b) k = 1, 3, 5, 7. According to the triangle condition for the triad indicated in underlined 

quantum numbers in








lll

k

'

1 
, one has 11   k . Because k is odd and is 

even, it follows that 1 k . 

(c) 1l . According to the triangle condition for the triad indicated in underlined 

quantum numbers in








lll

k

'

1 
, one has 1'1  lll . The perturbing 

configurations are thus of the type 4f
N-1

n’d
1
 and 4f

N-1
n’g

1
. 

(d) 0S , because both the crystal-field Hamiltonian and the electric dipole operator 

do not act on the spin part of the wavefunctions. 

(e) JJJ   . This follows directly from the triangle condition in underlined 

quantum numbers in

 







JSJ

LL

'

'
. Moreover, if J = J’ = 0, the selection rule simplifies 

to J = 0, 2, 4, 6. In other words, transitions with J = 0 → J’ = 0 are forbidden. 
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Because  is even, transitions with J  = odd are forbidden in principle.  

(f) LLL   . This can be found from the condition for 

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6 , the selection rule can be rewritten as 6L . 

(g) )('  qMMM . The selection rule on M is derived from 
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in eq.(12).  

 It should be noted that the selection rules on L and S are only applicable in the 

Russell-Saunders coupling scheme. These selection rules can be relaxed because L and 

S are not good quantum numbers. Although J is a good quantum numbers, the selection 

rules on J may be relaxed by J-mixing, which is a weak effect. The selection rule on 

M depends on the point group symmetry of the lanthanide site. Additionally, in the 

photo-absorption and emission spectra we can observe peaks caused by transitions that 

do not satisfy the above selection rules because there are magnetic dipole transitions 

whose selection rules are different from induced electric dipole transitions. 

 

2.1.1.4. Oscillator Strength and Judd-Ofelt Intensity Parameters 

The calculated oscillator strengths of a single spectral line is 

2
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(13) 

where me, c,  , E are the electron mass, the light speed, the reduced Plank constant, 



23 

the excitation energy, respectively. Now, by summing over all crystal-field split levels of 

the ground state and over all those of the excited state, the oscillator strengths between 

initial and final multiplets can be written as follows, 
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(14) 

Here, ( =2, 4, 6) are adjustable parameters called Judd-Ofelt intensity parameters, 

and can be expressed as  
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(15) 

where, ed is the Lorentz field correction, whose value is unity in vapor. Because the 

reduced matrix elements ''')( JLSJLS 
U  can be calculated if the free-ion 

wavefunctions are available, the  parameters are determined semi-empirically from 

the experimental data. All the f-f transition oscillator strengths in a lanthanide system 

can be evaluated by using only three JO intensity parameters, because JO parameters are 

independent of excited levels. Oscillator strengths of many lanthanide systems have 

been successfully explained by the Judd-Ofelt theory.  

However, there are still problems of so-called hypersensitive transition intensities. As 

long as the JO intensity parameters are treated as adjustable parameters obtained from 

experimental data, the JO theory gives good agreement between experimental and 

calculated dipole strengths for hypersensitive transitions. However, the original JO 

theory cannot give a theoretical explanation for the hypersensitivity effect. If the JO 
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parameters of LnX3 molecules are evaluated with ab initio methods in terms of eq. (15), 

they are underestimated notably compared to those from experimental data [10],[11]. 

 

2.1.2. Other Models for Explanation of Hypersensitivity 

To solve this problem, several theoretical models based on the original JO theory were 

proposed. One of them is hypothesis that hypersensitive transitions are not induced 

electric dipole transitions but quadrupole ones. As have already mentioned in the 

previous section 1.2.3, the hypersensitive transitions obey the selection rules as 

2J , 2L  and 0S , which are the same as those of a pure quadrupole 

transition. However, calculations have revealed that the intensities of hypersensitive 

transitions are several orders of magnitude too large for these transitions to have a 

quadrupole character [9].  

Judd noticed that the matrix elements of U
(2)

 in eq.(14) were large for hypersensitive 

transitions and that the 2 parameters were sensitive to a small change of surrounding 

environment. Later, Judd included the crystal-field parameters in the expression for 2, 

and argued that the hypersensitivities occurred in certain limited point groups, such as 

Cs, C1, C2, C3, C4, C6, C2v, C3v, C4v and C6v [26]. This theory could be confirmed by 

several experimental results [26],[27]. However, there are exceptions to the theory. The 

most significant one is the gaseous LnX3 molecules [10],[11] mentioned above. They 
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have D3h symmetry and notably large oscillator strengths for hypersensitive transitions. 

Therefore it cannot be the whole explanation although this theory can explain some 

aspects of hypersensitivity. 

To explain the great enhancement of the oscillator strengths of hypersensitive 

transitions in gaseous LnX3 systems, Gruen et al. [11] examined a number of 

mechanisms and explained that the hypersensitivity was attributable to the molecular 

vibration. The symmetries of these molecules can be lowered effectively because the 

frequencies of their out-of-plane bending vibrations are very small and the oscillator 

strengths were measured under the high temperature condition about 1000 K. Henrie et 

al. [28] explained their large oscillator strengths by means of a vibronic mechanism with 

the inclusion of covalency between lanthanide and ligands. However, the vibronic 

mechanism was criticized by many authors [29].  

The covalency model mentioned above is one of the proposed models to explain the 

hypersensitivity. If the charge-transfer character is important in f-f intensities, the 

hypersensitivity to the surrounding ligands is understandable because the energies and 

intensities of the charge-transfer transitions are very sensitive to the kind of ligands and 

metals. Henrie et al. [30] modified the Judd-Ofelt theory by including charge-transfer 

states in addition to the opposite parity states 4f
N-1

5d
1
. However, this mechanism was 

also criticized [14],[29]. 
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2.1.3. Dynamic-Coupling Model 

As shown in the previous sections, there had not been a theoretical model that could 

explain successfully the hypersensitivity. However, Mason and Peacock et al. succeeded 

in explaining the hypersensitive transition intensities of LnX3 molecules in vapor phase 

with “dynamic-coupling model” [12]-[15], which was originally proposed in the theory 

of optical rotation [31],[32].   

In what follows, a simple explanation of this model is provided by taking LnX3 

molecules as examples. Let put the Ln
3+

 cation on the origin and consider one of f 

electrons whose position vector is ),,( zyxr . The electron is under the influence of 

the static crystal field due to the three ligands X

. If the molecule is put in an oscillating 

electric field, the electron receives additional perturbation fields, which contain not only 

the external electric field but also the newly created induced dipoles on the ligands.  

The latter field can act as a strong time-dependent crystal field, in modern terminology, 

an inhomogeneous near field. 

The expression of such a crystal field due to the induced dipoles is related to the 

crystal field generated by the point charges q on the ligands. The latter field can be 

written as follows,  
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where (ai, bi, ci) is the coordinate of the i-th ligand, and ),,( iiii czbyax r  is 



27 

the relative vector from the ligand. Another crystal field generated by the identical 

induced dipole moment ind on all the ligands, that is, in the situation that all the dipole 

moments on the ligands are parallel with the same magnitude, is expressed as follows, 
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(17) 

Therefore, the crystal field generated by the dipole moments ind =E on the ligands 

induced by the oscillating external electric field E can be written as follows, 
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where  is the polarizability of the ligand.  

 As seen in section 2.1.1, the crystal field qVCF

 

generated by n ligands can be written in 

terms of spherical harmonics as follows, 
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where )(cos ikP   is the Legendre polynomial; and (r, , ), (R, i, i) are the polar 
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coordinates of the f electron and ligands, respectively. In the case of LnX3, which have 

D3h structure, the three ligands are located on the polar coordinates (R, i, i) as 
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(20) 

and the crystal field acts on the central lanthanide only when the sum of the spherical 

harmonics in eq. (19b), which is expressed as 
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has non-zero values. Here, k-|m| must be even values because cosi is zero and 

)(cos)
cos

( ik

m

i

P
d

d



 are polynomials of order k-|m| and contain only even or odd 

terms. Additionally, |m| must be 0, 3, 6,… due to the condition that 
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3
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imim

ee
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have non-zero values. Therefore, the crystal field coefficients q
mkA ||

 in eq. (19b) are 

restricted to the following terms, 

qqqqqqqq AAAAAAAA ,73,66,60,53,40,33,20,00 .

 

(22) 

Since, only odd parity crystal field terms have non-zero matrix elements for the 

degenerated first-order perturbation treatment, the lowest order crystal field is qA33
 and 

it allows the f-d mixing in the Judd-Ofelt theory. When only the third-order terms are 

considered, the crystal field can be expressed as follows, 
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In contract, the crystal field generated by the induced dipole moments on the ligands is 

the gradient of that in eq.(23). Therefore, it can be expressed as the second-order crystal 

field as follows, 
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(24) 

where, Ex, Ey and Ez are the component of the oscillating electric field E. The two terms 

in Eq. (24) can be regarded respectively as the Coulombic interaction between the 

quadrupole component of x
2
-y

2
 on Ln and the induced dipole component x on the 

ligands, and the interaction between their components of xy and y, as schematically 

shown in Figure 2-1.  

 

 

Figure 2-1. The non-zero Coulombic correlation between the metal ion quadrupole 

moments and the ligand dipole moments in D3h LnX3 molecules. 

 

In the oscillating electric field, all the induced dipole moments are oriented to the same 
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direction as shown in Figure 2-1, and their directions are revised after a half cycle of the 

oscillation. Because the transition quadrupole moments between 4f orbitals of Ln are 

affected by the time-dependent crystal field Eq. (24), f-f transitions can be induced 

resonantly. This coupling between the transition quadrupole moment on the metal and 

the oscillating induced dipole moments on the ligands is called the dynamic-coupling 

(DC). 

Additionally, the transition intensity can be considered from Fermi‟s Golden rule. 

According to this rule, the transition probability per unit time can be expressed as 

follows, 
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where H’ is time-dependent perturbation Hamiltonian. In the DC model, the crystal 

field generated by the oscillating induced dipole moments on the ligands in eq. (24) is 

considered as the perturbing term and the transition probability can be written as 

follows, 
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Mason et al. considered the mixing of intra-ligand excitation configurations into 4f
N
 

states to include the effect of the induced-dipole moments on ligands [12]-[15]. 4f
N
 

states in a two-system model of a lanthanide complex, neglecting overlap, is written by 
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where V is the electrostatic potential between charge distribution of the metal ion and 

that of each ligand, Mc and Le are zero-order orthonormal eigenstates of metal ion and 

ligand subsystems. (where c = a, b and e = g means the ground states of lanthanide and 

ligand sub-systems, respectively.) The electric transition dipole moment between the 

perturbed metal-ion states is represented by 
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(28) 

where the first and second terms express intra-metal excitations considered in the 

original JO theory and the third and fourth terms express intra-ligand excitations 

introduced in the DC model. When the coulombic potential between non-overlapping 

charge distribution of the transitions ba MM   and 
eg LL  , namely 

 
gbea LMVLM '  and  

ebga LMVLM  are expanded in terms of multipole expansion, 

the leading term is coulombic correlation of electric dipole moments in the ligand and 
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quadrupole moments in the metal ion. The f-f transition oscillator strengths derived 

from the third and fourth terms in eq.(28) can also be expressed in terms of JO type 

equation (eq.(14)). Only formula of intensity parameters  ( = 2, 4, 6) is different as 

2
1
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2
2

2
)( )()()2(44)1(
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, (29) 

where fCf )(
 is the reduced matrix element of the -th rank Racah tensor 

connecting the f-orbital functions, frf 44 2
 is the squared radial expectation values 

of 4f orbital of Ln, )(L  is the mean polarizability of ligand L, LR  is the distance 

between Ln and ligand, )(1 LC m







 is the (-th rank Racah tensor depending on the 

ligand structure. It should be noted that compared with the expression of the transition 

intensity by Fermi‟s Golden rule in (26), the JO intensity parameter , which is 

proportional to the TDM, also contains the square of quadrupole moments between 4f, 

that of the polarizability of the ligand (L), and the minus eighth power of the distance 

between Ln and the ligands 8
LR . 

Here, as already pointed by Judd [26], it is noticed from the values for matrix elements 

of irreducible tensor operators [33]-[36] that the matrix elements of U
(2)

 have notably 

large values only in the hypersensitive transitions, whereas those of U
(4)

 and U
(6) 

are less 

sensitive to the transitions. An example of the matrix elements of U
()

 for Pr
3+

 is shown 

in Table 2-1. As is clear from this table, matrix element of U
(2)

 has a large value only in 
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the hypersensitive transition (
3
H4→

3
F2), whereas those of U

(4)
 and U

(6) 
are less directly 

related to the hypersensitive transition. 

 

 

Table 2-1: Matrix elements of U() (=2, 4, 6) for Pr
3+

 from 
3
H4.

 a
 

States U
(2)

 U
(4)

 U
(6)

 
3
H5 0.1095 0.2017 0.6109 

3
H6 0.0001 0.0330 0.1395 

3
F2 

b
 0.5089 0.4032 0.1177 

3
F3 0.0654 0.3469 0.6983 

3
F4 0.0187 0.0500 0.4849 

1
G4 0.0012 0.0072 0.0266 

1
D2 0.0026 0.0170 0.0520 

3
P0 0 0.1728 0 

3
P1 0 0.1707 0 

1
I6 0.0093 0.0517 0.0239 

3
P2 ~0 0.0362 0.1355 

1
S0 0 0.0070 0 

a
 The values of matrix elements from Ref. [33]. 
b
 The final state of hypersensitive transition in Pr

3+
. 

 

 From these reasons, it can be interpreted that the factors of hypersensitivity are 

concentrated on the term of = 2 in eq.(29), namely . In fact, the magnitude relation 

is 642 ,   in LnX3 molecules in vapor phase [12] and these oscillator strengths 

can be evaluated only by the term of = 2 in eq.(14). Because of this reason, 

hypersensitive transitions have generally the largest oscillator strengths among possible 

final states, and are more sensitive to the change of  value than other transitions. 
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2.2. Theoretical Evaluation of Transition Intensity 

2.2.1. Oscillator Strength and Transition Dipole Moment 

When an atom or molecule absorbs light, a transition from one quantum state to 

another can occur, where the excitation energy corresponds to the wavelength of the 

light. The oscillator strength is a dimensionless quantity which expresses the strength of 

the transition from an initial state I to a final state F and is written as  

F

N

k

kIIF

e

IF EE
m

f  
1
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3

2
r


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Here, EI and EF are the electronic energies of I and F, respectively. 
F

N

k

kI  
1

r  

is the transition dipole moment from I to F, rk is the position of k-th electron and N is 

the number of electrons in the system. In the second-quantized form [37], the transition 

dipole moment from a state I to a state F can be written as 

.),(
MO

,

MO

,1



 



 



ji

FI
ji

ji

FjiIjiF

N

k

kIIF

ji

aa








r

rrM

 (31) 

where   is the molecular orbital (MO), 

ia  and 
ja  are the fermion creation and 

annihilation operators for an electron in MOs i  and 
j  respectively, with spin  and 

),( jiFI  is the transition density matrix element. 

As mentioned before, the crystal field splittings of 4f
N
 states in lanthanide compounds 

are smaller than the spin-orbit (SO) splittings, and the electronic states of lanthanide 
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trivalent ion (Ln
3+

) in crystal-fields are usually similar to those of free Ln
3+

. Therefore, 

all the electronic states of LnX3 correlated with 
J

S L12   of Ln
3+

 are also named as 

J

S L12  . When the initial and final states are degenerate, the oscillator strength is defined 

by the sum over the final states and the average over the initial states. For example, the 

oscillator strength from initial multiplet 
J

S L12   to final one 
J

S L 

 12  can be expressed 

as 

2
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, (32) 

where v and w are all the states included in 
J

S L12   and 
J

S L 

 12 , respectively. 

 

2.3. Graphical Unitary Group Approach 

2.3.1. Brief Survey 

When ab initio calculations are carried out for large molecules with a high degree of 

accuracy, the computational efforts must increase. Therefore, many calculation methods 

and algorithms have been developed. “Graphical Unitary Group Approach (GUGA)” 

[38]-[40] is one of the methods which can reduce computational efforts significantly. In 

this section, the author makes a brief survey on the basis of GUGA. The relation 

between quantum mechanics and “the unitary group” is explained firstly, after that how 

to express electronic structure with the unitary group is mentioned. Finally, the method 

how to reduce computational efforts of configuration interaction calculation with 
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GUGA is explained. 

 

 2.3.1.1. Relation between Unitary Group and Quantum Mechanics  

The unitary group U(n) is the group containing all unitary matrices of order n. It is one 

of the continuous groups and Lie groups, whose elements can be generated by a finite 

set of operators, called “generators” [41]. The commutation properties of the generators 

of a Lie group define the group. In the case of the unitary group U(n), the generators are 

a set of operators Fij ( i, j = 0, 1, …, n ) that satisfy the commutation relation as 

kjililjkijklklij FFFFFF  

 

. (33) 

Here, we focus attention on the spin-preserving substitution operator in the second- 

quantization method Eij, which is expressed as 




 jijijiij aaaaaaE  
 

, (34) 

where 

ia  and ia  are the fermion creation and annihilation operators, respectively, 

for spatial orbital i with spin . It is well-known that these operators Eij satisfy the 

commutation relation as 

kjililjkijklklij EEEEEE  

 

, (35) 

which is completely the same as that of generators Fij of U(n). This is the most 

important relation between the unitary group and quantum mechanics, especially 

electronic structure theory. In other words, it is considered that spin-free Hamiltonian in 
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the second-quantization, which is expressed as 
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can be represented with the generators of the unitary group. Because the Hamiltonian 

can be expressed with the generators of the unitary group, the wavefunctions, which are 

eigenfunctions of the Hamiltonian, must be expressed with the irreducible 

representation of this group. Therefore, we focus on irreducible representation of the 

unitary group in the following section. 

  

2.3.1.2. Representation of Electronic Structure with Unitary Group Approach 

The irreducible representations of the unitary group U(n) are identified by “Young 

shapes” and the components of the irreducible representations are identified by “Weyl 

tableaux” [41]. Young shape is a graph with N≦2n boxes with the number of boxes in 

each row non-increasing downwards, such as 

 ,  

(37) 

In the case of electronic structure calculations, Young shapes restrict those with at most 

two columns, such as 
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 , 

(38) 

where a and b are the number of two-box and one-box rows, respectively. The 

dimension of the unitary group n represents the total number of molecular orbital (MO) 

basis, the number of boxes N (= 2a+b) represents the number of electrons, and the 

number of one-box rows b in the Young shape represents the double total spin quantum 

number 2S. 

The individual components of each irreducible representation are specified by 

populating the boxes with distinct “tokens”, which is called Weyl tableaux, as 

 . 

(39) 

Each token represents the molecular orbital (MO) in their sequential order. Thus an MO 

is always represented by the same token. Here, the author describes an example how to 

represent the electronic structure with the Weyl tableaux by using eq. (39). Eq. (39) 

expresses one of the triplet eight-electron electronic configuration state functions 

(CSFs), because it has eight boxes and two one-box rows, which express 2S. Here, MOs 

can be classified into 4 types and these types are named by step number d as follows: (i) 
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d = 0; MOs whose tokens do not appear in the Weyl tableau, which are defined as empty 

MOs, (ii) d = 1; those whose tokens appear once on the first (left-side) column, which 

are defined as singly occupied ones so as to raise S by 1/2, (iii) d = 2; those whose token 

appear once on the second (right-side) column, which are defined as singly occupied 

ones so as to lower S by 1/2, and (iv) d = 3; MOs whose tokens appear twice, which are 

defined as doubly occupied ones. By applying this definition, Eq. (39) can be rewritten 

as Table 2-2. 

Table 2-2: Sequential orbital coupling 

MO (i) ai bi Ni Si di 

7 3 2 8 1 3 

6 2 2 6 1 1 

5 2 1 5 1/2 2 

4 1 2 4 1 1 

3 1 1 3 1/2 0 

2 1 1 3 1/2 1 

1 1 0 2 0 3 

0 0 0 0 0  

 

As shown in Table 2-2, we begin with null entry at the bottom of the table, and proceed 

upwards. Adding the first MO, d1 = 3 identifies a doubly occupied MO. Adding the 

second MO, d2 = 1 identifies a singly occupied MO coupled to raise Si by 1/2. Adding 

the third MO, d3 = 0 identifies an empty MO and Si does not change. The remaining 

rows (MOs) can be determined as the same manner. As shown above, the two-column 

Paldus ab tableau [38] fully specifies the Weyl tableau and is a compact and convenient 
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way to represent the spin-coupled function (CSF). Additionally the step vector d can 

also specify the Weyl tableau and is the most compact representation of the CSF. The 

incremental orbital coupling process is resemble to the Yamanouchi-Kotani 

spin-coupling scheme and corresponds to using the sequence of Unitary groups U(1), 

U(2), ..., U(n), in the group subduction chain 

)1()2()1()( UUnUnU  
 

, (40) 

adapting the partial CSF to the corresponding irreducible representation at each stage.  

The top (a, b) row of the Paldus tableau can identify the shape of Young shape, as well 

as the corresponding electronic state, 

2/,2 bSbaN 

 

. (41) 

Each Paldus tableau with the top row (a, b) specifies one of the CSFs of the full-CI 

expansion according to the incremental coupling scheme described previously. These 

tableaux can specify an orthonormal set of CSFs. Thus, we can specify the full-CI 

expansion set or any subset of it by the corresponding set of Paldus tableaus or the step 

vectors. As seen so far, the relation between these parameters are shown in Table 2-3. 

Here,  means the amount of change of each parameter or physical quantity. 

 

Table 2-3: Relation between step numbers and quantum numbers 

id  ia  ib  ic  iN  iS  

0 0 0 1 0 0 

1 0 1 0 1 1/2 

2 1 -1 1 1 -1/2 

3 1 0 0 2 0 
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2.3.1.3. Graphical Representation 

 In the previous section, it was described that CSFs, which are the basis of CI 

expansion, can be specified by the compact representations, such as Paldus tableaus or 

step vectors. Next, the author draws a graphical representation of CSFs by using the 

step number vectors. An example is shown in Figure 2-1. It represents the graph for the 

full-CI expansion for n = 6, N = 5, b = 2S = 1. 

 

 

Figure 2-2 : Graphical representation of CSFs in GUGA 

 

The DRT table, which contains Paldus tableau and step number vector, can be 

visualized in terms of a directed graph, in which each distinct row is represented by a 

“node”, which means circle in Figure 2-2, and each link between two nodes is 
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represented by an arc pointing from the bottom of the link to its top. In this graph, 

different step numbers di are represented by arc of different slope.  

In this graph, only two CSFs that have a closed-loop with specific shape can have 

non-zero contributions to the density matrix  ijE . Therefore, once the graph is 

created, all the non-zero matrix elements of the density matrix can be listed and 

calculated without examined all the pairs of two CSFs, which is a special feature of 

GUGA used to significantly reduce computational efforts. 

 

2.3.2. Application to the Calculation of Transition Density Matrix 

  As shown in eq. (31), the transition dipole moments can be represented as the trace of 

the products of dipole moment matrix elements and transition density matrix elements. 

To use the GUGA algorithm for calculation of transition density matrix, the author 

changed the original GUGA algorithm to be able to calculate the matrix elements 

between two MOs with different irreducible representations. Concretely speaking, in the 

numbering of CSFs, which is in the so-called lexical ordering scheme, all the CSFs 

including different irreducible representations are considered, while only the CSFs with 

the same irreducible representation were considered in the original GUGA scheme. 

After that, the loops, which express the coupling matrix elements between two MOs 

with all the CSFs, are generated. In this way, all the matrix elements between two MOs 
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in different irreducible representations can be evaluated automatically. The remaining 

calculations can be done as in the original GUGA scheme. In this study, the author 

coded and attached a program to compute transition density matrix with this scheme to 

the COLUMBUS program package and all the TDMs and oscillator strengths are 

calculated with this scheme.  



44 

 

Chapter 3   

 

Calculation of f-f Oscillator 
Strength of PrX3 and TmX3 
 

In this chapter, the oscillator strengths of both hypersensitive and non-hypersensitive 

transitions of PrX3 and TmX3 (X = Br, I), whose computational efforts are smallest 

among LnX3, are evaluated with ab initio method using the program mentioned in the 

previous section 2.3. Furthermore, the origin of f-f transition intensities is examined 

focusing on the effects of molecular vibration, f-d mixing, and other configuration 

mixings. 

 

3.1. Oscillator Strengths and Excitation Energies of Lanthanide 

Trihalides  

3.1.1. Calculation Methods 

Ab initio calculations were performed for LnX3 (Ln = Pr, Tm; X = Br, I) by the SOCI 

method using the COLUMBUS program package [42]. The geometries of LnX3 were 

D3h with the experimental bond lengths [43], 5.08, 5.48, 4.88, 5.27 (Bohr) for PrBr3, 

PrI3, TmBr3 and TmI3, respectively. The model core potential (MCP) method, which 
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replaces the effects of the core electrons with MCPs, was used, and their integrals were 

evaluated with the GAMESS program [44]. The valence shells of the MCP methods are 

4f5s5p5d6s for Ln [45], 3d4s4p for Br and 4d5s5p for I [46]. The author used 

(10s,7p,7d,6f)/[5s,3p,4d,4f] basis set [45],[47] for Ln, and (8s,7p,8d)/[3s,3p,3d] basis 

sets [46], [47] for halogens. The approximate one-body SO Hamiltonians [48] written as 

 
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Atom
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jjA

jAr

AZ
H sl
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eff

2
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2
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, (42) 

were used and the values of Zeff for Ln were determined to reproduce the experimental 

SO splittings of low-lying 4f
2
 excited states of the trivalent ions [49] and those of 

halogens were determined to reproduce the experimental SO splittings between 
2
P3/2 and 

2
P1/2 of the neutral atoms [50]. Molecular orbitals (MOs) were determined by the 

state-averaged SCF method optimized for the averaged state of all the configurations 

derived from 4f
N
.  

For the SOCI calculations, configuration state functions (CSFs) with all the possible 

spin multiplicities derived from the 4f
N
 reference CSFs were generated in the first-order 

CI scheme, in which all the one-electron excitations from/to the reference CSFs were 

generated. The doubly occupied orbital spaces consisting of 5s
2
5p

6
 for Ln

3+
and 

(ns
2
np

6
)3 for (X


)3 (n = 4 for Br and n = 5 for I), and the external space consisting of all 

the SCF virtual orbitals were fully considered, so that all the relevant one-electron 
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excitations for Ln f-d mixing, LMCT, and intra-ligand excitations could be 

simultaneously accounted for. To calculate the oscillator strengths, the GUGA program 

mentioned in section 2.3.2 were used to calculate the transition density matrixes. The 

dipole length form was used as in eq. (32). 

 

3.1.2. Praseodymium and Thulium Trihalides 

Table 3-1 shows the oscillator strengths of PrX3 and Table 3-2 shows those of TmX3. 

The hypersensitive transitions reported in experimental studies [11] are as follows; from 

3
H4 to 

3
F2 for Pr

3+
, from 

3
H6 to 

3
F4 and to 

3
H4 for Tm

3+
. As shown in Tables 3-1 and 3-2, 

the oscillator strengths of both hypersensitive transitions and non-hypersensitive 

transitions are evaluated quantitatively, even though the values are as small as 10
-6

 to 

10
-5

. 

Table 3-1: Oscillator strengths ( f×10
6 

) of PrX3 from 
3
H4. 

States 
PrBr3 PrI3 

Calc. Expt.
a
 Calc. Expt.

a
 

3
H5 1.16 - 2.21 - 

3
H6 0.12 

20.0
 b
 

0.13 
40.0

 b
 

3
F2 28.08 52.91 

3
F3 3.62 

1.0
 c
 

7.08 
13.4

 c
 

3
F4 1.18 1.71 

          a
 Experimental oscillator strengths from Ref. [11]. 

b
 The sum of oscillator strengths to 

3
H6 and 

3
F2. 

c
 The sum of oscillator 

strengths to 
3
F3 and 

3
F4. 
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Table 3-2: Oscillator strengths ( f×10
6 

) of TmX3 from 
3
H6. 

States 
TmBr3 TmI3 

Calc. Expt.
a
 Calc. Expt.

a
 

3
F4 7.59  12.0 10.23  10.7 

3
H5 2.97  2.7 4.95  4.6 

3
H4 12.19  15.3 22.26  25.3 

3
F3 0.56  

 3.3
 b
 

0.68  11.0 

3
F2 0.05  0.09  

- 
1
G4

 
4.48  4.5 7.39  

          a
 Experimental oscillator strengths from Ref. [11].  

b
 The sum of oscillator strengths to 

3
F3 and 

3
F2. 

 

Note that the molecular symmetry of D3h is not a point group to which the selection 

rule by Judd [26] is applicable as was mentioned in section 2.1.2. The irreducible 

representations of the initial and final states, which carry the largest transition moments, 

were both E’ and the components of these transition dipole moments were in the 

direction of the molecular plane ( E, yx ). This result corresponds to the interpretation 

of the DC model that suggested the components of induced dipole of the halide ligands 

are the direction of the molecular plane [12]. 

 

3.2. Effect of Molecular Vibration on Oscillator Strength 

3.2.1. Theory and Calculation Methods 

If vibrational degrees of freedom are taken into consideration, photoabsorption 

intensity at a photon frequency  consists of many vibronic transitions, each of which is 
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proportional to the squares of transition dipole moments between initial and final 

vibronic states, described as follows, 

 

, (43) 

where I

   and F

'  are vibrational wavefunctions on the electronic states I and F, 

respectively. F

v

I

v EE  ,  are their vibronic energies with symbolic vibrational quantum 

numbers” and‟, and FIM  is geometry dependent electronic transition dipole 

moment. W” is the Boltzmann distribution factor of the initial electronic state.  

As is well-known, 4f-electrons have a negligibly small contribution to chemical 

bonds, and relevant potential energy surfaces for the electronic states I and F in f-f 

transitions are very similar in shape, and their vertical energy difference is almost 

independent of molecular geometry. This characteristic allows the author to use the 

common normal coordinates Q for the electronic states I and F and to assume no 

photoabsorption intensity unless ”‟.  With these considerations, eq. (43) can be 

simplified to the following expressions, 

 

 

, 

(44) 

)(||||
,

  



 I

v

F

v

vv

v

F

vIF

I

v

I

vFI

F

v EEWMM



 





















v

vIF

I

v

I

vFIIF

vv

v

F

vIF

I

v

I

vFI

F

vIF

vv

v

F

vIF

I

v

I

vFI

F

vIF

WddEE

WddEE

WEE

)()()()()()(

)()()()()()()(

||||)(

'*'''

,

'''*'*

,

QMQQQMQQQQ

QQQMQQQQMQ

MM







,)()()()()( *


 
v

v

I

v

I

vIFFIIF WdEE QQQMQMQ 



49 

where the contributions to all the vibrational states )(' Q
F

v on the final electronic state F 

are summed over and the completeness relation has been used. In order to estimate the 

impact of each normal vibration Qi on the oscillator strength, The author evaluated the 

above integrals only along normal coordinate Qi, with keeping )(0 ijQj  , that is, 

   







 vi

I

vi

FI

ii

FI

i WQQfdQf
2

 

, (45) 

where  i

FI

i Qf   is the oscillator strength function calculated at normal coordinate Qi. 

This integral FI

if can be interpreted as an averaged oscillator strength calculated with the 

weight of the existing probability function [51]. 

 The author used this method to the oscillator strengths of PrBr3. Full geometry 

optimization and vibrational analysis of PrBr3 were carried out on the GAMESS [44]
 

program system with the MCPs. The vibrational wavefunctions in eq. (45) were 

obtained by the finite difference grid method (FDM) [44]-[46] with a Mathematica 

program. The temperature value in the Boltzmann distribution factor was 1000 K 

corresponding to the experimental temperature in the vapor phase [11]. The oscillator 

strength function  i

FI

i Qf   along each normal coordinate was calculated with SOCI 

method with the same calculation level mentioned in section 3.1. The total number of 

the grid points representing each potential function ranges from 10 up to 20. The 

vibrational states I

  , whose populations were larger than 0.001, were included in 

eq.(45). 
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3.2.2. Application to Praseodymium tribromide 

Full geometry optimization and vibrational analysis of PrBr3 were carried out and the 

equilibrium structure and six normal coordinates Qi were obtained as shown in Figure 

3-1.  

 

Figure 3-1. Normal vibrations of PrBr3 molecule given by the vibrational analysis. 

Qna(E‟) and Qnb(E‟) (n = 3, 4) are doubly degenerate vibrations. 

 

The optimized bond lengths of Pr-Br and the symmetry were 5.20 (Bohr) and D3h, 

respectively, in good agreement with previously obtained results by Cundari et. al [16]. 

This bond length is also in reasonable agreement with a recent theoretical one, 5.15 

(Bohr) with CASPT2 [21] and with experimental one [43], 5.08 (Bohr). The frequency 

of each normal vibration, as shown in Table 3-3, is also in reasonable agreement with 

experimental one [55].  
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Table 3-3: Oscillator strengths ( f×10
6 

) of PrBr3 in consideration of normal vibrations. 

Modes Q1 (A1’) Q2 (A2”) Q3(E’)
 a
 Q4 (E’)

 a
 

Frequencies
 b

 196.4 35.4 245.7 45.8 

Expt.
 c
 193 31 236 45 

3
H6 

0.11
 d
 0.10 0.11 0.11 

(-0.18%)
 e
 (-6.24%) (1.11%) (-0.64%) 

3
F2

 
27.29 26.41 27.29 26.33 

(0.05%) (-3.15%) (0.05%) (-3.47%) 

3
F3 + 

3
F4

 
4.52 4.49 4.53 4.49 

(-0.01%) (-0.63%) (0.11%) (-0.62%) 
a
 The average values of doubly degenerate components in each normal vibration.      

b
 Frequencies (cm

-1
) calculated by FDM.  

c
 Experimental frequencies from Ref. [49].     

d
 The upper stand shows oscillator strengths. 

e
 The lower stand shows relative changes (%). 

 

The molecular symmetry is lowered by the normal vibrations except for the totally 

symmetric stretching vibration Q1(A1’). The oscillator strengths including the 

vibrationally excited states of each normal vibration and their relative changes from 

those calculated at the equilibrium structure are shown in Table 3-3. The relative 

changes become larger as the frequency of normal vibration becomes smaller, yet they 

do not exceed about 6%. The out-of-plane bending vibration Q2(A2”), the doubly 

degenerate stretching vibrations Q3(E’), and the doubly degenerate bending vibrations 

Q4(E’) can lower the molecular symmetry from D3h to C3v, Cs, C2v, respectively, in 

which the hypersensitivities can be observed according to Judd [26] as mentioned in 
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section 2.1.2. Therefore it is confirmed again that the theory cannot give consistent 

explanation for LnX3 systems. It turns out that the effect of molecular vibration on the 

f-f intensity is negligibly small and that molecular vibration cannot be a cause of 

hypersensitivity in contradiction to the previous interpretation by Gruen et al. [11] and 

Henrie et al. [28]  

 

3.3. Shift of 5d Orbitals in Pr to Higher Energy Region 

3.3.1. Model Core Potential Shift Operator 

The atomic Hamiltonian for Nv valence electrons in the MCP method [45],[46]can be 

written as follows, 

 




 











vv core

1

1 1

mcpmcp )(
2

1 N

ji

ij

N

j

n

c

cccjj rBrVH 

 

, (46) 

where {c}, (c = 1s, 2s, …, ncore), denote core orbital functions. The projection operator 

 cccB   is called energy shift operator because the energy levels of core orbitals 

are shifted. By including 5d orbital of Pr to this shift operator, the 5d orbital could be 

shifted to a higher energy region. Note that the purpose of this shift is different from 

that of the original MCP shift operators. The 5d orbitals were expanded in terms of 

Gaussian-type functions [45] with an augmented d-polarization function (d = 0.45) to 
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reproduce the shape of the 5d orbitals calculated with all-electron HF method. The 

values of B5d were set to 0.1, 0.5, 1.0, and 5.0 a.u. 

 

3.3.2. Calculation of Oscillator Strength with Shift Operator 

The author next tried to test the accepted theory by Judd and Ofelt [6],[7] that f-f 

intensity is induced by the mixing of the opposite parity configuration, such as 4f
N-1

5d
1
, 

into the 4f
N
 states. If this interpretation is correct, the oscillator strength should become 

smaller as the mixing of the 5d component into 4f becomes smaller. The author focused 

attention on only 5d orbitals because the population of 5d orbitals was much larger than 

that of other virtual orbitals, such as 6s and 6p orbitals. To observe the decrease of the 

f-d mixing, The author shifted 5d orbitals to a higher energy region by adding MCP 

shift operators of the 5d orbitals to the Hamiltonian. By doing so, the mixing of the 5d 

components into the 4f orbitals, therefore the mixing of the configurations of 4f
N-1

5d
1
 to 

the 4f
N
 states could be decreased. The oscillator strengths of PrBr3 calculated in this 

way are shown in Table 3-4. With the 5d MCP shift operators, the oscillator strengths 

from 
3
H4 to 

3
PJ (J = 0, 1, 2) were decreased whereas those of the other transitions were 

increased contrary to the original expectation. From this result, it is clear that there exist 

other mechanisms than the f-d mixing for explaining f-f transitions including the 

hypersensitive transitions. 
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Table 3-4: The oscillator strength ( f×10
6 

) of PrBr3 with 5d shift operators with various 

B5d values. 

States B5d = 0 B5d = 0.1 B 5d = 0.5 B 5d = 1.0 B 5d = 5.0 

3
H5 1.16 1.30

 c
 1.88 2.24 2.65 

3
H6 0.12 0.11 0.12 0.14 0.18 

3
F2 28.08 30.63 43.47 51.79 61.05 

3
F3 3.62 3.71 4.86 5.61 5.82 

3
F4 1.18 1.23 1.65 1.99 2.98 

1
G4

 
0.12 0.11 0.11 0.12 0.15 

1
D2

 
0.47 0.54 0.77 0.93 1.17 

1
I6

 
3.21 3.18 4.16 4.75 5.27 

3
P0

 
1.68 0.90 0.33 0.55 1.16 

3
P1

 
1.54 0.93 0.56 0.78 1.27 

3
P2

 
0.70 0.53 0.36 0.30 0.24 

 

3.4. Decomposition of f-f Oscillator Strength 

The author next examined the oscillator strengths in detail to find out electronic 

excitations which make dominant contributions to the oscillator strengths. The transition 

dipole moment is expressed with MO-basis transition density matrix as  

 
ifif

FI

ifFI ifif
,,

),(),( mrM  . (47) 

Because MOs contain the components of both lanthanide and halogen, the author 

transforms MOs to atomic orbitals (AOs) to clarify which excitations, such as those 

from lanthanide to lanthanide or from ligands to lanthanide, contribute to the oscillator 

strengths. MOs are expressed in the linear combination of AOs as 


s

ssii c AO , 
r

rrff c AO , 
(48) 
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where 
AO  is AO and c is the expansion coefficient. Then eq. (47) can be written as 

,),(

),(),(

,

,

AOAO

, ,

AOAO



 





sr

sr

FI

sr

sr if

FI

sirfsrFI

sr

srPifcc

m

rrM 

 (49) 

where ),( srPFI
 is the AO-basis transition density matrix. Here, the oscillator strength 

from initial states 
J

S L12   to final states 
J

S L 

 12  is written as the summation of the 

squares of the transition dipole moments all over the states correlated with the initial 

and final states. Eq. (49) can be rewritten by squaring both sides as  

, (50) 

and then the formula of the oscillator strengths is expressed as follows, 

, (51) 

where FI is the excitation energy from a state I to a state F and A is . The 

values of ),( sr   and the relative intensities defined as  

)(

),(
1212

J

S

J'

S' LL'f

sr
 


, (52) 

were calculated for PrBr3 and TmBr3 and are shown in Figure 3-2. Here, the oscillator 

strengths were classified into four groups, such as )Ln,Ln(  , )Ln,X( 3  , )X,Ln( 3   

and )X,X( 33  , where Ln denotes all the AOs on lanthanide and X3 denotes all the 

AOs on halogens.  

  As shown in Figure 3-2 (a-2), in the case of PrBr3, the contributions of )Ln,Ln(   

dominate the intensities of transitions from 
3
H4 to 

3
PJ (J = 0, 1, 2) whereas those of 

 
sr

FIFI srM
,

2 ),(mM

    

srIF sr

FIFI

IF

FIFIJ

S

J'

S' srsrAMALL'f
,, ,,

21212 ),(),()(  Mm

1)12(32 J
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)X,X( 33   dominate the intensities of other transitions including the hypersensitive 

transition from 
3
H4 to 

3
F2. In the case of TmBr3, as shown in Figure 3-2 (b-2), those of 

)X,X( 33   dominate the intensities for almost all transitions including the 

hypersensitive ones from 
3
H6 to 

3
H4 and to 

3
F4. 

  Recalling the observation in previous section 3.3.2 for the transitions from 
3
H4 to 

3
PJ 

(J = 0, 1, 2) of PrBr3, the oscillator strengths became smaller as the f-d mixing became 

smaller. This observation is consistent with the dominant contributions of )Ln,Ln(  , 

because these oscillator strengths are mainly described by the f-d mixing mechanism, 

that is, excitations between lanthanide atomic orbitals, especially from 4f to 5d, are 

important. However, there were other transitions whose oscillator strengths were 

increased with 5d shift operators. The formal charge in LnX3 is described as Ln
3+

(X
-
)3 

and the Ln 5d orbitals are empty. In reality, however, there is non-negligible amount of 

charge transfer from ligand halogen atoms to the 5d orbitals (LMCT). 
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Figure 3-2: Calculation results of the values of ),( sr   in eq. (51) and the relative 

magnitudes in eq. (52). (a-1) and (a-2) are those for each transition from 
3
H4 of PrBr3. 

(b-1) and (b-2) are those for each transition from 
3
H6 of TmBr3. Blue, pink, yellow, and 

green bars are those for )Ln,Ln(  , )Ln,X( 3  , )X,Ln( 3  , and )X,X( 33  , 

respectively. 
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When 5d orbitals of lanthanide are shifted to a higher energy region, the LMCT 

would be less efficient, and the population in valence p orbitals of halogens is increased. 

If this is the case, the increase of the contributions of intra-ligand excitations is expected. 

As explained in what follows, these intra-ligand excitations dominate intensities of most 

of the f-f transitions, therefore the 5d shift operation would increase the oscillator 

strengths for these transitions. Moreover, for the transitions from 
3
H4 to 

3
H6 and to 

1
G4 

of PrBr3 shown in Table 3-4, the oscillator strengths were decreased while the energy 

shift B5d was small, however they were increased with larger B5d values. This 

observation is consistent with the competing contributions of )X,X( 33   and other 

),( sr  , which are apparent in Figure 3-2 (a-2). 

Next, the author examined which CSFs affect the values of )X,X( 33   most 

significantly. Because the present calculations include only single excitations from the 

reference CSFs, the pairs of CSFs which contribute to )X,X( 33   are restricted to the 

following five types, 

((X3(ns,np)→Ln*), (X3(ns,np)’→Ln*)), (53a) 

((X3(ns,np)→X3(ns,np)), (X3(ns,np)’→ X3*)), (53b) 

((Ln(4f,5s,5p)→X3*), ( Ln(4f,5s,5p)→X3*’)), (53c) 

((X3(ns,np)→X3*), (X3(ns,np)→X3*’)), (53d) 

(4f
N
 , (X3(ns,np)→X3*)) and ((X3(ns,np)→X3*), 4f

N
), (53e) 
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where X3(ns,np) and X3* are occupied and virtual MOs of ligands, respectively, 

Ln(4f,5s,5p) and Ln* are occupied and virtual MOs of lanthanide, respectively, 

„4f
N
‟denotes the reference CSFs, and „(A→B*)‟ denotes the CSF that is obtained by 

one-electron excitation from an occupied MO „A‟ to a virtual MO „B*‟.  

In the present first-order CI scheme, an initial state and a final state can be expanded as 

follows, 

 
m

mm

n

nnl

l

lI dcb *)XX(*)LnX()Ln( 333

N , (54) 

 
'

'33'

'

'3''

N

'

' *)X'X(*)Ln'X()Ln(
m

mm

n

nnl

l

lF dcb , (55) 

where nl cb , and md are CI coefficients for intra-metal excitations including 4f
N
 and f-d 

mixing CSFs, LMCT, and intra-ligand excitation CSFs, respectively, for the initial state, 

whereas '' , nl cb and 'md  are those for the final state. These LMCT and intra-ligand 

excitation CSFs represent respectively the contributions described by the covalency 

model [28] and the DC model [12]-[15] mentioned in the previous sections 2.1.2 and 

2.1.3. For most lower lying 4f
N
 states, the magnitudes of the CI coefficients were found 

to be typically in the following order,  

''' ,,, mmnnll ddccbb  , (56) 

that is, the magnitudes of CI coefficients for LMCT CSFs were typically larger than 

those of intra-ligand excitation CSFs. Additionally, the amounts of mixing of reference 

(4f
N
) CSFs are more than 0.95. Therefore, a pair of CSFs in eq. (53e), which represent 
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reference and intra-ligand excitation CSFs, has a dominant contribution of order of 

'mldb
  

and ml db '  
to the transition density matrix. In a similar manner, a pair of CSFs 

in eq. (53a), both of which represent LMCT, has a contribution of order of 'nncc  to the 

transition density matrix and has smaller contribution than that in eq. (53e). A pair of 

CSFs of eq. (53b) or eq. (53d), both representing intra-ligand excitations, has a much 

smaller contribution of order of 'mmdd . A pair of CSFs in eq. (53c) represents metal to 

ligand charge transfer (MLCT) contributions, whose CI coefficients are in general much 

smaller than those for LMCT and their possible contributions to )X,X( 33   are also 

small.  

From eq. (56), it may be expected that CSF pairs of 4f
N
 and LMCT have a large 

contribution to intensity in the forms of )Ln,X( 3   and )X,Ln( 3   in Figure 3-2. 

However, as shown in eq. (47), transition dipole moments are given by the trace of 

dipole matrix elements and transition density matrix elements. In the case of PrBr3, the 

contributions of dipole matrix elements for these CSF pairs are very small because 

lower virtual Ln MOs and occupied X3 MOs do not have a significant overlap. By 

comparing the results in Figure 3-2 and also those for PrI3 and TmI3 (not shown), in 

general, the contributions of )Ln,X( 3   and )X,Ln( 3   become increased for heavier 

Ln, and for heavier X. These tendencies are expected since the orbital overlap between 
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lower virtual Ln MOs and occupied X3 MOs will be increased for heavier Ln due to the 

so-called lanthanide contraction, and for heavier X due to the increased size of X3 MOs.  

From the above consideration, it is understandable that the oscillator strengths of 

most f-f transitions including hypersensitive transitions arise from the intra-ligand 

excitations through their configuration mixings with the dominant configurations of 4f
N
. 

It is therefore interpreted that the reason of hypersensitive transitions in LnX3 molecules 

is the significant contribution of this effect which does not work much in aqueous Ln
3+

 

systems. It is also interpreted that the oscillator strengths of hypersensitive transitions 

are sensitive to the surrounding environment as a direct reflection of the sensitivity of 

these mixed states to small changes of ligands.   

  Recalling the observation in section 3.1.2, the components of large f-f transition 

dipole moments were in the direction of the molecular plane ( E, yx ). Therefore the 

irreducible representation of the X3→X3* portion must be E  for the transition dipole 

moment between the pairs of CSFs (53e) to have a large value. This symmetry 

requirement limits both X3 and X3* to have symmetry or   symmetry. Separate 

calculations on artificial molecule of (X
-
)3, whose structure was taken from LnX3, 

showed that it had large transition dipole moments of e'  symmetry for one-electron 

excitations from valence symmetry MOs ( e' ) to lower unoccupied  symmetry MOs 

( 'a1 , e' ) while those in the z direction were much smaller. These results are consistent 
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with the fact that the f-f transition dipole moments had large values only in the direction 

of molecular plane.   

  Next, the author compared the results with the DC model [12], which considers the 

effect of intra-ligand polarized type excitation. In the DC model, the oscillator strength 

is derived in the same way as the Judd-Ofelt theory by adding intra-ligand excitation 

configurations to the opposite parity configurations as follows, 

 





lb

lb

lba

alb

a
EEE

V

,

33

N

N

33

N

N

f4
*)XX()f4(

)f4(*)XX()f4(
)f4(N , (57) 

where V denotes the intersystem coulombic potential whose perturbation matrix element 

can be approximately expanded in the product of f-f transition quadrupole moment of 

lanthanide and transition dipole moment of ligand, and lb
N *)XX()f4( 33   

denotes the CSF that is obtained by one-electron excitation from an occupied MO of X3 

to a virtual MO of X3* with the (4f
N
)b configuration. Comparing eq. (57) and eq. (54), it 

is obvious that the essential part of the DC model, that is, the coulombic correlation 

between the transition quadrupole moment of Ln and the transition dipole moment of 

the X3 portion can be accounted for in the present first-order CI scheme.  In the DC 

model, the expression of f-f transition dipole moments yields the squares of transition 

dipole moments of ligand, which can be further reduced to the components of the 

polarizability tensor of the ligand [12]. Therefore including the intra-ligand excitation 
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contributions in the present first-order CI scheme corresponds to considering the effect 

of the dynamical coupling between Ln and the X3 portion, with ligand-polarization 

taken into account. 

As Tables 3-1 and 3-2 show, the oscillator strengths of hypersensitive transitions are 

larger than those of others. Moreover, as Figure 3-2 shows, these hypersensitive 

transitions are dominated by )X,X( 33  , and this dominance of )X,X( 33   can also 

be seen in most other transitions. This observation is consistent with the DC model. In 

this model, only the expression of  parameter is different from those of the original 

Judd-Ofelt theory. The  parameters of the DC model contain the polarizability of the 

ligand and the ligand-polarization contributions to these parameters are very large only 

for the  (i.e. 2J ). Therefore it is interpreted that the magnitude relation between 

transitions is caused by the magnitude relation of the matrix element of reduced tensor 

operator U
(2)

 [33], because  and  are very small. In other words, the mechanism of 

the DC model can be adapted to not only so-called hypersensitive transitions but also 

other transitions with 2J . In this way, the semi-empirical DC model could explain 

the hypersensitivity of transitions with 2J . However the author emphasizes the 

current ab initio calculations showed that the transitions with very large contributions of 

 33 X,X   are not limited to the case of 2J .  
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As Tables 3-1 and 3-2 show, the oscillator strengths of LnI3 are larger than those of 

LnBr3. In order to explain the difference between ligands, the author tested the effect of 

magnitude of the SO effect by changing the values of Zeff and proved that the SO effect 

of X3 on the oscillator strength was very small. Therefore considering the DC model 

containing the polarizability of the ligand in  and the results of these test calculations, 

it is interpreted that the magnitude order between ligands seen in Tables 3-1 and 3-2 is 

explained by that of the polarizability of the ligands. In summary, to contain all the 

effects in the evaluations of oscillator strengths, ab initio calculations should be carried 

out.  
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Chapter 4   

 

Comparing ab initio calculation 
with the dynamic-coupling 
model for LnBr3  

 

In this chapter, the origin of f-f hypersensitive transition intensities is discussed by 

comparing the two Judd-Ofelt intensity parameters 2 evaluated with the dynamic- 

coupling model and those with the ab initio calculations for LnBr3 (Ln = Pr, Nd, Pm, 

Sm, Eu, Tb, Dy, Ho, Er, Tm). The author focuses on the components of transition dipole 

moment divided by the atomic orbitals on Ln and Br3. 

 

4.1. Oscillator Strengths, Excitation Energies and Judd-Ofelt Intensity 

Parameters of LnBr3  

4.1.1. Calculation Methods 

Ab initio calculations were performed for LnBr3 (Ln = Pr through Tm except for Gd) 

by the multi-reference spin-orbit configuration interaction (MRSOCI) method [25] 

using the COLUMBUS program package [42]. The MCP method by Sakai et al. was 
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used as in the previous section 3. The author used the same basis sets for Ln [45],[47] 

and more diffuse MCP-DZP basis set with diffuse functions (9s,8p,8d)/[4s,4p,3d] for Br 

[46],[56] to calculate the excitation energies, oscillator strengths,2(dc) and 2(ab). The 

bond lengths between Ln and Br in the D3h structure, the effective nuclear charges Zeff, 

MOs, and CI spaces were determined as in the previous section 3.The author carried out 

the “standard SOCI” [25] calculations where the total Hamiltonian including the SO 

term was diagonalized in the basis of all the CSFs for PrBr3, EuBr3, TbBr3 and TmBr3. 

For the remaining LnBr3, however, the Davidson diagonalization algorithm with the 

standard SOCI method exhibited poor convergence, especially for higher lying excited 

states, where a large number of states are densely populated. For the rest of LnBr3, the 

author therefore employed the “contracted SOCI” method where the total Hamiltonian 

including the SO term was diagonalized in the basis of spin-free CI eigenstates whose 

main configurations are 4f
N [57].  

The JO intensity parameters 2(ab) were evaluated using the relation eq. (58) with the 

calculated excitation energies  and the oscillator strengths f as follows,    

2

'

1'2)(12

2 '
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
 J

S

J

S LL
J

fab 


 U

. 

(58) 

Here, the author considered only the dominant term of = 2 and neglected small terms 

of = 4, 6 in eq. (14). [12]. The matrix elements of U
(2)

 employed were those listed in 

Refs [33]-[36].  JO intensity parameters 2(dc) as derived from the DC model were 
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evaluated using eq. (29). The polarizability of Br
-
 was calculated with the corresponding 

first-order SOCI method and the values of 
2

2 f4f4 r  were calculated with the same 

state-averaged SCF method as before with the same MCP basis set [45]-[47],[56] 

mentioned above. 

 

4.1.2. Results and Discussion 

Table 4-1 shows the excitation energies and oscillator strengths of hypersensitive 

transitions of LnBr3. The excitation energies are slightly overestimated in comparison 

with the experimental ones [11], while the oscillator strengths are in reasonable 

agreement [11] though the values are as small as 10
6

 to 10
4

. The JO intensity 

parameters 2(ab) and 2(dc) evaluated by the two methods are compared in Figure 4-1. 

The polarizability of Br

 used for 2(dc) was (Br


) = 37 a.u., in reasonable agreement 

with the empirical ones, 28 and 30 a.u. [58],[59]. It should be noted that the oscillator 

strengths of PrBr3 and TmBr3 in Table 4-1 are larger than those in chapter 3, which 

were underestimated by the previous smaller basis set for Br, with which a small 

polarizability (Br

) = 12 a.u. was produced. 
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Table 4-1 : Excitation energies ΔE (cm
-1

), oscillator strengths (f ×10
6
), and JO 

intensity parameters 2(ab) of LnBr3 

Ln Transitions a 
ΔE f 

2(ab) 
Calc. Expl.b Calc. Expl.b 

Pr 4f
2
 3

H4→
3
F2 5488  4800  36.1 20 11.7 

Nd 4f
3
 4

I9/2→
4
G5/2 21748  17300  195.4 330 10.0 

Pm 4f
4
 5

I4→
5
G2 23074  -- 125.3 -- 6.8 

Sm 4f
5
 6

H5/2→
6
F1/2 7329  6200  15.8 -- 6.7 

Eu 4f
6
 

7
F0→

7
F2 1132  -- 9.2 -- 5.9 

7
F0→

5
D2 23991  21500  0.5 -- 2.6 

Tb 4f
8
 7

F6→
7
F5 1885  -- 6.0 -- 7.7 

Dy 4f
9
 6

H15/2→
6
F11/2 8739  7700  43.9 -- 8.6 

Ho 4f
10

 5
I8→

5
G6 26380  22200  174.6 -- 7.4 

Er 4f
11

 

4
I15/2→

2
H11/2 22591  19200  28.3 58 2.9 

4
I15/2→

4
G11/2 30842  26500  99.3 99 5.6 

Tm4f
12

 

3
H6→

3
H4 5814  5500  9.6 12 9.1 

3
H6→

3
F4 12883  12600  15.6 15.3 2.9 

a
 List of hypersensitive transitions is from Ref. [11]. those of Pm, Tb, and 

7
F0→

7
F2 of 

Eu are added because the matrix elements of U
(2)

 have relatively large values [33]-[36]. 
b
 Experimental excitation energies are from Ref. [11]. 

As shown in Figure 4-1, the 2(dc) value decreases monotonically with the atomic 

number of Ln, because the value of 
2

2 f4f4 r in eq.(29) decreases monotonically 

reflecting the decrease in the size of 4f orbitals. (Note that the distance LR  between Ln 

and Br also decreases due to the lanthanide contraction. However, the rate of the 

decrease of 
2

2 f4f4 r  is larger than that of the increase of
8

LR .)  In comparison 

with 2(dc), the 2(ab) values in general have smaller values and a different Ln 

dependence, especially between Eu and Tb, but they are still in the same order of 
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magnitude. Therefore, it may be conclude that the overall behavior of 2 of LnBr3 can 

be roughly evaluated with the DC model. As mentioned above, the previous less diffuse 

basis set for Br in chapter 3 underestimated the oscillator strengths of LnBr3 compared 

with the current one. This is understandable because the f-f oscillator strengths can be 

derived mainly by the DC model and their values depend directly on the polarizability 

of the ligand. 

 

Figure 4-1: JO intensity parameters 2(dc) and 2(ab) as functions of the number of 4f 

electrons 

 

Because EuBr3, ErBr3, and TmBr3 have two hypersensitive transitions, the author has 

plotted each 2(ab) value simply as derived from eq. (58), though 2(ab) in the same 

molecule should have an identical value. The large splitting between two parameter 

values, especially in 
3
H4 and 

3
F4 of TmBr3, can be explained by the significant 
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deviations of the final states from the LS coupling scheme [57], as assumed in the JO 

theory. 

The author next focuses on the difference between 2(dc) and 2(ab). To investigate 

the reason for the different values, the author points out “the polarization shielding 

effect” [60],[61] which was not considered in the original DC model [12]-[15]. Because 

5s and 5p electrons are the outermost shell of Ln
3+

, they are distorted significantly by 

the crystal field of three Br

. It was suggested later that this effect weakens the 

Coulombic correlation between the transient-induced dipoles of ligands and the 

transition quadrupole of Ln, and was sometimes called “the shielding effect” in the DC 

model [62],[63]. This effect was considered through the Coulombic interaction of the 

perturbing polarized configurations of Ln with the 4f
N
 configurations [60]. Therefore, 

this effect can be accounted for in the current CI calculations through one-electron 

excitation configurations from the 5s and 5p orbitals, denoted as 5s5pCSFs. To 

investigate the magnitude of this polarization shielding effect, the oscillator strengths of 

hypersensitive transition in PrBr3 were calculated with the state-averaged SCF MOs, (a) 

including and (b) excluding 5s5pCSFs, and also with the natural orbitals derived from 

the averaged density matrices of the SOCI initial and final states, (c) including and (d) 

excluding 5s5pCSFs. Their results
 
were: f×10

6
 = 36.1 (a, see Table 4-1), 69 (b), 35 (c), 

and 30 (d). It is clear that the 5s and 5p polarizations have a significant effect on the 
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oscillator strengths, and the use of non-polarized 5s and 5p orbitals would result in a 

significant overestimation of the oscillator strengths. Additionally, a trend seen in 

Figure 4-1 that the size reductions of 2(ab) relative to 2(dc) for the early lanthanides 

exceed those for the late lanthanides is consistent with the decreasing tendency in this 

shielding parameter with the atomic number [64],[65]. Thus a part of the difference 

between 2(ab) and 2(dc) originates from the polarization shielding effect due to the 5s 

and 5p orbitals. 

As seen so far, general behavior of 2(ab) of LnBr3 can be roughly reproduced with the 

DC model. To verify the hypothesis that the intensities of hypersensitive transitions are 

considered essentially by the DC model, the author examines the type of dominant 

CSFs that contribute the values of 2(ab) in the following section. 

 

4.2. Decomposition of Transition Dipole Moment in Hypersensitive 

Transition 

4.2.1. Calculation Methods 

In this section 4.2, to facilitate unambiguous decompositions of dipole matrix 

elements, some diffuse basis functions were removed from the above basis sets and only 

(8s,7p,7d,6f)/[3s,3p,4d,4f] basis sets for Ln and (8s,7p,7d)/[3s,3p,2d] for Br were kept. 

With these less diffuse basis sets, the excitation energies were increased by 10 – 100 
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cm
1

, whose magnitudes were smaller than typical crystal field splittings, and the 

oscillator strengths were reduced by 10 – 20%, which still keeps sufficient accuracy for 

the analysis of the mechanism of f-f intensities. 

 

4.2.2. Results and Discussion 

The author next focuses on TDMs, because 2(ab) is proportional to the “square” of 

TDM. Since TDMs are matrix elements of one-electron coordinate operators and the 

initial and final state wavefunctions in the f-f transitions typically have higher reference 

(4f
N
) weights than 0.95, the TDM values can essentially be evaluated with the 

first-order wavefunctions; one can account for them by one-electron excitations from/to 

the reference CSFs. To find out the origin of hypersensitive transitions, the author looks 

for the dominant one-electron excitations that contribute to the TDMs.    

A hypersensitive transition (
2S+1

LJ → 
2S’+1

L’J’) actually contains (2J+1) eigenstates in 

the initial multiplet and (2J’+1) eigenstates in the final one, both of which are split by 

the crystal field. Individual pairs of the initial and final eigenstates carry different 

magnitudes of TDMs. Among these pairs, only a few pairs carry predominantly large 

TDMs, and their squared values contribute to (ab) through the oscillator strengths in 

eq. (58). For each hypersensitive transition, the author chooses a pair of the initial and 

final eigenstates with the largest TDM and decompose them for theoretical analysis. 
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Note that these largest TDMs always belong to E’ symmetry and the directions are in 

the molecular plane. 

Firstly, a TDM is decomposed into nine classes based on the characters of individual 

MOs, such as doubly occupied MOs, active (4f) MOs, and virtual MOs as follows, 
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(59) 

where I and F are the initial and final eigenstates; Nocc, Nact, Nvir, NMO are the number 

of occupied, active, virtual orbitals, and the total MOs, respectively. The first and the 

second orbital space indices in (spaceI, spaceF) denote those for the initial and final 

state wavefunctions, respectively.   
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Table 4-2 : Decomposition of TDM integrals (in %) based on the MO classes and the 

AO centers for PrBr3.
 a,b

 

 m(Ln,Ln)  m(Br,Br)  m(Br,Ln) m(Ln,Br)  Total 

(occ, vir)  -2.1 41.5 c -1.4 d 0.2 e 38.2 

(vir, occ)  -0.3 42.8 c 0.0 e -2.0 d 40.6 

(occ, act)  -0.9 6.0 -1.3 d 1.9 5.7 

(act, occ)  0.5 7.1 1.1 -0.9 d 7.7 

(vir, act)  1.7 f -0.5  0.1 e 0.3 1.6 

(act, vir)  -0.3 f 0.1  0.0 0.0 e -0.2 

(vir, vir)  -0.1 0.7 -0.3 -0.2 0.1 

(act, act)  -12.7 f 25.7 -6.5 -3.6 2.9 

(occ, occ) 0.3 3.0 -0.1 0.1 3.3 

Total -13.9 126.4 -8.4 -4.1 100.0 

 
a
 The first and second AO center indices in m(atomI and atomF) denote those for the 

initial and final state wavefunctions, respectively. 
b
 The first and second orbital space indices in (spaceI, spaceF) denote those for the 

initial and final state wavefunctions, respectively. 
c
 Contributions from the matrix elements between the reference 4f

N
 configurations and 

intra-ligand excitation configurations (Type (ii)). 
d
 Contributions from the matrix elements between the reference configurations and 

LMCT configurations. 
e
 Contributions from the matrix elements between the reference configurations and 

MLCT configurations. 
f
 Contributions considered in the JO theory. 

 

An example of such a decomposition of the TDM for PrBr3 are shown in Table 4-2, in 

which almost 80% of the TDM value comes from the two classes (excitations and 

de-excitations) between the occupied and virtual MOs, which are expressed as 

(occ,vir) and (vir,occ). In the current first-order CI scheme, these two terms originate 
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from the matrix elements between the reference CSFs and the CSFs representing 

one-electron excitations from the doubly occupied space to the virtual orbital space. If 

the individual occupied and virtual MOs were well localized in the Ln or ligand 

portions, it would be easy to characterize the physical meanings of the one-electron 

excitation CSFs which have a dominant contribution to TDMs. As schematically shown 

in Figure 4-2, the above two classes of components originate from the matrix elements 

between the reference CSFs and the four types of CSFs classified as Type(i) for 

intra-metal excitations (Ln(5s,5p) → Ln*), Type(ii) for intra-ligand excitations 

(Br3(4s,4p)→Br3*), Type(iii) for ligand to metal charge transfers (LMCT; (Br3(4s,4p)→

Ln*)), and Type(iv) for metal to ligand charge transfers (MLCT; (Ln(5s,5p)→Br3*)), 

where „Ln*‟ and „Br3*‟ denote their virtual orbitals. The characteristics of the resultant 

TDM components are also given in Figure 4-2. 
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Figure 4-2.  Electronic configurations of the reference 4f
N
 and one-electron excitation 

configurations Type (i) through Type (iv). Type (i) is a one-electron excitation from an 

occupied Ln orbital to a virtual Ln orbital. Type (ii) is an intra-ligand one-electron 

excitation. Type (iii) is a one-electron excitation from an occupied orbital in the Br3 

ligand to a virtual Ln orbital. Type (iv) is a one-electron excitation from an occupied Ln 

orbital to a virtual Br3 orbital. The components of TDM matrix elements between the 

reference configuration and Type (i) through (iv) are also expressed as those between 

the two orbitals related to the one-electron excitations. 
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Secondly, since one-electron orbitals are not localized very well in the actual 

calculations, each of the nine classes of components is further decomposed into the four 

kinds based on the following basis transformations from MOs to atomic orbitals (AOs).  

    

srsr

N

i

N

j

FjiIsjrisr srmaacc
,,

AOAO ),()virocc,(
occ vir



 r , 

where, 
r

rrii c AO , 
s

ssjj c AO . 

(60) 

The division is made by assigning the contributions of m(r,s) to m(Ln,Ln), m(Br,Br), 

m(Br,Ln), and m(Ln, Br) based on the AO centers r and s, which are contained in the 

initial and final states, respectively. Specifically, m(Ln,Ln) in (occ,vir) and (vir,occ) 

contain Type(i) contributions, m(Br,Br) in (occ,vir) and (vir,occ) contain Type(ii) 

contributions, m(Br,Ln) in(occ,vir) and m(Ln,Br) in (vir,occ) contain Type(iii) 

contributions, and m(Ln,Br) in (occ,vir) and m(Br,Ln) in (vir,occ) contain Type(iv) 

contributions, respectively.  

As shown in Table 4-2, Type(ii) has a largest contribution which is about 80 % to the 

total TDM matrix element. Type(iii) has a little contribution and Type(iv) has a 

negligible contribution. From this analysis, it is clarified that the TDMs of PrBr3 are 

dominated by the DC model, and that the LMCT effect makes no significant 

contribution to the TMDs despite the larger magnitude of LMCT CSFs in the initial and 

final CI wavefunctions than that of intra-ligand excitation CSFs. Additionally, TDMs 
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in(act,act) express those caused by mixing of other components to 4f orbitals due to 

the presence of odd parity crystal field. For example, m(Ln,Ln) in(act,act) expresses 

TDMs between f and d components of Ln, which can be regarded as the JO theory 

effect. m(Ln,Ln) in(act,vir) and (vir,act) also express TDMs between reference CSFs 

and intra-metal (Ln(4f)→Ln*) excitation CSFs, which have little contributions. 

Analyses of other LnBr3 cases have shown that the general trends in the weight of each 

component to the TDM matrix elements are similar to those of PrBr3; see Appendix. 

To give an additional reason for the different behavior of 2(ab) and 2(dc), especially 

for EuBr3, the m(Br,Br) contributions to TDMs for each of LnBr3 are compared in Table 

4-3. The DC model components of (occ,vir) and (vir,occ) have largest contributions 

in all LnBr3. Another point to note, only for EuBr3 and particularly for the 
7
F0→

5
D2 

transitions, is that the relative weights of (occ,vir) and (vir,occ) are reduced and those 

of (occ,act) and (occ,occ) are increased significantly.  In this regard, it is important 

to point out that the weight of LMCT from the doubly occupied MOs on Br to the 

empty 4f orbitals (Br3(4s,4p)→Ln*(4f)) in EuBr3 is the largest among LnBr3, reflecting 

the fact that the 4f
6
 configuration of Eu

3+
 turns to the relatively stable 4f

7
 half-filled 

configuration by accepting one electron from the ligand [66]. 
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Table 4-3: Decomposition of the m(Br,Br) integral part of TDMs (in %) based on the MO 

classes for LnBr3 

 Pr Nd Pm Sm Eu a Eu b Tb Dy Ho Er c Tm d 

(occ,vir)  41.5
 

e
 

45.8
 

e
 

44.4
 

e
 

41.8
 

e
 

35.7
 

e
 

29.0
 

e
 

44.7
 

e
 

40.2
 

e
 

45.4
 

e
 

44.0
 

e
 

42.1
 

e
 

(vir,occ)  42.8
 

e
 

42.2
 

e
 

41.1
 

e
 

41.4
 

e
 

33.8
 

e
 

21.2
 

e
 

45.4
 

e
 

39.2
 

e
 

35.7
 

e
 

37.2
 

e
 

41.3
 

e
 

(occ,act)  6.0 7.3 6.2 4.9 11.2
 f
 27.0

 f
 0.6 4.2 5.0 3.5 2.4 

(act,occ)  7.1 3.5 2.3 5.4 8.1 7.8 0.3 4.8 2.3 1.1 3.0 

(vir,act)  -0.5 -0.3 0.0 0.0 0.2 1.0 3.0 2.4 1.6 1.9 2.0 

(act,vir)  0.1 0.4 0.4 0.4 0.1 1.9 2.8 3.1 2.4 2.4 2.5 

(vir,vir)  0.7 0.5 0.1 0.0 0.2 -0.4 -0.5 -0.1 -0.2 -0.3 -0.3 

(act,act)  25.7 18.0 16.4 21.9 18.1 11.2 14.4 14.6 8.1 8.1 12.1 

(occ,occ)  3.0 2.6 0.9 1.3 7.6
 g
 15.3

g
 0.9 3.7 3.8 1.9 2.0 

Total  126.

4 

119.

9 

111.9 117.

0 

114.

9 

114.

1 

111.5 112.

1 

104.

2 

99.7 107.

0 
 

a
 Decomposition of the TDM (

7
F0→

7
F2 ) for EuBr3. 

b
 Decomposition of the TDM (

7
F0→

5
D2 ) for EuBr3. 

c
 Decomposition of the TDM (

4
I15/2→

4
G11/2) for ErBr3.  See the Appendix for the 

TDM (
4
I15/2→

2
H11/2) . 

d
 Decomposition of the TDM

 
(
3
H6→

3
H4)  for TmBr3.  See the Appendix for the 

TDM (
3
H6→

3
F4) . 

e
 Contributions from TDM integrals between the reference configurations and 

intra-ligand excitation configurations (Type (ii)). 
f 
Contributions from TDM between doubly occupied MOs on Br and 4f active orbitals 

that delocalized a little to the Br portion, which represent a part of contributions 

considered in the DC model.  
g
 Contributions from TDM integrals between two excitation configurations from 

different occupied orbitals of Br to an identical active or virtual orbital, mostly 

between two LMCT configurations (Type (v)). 
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Figure 4-3:  A pair of CSFs representing LMCTs from different occupied MOs on Br 

to an identical active or virtual orbital contribute to the (occ,occ) component in 

m(Br,Br). 

 

The importance of this type of LMCT in EuBr3 increases the magnitude of these CI 

coefficients, although their actual values are still much smaller than the dominant 4f
6 

reference CSFs. This increase in the LMCT in turn decreases the relative importance of 

the Type (ii) intra-ligand excitation CSFs and these changes in the magnitude of the 

first-order wavefunctions cause the following first- and second-order effects on the 

components of TDM in Table 4-3. 

A decrease in the relative weights of (occ,vir) and (vir,occ) for EuBr3, which is 

crucial to the decrease of 2(ab), is a first-order effect caused by the reduction of the 

importance of the Type (ii) CSFs. Similarly, an increase in(occ,act) for EuBr3 is 

caused by an increased importance of the Br3(4s,4p)→Ln*(4f) LMCT.   

An increase in the relative weight of (occ,occ) in m(Br,Br) of EuBr3 in Table 4-3 is 

an example of the second-order effect caused by the increase in the LMCT to Ln*(4f). 

Note that this increased component of (occ,occ) in m(Br,Br) originates from the matrix 
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elements between the two excitation CSFs from different occupied MOs on Br to an 

identical active or virtual orbital, as indicated in Type (v) in Fig. 4-3.  

As discussed so far, the size reduction of (ab) from (dc) is the largest in EuBr3 

because, in this molecule, a part of the weight of the „bright‟ intra-ligand excitation 

CSFs in the first-order wavefunctions is shifted to that of the‘dark’Br3(4s,4p)→Ln*(4f) 

type LMCT CSFs. To study more closely, however, other effects such as LMCT to 

virtual Ln MOs other than 4f and the mixing of LMCT and intra-Ln excitation CSFs 

should be considered simultaneously. 
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Chapter 5   

 

Comprehensive Analyses of 
Origin of f-f Oscillator Strength 
and Hypersensitivity 

 

In this chapter, f-f transition intensities of hypersensitive transitions of LnCl3 and 

LnI3 are also calculated and are compared with those of LnBr3 in chapter 4 to give a 

comprehensive mechanistic explanation for the origin of their intensities. To have a 

different perspective on the origin of f-f hypersensitive transition intensities, the spatial 

distributions of the transition dipole moment and transition density are examined. 

Furthermore, the relation between the Judd-Ofelt intensity parameters 2 and the 

average amount of LMCT is considered. The phase relation between the contributions to 

the transition moments from the f-d mixing and from the intra-ligand excitation 

configurations is also discussed. 

 

5.1. Oscillator Strengths and Judd-Ofelt Intensity Parameters of LnX3  

5.1.1. Calculation Methods 

Ab initio calculations were performed for LnX3 (Ln = Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, 
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Er, and Tm; X = Cl and I) by the MRSOCI method using the COLUMBUS program 

package. The MCPs by Sakai et al. were used. The valence shells of MCP-DZP are 

3s3p for Cl and 4d5s5p for I. The basis sets, geometries, bond lengths, the effective 

nuclear charges Zeff, MOs and CI spaces were determined in the same manner as in 

section 4.1. 

 

5.1.2. Results and Discussion 

 The calculated oscillator strengths of hypersensitive transitions of LnX3 (X = Cl and 

I) are shown in Table 5-1 along with those of LnBr3 obtained in section 4.1. They are in 

reasonable agreement with the experimental ones [11] though the values are as small as 

from 10
-6

 to 10
-4

. The Judd-Ofelt (JO) parameters 2 were evaluated with two methods; 

2(ab) were calculated inversely in terms of eq. (58) using the excitation energies and 

oscillator strengths calculated with ab initio methods, and 2(dc) were calculated in 

terms of eq. (29); these parameters are shown in Figure 5-1. The polarizabilities of the 

halogen anions calculated with the MCP method and used in the calculation of 2(dc) 

were (I
-
) = 59 and (Cl

-
) = 27 a.u. These are in reasonable agreement with the 

experimental ones, (I
-
) = 47 and (Cl

-
) = 20 a.u. [58]. 
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Table 5-1 : Excitation energies ΔE (cm
-1

) and oscillator strengths f×10
6
 of LnX3 

Ln Transitions  
f (LnCl3) f (LnBr3) f (LnI3) 

Calc. Expl.a Calc.b Expl.a Calc.b Expl.a 

Pr 4f
2
 3

H4→
3
F2 27.8 15 36.1 20 74.9 40.0 

Nd 4f
3
 4

I9/2→
4
G5/2 135.0 120 195.4 330 444.0 530.0 

Pm 4f
4
 5

I4→
5
G2 104.7 -- 125.3 -- 260.0 -- 

Sm 4f
5
 6

H5/2→
6
F1/2 10.7 -- 15.8 -- 15.7 -- 

Eu 4f
6
 

7
F0→

7
F2 7.7 -- 9.2 -- 10.6 -- 

7
F0→

5
D2 0.4 -- 0.5 -- 0.90 -- 

Tb 4f
8
 7

F6→
7
F5 4.8 -- 6.0 -- 10.0 -- 

Dy 4f
9
 6

H15/2→
6
F11/2 34.6 32 43.9 -- 86.3 -- 

Ho 4f
10

 5
I8→

5
G6 138.7 178 174.6 -- 358.5 500.0 

Er 4f
11

 

4
I15/2→

2
H11/2 18.7 34 28.3 58 67.9 95.5 

4
I15/2→

4
G11/2 78.2 85 99.3 99 237.9 -- 

Tm4f
12

 

3
H6→

3
H4 8.2 -- 9.6 12 14.7 10.7 

3
H6→

3
F4 13.5 12 15.6 15.3 32.6 25.3 

a
 Experimental excitation energies are from Ref. [11]. 

b
 These data are the same as those in Table 4-1. 
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Figure 5-1: JO intensity parameters 2(dc) and 2(ab) of LnX3 as functions of the 

number of 4f electrons 

 

 As shown in Figure 5-1, the 2(dc) value increases monotonically with the atomic 

number of halogen, because the polarizability of halogen increases monotonically. In 

comparison with 2(dc), 2(ab) values have similar halogen dependence, that is, both 

2(dc) and 2(ab) increase as halogen changes from Cl to Br and to I. As mentioned in 

section 4.1.2, 2(ab) values have smaller than 2(dc) due to the polarization shielding 

effect, and the Ln dependence is different especially between Eu and Tb for all LnX3 

series.  
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It should be mentioned that the values of 2(ab) depend on the relative phase of each 

contribution because they are proportional to the squares of TDMs, which are expressed 

as (M
 IF

(JO) + M 
IF

(DC) + M
 IF

(LMCT) + …)
2
. Therefore, in the following section, the 

relation between the effect of the DC model and other effects is studied to demonstrate 

the cause of different behavior of the two kinds of 2.  

Here, the relative weights given in Tables 4-2 and 4-3 and Figure 3-2 depend on basis 

sets, especially for those of matrix elements between Ln and X3. In these analyses, they 

were calculated with a smaller basis set to represent only their valence space and to 

avoid ambiguity of determination of the region of Ln and X3. However, it is impossible 

to leave no ambiguity in the division of transition populations. Therefore, other 

theoretical tools, which depend on the basis sets as little as possible, are devised and 

applied in the following sections. 

 

5.2. Spatial Distribution of Integrand of Transition Density and 

Transition Dipole Moment 

5.2.1. Calculation Methods 

The author focuses on the spatial distribution of transition density and integrand of 

transition dipole moment (TDM) to minimize the basis set dependence. The transition 
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density and the integrand of the TDM are calculated for a pair of eigenstates which 

carries the largest TDM as in section 4.2.2.  

The one-electron transition density function )(rIF  between the initial state 
I  

and the final states 
F  of an N-electron system is defined as follows, 

  

NNiiFiiI

IF ddddN   121 })({})({)( rrrrr    (61) 

Here, }{ iir  stands for the electron coordinates collectively. To examine 

two-dimensional planar distribution of the transition density function, it is integrated in 

a direction perpendicular to the LnX3 molecular plane to have a two-dimensional 

transition density function D(x,y) as follows, 





 dzzyxyxD IF ),,(),(   (62) 

The initial and final electronic wavefunctions
I and 

F are calculated in the MRSOCI 

method and the above transition density functions are expanded with the basis of atomic 

orbitals (AOs) as follows, 

IF

tss

st

t

IF  )()()(
,

rrr   (63) 

where, the expansion coefficients IF

ts  defined in eq. (63) are called the transition 

density matrix elements. 

   
MO

, ji

FjiIsjti

IF

ts aacc


  (64) 

  In the same manner, two-dimensional transition density function D(x,y) can be 

expressed as follows, 
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  .)()(),(
AO

,







st

IF
tsst dzyxD  rr  (65) 

Once these transition density functions are available, the x component TDM, for 

example, can be obtained by the following integrations, 

dxdyyxxD

dxdydzzyxxM IFIF

x








),(

),,(
 (66) 

If these transition density functions are expressed in terms of AOs, the TDM can be 

expressed by the trace operation of the AO-basis transition density matrices and 

AO-basis dipole moment integrals, as follows,  

.
AO

,


st

IF
tsst

IF
x xM 

 

(67) 

 

To examine the spatial distribution of the integrand of TDM, the integrand of the 

above AO-basis transition density matrices is integrated over the angular part to have a 

radial distribution function r
2
P(r) as follows, 

  

.)(

sin)(cossin)(

0

2

0 0

2

0

2
AO

,



   









drrPr

ddrdrrM
st

IF
tsst

IF
x

 
 rr

 (68) 

Furthermore, these functions can be decomposed into three kinds of components based 

on the AO centers as follows, 



89 

 

.),(),(),(

),()()(),(

XXLXLL

AO

,

,

AO

,

yxDyxDyxD

yxDdzyxD
st

st

st

IF
tsst



   rr
 (69) 

  

.)()()(

)(sin)(cossin)()(

XX
2

LX
2

LL
2

AO

,

,
2

0

2

0

2
AO

,

2

rPrrPrrPr

rPrddrrrPr
st

st

st

IF
tsst



   
 

 rr
 (70) 

The values of the radial distribution functions of integrands of TDMs were calculated 

at 0.1 a.u. intervals for radial part and 180 radian intervals for angular part, and then 

integrated numerically over the angular part. Those of the planar distribution functions 

of the transition densities were calculated at 0.1 a.u. intervals, and then integrated 

numerically over the perpendicular (z) direction. All the integrations were performed 

with the Wolfram Mathematica 7.0 program. 

 

5.2.2. Results and Discussion 

 The planar distribution functions of the transition densities D(x, y) of PrBr3 are shown 

in Figure 5-2. Because the irreducible representation of the transition which carries the 

largest TDM is E’, the transition density functions D(x,y) for the two kinds of 

transitions, called Type (x) and Type (y), are shown. The directions of TDMs are x and 

y for Type (x) and Type (y) transitions, respectively. Both of the transition densities 

have large values only around the position of Ln, which is located on the origin, because 

the initial and final state wavefunctions in the f-f transitions typically have reference 
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(4f
N
) weights higher than 0.95, as mentioned in section 4.2.2. The shapes of D(x, y) 

suggest that they consist of transition quadrupole moments with components of x
2
-y

2 

and xy. 

 

Figure 5-2: The planar distribution functions of transition densities D(x, y) of PrBr3. 

Red and blue areas represent positive and negative values, respectively. The x-marks 

represent the positions of Br atoms. 

  

To observe the distribution of D(x,y) around the halogen atoms more closely, those in 

the three regions (1), (2) and (3) are extended in Figure 5-3. As shown in Figure 5-3, the 

transition density in the regions (2) and (3) contains the components of the TDMs in the 

direction to the origin, but the sum of these two components cancel each other and the 

remaining components are shown as arrows in (2) and (3) in this Figure. Therefore, the 

transition moments on Br generate the crystal fields in the directions of x and y for 

Types (x) and (y) transitions, respectively. Moreover, the distribution of DXX(x,y), 

which is the components of D(x,y) on the base of AOs on the ligands, is shown in 

Figure 5-4. The transition densities generated from intra-ligand transitions DXX(x,y) are 
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localized on the positions of three Br atoms and can be represented only by the 

intra-ligand excitations. These directions of the crystal fields are the same as those of 

the TDMs of f-f transitions. It suggests that the origin of f-f hypersensitive transition 

intensities can be understood by “the intensity borrowing” from the electric dipole 

transition intensities on the ligands.  

 

Figure 5-3: The extended views of D(x,y) of PrBr3. The x-marks represent the positions 

of Br atoms. The directions of arrows represent those of transition moments on Br 

atoms.  
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Figure 5-4: The planar distribution function of DXX(x,y) of PrBr3 for Type (x) 

transition. 

 

Recalling the coupling scheme in the DC model mentioned in section 2.1.3, the 

structures of the transition density around the Pr and Br atoms are quite similar to the 

structures shown in Figure 2-1 for the dynamic-coupling scheme caused by the 

periodically oscillating induced dipole moments on the ligands. This similarity of 

structures of the transition density between in Figure 5-3 and in Figure 2-1 is not a 

coincidence, since these two pictures express the same thing using the time-independent 

and time-dependent languages, respectively. If the time dependent wave functions of the 

initial and final states are denoted by 

,)/exp(})({)},({ tiEt IiiIiiI   rr  (71) 

,)/exp(})({)},({ tiEt FiiFiiF   rr
 

(72) 

respectively, during the electronic excitation, the expectation value of the coordinate of 

a transient electron oscillates with the amplitude proportional to the following matrix 

element,  
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,}/)(exp{})({})({

)},({)},({)(

tEEi

ttt

IFiI

i

iF

iI

i

iiF









rrr

rrrr

 (73) 

that is, for the x coordinate, 

.}/)(exp{

}/)(exp{),(

}/)(exp{)()(

x







tEEiM

tEEidxdyyxxD

tEEidxtx

IF

IF

x

IF

IF

FI









 rr

 (74) 

where, EF and EI are the electronic energies of the final and initial states, respectively. 

As shown in eq.
 
(74), the transient electron can oscillate when the TDM Mx

IF
 has a 

non-zero value, which has been confirmed from the above CI calculations. Therefore, 

the resonant excitation between the initial and final states can occur.   

  Next, the integrands of the TDMs are examined. As mentioned in section 5.2.1, the 

TDM can be expressed as a spatial integral of D
x
(x,y) multiplied by coordinate x or that 

of D
y
(x,y) multiplied by coordinate y. The planar distribution function of xD

x
(x,y) has 

large values around the localized region of Ln as shown in Figure 5-5. However, it can 

be considered from the shape of xD
x
(x,y) that the contribution from this region to the 

TDM is essentially zero, because the angular integration around this region must be 

canceled. Therefore, by integration over the angular part, the contribution from the 

regions (1), (2), and (3) may become relatively large. 
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Figure 5-5: The planar distributions of xD(x, y) of PrBr3 for Type (x) transition. 

 

From the above reason, the author focuses on the radial distribution functions of the 

integrand of TDM, which can be obtained by the multiplying D(x, y) and the dipole 

operator x or y and integrating it over the angular part. It should be noted that the shape 

of radial distribution r
2
P(r) of Type (x) transition is exactly the same as that of Type (y) 

transition. The radial distribution functions r
2
P(r) of PrX3 (X = Cl, Br, I) are shown in 

Figure 5-6. The nuclei are located at r = 0.0 for Pr, r = 4.8 for Cl, r = 5.1 for Br, and r = 

5.5 a.u. for I, respectively. As shown in Figure 5-6, the curves of r
2
P(r) are not smooth 

around the position of the three halogen nuclei because the wavefunctions vary sharply 

near the nuclei. Comparing these functions suggests the general feature is independent 

of the halogens, that is, the values of r
2
P(r) are negative in the region of 0.8 < r < 3.5 

a.u., and are positive and large around in the region of 6 < r < 8 a.u. 
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Figure 5-6 : Plots of the radial distribution functions r
2
P(r) vs r (in a.u.). Green, pink, 

and blue lines are those of PrCl3, PrBr3, and PrI3, respectively. 

 

To examine these functions more closely, they are decomposed into three 

components based on the AO centers, and shown in Figure 5-7. Here, the large values of 

r
2
P(r) in the region of 6 < r < 8 a.u. come from those of r

2
PXX (r), that is the 

contribution from the intra-ligand excitations.  

 

Figure 5-7 : Plots of r
2
P(r) and its components for PrBr3. Red, blue, green, and black 

lines are those of r
2
PLL(r), r

2
PLX(r), r

2
PXX(r) and their sum of r

2
P(r), respectively. 
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It should be noted that the area between the r
2
P(r) curve and the horizontal axis 

expresses the value of TDM because TDM can be obtained by integration of r
2
P(r) over 

r. Therefore, the region where r
2
P(r) has a positive value has a positive contribution to 

the TDM, and vice versa. It is also applies to the decomposed ones r
2
Pt,s(r). The areas of 

r
2
PLL(r), r

2
PLX(r) and r

2
PXX(r) represent the values of m(Ln,Ln), m(Ln,Br) + m(Br,Ln) 

and m(Br,Br) in Table 4-2, respectively. 

Based on the above explanation, it can be noticed that the effect of m(Ln,Ln) has an 

opposite contribution against that of m(X,X) because the areas of r
2
PLL(r) and r

2
PXX(r) 

have opposite values. It suggests that the effect considered in the JO theory has an 

opposite contribution against that considered in the DC model. This sign relation has 

been pointed out in other studies based on experiments [67] or semi-empirical 

calculations using the crystal field theory [63],[68],[69].  

The values of r
2
PLX(r) are very small in the region between Ln and Br. However, 

they are positive near the position of the ligands (4 < r < 6 a.u.), and are negative in the 

region outside the position of the ligands (r > 6 a.u.). In the current CI calculation, the 

AOs on Ln have non-zero population tail on the position of the ligands in a small 

measure. Therefore, the area of r
2
PLX(r) in the region of r > 4 a.u. can be regarded as a 

part of the effect considered in the DC model and the effect of the overlap between Ln 

and the ligands can be considered to be small. This result is consistent with the 
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assumption in the JO theory and the DC model where the effect of orbital overlap 

between metal and ligand, caused by back donation from X3 to Ln, namely LMCT, was 

neglected. However, the importance of this effect was pointed out by Henrie et al. [30]. 

It may be considered that the qualitative difference between (ab) and  (dc) were 

partly caused by the effect of the orbital overlap.  

Since the meaningful calculation of the overlap population is very difficult using 

basis set expansion methods, the author focuses attention on the Ln dependence on the 

shape of r
2
P(r). It can be expected that the shape of r

2
P(r) depends on Ln because the 

amount of LMCT configuration mixing is different among Ln, and are largest especially 

in Eu systems, as mentioned in section 4.2.2. To observe the dependence on Ln, r
2
P(r) 

for other LnBr3 are shown in Figure 5-8. Contrary to the original expectation, the shape 

of r
2
P(r) is very similar among all the LnBr3. Note that the ordinate of each figure is 

largely different reflecting the different magnitude of their oscillator strengths. The 

similarity of these functional forms suggests that the explicit effect on the TDM from 

the difference of the amount of LMCT is not large. Therefore, the author examines the 

effect of LMCT in a different perspective in the following section. 

 



98 

 

Figure 5-8 : Plots of r
2
P(r) for LnBr3. 

 

5.3. Effect of Ligand-to-Metal Charge Transfer 

5.3.1. Definition of the Weight of Mixing of Ligand-to-Metal Charge 

Transfer  

The author next tries to investigate the relation between (ab) and the amount of 

mixing of LMCT CSFs into the final state wavefunctions of the hypersensitive 

transitions. However, it was difficult to evaluate the amount of mixing directly because 

the virtual MOs had typically both components of Ln and Br. Additionally, the amount 

of mixing is too small to be analyzed because that of reference 4f
N
 CSFs is more than 

0.95. Therefore, to remove the dominant 4f components, the author focuses attention on 
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the Nocc × (Nact + Nvir) rectangular block of transition density matrix elements Tij which 

couple an initial state with a final state,   

 viractocc ,,1,,,1, NNjNiaaT FjiIij    



. 

(75) 

The rectangular block contains the relevant quantity associated with products of CI 

coefficients of the pairs of CSFs which are reference CSFs in I and those for 

one-electron excitations from occupied MOs to (active + virtual) MOs in F. As shown 

in section 4.2.2, about 90% of the total TDM comes from the classes between occupied 

and (active + virtual) MOs. It should be noted that in the following the author will focus 

on transition density, whereas in section 4.2.2, the author has focused on the product of 

transition density and dipole moment. 

To represent the rectangular block transition density matrix T as compact as possible, 

“corresponding orbital” [70] or “natural transition orbital” [71] transformation [72] is 

carried out based on a singular value decomposition, 

  ijiij 
TVU , (76) 

where ),,,(
occ21 NuuuU  and ),,,(

viract21 NN  vvvV   are unitary matrices which 

can be determined by solving the eigenvalue equations as 

),,1()(

),,1()(

viract

2

occ

2

NNi

Ni

iii

iii













vvTT

uuTT




. (77) 
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Here, the new set of occupied and (active + virtual) orbitals   ,     are obtained by 

using unitary transformations, 

   U
occocc

,,,,,, 2121 NN    , 

   V
viractviract

',,','',,',' 2121 NNNN     . 
(78) 

These orbital sets (  ,      whose matrix elements of 
ii)( TVU

 are i are called 

particle-hole pairs. The importance of a particular particle-hole transition to the overall 

rectangular matrix T is reflected in the magnitude of the associated eigenvalue 2

i . 

Next, the author evaluates a quantity of charge transfer from occupied orbitals of Br3 

in I to active and virtual orbitals of Ln in F. This quantity is evaluated by averaging 

the change of the charge population on Ln Ln
ip  with the associated weight of 2

i  as 

follows, 

 

  







occocc

33

occoccoccocc

2BrBr2

2LnLn22Ln2

)Initial()Final(

)Initial()Final(

N

i

i

N

i

iii

N

i

i

N

i

iii

N

i

i

N

i

ii

pp

ppp





, (79) 

where Ln

ip  and 3Br

ip  are population of Ln and Br3. The parameter  of LnBr3 takes a 

positive value because the amount of mixing of LMCT CSFs is much larger than that of 

MLCT CSFs. This weight of 2

i  is a „diagonalized‟ transition density matrix element 

and has the information of the products of the CI coefficients between the reference 

CSFs in I and those for intra-ligand excitations, LMCTs and so on in F. With these 

weight factors, those LnX3 with larger magnitude of LMCT CSFs are expected have a 

large value for . 
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 Therefore it represents the weight of products of CI coefficients of the reference CSFs 

in I and those for LMCT in F whose TDMs have non-zero values. Additionally, the 

weight of products of CI coefficients of the reference CSFs in I and those for other 

one-electron excitations in F, especially intra-ligand excitations which have dominant 

contribution to TDMs, decreases relatively as  increases.  

 

5.3.2. Calculation of the Weight 

The vales of  along with (ab) for LnBr3 are shown in Table 5-2. It can be seen that 

 increases with the atomic number except between Eu and Tb. In general, the transition 

energies of the LMCT excited states in Ln systems become stabilized from Pr to Eu and 

once destabilized at Gd and then become stabilized again from Tb to Tm [66]. It was 

explained that those of Eu systems tend to be most stabilized because 4f electron 

configuration of Eu
3+

 becomes the 4f
7
 half-closed shell configuration by accepting one 

electron from ligands. It can be interpreted that  increases as the energy gap between 

the final state of hypersensitive transition and LMCT state decreases.  

Additionally, it can also be seen in Table 5-2 that (ab) decreases as  increases. Here, 

the author focuses on the relation between TDMs and CI coefficients because (ab) are 

proportional to the squares of TDMs calculated with ab initio method. The CI 

coefficients of CSFs for LMCT from occupied orbitals of the Br3 portion to 4f empty 
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orbitals of Ln have largest values among the LMCT CSFs. The TDMs between these 

LMCT CSFs and reference CSFs can be expressed as those between 4f orbitals and 

occupied orbitals of the Br3 portion. 

 

Table 5-2 : Relation between the weights of LMCT configurations in final states of 

hypersensitive transitions  and 2(ab)×10
8
 of LnBr3 

Ln Transitions  2(ab) 

Pr 4f
2
 3

H4→
3
F2 0.22 11.7 

Nd 4f
3
 4

I9/2→
4
G5/2 0.28 10.0 

Pm 4f
4
 5

I4→
5
G2 0.29 6.8 

Sm 4f
5
 6

H5/2→
6
F1/2 0.33 6.7 

Eu 4f
6
 

7
F0→

7
F2 0.34 5.9 

7
F0→

5
D2 0.69 2.6 

Tb 4f
8
 7

F6→
7
F5 0.17 7.7 

Dy 4f
9
 6

H15/2→
6
F11/2 0.25 8.6 

Ho 4f
10

 5
I8→

5
G6 0.37 7.4 

Er 4f
11

 

4
I15/2→

2
H11/2 0.35 2.9 

4
I15/2→

4
G11/2 0.38 5.6 

Tm 4f
12

 

3
H6→

3
H4 0.21 9.1 

3
H6→

3
F4 0.29 2.9 

 

Because TDMs caused by LMCT have values reflecting overlaps between the two 

orbitals, their values depend on the size of these orbitals. The radial expectation values 

of 4f orbital of Pr
3+

 and 4p orbital of Br
-
 were 1.0 and 1.9 bohr, respectively, and in 

reasonable agreement with relativistic ones by Desclaux [73], 1.1 and 2.1 bohr. 
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Considering the distance between Ln and Br which is about 5 bohr, these orbitals have 

little overlap. Therefore TDMs between these orbitals are negligibly small compared to 

those for intra-ligand excitations within Br3. To sum up, the TDM decreases as  

increases because as the weights of LMCT CSFs with a negligibly small contribution to 

TDMs increase, those of intra-ligand excitation CSFs having large TDMs decrease as 

discussed briefly in section 4.2.2. 

 By taking these factors into account, the reason why (ab) of EuBr3 has a smaller 

value than that of TbBr3 can be explained by the fact that the relative importance of the 

intra-ligand excitation CSFs is reduced by the increase of the „dark‟ LMCT CSFs, 

especially those from occupied orbitals of ligands to 4f orbitals of Ln. As seen above, 

the values of TDMs and (ab) cannot be explained only by the DC model and the 

mixing of LMCT CSFs to 4f
N
 states should be considered simultaneously.  

Recalling the explanation for Figures 5-7, the amount of contribution from the region 

of the overlap between Ln and the ligands (1 < r < 4.5 a.u.) was independent of Ln, 

though the mixing of LMCT CSFs should depend on Ln. It can be understood that the 

difference of the amount of LMCT from occupied orbitals of the Br3 portion to 4f empty 

orbitals of Ln cannot affect the values of TDM and the radial distribution functions 

r
2
P(r) because of the negligible small overlap between these orbitals. 
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To summarize the analysis so far, the relative phase between each contribution to the 

TDM is expressed as 

 )JO()DC()ab( IFIFIF
MMM , (80) 

and the CSFs which represent LMCT from X3 to 4f empty orbitals of Ln and intra-Ln 

transition from occupied 5s and 5p orbitals to virtual orbitals of Ln contribute to the 

TDM as “drak” states. Here, it should be noted about the relation of energy levels of 

excited states of LMCT and 4f
N-1

nd. It is well known that the excitation energies of 

LMCT excited states become stabilized from Pr to Eu and once destabilized from Eu to 

Tb and stabilized again from Tb to Tm. On the other hand, those of 4f
N-1

5d states are 

known to display an opposite behavior. They become destabilized from Pr to Eu and 

once stabilized from Eu to Tb and destabilized again from Tb to Tm. Considering the 

behavior of 2(ab), the difference of the LMCT excitation energies across Ln has more 

strong impact to TDMs than that of 4f
N-1

5d states. This phenomenon can be understood 

because the LMCT excitation energies are lower than those of 4f
N-1

5d states. Taken 

altogether, the difference of the excitation energies of 4f
N-1

5d and LMCT states could 

affect the behavior of 2(ab) and it is considered that the behaviors of 2(ab) depend on 

the Ln systems because the difference of these excitation energies depends heavily on 

the systems. Therefore, it is clarified that the mixing of LMCT and intra-Ln excitation 

configurations also affects the intensities and they must be considered simultaneously.  
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Chapter 6   

 

General Conclusions 
 
 In this study, the oscillator strengths of f-f transitions of lanthanide trihalide LnX3 (Ln 

= Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I) molecules were calculated 

with the multi-reference spin-orbit configuration interaction method. First of all, a 

program to compute the transition density matrix with the graphical unitary group 

approach (GUGA) was coded and attached to the COLUMBUS program package. The 

oscillator strengths of both hypersensitive transitions and non-hypersensitive ones could 

be obtained quantitatively with this program even though the values are as small as 10
-6

 

to 10
-4

.  

Secondly, the origin of f-f transition intensities was examined by focusing on the effect 

of molecular vibration and f-d mixing and it was concluded that these effects had 

negligibly small contributions. Thirdly, the oscillator strengths were decomposed into 

four types of matrix elements to clarify which matrix elements have a major 

contribution to the oscillator strengths, and it was clarified that the matrix elements 
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between two atomic orbitals on halogens had dominant contributions to the oscillator 

strengths for most f-f transitions including hypersensitive ones. It suggests that the 

matrix elements between the reference 4f
N
 configurations and intra-ligand excitation 

configurations had dominant contributions to the oscillator strengths and this is 

consistent with the explanation of the dynamic-coupling (DC) model. 

To investigate the origin of f-f transition intensities in more detail, the Judd-Ofelt 

intensity parameters were evaluated with two methods: 2(ab) obtained with the 

MRSOCI method and 2(dc) obtained based on the dynamic-coupling model. Although 

2(dc) had larger values than 2(ab) due to the neglect of the polarization shielding effect, 

their overall Ln dependence was similar except between Eu and Tb. It is suggested that 

the origin of f-f transition intensities could be explained mostly with the DC model.  

To look more closely, the planar distribution functions of transition density were 

examined and it can be confirmed that the current time-independent CI calculation can 

contain the effect of time-dependent crystal field mentioned in the DC model. 

Additionally, the radial distribution functions of transition dipole moment contained in 

hypersensitive transitions were examined and it is concluded that the origin of f-f 

intensities are independent of the kinds of Ln and halogens and the contributions 

generated by the point charges on the ligands, which are described by the Judd-Ofelt 
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theory, are smaller and opposite sign compared with those by the oscillating induced 

dipole moments on the ligands.  

Furthermore, the amount of configuration mixing of LMCT was investigated, and it 

can be explained that the differences between (ab) and (dc) are largest in EuX3 

because the configuration mixing of LMCT from X3 to 4f empty orbitals of Ln, whose 

matrix elements of TDM is negligibly small, is largest in EuX3 and the contributions 

from the DC model are reduced due to the decrease of configuration mixing of 

intra-ligand excitations. 

As seen so far, the dominant mechanism is the dynamical polarization effects within 

X3 and to a lesser extent, the intra-Ln excitation and LMCT mechanism. It can be 

understood that the excitation energies are insensitive to a change of surrounding 

environment because the dominant configurations of 4f
N
 states are reference 4f

N
 

configurations. On the other hands, the intensities of hypersensitive transitions are 

sensitive to a small change of environment because the minor configurations such as 

intra-ligand excitations, which are reflected directly by a change of surrounding 

environment, have dominant contributions to the oscillator strengths. Additionally, the 

reason why hypersensitive transitions of gaseous LnX3 are about 100 times stronger 

than those in aquo can be explained from the formula of 2(dc), which contains the 

inverse of internuclear distance between lanthanide and ligands and the polarizability of 
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ligands. In general, these internuclear distances are larger in Ln
3+

 in solutions than in 

molecules containing Ln, and the polarizability of water are smaller than that of typical 

ligand molecules. Therefore, the Coulomb correlation between transition quadrupole 

moment of Ln and induced dipole moment of ligands must be weaker in aquo. It can be 

understood that this effect is one of the examples of near-field effects, which have 

recently gained much attention in the field of surface chemistry. 

 These findings will be applied for the theoretical calculation of realistic large 

molecules containing Ln, such as biosensors. Recently, the hybrid quantum mechanics/ 

molecular mechanics (QM/MM) approaches are used extensively in the case of large 

systems whose computational efforts are too large to be calculated with high accuracy 

ab initio methods. When such hybrid calculation methods are carried out, the effect of 

surrounding environment should be considered efficiently. In other words, the essential 

quality of f-f transition should be represented with the MM calculation, which contains 

the crystal field effect generated by the point charges around Ln. However, the essential 

quality of f-f transition intensities must not be represented without the MM calculation, 

which contains the crystal field effect generated by the induced dipole moments around 

Ln.  



109 

As seen so far, the author succeeded in calculation of f-f hypersensitive transition 

intensities and clarified their comprehensive mechanisms with high accuracy ab initio 

method for the first time. 
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Appendix 
 

 

A table of decomposition of TDM integrals (in %) based on the MO classes and the 

AO centers for PrBr3 is give as Table 4-2 in chapter 4.2.2. The same type of tables for 

other LnBr3 (Ln = Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, and Tm) are given in this appendix. 

Notations and footnotes in each table are the same as Table 4-2. 

 

 

 

Table A-1：Decomposition of TDM integrals (in percent) based on the MO classes and the 

AO centers for NdBr3.
 a,b

 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -4.0 45.8

 c 3.9
 d 1.4

 e 47.0 

(vir, occ)
 
 -2.0 42.2

 c -0.5
 e -3.6

 d 36.1 

(occ, act)
 
 -0.9 7.3 -1.3

 d 2.1 7.2 

(act, occ)
 
 0.0 3.5 1.1 -0.5

 d 4.2 

(vir, act)
 
 1.9

 f -0.3 -0.1
 e 0.2 1.7 

(act, vir) -1.5
 f 0.4 -0.2 0.0

 e -1.3 

(vir, vir)
 
 0.0 0.5 -0.2 -0.2 0.0 

(act, act)
 
 -9.1

 f 18.0 -3.7 -2.9 2.2 

(occ, occ)
 
 0.2 2.6 0.1 0.2 3.0 

Total
 
 -15.4 119.9 -1.1 -3.5 100.0 
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Table A-2： Decomposition of TDM integrals (in percent) based on the MO classes and the 

AO centers for PmBr3.
 a,b

 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -4.0 44.4

 c 8.0
 d 2.7

 e 51.1 

(vir, occ)
 
 -3.0 41.1

 c 0.2
 e -2.6

 d 35.7 

(occ, act)
 
 -0.1 6.2 -0.7

 d 1.7 7.1 

(act, occ)
 
 0.0 2.3 1.0 -0.4

 d 2.9 

(vir, act)
 
 1.0

 f 0.0 -0.1
 e 0.1 1.0 

(act, vir) -2.1
 f 0.4 -0.3 0.0

 e -1.9 

(vir, vir)
 
 -0.2 0.1 -0.1 -0.1 -0.3 

(act, act)
 
 -7.9

 f 16.4 -2.3 -3.2 3.0 

(occ, occ)
 
 0.1 0.9 0.1 0.1 1.3 

Total
 
 -16.2 111.9 5.9 -1.6 100.0 

 

 

 

 

 

Table A-3：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for SmBr3.
 a,b

 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -2.3 41.8

 c 3.1
 d 1.3

 e 43.8 

(vir, occ)
 
 -3.1 41.4

 c 0.6
 e -0.8

 d 38.1 

(occ, act)
 
 0.2 4.9 -0.5

 d 1.8 6.4 

(act, occ)
 
 -0.8 5.4 1.2 -1.1

 d 4.7 

(vir, act)
 
 0.9

 f 0.0 -0.1
 e 0.2 1.0 

(act, vir) -1.0
 f 0.4 -0.2 0.0

 e -0.8 

(vir, vir)
 
 -0.2 0.0 -0.1 -0.1 -0.4 

(act, act)
 
 -8.4

 f 21.9 -2.8 -5.1 5.6 

(occ, occ)
 
 -0.1 1.3 0.1 0.3 1.6 

Total
 
 -14.7 117.0 1.2 -3.5 100.0 
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Table A-4：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for EuBr3 for 
7
F0→

7
F2.

 a,b
 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -1.7 35.7

 c 2.2
 d 1.4

 e 37.6 

(vir, occ)
 
 -2.8 33.8

 c 0.9
 e -0.5

 d 31.3 

(occ, act)
 
 0.2 11.2 -1.1

 d 0.8 11.2 

(act, occ)
 
 -1.6 8.1 1.0 -1.7

 d 5.7 

(vir, act)
 
 0.5

 f 0.2 -0.1
 e 0.0 0.6 

(act, vir) 0.0
 f 0.1 -0.1 0.1

 e 0.0 

(vir, vir)
 
 -0.1 0.2 -0.2 -0.2 -0.3 

(act, act)
 
 -6.0

 f 18.1 -1.7 -4.6 5.9 

(occ, occ)
 
 0.1 7.6 0.2 0.2 8.0 

Total
 
 -11.4 114.9 1.0 -4.5 100.0 

 

 

 

 

 

Table A-5：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for EuBr3 for 
7
F0→

5
D2.

 a,b
 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -2.1 29.0

 c 5.2
 d 2.4

 e 34.5 

(vir, occ)
 
 -1.4 21.2

 c 0.4
 e -1.2

 d 19.0 

(occ, act)
 
 -0.5 27.0 -3.3

 d -0.5 22.7 

(act, occ)
 
 -0.9 7.8 -0.2 -1.3

 d 5.4 

(vir, act)
 
 0.6

 f 1.0 -0.1
 e -0.7 0.9 

(act, vir) -1.7
 f 1.9 -1.2 -0.3

 e -1.2 

(vir, vir)
 
 -0.8 -0.4 0.2 0.5 -0.5 

(act, act)
 
 -3.7

 f 11.2 -1.4 -2.4 3.7 

(occ, occ)
 
 -0.1 15.3 0.2 0.2 15.6 

Total
 
 -10.7 114.1 -0.2 -3.3 100.0 

 

 

 

 

 

 



118 

 

Table A-6：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for TbBr3.
 a,b

 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -3.2 44.7

 c 5.4
 d 0.0

 e 46.9 

(vir, occ)
 
 -4.9 45.4

 c 0.1
 e 2.5

 d 43.1 

(occ, act)
 
 0.3 0.6 0.0

 d 0.3 1.2 

(act, occ)
 
 -0.4 0.3 0.5 -0.1

 d 0.3 

(vir, act)
 
 0.2

 f 3.0 -0.3
 e -1.6 1.3 

(act, vir) -0.8
 f 2.8 -1.0 -0.4

 e 0.6 

(vir, vir)
 
 -0.3 -0.5 0.4 0.4 0.0 

(act, act)
 
 -4.2

 f 14.4 -1.0 -3.4 5.8 

(occ, occ)
 
 -0.1 0.9 0.0 0.0 0.8 

Total
 
 -13.4 111.5 4.2 -2.2 100.0 

 

 

 

 

 

Table A-7：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for DyBr3.
 a,b

 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -3.1 40.2

 c 1.3
 d 2.0

 e 40.4 

(vir, occ)
 
 -1.7 39.2

 c 1.7
 e 1.6

 d 40.9 

(occ, act)
 
 -0.9 4.2 -0.8

 d 0.4 2.9 

(act, occ)
 
 0.0 4.8 -0.1 -0.5

 d 4.2 

(vir, act)
 
 0.3

 f 2.4 -0.4
 e -1.0 1.2 

(act, vir) 0.1
 f 3.1 -1.7 -0.3

 e 1.2 

(vir, vir)
 
 0.0 -0.1 0.1 0.1 0.1 

(act, act)
 
 -4.7

 f 14.6 -3.2 -1.4 5.3 

(occ, occ)
 
 0.0 3.7 0.0 0.1 3.8 

Total
 
 -10.1 112.1 -3.0 1.0 100.0 
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Table A-8：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for HoBr3.
 a,b

 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -4.6 45.4

 c 7.8
 d 3.6

 e 52.2 

(vir, occ)
 
 -2.3 35.7

 c 1.0
 e -0.2

 d 34.2 

(occ, act)
 
 -1.0 5.0 -0.8

 d 0.5 3.7 

(act, occ)
 
 -0.2 2.3 0.0 -0.3

 d 1.8 

(vir, act)
 
 0.6

 f 1.6 -0.3
 e -0.7 1.3 

(act, vir) -0.2
 f 2.4 -1.2 -0.3

 e 0.8 

(vir, vir)
 
 0.0 -0.2 0.1 0.1 0.1 

(act, act)
 
 -3.5

 f 8.1 -1.6 -1.1 2.0 

(occ, occ)
 
 0.0 3.8 0.1 0.1 4.0 

Total
 
 -11.2 104.2 5.2 1.8 100.0 

 

 

 

 

Table A-9：Decomposition of TDM integrals (in percent) based on the MO classes and the AO 

centers for ErBr3 for 
4
I15/2→

2
H11/2.

 a,b
 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -3.7 43.2

 c 10.7
 d 3.6

 e 53.8 

(vir, occ)
 
 -2.8 38.0

 c 1.1
 e 0.0

 d 36.4 

(occ, act)
 
 -0.1 2.7 -0.2

 d 0.4 2.9 

(act, occ)
 
 -0.2 1.9 0.1 -0.3

 d 1.5 

(vir, act)
 
 0.4

 f 1.7 -0.3
 e -0.7 1.0 

(act, vir) -1.0
 f 2.3 -1.0 -0.2

 e 0.0 

(vir, vir)
 
 -0.1 -0.2 0.1 0.1 -0.1 

(act, act)
 
 -3.3

 f 8.2 -1.1 -1.6 2.2 

(occ, occ)
 
 0.0 2.1 0.1 0.1 2.3 

Total
 
 -11.0 99.8 9.7 1.5 100.0 
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Table A-10：Decomposition of TDM integrals (in percent) based on the MO classes and the 

AO centers for ErBr3 for 
4
I15/2→

4
G11/2.

 a,b
 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -3.8 44.0

 c 11.7
 d 3.9

 e 55.9 

(vir, occ)
 
 -2.6 37.2

 c 1.0
 e -0.7

 d 34.9 

(occ, act)
 
 -0.2 3.5 -0.3

 d 0.3 3.3 

(act, occ)
 
 -0.1 1.1 0.1 -0.2

 d 0.9 

(vir, act)
 
 0.3

 f 1.9 -0.3
 e -0.8 1.1 

(act, vir) -1.2
 f 2.4 -1.0 -0.2

 e -0.1 

(vir, vir)
 
 -0.1 -0.3 0.1 0.2 -0.1 

(act, act)
 
 -3.3

 f 8.1 -1.1 -1.6 2.1 

(occ, occ)
 
 0.0 1.9 0.1 0.1 2.0 

Total
 
 -11.0 99.7 10.3 1.0 100.0 

 

 

 

 

Table A-11：Decomposition of TDM integrals (in percent) based on the MO classes and the 

AO centers for TmBr3 for 
3
H6→

3
H4.

 a,b
 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -2.0 42.1

 c 4.0
 d 2.3

 e 46.5 

(vir, occ)
 
 -2.9 41.3

 c 1.6
 e 0.7

 d 40.8 

(occ, act)
 
 0.2 2.4 -0.2

 d 0.4 2.8 

(act, occ)
 
 -0.5 3.0 0.1 -0.5

 d 2.1 

(vir, act)
 
 0.3

 f 2.0 -0.3
 e -0.9 1.1 

(act, vir) -0.7
 f 2.5 -1.1 -0.3

 e 0.4 

(vir, vir)
 
 -0.1 -0.3 0.1 0.1 -0.1 

(act, act)
 
 -3.8

 f 12.1 -1.2 -2.7 4.4 

(occ, occ)
 
 -0.1 2.0 0.1 0.1 2.2 

Total
 
 -9.5 107.0 3.3 -0.8 100.0 
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Table A-12：Decomposition of TDM integrals (in percent) based on the MO classes and the 

AO centers for TmBr3 for 
3
H6→

3
F4.

 a,b
 

 m(Ln,Ln) m(Br,Br) m(Br,Ln) m(Ln,Br) Total 

(occ, vir)
 
 -2.2 42.0

 c 6.0
 d 2.7

 e 48.5 

(vir, occ)
 
 -2.7 39.0

 c 1.3
 e 0.3

 d 38.0 

(occ, act)
 
 0.2 4.3 -0.4

 d 0.3 4.4 

(act, occ)
 
 -0.6 2.9 0.1 -0.5

 d 1.9 

(vir, act)
 
 0.3

 f 1.8 -0.3
 e -0.9 1.0 

(act, vir) -1.1
 f 2.5 -1.1 -0.3

 e 0.0 

(vir, vir)
 
 -0.2 -0.4 0.2 0.3 -0.1 

(act, act)
 
 -3.6

 f 10.8 -1.0 -2.3 3.8 

(occ, occ)
 
 -0.1 2.4 0.1 0.1 2.5 

Total
 
 -10.0 105.4 5.0 -0.4 100.0 

 

 

 

 


