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 Abstract 

 

 

Structural Health Monitoring (SHM) can be defined as the process of implementing 

damage detection and characterization strategy for engineering structures. In the past 

decades, many damage detection methods were proposed. The vibration data used to 

detect the structural damage include frequency response functions, natural frequencies, 

mode shapes, mode shape curvatures, modal flexibility, modal strain energy, etc. This 

thesis is devoted to improve on the distance measures that have been studied so far 

and propose an effective damage detection scheme with as fewer sensors as possible, 

especially for the large scale structures.  

Firstly, the improvements on the damage assessment method based on autoregressive 

(AR) models are proposed, which has rarely been applied to civil engineering 

structures. To improve the noise immunity of this method, the distance measure of 

low-order AR models is used as a damage indicator since its advantages in 

computational efficiency, emphasis of high-energy frequency range, and less 

sensitivity to spectral peaks caused by noise. In addition, adaptive component 

weighting is introduced to relieve the noise effect further. Moreover, a method to 

choose the optimum AR order for distance measures is proposed to solve the problem 

that the order of the AR models determined by Akaike Information Criterion or 

Bayesian Information Criteria is not the optimum AR order for the distance measure. 

The effect of varying the data length, number of parameters, and other factors are also 

carefully studied. 
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Secondly, a substructure approach to local damage detection is proposed. Every 

substructure is confined to one DOF, which can satisfy the identifiability of 

substructure easily. By cutting substructure with overlaps, ARMAX models can be 

directly used to determine the modal information and detect the damage. Substructure 

approach is to divide a complete structure into several substructures in order to 

significantly reduce the number of unknown parameters for each substructure so that 

damage detection processes can be independently conducted on each substructure. 

This method doesn’t need the vibration measurements at all degrees of freedom. 

Moreover, the identifiability of substructures for civil engineering structures is 

investigated, and a structure division method is proposed to make the substructure 

identifiable when it is not strongly system identifiable (SSI). To clarify the 

identifiability of the substructures, the substructures are classified into three types. 

The structure is divided by using the proposed structure division method, and then the 

support vector machine (SVM) is applied for each substructure to detect the local 

damages.  

Finally, the conclusion is given. The damage assessment based on autoregressive 

models and substructure approach is proposed, and it can detect and localize the 

damage accurately. The using of the substructure approach makes this method work 

efficiently in identification of large scale structures, and moreover the damage 

detection processes can be independently conducted on each substructure. Thus, it is 

also suitable for use in a parallel and distributed damage detection system. 
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1 Introduction 

 

 

 

1.1 Structural Health Monitoring 

The process of implementing a damage detection and characterization strategy for 

engineering structures is referred to as Structural Health Monitoring (SHM) (Mita 

2003). The SHM process involves the observation of a structure over time using 

periodically sampled measurements from an array of sensors, the extraction of 

damage-sensitive features from these measurements, and the statistical analysis of 

these features to determine the current state of structural health. For long term SHM, 

the output of this process is periodically updated information regarding the ability of 

the structure to perform its intended functions in light of the inevitable aging and 

degradation resulting from operational environments. After extreme events, such as 

earthquakes or blast loading, SHM is used for rapid condition screening and aims to 

provide, in near real time, reliable information regarding the integrity of the structure 

(Cempel 1980; Hou, Noori et al. 2000; Auweraer and Peeters 2003; Farrar and 

Worden 2007). 

The SHM problem is fundamentally one of a statistical pattern recognition paradigm 
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(Sohn and Laboratory 2004; Hayton, Utete et al. 2007). The paradigm can be divided 

into four parts:  

1) Operational Evaluation, 

2) Data Acquisition, Fusion, and Cleansing, 

3) Feature Extraction and Information Condensation, 

4) Statistical Model Development for Feature Discrimination. 

 

1.2 Definition of Damage 

Damage is defined as changes to the material or geometric properties of a structural 

system, including changes to the boundary conditions and system connectivity, which 

adversely affect the system’s performance. According to the amount of information 

provided regarding the damage state, the damage identification can be classified into 

four levels (Rytter 1993):  

Level 1: Damage Existence. Is there damage in the system?   

Level 2: Location. Where is the damage in the system?  

Level 3: Extent. How severe is the damage? 

Level 4: Prognosis. How much useful life remains? 

Answers to these questions in order represent increasing knowledge of the damage 

state. When applied in an unsupervised learning mode, statistical models are typically 

used to answer questions regarding the existence and location of damage. When 

applied in a supervised learning mode and coupled with analytical models, the 

statistical procedures can be used to better determine the type of damage, the extent of 

damage and remaining useful life of the structure. The statistical models are also used 
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to minimize false indications of damage (Farrar and Worden 2007).  

False indications of damage fall into two categories:  

1) False-positive damage indication (indication of damage when none is 

present), 

2) False-negative damage indication (no indication of damage when damage is 

present).  

Errors of the first type are undesirable, as they will cause unnecessary downtime and 

consequent loss of revenue as well as loss of confidence in the monitoring system. 

More importantly, there are clear safety issues if misclassifications of the second type 

occur. Many pattern recognition algorithms allow one to weigh one type of error 

above the other; this weighting may be one of the factors decided at the operational 

evaluation stage (Hayton, Utete et al. 2007; Sohn 2007). 

 

1.3 Damage Detection Methods 

The main parts of the SHM in civil engineering are damage detection and localization, 

which are essential monitoring zones for structures after major events such as 

earthquakes (Ljung 1999; Mita 2003).  

Using Natural Frequency Generally, there are two types of frequency analysis, the 

forward identification and the inverse identification that can be used for damage 

identification (Hearn and Testa 1991; Ljung 1999; Vestroni and Capecchi 2000; 

Peeters, Maeck et al. 2001; Kessler, Spearing et al. 2002; Kim, Ryu et al. 2003). Both 

methods assume that natural frequency of a structure shifts when the damage occurs. 

Cawley and Adams (1979) used frequency shifts to detect damage in composite 

materials. It assumes that natural frequency shifts when the physical properties change. 
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Rytter and Kirkegaard (1997) performed a vibration test of a full-scale four-story 

reinforced concrete building at the European Laboratory for Structural Assessment 

(ELSA). The relative changes in the modal parameters are used as inputs of the 

networks to detect the bending stiffness changes of the system at the output layer. 

Williams and Messina (1999) formulated a correlation coefficient that compares 

changes in a structure’s resonant frequencies with predictions based on a 

frequency-sensitivity model derived from a finite element model.  

Using Mode Shape West (1986) and Wolff and Richardson (1989) suggested the use 

of the modal assurance criterion (MAC) to detect the existence and the location of 

structural faults. MAC is a scale quantity ranging from 0 to 1.0, representing that the 

degree of correlation between two sets of modal vectors is uncorrelated at all or 

perfectly correlated respectively. The method is based on the assumption that changes 

in modal vectors at the degrees of freedom near the damage are relatively larger than 

others located far from the damage. As the MAC only uses one pair of modes for 

damage localization, the problem of how to choose appropriate modes for MAC 

calculation induces the similar COMAC methods for damage localization, which 

stands for Coordinate Modal Assurance (Lieven and Ewins 1988). The location where 

a COMAC value is close to zero is the possible damage location. Salawu and 

Williams (1995) conducted modal tests of a full-scale bridge before and after 

rehabilitation and concluded that the natural frequencies of the bridge did not change 

much as a result of structural repairs whilst both MAC and COMAC performed good 

to indicate the location of the repairs. The limitation of this method is that it is only 

sensitive in the case that the measurement point is close to node points for a particular 

mode. 

Using Curvature/Strain Mode Compared with the method using mode shape, this 

method is feasible for damage localization and higher derivatives of mode shapes are 

more sensitive to damage. Pandey et al. (1991) demonstrated that mode shape 
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curvature could be a useful indicator to damage detection of beam structures. Chance 

et al. (1994) investigated the measured strain mode shape and found it was much 

feasible for damage localization. Wang et al. (2000) presented a numerical study of 

damage detection of Tsing Ma Bridge in Hong Kong SAR by utilizing the changes of 

the mode shape curvatures. Qiao et al. (2007) used the experimental and numerical 

curvature mode shapes to detect the presence, location, and size of the delamination.  

Using Modal Strain Energy Stubbs et al. (1992) presented the pioneer work on using 

Modal Strain Energy (MSE) for damage localization. Stubbs and Kim (1996) and Shi 

et al. (1998) improved the method by using modal strain energy to localize the 

damage and estimated the damage size without baseline modal properties.  

Using Dynamic Flexibility As the fact that higher modes contribute more to the 

system stiffness matrix than lower modes (Berman and Flannelly 1971), a large 

number of dynamic modes are needed to obtain good stiffness matrix estimation or its 

changes. However, measuring the higher frequency response is very difficult due to 

practical limitations. To avoid the problem, a method using dynamically measured 

flexibility matrix is proposed to estimate the changes in structural stiffness. Bernal 

(2002) set up a numerical example of a 39-DOF truss and obtained the accurate 

results of identifying the modes. He concluded that changes in the flexibility matrix 

were desirable to monitor than the changes in stiffness matrix. Gao and Spencer 

(2006) discussed the issues relating to the synthesis of modal flexibility matrix from 

ambient and forced  vibration data and implemented damage locating vector (DLV) 

method for online damage localization.  

Artificial Neural Network An artificial neural network (ANN), usually called neural 

network (NN), is a mathematical model or computational model that is inspired by the 

structure and/or functional aspects of biological neural networks. A neural network 

consists of an interconnected group of artificial neurons, and it processes information 
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using a connectionist approach to computation. The advantage of this method is that 

there is no need to know the physical relationships between the structural properties 

and damage occurrence. This approach relies on the use of vibration measurements 

from a healthy system to train a neural network for identification purposes. 

Subsequently, the trained network is fed comparable vibration measurements from the 

same structure under different episodes of response in order to monitor the health of 

the structure (Berman and Flannelly 1971; Cawley and Adams 1979; Cempel 1980; 

Qian and Mita 2008). However, by using this method, large training sample is needed 

for accurate detection. 

Wavelet Method Wavelets can decompose any signal, and signal transferred by 

Wavelets method can be shown to be more sensitive to local changes in structural 

properties. It can be also viewed as an extension of the traditional Fourier transform 

with adjustable window location and size. Hou et al. (2000) proposed a wavelet-based 

approach for structural damage detection and health monitoring. The methodology 

was applied to simulation data generated from a simple structural model subjected to a 

harmonic excitation. Results show the great promise of the wavelet approach for 

damage detection and structural health monitoring. 

Distance Measures of AR Models Distance measures have been widely used in speech 

recognition (Tohkura 1986; Itakura and Umezaki 1987). Basseville (1989) presented 

some general tools for measuring distances either between two statistical models or 

between a parametric model and a signal. The question of spectral distances between 

processes is investigated based on the autoregressive (AR) models and autoregressive 

moving average (ARMA) models. Martin (2000) discussed a metric defined on 

ARMA models, and gave a natural measure of the “distance” between two ARMA 

processes. Dhiral (2001) introduced a distance measure for measuring the 

dissimilarity and the similarity between different autoregressive integrated moving 

average (ARIMA) models. Zheng et al. (2007; 2008; 2009) introduced the distance 
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measures of AR models into civil engineering by proposing a novel damage indicator 

based on the distance measure between AR models. However, there are still some 

problems unsolved. The main challenges are that how to choose the optimal order for 

distance measures and reduce the noise effect on this method, which will be studied in 

Chapter 2. 

Substructure Method Most of damage detection methods need complete information 

of the structure, which means many sensors are required to be installed into a building. 

It may be feasible for small systems. However, it is impossible for large-scale civil 

structures. For large systems, data measurement and identification are not easy tasks. 

The computation time required for convergence increases dramatically with the 

increase in the number of the degrees of freedom (DOFs) due to the nature of the 

inverse analysis. To overcome these problems, some researchers have been using the 

substructure method for large-scale structures. Koh et al. (1991) proposed 

substructure system identification and used the Extended Kalman Filter (EKF) 

(Hoshiya and Saito 1984; Ljung 2002) as the numerical tool to identify unknown 

structural parameters. Park et al. (1998) offered structural damage detection methods 

based on the relative changes in localized flexibility properties. The localized 

flexibility matrices are obtained either by applying a decomposition procedure to an 

experimentally determined global flexibility matrix or by processing the output 

signals of a vibration test in a substructure-by-substructure manner. However the 

structure division and the identifiability of substructure have rarely been studied. 

These problems will be discussed in Chapter 3 and Chapter 4. 

 

1.4 Objectives 

System identification techniques based on dynamic responses of structures have been 

used for structural identification for decades, and many non-destructive methods of 
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damage detection for structural identification were proposed which also have been 

shown the feasibility. However, most of them need complete information of the 

structure, which means many sensors are required to be installed into a building. It 

may be feasible for small systems, but impossible for large-scale civil structures, since 

the large number of sensors results in long setup time, high equipment costs as well as 

enormous efforts needed for wiring and designing. Complicated and expensive SHM 

systems are by no means practical for most civil structures. The main objective of this 

thesis is to develop a damage assessment with as fewer sensors as possible. Moreover, 

this thesis aims to solve the problem caused by large systems which is that data 

measurement and computation time increase dramatically with the increase in the 

number of the degrees of freedom (DOFs), and to make the damage detection method 

work more efficiently. 

 

1.5 Organization of Thesis 

This thesis is divided into six chapters as illustrated in Figure 1.1. 

Chapter 1 gives a brief introduction of SHM and damage detection. 

Chapter 2 presents the improvements on the distance measures of AR model. To 

strengthen the noise immunity of this method, the distance measure of low-order AR 

models is used as a damage indicator since its advantages in computational efficiency, 

emphasis of high-energy frequency range, and less sensitivity to spectral peaks caused 

by noise. In addition, adaptive component weighting (ACW) is introduced to relieve 

the noise effect further. A method to choose the optimum AR order for distance 

measures is proposed, because it is shown that the sensitivity of the distance measure 

is strongly affected by the order of the AR models and the order determined by Akaike 

information criterion or Bayesian Information Criteria is not the optimum AR order 
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for the distance measure. Moreover, the effect of varying the data length, number of 

parameters, and other factors are carefully studied in this Chapter. 

Chapter 3 proposes a substructure approach to local damage detection. Every 

substructure is confined to one DOF, which can satisfy the identifiability of 

substructure easily. By cutting substructure with overlaps, ARMAX models can be 

directly used to determine the modal information and detect the damage. Here, 

substructure approach is to divide a complete structure into several substructures in 

order to significantly reduce the number of unknown parameters for each 

substructure.  

Chapter 4 investigates the identifiability of substructures for civil engineering 

structures, and a structure division method is proposed to make the substructure 

identifiable when it is not strongly system identifiable (SSI). To clarify the 

identifiability of the substructures, the substructures are classified into three types. It 

should be noted that a substructure is a feedback system as it has feedback forces from 

the remainder of the structure. It is not true that the substructure can have as many 

DOFs as we want. Under certain conditions, the identification may fail due to the 

closed-loop nature of the system.  

Chapter 5 introduces the support vector machine (SVM) for each substructure to 

detect the local damages. The proposed structure division method is used to divide the 

structure, and then the support vector machine (SVM) is applied for each substructure 

because multiple modal frequency changes provide information on the location of 

damaged stories.  

Chapter 6 summarizes contributions of this thesis, and points out the direction for 

future works. 
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2 Further Study on Distance Measures 

of AR Models 

 

 

 

2.1 Introduction 

Most damage detection methods based on the assumption that damage will alter the 

stiffness, mass, or energy dissipation properties of a system, which in turn alter the 

measured dynamic response of the system (Mayes 1991; Fox 1992; Ljung and Glad 

1994; Zhang, Quiong et al. 1998; Goldenfeld and Kadanoff 1999; Ljung 1999; Roeck 

2003; Lynch 2005). Although the basis for damage detection appears very easy, its 

actual application poses many significant challenges. The most fundamental challenge 

is that damage is typically a local phenomenon and may not significantly influence the 

lower-frequency global response of a structure that is normally measured during 

vibration tests.  

In this chapter, improvements on the distance measures of autoregressive (AR) 

models are proposed. To improve the noise immunity of this method, the distance 

measure of low-order AR models is chosen as a damage indicator. In addition, 
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adaptive component weighting (ACW) (Assaleh and Mammone 1994) is introduced, 

which can significantly reduce noise. A method to choose the optimum AR order for 

distance measures is proposed, because it is shown that the sensitivity of the distance 

measure is strongly affected by the order of the AR models and the order determined 

by Akaike Information Criterion or Bayesian Information Criteria is not the optimum 

AR order for the distance measure. Moreover, the effect of varying the data length, 

number of parameters, and other factors are carefully studied. 

 

2.2 Cepstral Distance Measures 

Zheng and Mita (2007) used cepstral distance measures based on the AR models for 

the purpose of damage detection in civil engineering. AR models are used to fit the 

vibration response of the structure. The AR models are obtained for the undamaged 

state and unknown states, and then the cepstral distance between the reference model 

and the new model can be calculated. The cepstral distance can reveal the difference 

between two models, a big value of cepstral distance means a big difference. Thus the 

damage can be identified according to the cepstral distance. 

 

2.2.1 Autoregressive Model 

In statistics and signal processing, AR model is a type of random process which is 

often used to model and predict various types of time series. In the filter design, it is 

known as an infinite impulse response filter (IIR) or an all pole filter, and is 

sometimes known as a maximum entropy model in physics applications. It can also be 

regarded as one of a group of linear prediction formulas that attempt to predict an 

output of a system based on the previous outputs and inputs. An AR model can be 

written as  
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     (2.1) 

where ia  are the AR coefficients to be estimated, ( )y t  is the time series under 

investigation, p  is the order of the AR model which is generally very much less than 

the length of the time series, and ( )e t  is the prediction error term or noise, which is 

almost always assumed to be Gaussian white noise.  

 

2.2.2 Cepstral Distance 

The cepstrum of a signal is defined as the inverse Fourier transform of the log 

magnitude spectrum, and it was originally used for detecting echoes (Bogert, Healy et 

al. 1963). First, the cepstral metric for the AR model is introduced, as proposed by 

Martin (2000), 
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where 
(1)

n
c  and (2)

nc  are the cepstral coefficients of AR models 
(1)M  and 

(2)M , and D 

is cepstral distance between the two AR models. Then combining Equation (2.2) with 

Equation (2.3) (Oppenheim and Schafer 1989), 
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where i  and i  mean the poles and zeros of the model, p  and q  are the numbers 

of the poles and zeros of the model respectively, nc  is the cepstral coefficient, and 

  is the variance of the white noise input, and then by using the identity, 
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the cepstral distance between pole-zero models can be obtained as follows: 
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where D means the cepstral distance between models  1
M  and  2

M , 

  
(1) (1) (2)φ = α ,β , (2) 2 1  

( ) ( )
φ = α ,β , i  and i  are the poles and zeros of the models, 

and 
(1)p  and 

(2)p  are the orders of the models  1
M  and  2

M , respectively. 

 

2.3 Improved Cepstral Distance Measures 

As an improvement to the cepstral distance method introduced by Zheng and Mita 

(2007), the distance measure of low-order AR models is proposed as a damage 

indicator to strengthen the noise immunity of this method. Low-order AR models have 

advantages in terms of computational efficiency, emphasis of high-energy frequency 

range, and less sensitivity to spectral peaks caused by noise. Adaptive component 

weighting (ACW) is introduced to improve further the ability of this method in noise 

resistance. Moreover, a method to choose the optimum AR order for distance 

measures is proposed, because it is shown that the sensitivity of the distance measure 

is strongly affected by the order of the AR models and the order determined by Akaike 

information criterion (Akaike 1974) or Bayesian Information Criteria (Schwarz 1978) 

is not the optimum AR order for the distance measure. 
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2.3.1 Optimum Order of AR Models 

The previous study (Zheng and Mita 2007) in which autoregressive (AR) models are 

used to get the cepstral distance, however, how to choose the optimal order for 

distance measures is still a problem unsolved. Here, a method is proposed to solve this 

problem. Figure 2.1 shows a simplified structure model. The mass of every floor and 

the lateral stiffness is assumed to be 100 kg and 1 MN/m, respectively. 3% is chosen 

as the damping ratio of all modes. Data sampling frequency is 200 Hz. The Gaussian 

white noise is used to simulate the input such as earthquakes and ambient vibration. 

The stiffness reduction is regarded as the damage to the structure. To get the optimum 

AR order for the distance measure, AR models are examined with different orders 

(3-19) for different multiple degrees of freedom (MDOF) systems (3-19-DOF) with 

different damage severities (8%, 16%, 24%, 32% and 40% lateral stiffness reduction) 

in different damage locations (1
st
, 2

nd
... n

th
 story). Because the number of results is 

very huge, only those of AR model orders (3, 4, 5, 6, 9 and 13) for 3, 5, 7 and 13-DOF 

systems with 8% damage severity in the 2
nd

 story are listed in Table 2.1. 

 

 

Figure 2.1. Simplified structural model with n DOFs 
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Table 2.1. Cepstral distance (8% stiffness reduction in the 2
nd

 story, double underlined values: 

largest cepstral distance, single underlined values: second largest cepstral distance) 

AR Order 3 4 5 6 9 13 

 3 DOF (1st natural frequency: 7.1 Hz) 

1-mass 0.0663 0.1095 0.1508 0.1667 0.1042 0.2351 

2-mass 0.0838 0.1125 0.1956 0.2399 0.5514 0.5131 

3-mass 0.0350 0.0175 0.0069 0.0440 0.0519 0.1911 

 5 DOF (1st natural frequency: 4.5 Hz) 

1-mass 0.0615 0.0910 0.1161 0.1210 0.1250 0.1223 

2-mass 0.0946 0.1317 0.1370 0.1408 0.2525 0.2496 

3-mass 0.0528 0.0137 0.0275 0.0133 0.0774 0.0809 

4-mass 0.0242 0.0222 0.0569 0.0587 0.0821 0.0713 

5-mass 0.0124 0.0056 0.8430 0.0164 0.0222 0.0600 

 7 DOF (1st natural frequency: 3.3 Hz) 

1-mass 0.0416 0.0781 0.1192 0.1270 0.1290 0.1174 

2-mass 0.1137 0.1295 0.1445 0.1203 0.2143 0.1895 

3-mass 0.0469 0.0134 0.0269 0.0803 0.0259 0.1149 

4-mass 0.0215 0.0196 0.0325 0.0318 0.0516 0.0829 

5-mass 0.0080 0.0121 0.0024 0.0162 0.0114 0.0164 

6-mass 0.0116 0.0238 0.0249 0.0135 0.0223 0.0447 

7-mass 0.0068 0.0072 0.0060 0.0013 0.0147 0.0191 

 13 DOF (1st natural frequency: 1.9 Hz) 

1-mass 0.0542 0.0969 0.1206 0.1141 0.1333 0.1269 

2-mass 0.1078 0.1326 0.1500 0.1363 0.2049 0.1775 

3-mass 0.0368 0.0182 0.0253 0.0797 0.0608 0.1118 

4-mass 0.0260 0.0182 0.0309 0.0315 0.0482 0.0691 

5-mass 0.0072 0.0085 0.0067 0.0104 0.0217 0.0244 

6-mass 0.0019 0.0043 0.0055 0.0087 0.0159 0.0351 

7-mass 0.0033 0.0089 0.0037 0.0133 0.0158 0.0169 

8-mass 0.0016 0.0059 0.0032 0.0087 0.0144 0.0109 

9-mass 0.0046 0.0146 0.0060 0.0194 0.0194 0.0135 

10-mass 0.0052 0.0095 0.0044 0.0139 0.0150 0.0206 

11-mass 0.0032 0.0039 0.0037 0.0065 0.0107 0.0158 

12-mass 0.0195 0.0359 0.0190 0.0288 0.0230 0.0274 

13-mass 0.0024 0.0103 0.0038 0.0100 0.0266 0.0137 

 



CHAPTER 2 Further Study on Distance Measures of AR Models 

17 

 

The cepstral distance was chosen as the damage indicator because it increases as the 

difference between two models increases. After damage occurs in the 2
nd

 story, the 

acceleration response of the 1
st
 and 2

nd
 mass is affected more than the others and is 

shown as an increase in the cepstral distance of the 1
st
 and 2

nd
 mass. Thus, the cepstral 

distance of the 1
st
 and 2

nd
 mass should be much larger than the cepstral distances of 

the other masses when damage occurs in the 2
nd

 story. Table 2.1 lists the cepstral 

distances of masses for different AR orders. The double and single underlined values 

mean the largest and second largest cepstral distances, respectively. If the cepstral 

distances of the 1
st
 and 2

nd
 masses are not much larger than the others, it indicates that 

the damage can’t be shown clearly and the corresponding AR order is not the 

optimum one. If the cepstral distances of the 1
st
 and 2

nd
 masses are smaller than the 

others, it means that the result gives the wrong damage location, and thus the order of 

the AR model is wrong. 

The acceleration of masses closer to the damage will be the most affected. In the 

current case, damage to the 2
nd

 story, let’s consider the ratios of the cepstral distance 

of the 3
rd

 mass to the 1
st
 mass and the cepstral distance of the 3

rd
 mass to the 2

nd
 mass, 

Equation (2.6) and Equation (2.7), as the index for choosing the proper AR order. 

 3
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st

mass

mass

D
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D





  (2.6) 
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2
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D
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D





  (2.7) 

The smaller 1R  and 2R  are, the better the recognition results mean. If 1R  and 

2R  are larger than 1, it means that the AR order is wrong. Figures 2.2~2.5 show that 

increasing the AR order doesn’t improve the recognition results. AR orders of 4 and 5 

are more stable than others. The results for cases in which different stories suffered 

damage of different severities (not listed here) also indicate that 4 and 5 are the most 
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stable AR orders. Taller structures were also tested, and similar results were obtained. 

So in this study, low-order AR models of order 4 are used. 

  

Figure 2.2. Ratio of cepstral distance (3-DOF) 

 

 

Figure 2.3. Ratio of cepstral distance (5-DOF) 
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Figure 2.4. Ratio of cepstral distance (7-DOF) 

 

  

Figure 2.5. Ratio of cepstral distance (13-DOF) 
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2.3.2 Adaptive Component Weighting (ACW) 

AR models are susceptible to noise. To reduce the effect of noise, adaptive component 

weighting (ACW) is used, as is done in speaker identification (Assaleh and Mammone 

1994). ACW modified the linear prediction (LP) spectrum so as to emphasize the 

formant structure. The ACW spectrum introduces zeros into the usual all-pole LP 

spectrum. This is equivalent to applying a finite impulse response (FIR) filter that 

normalizes the narrow-band modes of the spectrum. Unlike existing fixed cepstral 

weighting schemes, the ACW cepstrum provides an adaptively weighted version of 

the LP cepstrum.  
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where kf  for 1 k p   represent the poles of the AR model, and kr  are the residues 

of the poles. It has been shown that the sensitivity of a pole to noise in the LP 

coefficients is proportional to the residues kr  (Assaleh and Mammone 1994) and the 

variation caused by the residues kr  can be removed by setting all residues equal to a 

given constant such as unity.  

Hence, the ACW spectrum is given by 
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Figure 2.6. 5-DOF system with 24% stiffness reduction in the 2
nd

 story (data length=9000, 

SNR=10): (a) Without ACW, (b) With ACW 
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Figure 2.7. 7-DOF system with 24% stiffness reduction in the 2
nd

 story (data length=9000, 

SNR=10): (a) Without ACW, (b) With ACW 
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As mentioned in the previous section, AR models of order 4 were adopted to examine 

whether ACW can reduce the effects of noise on the recognition results. ACW was 

applied to different MDOF structure systems (3-19-DOF) with damage of different 

severities (8%, 16%, 24%, 32% and 40% lateral stiffness reduction) and in different 

locations (1
st
, 2

nd
... n

th
 story). 

Here, only the results for the 5-DOF and 7-DOF structures with 24% stiffness 

reduction in the 2
nd

 story (Figure 2.6 and Figure 2.7). 1R  means the ratio of cepstral 

distance of the 3
rd

 mass to the 1
st
 mass, and 2R  means the cepstral distance of the 3

rd
 

mass to the 2
nd

 mass. 1R  and 2R  are computed from Equation (2.6) and Equation 

(2.7), respectively, and smaller values mean better recognition results.  

 

2.4 Performance Verification by Simulation 

A simulation of a five-story shear building model was performed to show the feasibility 

of the proposed scheme for damage detection. The building was simplified into a 

5-DOF structural system (Figure 2.8). 

 

Figure 2.8. 5-story shear building 
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The mass of every floor and the lateral stiffness were assumed to be 100 kg and 1 

MN/m respectively. 3% was chosen as the damping ratio of all modes. The data 

sampling frequency is 200 Hz. The undamaged natural frequencies of the structure are 

4.5 Hz, 13.2 Hz, 20.8 Hz, 28.6 Hz, and 30.5 Hz for the 1
st
 mode, 2

nd
 mode, 3

rd
 mode, 

4
th

 mode, and 5
th

 mode, respectively. The 5-DOF system was assumed to be excited by 

the Gaussian white noise, which is used to simulate the input such as earthquakes and 

ambient vibration, and 10% noise was added to the acceleration responses of the 

structure. The story stiffness reduction was regarded to be damage to the structure. Five 

damage cases (damage in the 1
st
 story, 2

nd
 story, 3

rd
 story, 4

th
 story, or 5

th
 story) with 

five different damage severities (8%, 16%, 24%, 32% and 40% lateral stiffness 

reduction) were studied. Hence, there are 25 different damage scenarios in total. 

To deal with the strong mutual correlation in the acceleration data, a pre-whitening 

filter (Zheng and Mita 2007) was used to whiten the 5-dimensional signals. Then the 

AR models of order 4 were constructed to fit the acceleration responses of the structure 

in the 25 different scenarios. Burg’s method was used to obtain the AR model because 

of its high frequency resolution and resulting stable AR model. The AR models were 

arranged in pairs (reference model and new model), and adaptive component weighting 

(ACW) was used to reduce the effect of noise by transforming the all-pole models (AR 

model) to pole-zero models. Finally, Equation (2.5) was used to get the cepstral 

distance between every pair of models. The cepstral distance can reveal the difference 

between two models, a big value of cepstral distance means a big difference. Thus the 

damage can be judge according to the cepstral distance. A large cepstral distance 

means that the structure is damaged, and a small distance means that the structure is 

undamaged. 

Figures 2.9-2.11 show the recognition results for different data lengths. In order to 

show the damage more clearly, the cepstral distance on the x axis is squared. It is clear 

that the change in the recognition results between these figures is related to the data 
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length. In Figure 2.9, for which the data length is 6000, the recognition result when 

damage occurs in the 1
st
 story is not as good as the results for other damage to other 

stories. However, it can be improved by increasing the data length (Figure 2.10 and 

Figure 2.11).  

 

 

Figure 2.9. Cepstral distance based on the pole-zero models (data length=6000) 
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Figure 2.10. Cepstral distance based on the pole-zero models (data length=9000) 

 

Figure 2.11. Cepstral distance based on the pole-zero models (data length=11000) 
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This phenomenon is mainly caused by the standard deviations of the AR coefficients, 

which are determined by the model covariance matrix (Ljung and Ljung 1987), and 

thus, it is related to the data length. Another reason is that the damage indicators in this 

case are much smaller than those of the other damage cases and not very big compared 

with the standard deviations of the AR coefficients. Thus, the damage indicator for the 

1
st
 story suffers more from the standard deviations of the AR coefficients than those of 

the other cases. However, the standard deviations of the AR coefficients can be 

decreased by increasing the data length, and this in turn reduces the effect on the 

damage indicators and improves recognition results. 

Next, the standard deviations of the AR coefficients are examined when the structure 

has suffered damage in different locations and with different severities (undamaged, 

8%, 16%, 24%, 32% and 40% lateral stiffness reduction). Only the standard deviations 

of the AR coefficients are listed in Tables 2.2-2.4 when the 1
st
 story suffered no 

damage, and 8% and 40% lateral stiffness reductions, where ia means the AR 

coefficient. From Tables 2.2-2.4, it is clear that increasing the data length reduced the 

standard deviations, but changing the damage severity had almost no effect on them. 

Moreover, varying the damage location hardly affected the standard deviations. It is 

clear that the accuracy of the recognition result depends on the standard deviations of 

AR coefficients, especially when the standard deviation is not small enough compared 

with the damage indicator. 

Table 2.2. Standard deviations of AR coefficients (undamaged)  

 1
st
 floor 2

nd
 floor 3

rd
 floor 4

th
 floor 5

th
 floor 

 Data length 6000 

1a
 0.0128 0.0126 0.0128 0.0119 0.0129 

2a
 0.0125 0.0160 0.0150 0.0153 0.0162 

3a
 0.0125 0.0160 0.0150 0.0153 0.0162 
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4a
 0.0128 0.0126 0.0128 0.0119 0.0129 

 Data length 9000 

1a
 0.0104 0.0103 0.0104 0.0097 0.0105 

2a
 0.0102 0.0129 0.0122 0.0126 0.0134 

3a
 0.0102 0.0129 0.0122 0.0126 0.0134 

4a
 0.0104 0.0103 0.0104 0.0097 0.0105 

 Data length 11000 

1a
 0.0094 0.0093 0.0095 0.0088 0.0095 

2a
 0.0093 0.0117 0.0112 0.0114 0.0120 

3a
 0.0093 0.0117 0.0112 0.0114 0.0120 

4a
 0.0094 0.0093 0.0095 0.0088 0.0095 

 

Table 2.3. Standard deviations of AR coefficients (8% lateral stiffness reduction, damage in the 1
st
 

story) 

 
1

st
 floor 2

nd
 floor 3

rd
 floor 4

th
 floor 5

th
 floor 

 Data length 6000 

1a
 0.0128 0.0126 0.0128 0.0120 0.0129 

2a
 0.0126 0.0157 0.0150 0.0154 0.0163 

3a
 0.0126 0.0157 0.0150 0.0154 0.0163 

4a
 0.0128 0.0126 0.0128 0.0120 0.0129 

 Data length 9000 

1a
 0.0104 0.0103 0.0104 0.0097 0.0105 

2a
 0.0102 0.0131 0.0123 0.0125 0.0133 

3a
 0.0103 0.0131 0.0123 0.0125 0.0133 

4a
 0.0104 0.0103 0.0104 0.0097 0.0105 

 Data length 11000 

1a
 0.0095 0.0093 0.0095 0.0088 0.0095 
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2a
 0.0093 0.0119 0.0111 0.0114 0.0119 

3a
 0.0093 0.0119 0.0111 0.0114 0.0119 

4a
 0.0095 0.0093 0.0095 0.0088 0.0095 

 

Table 2.4. Standard deviations of AR coefficients (40% lateral stiffness reduction, damage in the 

1
st
 story) 

 1
st
 floor 2

nd
 floor 3

rd
 floor 4

th
 floor 5

th
 floor 

 Data length 6000 

1a
 0.0128 0.0124 0.0127 0.0117 0.0129 

2a
 0.0128 0.0163 0.0152 0.0157 0.0166 

3a
 0.0128 0.0163 0.0152 0.0157 0.0166 

4a
 0.0128 0.0124 0.0127 0.0117 0.0129 

 Data length 9000 

1a
 0.0105 0.0102 0.0104 0.0095 0.0105 

2a
 0.0105 0.0135 0.0126 0.0127 0.0136 

3a
 0.0105 0.0135 0.0126 0.0127 0.0136 

4a
 0.0105 0.0102 0.0104 0.0095 0.0105 

 Data length 11000 

1a
 0.0095 0.0092 0.0094 0.0087 0.0095 

2a
 0.0095 0.0122 0.0113 0.0115 0.0123 

3a
 0.0095 0.0122 0.0113 0.0115 0.0123 

4a
 0.0095 0.0092 0.0094 0.0087 0.0095 

 

In addition to the single damage cases shown as above, multiple damage cases are 

also studied. Similar to the single damage cases, different multiple degrees of freedom 

(MDOF) systems (3-19-DOF) with different damage severities (8%, 16%, 24%, 32% 

and 40% lateral stiffness reduction) in different multiple damage locations were 
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studied. The data length is 9000 and the order of AR model is 4. Results also show 

that this method is available to the multiple damage cases. Because of the huge 

number of results, only the results of a 5-DOF system are listed when the damage 

with different damage severities (8%, 16%, 24%, 32% and 40% lateral stiffness 

reduction) in the 1
st
 and 5

th
 story. In Figure 2.12, the damage is localized correctly. 

The effect on the accuracy of identification results in multiple damage cases, which 

caused by the data length, the damage severities, damage locations and the standard 

deviations of AR coefficients, is similar to that in the single damage cases. 

 

Figure 2.12. Cepstral distance for the multiple damage case (data length=9000) 
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weight of every story is 2.57 tons, and the story height is 1 m. The lengths of the long 

and short sides are 3 m and 2 m, respectively. The excitation signal is white noise with 

bandwidth of 0–200 Hz, in the long side’s direction. Accelerometers were mounted on 

both long sides of every story. The acceleration time histories were recorded with a 

0.005 s sampling period. Damage to the building was simulated by removing the 

central columns and braces; the central columns on the first, third and fifth story were 

removed as shown in Figure 2.14, and the braces on the first, third and fifth story were 

removed as shown in Figure 2.16. 

Figure 2.15 and Figure 2.17 are the recognition results, and they clearly show the 

damage locations. The length of data is 6000. Table 2.5 and Table 2.6 list the standard 

deviations of the AR coefficients when the central columns and the braces on the first 

story are removed (the standard deviations for the other experimental conditions are 

similar). The damage indicators are very large compared with the standard deviations, 

which means that they are not influenced by the standard deviations very much. Thus 

good recognition results can be obtained, as shown in Figure 2.15 and Figure 2.17. 

 

Figure 2.13. Tested building model: (a) long-side and (b) short-side 
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Table 2.5. Standard deviations of AR coefficients (the central columns on the first story were 

removed) 

Data length 6000 1
st
 floor 2

nd
 floor 3

rd
 floor 4

th
 floor 5

th
 floor 

1a
 

0.0089 0.0078 0.0072 0.0087 0.0079 

2a
 

0.0212 0.0176 0.0162 0.0200 0.0196 

3a
 

0.0212 0.0176 0.0162 0.0200 0.0196 

4a
 

0.0089 0.0077 0.0072 0.0087 0.0079 

 

 

Figure 2.14. Damage case: removing central column on the (a) first, (b) third, and (c) fifth floor 

 

 

Figure 2.15. Cepstral distances (the central columns were removed, data length=6000) 

0 0.5 1

1-mass

2-mass

3-mass

4-mass

5-mass

1st Story Damage

(Cepstral Distance)2

0 0.5 1

1-mass

2-mass

3-mass

4-mass

5-mass

3rd Story Damage

(Cepstral Distance)2

0 0.5 1 1.5

1-mass

2-mass

3-mass

4-mass

5-mass

5th Story Damage

(Cepstral Distance)2

(

a

) 

(

b

) 

(

c

) 

(a) (b) (c) 



CHAPTER 2 Further Study on Distance Measures of AR Models 

33 

 

Table 2.6. Standard deviations of AR coefficients (the braces on the first story were removed) 

Data length 6000 1
st
 floor 2

nd
 floor 3

rd
 floor 4

th
 floor 5

th
 floor 

1a
 

0.0092 0.0090 0.0091 0.0095 0.0095 

2a
 

0.0185 0.0160 0.0167 0.0173 0.0202 

3a
 

0.0185 0.0160 0.0167 0.0173 0.0202 

4a
 

0.0092 0.0090 0.0091 0.0095 0.0095 

 

 

Figure 2.16. Damage case: removing braces on the (a) first, (b) third, and (c) fifth story 

 

 

Figure 2.17. Cepstral distances (the braces were removed, data length=6000) 
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2.6 Conclusions 

Improvements on distance measures of AR models were proposed. An AR order 

selection method was proposed to choose the optimum order of the AR model for the 

distance measures. The combining use of low-order AR models and ACW improves 

the noise immunity of this method. The standard deviations of the AR coefficients 

have a significant effect on the accuracy of identification, especially when the standard 

deviations are not small enough relative to the damage indicators; on the contrary, the 

severity and location of the damage have little effect on the standard deviations of the 

AR coefficients. To overcome this problem, the standard deviations of AR coefficients 

were reduced by increasing the data length. The results of simulations and an 

experiment show that the scheme is feasible for identifying the damage location. In 

simulation and experiment, buildings were assumed to be excited by Gaussian white 

noise. Gaussian white noise can be used to simulate input such as earthquakes and 

ambient vibration. To apply the method, any excitation including earthquakes or 

ambient vibration can be used as long as the duration of excitation is long enough. In 

this study, results with different damage severities show that larger cepstral distance is 

corresponding to a more serious damage severity and this indicates that there is a 

relation between the cepstral distance and the damage severity, but so far it is difficult 

to quantify the damage severity by cepstral distance, and further study is needed. 
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CHAPTER 3 

3 Substructure Approach 

to Local Damage Detection 

 

 

 

3.1 Introduction 

Though many damage detection methods are available for Structural Health 

Monitoring (SHM), most of them need complete information of the structure, which 

means many sensors are required to be installed into a building. It may be feasible for 

small systems. However, it is impossible for large-scale civil structures, since the 

large number of sensors results in long setup time, high equipment costs as well as 

enormous efforts needed for wiring and designing (Roeck 2003). Complicated and 

expensive SHM systems are by no means practical for most civil structures. What we 

should do is to find a trade-off point between the number of sensors and the accuracy 

of the damage detection. Another problem for large systems is that data measurement 

and identification are not easy tasks. The computation time required for convergence 

increases dramatically with the increase in the number of the degrees of freedom 

(DOFs) due to the nature of the inverse analysis. The main challenge is the 

convergence and computation efficiency to achieve reasonable accuracy within 
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reasonable computation time. 

To overcome these problems, some researchers have been using the substructure 

method for large-scale structures. Koh et al. (1991) proposed substructure system 

identification and used the Extended Kalman Filter (EKF) (Hoshiya and Saito 1984; 

Ljung 2002) as the numerical tool to identify unknown structural parameters. Park et 

al. (1998) offered structural damage detection methods based on relative changes in 

localized flexibility properties. The localized flexibility matrices are obtained either 

by applying a decomposition procedure to an experimentally determined global 

flexibility matrix or by processing the output signals of a vibration test. Zhao et al. 

(1995) proposed a substructure identification of MDOF structures in the frequency 

domain. 

In this chapter, a substructure algorithm is used to divide a complete structure into 

substructures. A substructure has a considerably smaller number of degrees of 

freedom (DOFs) when compared with the entire structure. Much as it appears as a 

simple idea, it should be known that the substructures are not isolated from the 

remainder of the structure and it is necessary to consider about the interaction forces 

at interfaces (Craig and Bampton 1968). To facilitate the handling of interaction 

forces at substructure interfaces, Koh et al. (2003) used the concept of quasi-static 

displacement vector, and the damping force was assumed to be negligible. Here, no 

part of the interaction forces is neglected, and only the accelerations are used for 

identification. Considering strong flexibility for handling the disturbance modeling, 

the autoregressive moving average with exogenous inputs (ARMAX) model is 

adopted to obtain the modal information of the substructures. In the referred papers a 

little more complicated method is needed to estimate the unknown substructure 

parameters, e.g. EKF or Genetic Algorithm (GA). Here, each substructure is confined 

to one DOF and cut substructure with overlaps, thus ARMAX models can be directly 

used to determine the modal information of each substructure. The extent of damage is 
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measured by using the squared original frequency and the squared damaged frequency. 

Each substructure can be treated independently. Three sensors are enough for 

analyzing a substructure in this method, and for the top substructure, only two sensors 

are needed.  

In many issued papers, the number of DOFs included in a substructure is not highly 

valued (Saito, Mase et al. 2005; Hou, Jankowski et al. 2010) and they gave us an 

impression that the substructure can have as many DOFs as we want which is not 

always true according to the identifiability condition for the feedback system (Schoen 

1992; Xie, Mita et al. 2010). It should be noted that a substructure is a feedback 

system as it has feedback forces from the remainder of the structure. The 

identifiability of substructures will be discussed in Chapter 4. 

 

3.2 ARX Model and ARMAX Model 

The autoregressive with exogenous input (ARX) model can be written as 

 
1 1

( ) ( ) ( 1) ( )
na nb

k k

k k

y t a y t k b u t nk k e t
 

         (3.1) 

where ( )y t  and ( )u t  are the output and the input of the structure at sample index t , 

respectively, ka  and kb  are the coefficients to be estimated, na  nb  and nk are 

the orders of the ARX model, nk  is the number of input samples that occur before 

the input affects the output, also called the time delay, and ( )e t  is the prediction error 

term or residual. 

Advantages: 

1) It is the simplest model incorporating a stimulus signal; 
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2) The estimation of the ARX model is the most efficient of the polynomial 

estimation methods because it is the result from solving the linear regression 

equations in an analytic form; 

3) The solution is unique. In other words, the solution always satisfies the 

global minimum of the loss function. 

Disadvantage:   

ARX model assumes that the transfer function of the deterministic part of the system 

and the transfer function of the stochastic part of the system have the same set of 

poles which is unrealistic. The system dynamics and stochastic dynamics of the 

system do not always share the same set of poles. 

The ARMAX model is a generalization of ARX model. The form of ARMAX model 

is 

 
1 1 1

( ) ( ) ( 1) ( )
na nb nc

k k k

k k k

y t a y t k b u t nk k c e t k
  

           (3.2) 

where ( )y t  and ( )u t  are the output and input of the structure at sample index t , 

respectively, ka , kb  and kc  are the coefficients to be estimated, na , nb , nc  and 

nk  are the orders of the ARMAX model, and ( )e t k  is the white-noise disturbance 

value. 

Unlike the ARX model, the ARMAX model includes disturbance dynamics. ARMAX 

models are useful when you have dominating disturbances that enter early on in the 

process, such as at the input. The ARMAX model has more flexibility for handling the 

disturbance modeling than the ARX model. 
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3.3 Motion Equations for Substructures 

A structure is modeled as a one-dimensional lumped mass shear model, as shown in 

Figure 3.1. The motion equation for the overall structure is written as 

 gxMx + Cx + Kx = -Mr  (3.3) 

where M, K, and C are the mass, stiffness, and damping matrix, respectively. r is an 

1n  unit vector ( [1 1]Tr ), x is the displacement relative to the ground, and gx  

is the ground acceleration. 
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Figure 3.1. Simplified lumped mass shear model 

From the motion equation of the whole structure, the motion of the substructure can 

be obtained as follows: 

1) The equation for the substructure n can be formulated by assuming that the 

substructure behaves as a structure subjected to support excitation ( 1

a

nx  ) 

 
1

r r r a

n n n n n n n nm x c x k x m x     (3.4) 

where r

nx  is the displacement of the n
th

 mass relative to the displacement of the 

(n-1)
th

 mass, 1

a

nx   is the absolute acceleration of the (n-1)
th

 mass, and nc  and 

nk  mean the damping and stiffness of the n
th

 story, respectively. 
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2) The motion equation of substructure (n-1) is 

 
1 1 1 1 1 1

1 2

( 2 ) ( 2 )

2 2 ( )

r r r

n n n n n n n n

r r r a

n n n n n n n n n

m x c c x k k x

m x c x k x m m x

     

 

   

    
 (3.5) 

where 1

r

nx   is the displacement of the (n-1)
th

 mass relative to the displacement of 

the (n-2)
th

 mass, r

nx  is the displacement of the n
th

 mass relative to the 

displacement of the (n-2)
th

 mass, and 2

a

nx   is the absolute acceleration of the 

(n-2)
th

 mass. 

3) The motion equation of substructure i (1 2i n   ) using the relative response 

with respect to the lower response ( 1ix  ) is  

 
1 1 1 1 1 1 1( ) ( )r r r a r r

i i i i i i i i i i i i i im x c c x k k x m x c x k x               (3.6) 

where r

ix  is the displacement of the i
th

 mass relative to the displacement of the 

(i-1)
th

 mass, 
1

r

ix 
 is the displacement of the (i+1)

th
 mass relative to the 

displacement of the i
th

 mass, and 
1

a

ix 
 is the absolute acceleration of the (i-1)

th
 

mass. Especially, when i=0,
1

a

ix 
, i.e. 0

ax  means the ground acceleration. 

Introducing the difference expression 

 

2

( ) ( )
( )

2

( ) 2 ( ) ( )
( )

i i
i

i i i
i

x t T x t T
x t

T

x t T x t x t T
x t

T

  


   


 (3.7) 

where T is the sampling interval, into the motion equation of substructure i in 

Equation (3.6), Equation (3.6) can be transformed as 
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1 2 11 1 12 1

21 1 22 1

31 32

( ) ( 1) ( 2) ( 1) ( 2)

( 1) ( 2)

( 1) ( 1)

r r r a a

i i i i i

r r

i i

x t a x t a x t b x t b x t

b x t b x t

c e t c e t

 

 

       

   

   

 (3.8) 

where ( )e t  is the prediction error term or residual. 

It is clear that Equation (3.6) can be regarded as a two-input and one-output ARMAX 

model. Similar equations also can be obtained by substituting Equation (3.7) into 

substructures n and (n-1) respectively, which are a single-input and single-output 

ARMAX model for substructure n and a two-input and one-output ARMAX model 

for substructure (n-1). 

 

3.4 Performance Verification by Simulation 

In this simulation, a five-story shear building model was constructed to show the 

feasibility of the proposed method. The building is simplified into a 5 DOF structural 

system, as shown in Figure 3.2. 

The mass of every floor and the lateral stiffness were assumed to be 100 kg and 1 

MN/m, respectively. Three percent was chosen as the damping ratio for all modes. 

The data sampling frequency is 200 Hz. The undamaged natural frequencies of the 

structure are 4.5, 13.2, 20.8, 28.6 and 30.5 Hz for the 1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 modes, 

respectively. The 5-DOF system is assumed to be excited by Gaussian white noise, 

which is used to simulate an input such as an earthquake, and 5% noise was added to 

the acceleration responses of the structure. The story stiffness reduction was regarded 

as damage to the structure. Five cases of damage (damage in the 1
st
, 2

nd
, 3

rd
, 4

th
 or 5

th
 

stories) with five different damage severities (10, 20, 30, 40 and 50% lateral stiffness 

reduction) were studied. Therefore, there are 25 different damage scenarios totally. 



CHAPTER 3 Substructure Approach to Local Damage Detection 

43 

 

 

Figure 3.2. Simulation model for a five-story shear building 

 

Figure 3.3. Structural division 
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First, the entire structure is divided into the substructures shown in Figure 3.3.  

Then, ARMAX or ARX models are used to model each substructure in the undamaged 

and unknown states. By using the ARMAX or ARX model, the mode information of a 

substructure can be obtained easily.  

1) Substructure 5: The ARMAX or ARX model input of the 5
th

 substructure is the 

absolute acceleration of the 4
th

 mass ( 4

ax ), and the output is the acceleration of the 

5
th

 mass relative to the 4
th

 mass ( 5

rx ). It is a single-input and single-output 

ARMAX or ARX model.  

2) Substructure 4: The ARMAX or ARX model inputs of the 4
th

 substructure are the 

absolute acceleration of the 3
rd

 mass ( 3

ax ) and the acceleration of the 5
th

 mass 

relative to the 3
rd

 mass ( 5

rx ), and the output is the acceleration of the 4
th

 mass 

relative to the 3
rd

 mass ( 4

rx ). It is a two-input and single-output ARMAX or ARX 

model.  

3) Substructure i: The i
th

 substructure (except the 4
th

 and 5
th

 substructure) can be 

modeled as a two-input one-output ARMAX or ARX model. The absolute 

acceleration of the (i-1)
th

 mass (
1

a

ix 
) and the acceleration of the (i+1)

th
 mass 

relative to the (i-1)
th

 mass (
1

r

ix 
) are used as the inputs, and the acceleration of the 

i
th

 mass relative to the (i-1)
th

 mass ( r

ix ) is used as the output. Especially, when i=0, 

1 0

a a

i gx x x   , where  is the ground acceleration. 

The extent of damage is measured by using the squared original frequency ( 2

0 ) and the 

squared damaged frequency ( 2

d ). The confidence interval is 95%. 

The results show that when no noise is added, the method based on the ARMAX 

gx
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model doesn’t need a lot of data, and only 500 data are enough to obtain results 

(Figure 3.4). Meanwhile, the method based on the ARX model can also acquire 

excellent results, and the result is shown in Figure 3.5. The standard deviations in the 

results are so small that they almost can’t be seen in these figures.  

When 5% noise is added, the method based on the ARMAX model still obtains a 

satisfactory result (Figure 3.6) and the standard deviations only slightly increase, 

which proves the stability of this method. Meanwhile, the method based on the ARX 

model almost doesn’t work (Figure 3.7). As the ARMAX model structure includes 

disturbance dynamics, the method based on this model has more flexibility in 

handling the disturbance modeling than the method based on the ARX model. 
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Figure 3.4. Difference between squared original frequency and squared damaged frequency 

(ARMAX model, no noise, data length=500, 2, 3, 3na nb nc     , and 1nk  ) 
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Figure 3.5. Difference between squared original frequency and squared damaged frequency (ARX 

model, no noise, data length=500, 2, 3na nb   , and 1nk  ) 
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Figure 3.6. Difference between squared original frequency and squared damaged frequency 

(ARMAX model, 5% noise, data length=500, 2, 3, 3na nb nc     , and 1nk  ) 
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Figure 3.7.  Difference between squared original frequency and squared damaged frequency 

(ARX model, 5% noise, data length=500, 2, 3na nb   , and 1nk  ) 
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weight of every story is 2.57 tons, and the story height is 1 m. The lengths of the long 

and short sides are 3 m and 2 m, respectively. The white noise at a bandwidth range of 

0–200 Hz was used as the excitation signal, in the long side direction. Accelerometers 

were mounted on both long sides of every story. The acceleration time histories were 

recorded at a 0.005 s sampling period.  

 

Figure 3.8. Building model: (a) long-side and (b) short-side 

 

 

 

Figure 3.9. Removing central column on (a) first, (b) third, and (c) fifth floors 
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Figure 3.10. Difference between squared original frequency and squared damaged frequency 

(ARMAX model, data length=1500, 2, 3, 4na nb nc     , and 1nk  ) 
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3.9. The confidence interval is 95%. Figure 3.10 shows the recognition results 

obtained by using the method based on the ARMAX model. From Figure 3.10, we can 

localize the damage easily which means the proposed method works very well. 

Moreover, we can find that the standard deviations are small which also confirmed the 

strong stability of this method. 
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3.6 Conclusions 

This chapter presented a new method, based on substructure approach, for the local 

damage detection of a shear structure. This method requires only three sensors to 

identify localized damage in any story of a shear structure. As the structure is divided 

into substructures, which have a considerably smaller number of DOFs, the analysis 

on each substructure needs fewer data and less computation time. It is not true that the 

substructure can have as many DOFs as we want. Under certain conditions, the 

identification may fail due to the closed-loop nature of the system, which will be 

studied carefully in the next chapter. It should be noted that a substructure is a 

feedback system as it has feedback forces from the remainder of the structure. Thus 

every substructure is confined to one DOF, which can satisfy the identifiability 

condition for the substructure. By cutting substructure with overlaps, ARMAX models 

can be directly used to determine the modal information of each substructure, instead 

of using a little more complicated methods, e.g. EKF or Genetic Algorithm (GA). In 

this way, it simplifies the method significantly. As the damage detection processes can 

be independently conducted on each substructure, this method is suitable for use in a 

parallel and distributed damage detection system. 
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CHAPTER 4 

4 Identifiability of Substructure as 

Feedback System 

 

 

 

4.1 Introduction 

In many issued papers, the number of DOFs included in a substructure is not highly 

valued (Craig and Bampton 1968; Su and Juang 1994; Arikawa, Mitsuhashi et al. 

1996; Koh, Hong et al. 2003; Saito, Mase et al. 2005; Yuen and Katafygiotis 2006; 

Huang and Yang 2008; Hou, Jankowski et al. 2010). They gave us an impression that 

the substructure can have as many DOFs as we want which is not always true 

according to the identifiability condition for the feedback system (Schoen 1992; Xie, 

Mita et al. 2010). It is found that when the engineering structure is divided into 

substructures, it is more reasonable to carry out the identification of the substructure 

from the viewpoint of a closed-loop system, which has rarely been investigated in 

previously published reports, especially when the substructure method is used to 

identify the engineering structures. 

In this chapter, the identifiability of substructures for civil engineering structures is 

investigated, and a structure division method is proposed to make the substructure 
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identifiable when the substructure is not strongly system identifiable (SSI). To clarify 

the identifiability of the substructures, the substructures are classified into three types. 

It should be noted that a substructure is a feedback system as it has feedback forces 

from the remainder of the structure. Under certain conditions, the identification may 

fail due to the closed-loop nature of the system. 

 

4.2 Formulation of Substructure System as Feedback System 

It is mentioned above that the substructure is a feedback system, as it receives 

feedback forces from the remainder of the structure. Figure 4.1 shows a closed-loop 

system. The substructure and the rest of the structure are regarded as the plant and 

regulator, respectively. It is very important to know whether and how the open-loop 

system is identified when it is operated under a closed-loop system. Akaike (1967) 

analyzed the effect of feedback loops in the system on correlation and spectral 

analysis. The analysis showed that under a feedback system spectral analysis cannot 

give reasonable results since the correlation between the unmeasurable noise and the 

input. 

 

 Figure 4.1. A closed-loop system 
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The open loop system is assumed to be given by 

 
1 1( ) ( ) ( ) ( ) ( )y t G q u t H q e t    (4.1) 

where the output, ( )y t , has dimension n , and the input, ( )u t , has dimension m , 

( )e t  is a sequence of independent random variables with zero mean value and 

covariance ( ) ( )TEe t e t   , 
1q
 denotes the backward shift operator, and 

1( )G q
 

and 
1( )H q

 are rational transfer function matrices. The input ( )u t  is determined by 

feedback to be 

 
1( ) ( ) ( ) ( )u t F q y t r t    (4.2) 

In Equation (4.2) the signal ( )r t  can be a q -dimensional reference value, a set-point, 

or noise entering the regulator, and it is assumed to be uncorrelated with the noise 

( )e t . The input ( )u t  to the system given by Equation (4.2) can be chosen freely by 

the designer, or it can also consist partly of output feedback by a regulator or a given 

structure. 

To determine a model of the system given by Equation (4.1), the functions 
1( )G q

 

and 
1( )H q

 have to be parameterized by a suitable parameter vector  . A model 

corresponding to a certain value of   is given by 

 1 1( ) ( ) ( ) ( ) ( )y t G q u t H q e t 

    (4.3) 

where ( )e t  is a sequence of independent random variables with zero mean value and 

covariance  ( ) ( )TEe t e t   . When parameter   is varied over a reasonable region 

of values, Equation (4.3) represents a family of models. 
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Generally, the methods that determine the parameter vector   can be summarized as 

three approaches (Söderström and Stoica 1988): 

1) Direct approach: Ignore the feedback and identify the open-loop system using 

measurements of the input and the output. It is clear that the direct approach 

provides a biased estimate. However, if the bias is acceptable, this approach is 

very attractive since it is very simple and easy to understand. 

2) Indirect approach: Identify closed-loop transfer function and determine the 

open-loop parameters using the knowledge of the regulator. For the indirect 

approach, knowledge of the regulator is needed. However, the quality of the 

estimates may be poor due to the possible deterioration of the regulator 

characteristics or the inclusion of some nonlinearity such as a limiter or dead zone. 

Moreover, the estimated plant transfer function is of a high order. 

3) Joint input-output approach: Regard the input and output of the plant as the 

output from a system driven by some external input, and then determine the 

open-loop parameters from this system. The advantage of the joint input-output 

approach is that knowledge of the regulator is not necessary. However, it has the 

same disadvantage as the indirect approach in that the estimated plant transfer 

function is of a high order. 

 

4.3 Identifiability Conditions 

The concept of identifiability has been given with several different definitions. The 

most common approach is to relate the identifiability properties to the consistency of 

the parameter estimate ̂ . The true parameter   is then said to be identifiable if the 

sequence of estimates ̂  converges to ̂  in some stochastic sense (Aström and 
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Bohlin 1966). It has been shown that if there is a time delay in the feedback loop, and 

if the regulator noise is independent of the system noise, the direct and joint 

input-output approaches are equivalent for determining identifiability. Furthermore, 

the indirect approach has no advantage over direct identification in terms of either 

identifiability or accuracy (Ljung 1999). Thus, the direct identification approach is 

used. 

 

4.3.1 Spectral Analysis 

First let us look at the use of spectral analysis in a closed-loop system. For 

convenience, the signal is introduced: 

 
1 1( ) ( ) ( ) ( )z t F q H q e t   (4.4) 

The spectral analysis estimate of ( )iwG e
 is given by 

 
( ) ( ) ( ) ( ) / ( )ˆ ( )
( ) ( ) ( )

iw iw
yuiw r z

u r z

w G e w w F e
G e

w w w

  

  

 
 

 


 (4.5) 

where ( )u w  and ( )yu w  are the spectrum of input u  and the cross-spectrum 

between input u  and output y , respectively. It is assumed that the spectral densities 

( )u w  and ( )yu w  can be estimated exactly, which should be true at least 

asymptotically, as the number of data items tends to be infinite. If there is no 

disturbance, then ( ) 0z t  , ( ) 0z w  , and Equation (4.5) can be simplified to 

ˆ ( ) ( )iw iwG e G e  , i.e., the true system can be identified. If there is no external input, 

( ) 0r w  , and Equation (4.5) becomes 
)

1ˆ ( )
(

iw

iw
G e

F e




  , which is the negative 

inverse of the feedback. It has been shown that the spectral analysis fails to identify 
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the open-loop transfer function. 

 

4.3.2 Parametric Method 

First assume that r different feedback laws are used: 

 1( ) ( ) ( ) ( ) 1iu t F q y t r t i r      (4.6) 

The closed-loop system corresponding to the ith feedback law is given by: 

 

1

1 1

( ) ( ) ( ( ) ( ))

[ ( ) ] ( ) ( ) ( )

i

i i i i

y t I GF Gr t He t

u I F I GF G r t F I GF He t



 

  

    
 (4.7) 

Soderstrom (Söderström and Stoica 1988) gave the identifiability condition as 

follows: 

 ( ) / ( )u y y rr n n n n    (4.8) 

where r  is the number of feedback laws, un  is the number of plant inputs, 
yn  is 

the number of plant outputs, and rn  is the number of external signals. This gives a 

lower bound on the number r of different feedback laws that can guarantee the 

identifiability. 

 

4.4 Classification of Substructure Types of Shear Structure 

The prediction error method has been widely used as the direct approach to identify 

the plant of the feedback system. In this study, the autoregressive moving average 

with exogenous inputs (ARMAX) model is used to identify the substructure, since it 

includes disturbance dynamics and has more flexibility for handling the disturbance 

modeling.  
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1 1 1

( ) ( ) ( 1) ( )
na nb nc

k k k

k k k

y t a y t k b u t nk k c e t k
  

           (4.9) 

where  and  are the output and input of the structure at sample index , 

respectively, 
,
 

,
 and 

 
are the coefficients to be estimated, , , and nc

are the orders of the ARMAX model, nk  is the time delay, and  is the 

white-noise disturbance value. 

Dividing a structure into substructures is an effective method to overcome the 

difficulty caused by the increase in the number of DOFs of the structure. Figure 4.2 is 

a simplified structural model with n DOFs. Generally, there are three types of 

substructures, as shown in Figure 4.2.  

Substructure Type I: This type of substructure is obtained by cutting the structure from 

the top. The biggest characteristic of Substructure Type I is that it includes a free end. 

Substructure Type II: Unlike Substructure Type I, Substructure Type II does not 

include a free end, but it has two fixed interfaces instead. 

Substructure Type II’: Substructure type II’ is a special case of Substructure Type II.  

Here for clarity, it is regarded as the Substructure Type II’. It is a substructure with 

two fixed ends: one is the ground, and the other one is the fixed interface. 

 

( )y t ( )u t t

ka kb kc na nb

( )e t k
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Figure 4.2. Substructure types of shear structure 

 

4.5 Verification of Identifiability of Substructures for Types I, II, and 

II’ by Simulation  

A twelve-story structure was studied. The structure was assumed to be the shear type 

and is simplified into a 12-DOF structural system. The mass of every floor and the 

lateral stiffness were assumed to be 100 kg and 1 MN/m, respectively. A damping 

ratio of 3% was chosen for all modes. The data sampling frequency is 200 Hz. A 3% 

noise value was added to the acceleration. The ground acceleration was simulated by 

Gaussian white noise. Table 4.1 lists the basic information of the simulation, and 

Table 4.2 lists the modal frequencies of the overall structure. 

When the structure is divided, the biggest problem is determining from which mass to 

which mass can be regarded as a substructure, and of course, it should be identifiable. 

This problem can be studied in two situations: system with external input and system 

without external input. 
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Table 4.1. Basic parameters of the simulation 

Mass of 

every floor 

Lateral 

stiffness 

Damping 

ratio 

Sampling 

frequency 
Noise level Data length 

100 kg 1 MN/m 3% 200 Hz 3% 2000 data 

 

Table 4.2. Modal information for the overall structure 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 

Frequency 

 (Hz) 
1.22 3.65 6.06 8.43 10.76 13.02 

Mode 7
th

 8
t
h 9

th
 10

th
 11

th
 12

th
 

Frequency 

 (Hz) 
22.93 24.56 26.06 27.36 28.53 29.52 

 

4.5.1 System with External Input 

Figure 4.3 shows the corresponding feedback system of the three types of 

substructures. The substructure that needs to be identified can be regarded as the plant, 

and the other part of the structure can be regarded as the regulator. In this study, the 

regulator was assumed to be time invariant, linear, and noise-free, and thus 1r  . 

 

Figure 4.3. Feedback system with external signal 
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Figure 4.4. Substructure division 

 

 

Figure 4.5. Substructure Type I with three DOFs (from 10
th
 mass to 12

th
 mass) 
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Figure 4.6. Parametric method for Substructure Type I with three DOFs (from 10
th
 mass to 12

th
 

mass, 6, 8, 6na nb nc     , and 1nk  ) 

 

Substructure Type I: There is one external signal, which has the same dimension as 

the input signal and the output signal, i.e., 1u r yn n n   , as shown in Figure 4.4  

Here, only the results of Substructure Type I with three DOFs (Figure 4.5) are listed. 

The input of the ARMAX model is the absolute acceleration of the 9
th

 mass ( 9

ax ), and 

the output is the acceleration of the 12
th

 mass relative to the 9
th

 mass ( 12

rx ). The orders 

of the ARMAX model are 6, 8, 6na nb nc     , and 1nk  . Figure 4.6 clearly 

shows that this substructure is identifiable. For this type of substructure, a 

substructure with any number of DOFs is identifiable if the number of independent 

external inputs is equal to the number of inputs to the substructure.  
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Substructure Type II: In this situation, the identifiability condition cannot be satisfied, 

which means that Substructure Type II is not identifiable since there is one external 

signal, two inputs, and one output of the plant, i.e., 2, 1u r yn n n    . There are 

generally two methods to overcome this problem: adding different feedback laws or 

ensuring that the order of the regulator is higher than that of the plant. Here, the 

second method is more suitable, as it can be realized easily by ensuring the order of 

the rest of the structure higher than that of the substructure.  

1) The Substructure Type II with four DOFs, including masses from the 2
nd

 mass to 

the 5
th

 mass (Figure 4.7) was studied. As this substructure includes the points 

from the 2
nd

 mass to the 5
th

 mass, the rest of the structure has a higher order than 

the substructure that can make the substructure system identifiable (SI). The 

absolute acceleration of the 1
st
 ( 1

ax ) and the acceleration of the 6
th

 mass relative to 

the 1
st
 mass ( 6

rx ) are used as the inputs of the ARMAX model, and the 

acceleration of the 5
th

 mass relative to the 1
st
 mass ( 5

rx ) is used as the output of 

the ARMAX model. The orders of the ARMAX model are 10na  , 

 14,14nb   , 8nc  , and  1,1nk   . Table 4.3 lists the estimated modal 

frequencies of this substructure. Table 4.3 and Figure 4.8 show that this 

substructure is correctly identified. 
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Figure 4.7. Substructure Type II with four DOFs (from 2
nd

 mass to 5
th

 mass) 

 

 

Table 4.3. Estimated modal frequencies of Substructure Type II with four DOFs (from 2
nd

 mass to 

5
th

 mass,  10, 14,14 , 8na nb nc      , and  1,1nk   ) 

Mode 1
st
 2

nd
 3

rd
 4

th
 

True Frequency (Hz) 9.84 18.71 25.75 30.27 

 Estimated Frequency (Hz) 9.85 18.64 25.89 30.91 
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Figure 4.8. Parametric method for Substructure Type II with four DOFs (from 2
nd 

mass to 5
th
 mass, 

 10, 14,14 , 8na nb nc      , and  1,1nk   ) 
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2) The Substructure Type II, which has five DOFs, as shown in Figure 4.9 was 

studied here. The rest of the structure has a lower order than the substructure 

since it has five DOFs (from 4th mass to 8th mass). The inputs are composed of 

the absolute acceleration of the 3
rd

 mass ( 3

ax ) and the acceleration of the 9
th

 mass 

relative to the 3
rd

 mass ( 9

rx ). The acceleration of the 8
th

 mass ( 8

rx ) is regarded as 

the output. The orders of the ARMAX model are  10, 14,14 , 8na nb nc      , 

and  1,1nk   . In Table 4.4, we can find that the identified second modal 

frequency has a big error and third, fourth and fifth modal frequencies cannot be 

identified. Table 4.4 and Figure 4.10 clearly show that the parametric method fails 

to identify this substructure.  

 

 

Figure 4.9. Substructure Type II with five DOFs (from 4
th

 mass to 8
th

 mass) 
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Figure 4.10. Parametric method for Substructure Type II with five DOFs (from 2
nd 

mass to 5
th

 

mass,  10, 14,14 , 8na nb nc      , and  1,1nk   ) 
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Table 4.4. Estimated modal frequencies of Substructure Type II (from 4
th

 mass to 8
th
 mass, 

 10, 14,14 , 8na nb nc      , and  1,1nk   ) 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 

True Frequency (Hz) 8.24 15.92 22.51 27.57 30.75 

 Estimated Frequency (Hz) 8.21 28.39    

It can be concluded that if the identifiability condition cannot be satisfied, the system 

is not SSI; however, it can be SI if the order of the regulator is higher than that of the 

plant. 

Substructure Type II’: In this situation, similar to Substructure Type II, Substructure 

Type II’ cannot satisfy the identifiability condition.  

1) The Substructure Type II’ with four DOFs, from the 1
st
 mass to the 4

th
 mass 

(Figure 4.11) was studied. As this substructure includes the points from the 1
st
 

mass to the 4
th

 mass, the rest of the structure has a higher order than the 

substructure that can make the substructure system identifiable (SI). The ground 

acceleration ( gx ) and the acceleration of the 5
th

 mass relative to the ground ( 5

rx ) 

are used as the inputs of the ARMAX model, and the acceleration of the 4
th

 mass 

relative to the ground ( 4

rx ) is used as the output of the ARMAX model. The 

orders of the ARMAX model are 10na  ,  12,12nb   , 8nc  , and 

 1,1nk   . Table 4.5 lists the estimated modal frequencies of this substructure 

and Figure 4.12 shows the result of parametric method for Substructure Type II’ 

with four DOFs. From the results as shown in Table 4.3 and Figure 4.12, it is 

clear that this substructure is identifiable. 
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Figure 4.11. Substructure Type II’ with four DOFs (from 1
st
 mass to 4

th
 mass) 
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Mode 1
st
 2

nd
 3

rd
 4

th
 

True Frequency (Hz) 9.84 18.71 25.75 30.27 

 Estimated Frequency (Hz) 9.80 18.69 25.70 30.35 
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Figure 4.12. Parametric method for Substructure Type II’ with four DOFs (from 1
st
 mass to 4

th
 

mass,  10, 12,12 , 8na nb nc      , and  1,1nk   ) 
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The Substructure Type II’ with seven DOFs, from the 1
st
 mass to the 7

th
 mass (Figure 

4.13) was studied. This substructure includes the points from the 1
st
 mass to the 7

th
 

mass which means the rest of the structure has a lower order than the substructure. 

The ground acceleration ( gx ) and the acceleration of the 8
th

 mass relative to the 

ground ( 8

rx ) are used as the inputs of the ARMAX model, and the acceleration of the 

7
th

 mass relative to the ground ( 7

rx ) is used as the output of the ARMAX model. The 

orders of the ARMAX model are 16na  ,  18,18nb   , 8nc  , and  1,1nk   . 

Table 4.6 lists the estimated modal frequencies of this substructure and Figure 4.14 

shows the result of parametric method for Substructure Type II’ with seven DOFs. In 

Table 4.6, the estimated modal frequencies have big errors when compared with the 

true value. From the results as shown in Table 4.6 and Figure 4.14, it is clear that this 

substructure is unidentifiable. 

 

Figure 4.13. Substructure Type II’ with seven DOFs (from 1
st
 mass to 7

th
 mass) 
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Figure 4.14. Parametric method for Substructure Type II’ with seven DOFs (from 1
st
 mass to 7

th
 

mass,  16, 18,18 , 8na nb nc      , and  1,1nk   ) 
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Table 4.6. Estimated modal frequencies of Substructure Type II’ with seven DOFs (from 1
st
 mass 

to 7
th
 mass,  16, 18,18 , 8na nb nc      , and  1,1nk   ) 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 

True Frequency (Hz) 6.21 12.18 17.68 22.51 26.47 29.41 31.22 

 Estimated Frequency (Hz) 5.53 15.91 24.39 29.91 49.31   

 

If the identifiability condition cannot be satisfied, the system is not SSI; however, it 

can be SI if the order of the regulator is higher than that of the plant. This conclusion 

for Substructure Type II’ is same as that for Substructure Type II, because 

Substructure Type II’ is a special case of Substructure Type II. 

 

4.5.2 System without External Input 

Figure 4.15 shows the corresponding feedback system of the three types of 

substructures when there is no external signal. As there is no external signal 0rn  , 

Equation (4.8) can be written as: 

 1 /u yr n n   (4.10) 

In this case, similar results to that of the case can be obtained when there is external 

input. The regulator with a higher order is used to guarantee the system identifiability 

of the substructure. For Substructure Type I, it is no longer true that Substructure Type 

I with any number of DOFs is identifiable. Table 4.7 and Table 4.8 list the estimated 

modal frequencies of Substructure Type I with three DOFs and six DOFs, 

respectively.  

For Substructure Type I with three DOFs, the absolute acceleration of the 9
th

 mass ( 9

ax ) 
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and the acceleration of the 12
th

 mass relative to the 9
th

 mass ( 12

rx ) are chosen as the 

input and output of the ARMAX model, respectively. The orders of the ARMAX 

model are  8, 12,12 , 8na nb nc      , and  1,1nk   . Table 4.7 and Figure 4.17 

clearly show that the Substructure Type I with three DOFs is identifiable.  

For Substructure Type I with six DOFs, the absolute acceleration of the 6
th

 mass ( 6

ax ) 

and the acceleration of the 12
th

 mass relative to the 6
th

 mass ( 12

rx ) were chosen as the 

respective input and output of the ARMAX model. The orders of the ARMAX model 

are 12na  ,  14,14nb   , 8nc  , and  1,1nk   . Table 4.8 indicates that the 

identified results have big errors and the 4
th

, 5
th

 and 6
th

 mode frequencies cannot be 

identified. Moreover, Figure 4.19 also shows that Substructure Type I with six DOFs 

is unidentifiable. The study indicated that Substructure Type I, with more than half of 

all the DOFs, is not identifiable when the system has no external input. 

 

Figure 4.15. Feedback system without external signal 
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Figure 4.16. Substructure Type I with three DOFs (from 10
th
 mass to 12

th
 mass) 

 

Figure 4.17. Parametric method for Substructure Type I with three DOFs (from 10
th

 mass to 12
th
 

mass,  8, 12,12 , 8na nb nc       and  1,1nk   ) 
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Table 4.7. Estimated modal frequencies of Substructure Type I with three DOFs (from 10
th
 mass to 

12
th
 mass,  8, 12,12 , 8na nb nc      , and  1,1nk   ) 

Mode 1
st
 2

nd
 3

rd
 

True Frequency (Hz) 7.08 19.85 28.68 

Estimated Frequency (Hz) 7.07 19.53 27.75 

 

 

Figure 4.18. Substructure Type I with six DOFs (from 7
th

 mass to 12
th

 mass) 

 

Table 4.8. Estimated modal frequencies of Substructure Type I with six DOFs (from 7
th

 mass to 
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th

 mass,  12, 14,14 , 8na nb nc      , and  1,1nk   ) 

 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 

True Frequency (Hz) 3.84 11.29 18.08 23.83 28.18 30.91 

Estimated Frequency (Hz) 11.24 21.42 29.78    
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Figure 4.19. Parametric method for Substructure Type I with six DOFs (from 6

th
 mass to 12

th
 mass, 

 12, 14,14 , 8na nb nc      , and  1,1nk   ) 
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and free vibration. It must be noted that a regulator that has a higher order than the 

substructure can make the substructure system identifiable. Moreover, it was found 

that a substructure with more DOFs deteriorated the accuracy of the identification. If 

accuracy is a more important factor in identification, it is recommended that the 

substructures have as few DOFs as possible. 
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CHAPTER 5 

5 Damage Detection Using Substructure 

Approach and Support Vector Machine 

 

 

 

5.1 Introduction 

In this chapter, a substructure algorithm is used to divide a complete structure into 

substructures to overcome the problems of data measurement and identification for 

large scale civil structure. As a substructure has a considerably smaller number of 

DOFs when compared with the entire structure, analyzing the substructure is quick and 

simple. Moreover, the structure division method proposed in Chapter 4 is used to 

ensure the identifiability of the substructures. As for substructures, a method using the 

support vector machine (SVM) to detect local damages in a shear structure with at 

most three sensors was proposed. The modal frequencies are used for forming feature 

vectors for pattern recognition.  

 

5.2 Sensitivity of Modal Frequency Change to Damage 

Existence of damage in a structure leads to changes of the vibration modes, which are 
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manifested as changes in the modal parameters (natural frequency, mode shape and 

damping value) (Stubbs, Kim et al. 1992; Salawu and Williams 1995; Sampaio, Maia 

et al. 1999; Ren and De Roeck 2002; Kim, Ryu et al. 2003; Maia, Silva et al. 2003). 

The use of changes in modal frequencies is feasible for damage detection because the 

modal frequencies can be quickly obtained and are often reliable. Moreover, it was 

shown that multiple modal frequency changes provide information on the location of 

damaged stories (Zhao and DeWolf 1999; Mita and Hagiwara 2003). For a multi-mass 

shear structure, the equilibrium equation for an undamped structure is given by 

        2( ) 0r r
   M K  (5.1) 

where r=1, 2, …, N, M and K are mass and stiffness matrices, respectively.  
r

  is 

the r-th mode shape corresponding to the modal frequency r  and is normalized to 

     1
T

r r
  M . The sensitivity coefficient of the r-th modal frequency in terms of 

ijk  can be obtained by the derivative of Equation (5.1) with respect to ijk , where ijk  

is the element of the stiffness matrix. 

  
 

 
1

2

Tr

r r
ij r ij

K

k k


 






 
 (5.2) 

If the symmetry of stiffness matrix is taken into consideration, the sensitivity 

coefficients can be rewritten as 

 
2

1
,

1
,

2

ir jr

rr

ij
ir

r

i j

k
i j

 






 

 
 

   


 (5.3) 

where ir  is i-th component of the r-th mode shape. This equation can be expanded 

using Taylor series and only the first order terms represents the change in modal 
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frequency is used, which can be written as 

 
1 1

N N
r

r ij

i i ij

k
k




 


  


  (5.4) 

When the i
th

 story stiffness is reduced, only iik , ( 1)( 1)i ik   , ( 1)i ik   and ( 1)i ik   are 

changed in the stiffness matrix. Hence Equation (5.4) can be simplified into 

 2

( )2
( )

2

ir
ir i r r

r r

k
 

 



   (5.5) 

Equation (5.5) will be used for forming feature vectors for SVM based damage 

detection. More details can be found in Ref. (Mita and Hagiwara 2003) 

 

5.3 Support Vector Machine 

Support Vector Machine is a supervised learning method that analyzes data and 

recognizes patterns, used for classification and regression analysis (Mita and 

Hagiwara 2003). The SVM algorithm was invented by Vapnik (1995) and the current 

standard incarnation (soft margin) was proposed by Cortes and Vapnik (1995). A 

support vector machine constructs a hyperplane or set of hyperplanes in a high or 

infinite dimensional space, which can be used for classification, regression or other 

tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest 

distance to the nearest training data points of any class, as in general the larger the 

margin the lower the generalization error of the classifier. 

A training data D , a set of n points of the form 

     
1

, | , 1,1
n

n

i i i i i
D x y x R y


       (5.6) 

where the iy  is either 1 or −1, indicating the class to which the point ix  belongs. 
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Hyperplane can be written as 

 0T b w x  (5.7) 

where w  is a normal vector, and it is perpendicular to the hyperplane. 

Then, to find the maximum-margin hyperplane that divides the two classes. The 

example is shown in Figure 5.1. The proper w  and b  can be chosen to maximize 

the margin, or distance between the parallel hyperplanes that are as far apart as 

possible and still separating the data. The optimization problem can be explained as 

 

21
min

2

subject to ( ) 1, 1,2, , n

w

T

iy b i

 
  

 

     
i

w

w x

 (5.8) 

This kind of SVM is called Hard Margin SVM because no error is allowed. However, 

such SVMs can be used only for a limited number of problems. In order to relax the 

situation, the Soft Margin method is used, which will choose a hyperplane that splits 

the examples as good as possible, and still maximizes the distance to the nearest split 

examples. The method introduces slack variables, i , which measure the degree of 

misclassification of the data ix , and thus the optimization problem becomes 

 

2

,
1

1
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w

i

w

w x

 (5.9) 

The purpose of the term 
1

n

i

i

C 


  is to keep the number of misclassified vectors under 

control. 

The optimal hyperplane algorithm introduced above is a linear classifier. Whereas the 

original problem may be stated in a finite dimensional space, it often happens that in 
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that space the sets to be discriminated are not linearly separable. For this reason, the 

nonlinear classifiers are introduced by applying the kernel trick to maximum-margin 

hyperplanes. SVM schemes use a mapping into a larger space so that cross products 

may be computed easily in terms of the variables in the original space making the 

computational load reasonable. The cross products in the larger space are defined in 

terms of a kernel function which can be selected to suit the problem. In this study, the 

Gaussian kernel, Equation (5.10), was adopted. 

 

2

( , ) exp( )
2

i

i

x x
K x x




   (5.10) 

where  is the width parameter, which needs to be determined before the SVM is 

trained. 

 

Figure 5.1. Maximum-margin hyperplane 
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MN/m, respectively. The damping ratio for all modes is 3%. The data sampling 

frequency is 200 Hz. The noise level added into the acceleration is 3%. Gaussian 

white noise is used to simulate the ground acceleration. The story stiffness reduction 

was regarded as damage to the structure. Six cases of damage (damage in the 1
st
, 2

nd
, 

3
rd

, 4
th

, 5
th

 and 6
th

 stories) with five different damage severities (10%, 20%, 30%, 40% 

and 50% lateral stiffness reduction) were studied. Therefore, there are 30 different 

damage scenarios totally. Table 5.1 and Table 5.2 list the basic information of the 

simulation and the modal frequencies of the overall structure. 

Substructure approach was used to divide the structure into substructures, which have 

considerably smaller number of degrees of freedom (DOFs) when compared with the 

entire structure. By using the structure division method proposed in Chapter 4, the 

whole structure was divided into two substructures, Substructure I and Substructure II, 

with overlap, as shown in Figure 5.2 . According to the identifiability of substructure 

investigated in Chapter 4, Substructure I with any number of DOFs is identifiable if 

the number of independent external inputs is equal to the number of inputs to the 

substructure, and Substructure II can be identifiable on condition that the order of the 

regulator is higher than that of the plant. It is clear that the Substructure I, which 

consists of masses from 3
rd

 to 6
th

, and Substructure II, which consists of masses from 

1
st
 to 2

nd
, are absolutely identifiable. 

Equation (5.5) is used to construct the feature vectors. The frequency change vectors 

of different levels of damages in a single story are plotted in Figure 5.3 and Figure 5.4 

for Substructure I and Substructure II, respectively. The damage severity varies in the 

way of story stiffness reduction from 10% to 50%. Figure 5.3 and Figure 5.4 show 

that the frequency change vectors can provide information on the location of damaged 

stories clearly. Frequency change vectors, which corresponding to 10%, 30% and 50% 

story stiffness reduction for each story, are used for training.  
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SVMs are defined:  

For Substructure I, 3
rd

 story damage (SVM3), 4
th

 story damage (SVM4), 5
th

 story 

damage (SVM5), 6
th

 story damage (SVM6) and no story damage (SVM0I). 

For Substructure II, 1
st
 story damage (SVM1), 2

nd
 story damage (SVM2) and no story 

damage (SVM0II). 

The SVM0I and SVM0II can classify the frequency vectors for the undamaged 

substructure. This SVM can show whether the damage exists in the substructure. 

SVMi classifies the frequency change vectors for the substructure with damage in i-th 

story, where i=1, 2, …, 6. 

The tests were conducted by assuming five damage severities, 10%, 20%, 30%, 40% 

and 50% story stiffness reduction for each story. The damage cases from 1 to 5 are 

corresponding to 10%, 20%, 30%, 40% and 50% story stiffness reduction in the first 

story. Similarly, damage cases from 6 to 10 are corresponding to 10%, 20%, 30%, 40% 

and 50% story stiffness reduction in the second story. Figure 5.5 and Figure 5.6 plot 

the outputs from the SVMi (i=1, 2, …, 6). The positive output from SVMi means the 

tested frequency change vectors is classified into i-th class and the negative outputs 

mean the tested frequency change vectors should be classified into other classes. From 

Figure 5.5 and Figure 5.6, the damage can be localized easily. 

 

Table 5.1. Basic parameters of 6-DOF lumped mass shear model 

Mass of 

every floor 

Lateral 

stiffness 

Damping 

ratio 

Sampling 

frequency 
Noise level Data length 

100 kg 1 MN/m 3% 200 Hz 3% 2000 data 
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Table 5.2. Modal information for 6-DOF lumped mass shear model 

Mode 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 

Frequency (Hz) 3.84 11.29 18.08 23.83 28.18 30.91 

 

 

 

Figure 5.2. Structure division for 12-DOF structural system 
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Figure 5.3. Frequency change vectors for Substructure I 

 

 

 

 

 

 

 

Figure 5.4. Frequency change vectors for Substructure II 
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Figure 5.5. Output from SVM for Substructure I 

 

 

 

 

 

 

 

Figure 5.6. Output from SVM for Substructure II 
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5.5 Conclusions 

In this chapter, substructure approach was applied to divide the structure into 

substructures, which have considerably smaller number of degrees of freedom (DOFs) 

when compared with the entire structure. The use of SVM simplifies the process of 

damage detection further. It was found that the frequency change vectors are very 

sensitive to the damage in stories, and the method combing the substructure approach 

and the SVM needs fewer sensors to localize the damage, meanwhile the accuracy of 

the identification results is satisfactory. As the use of SVM method, at most three 

sensors are needed to detect the damage for multiple-mass substructure, and only two 

sensors are needed for the top multiple-mass substructure. This can reduce the sensors 

needed to detect the damage of the whole structure significantly. Similar to the 

method proposed in the Chapter 3, this method needs to ensure the identifiability of 

the substructure. The identifiability of substructure must be paid more attention.  
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  CHAPTER 6 

6 Conclusions 

 

 

 

The main contributions of this thesis are that it made improvements on the damage 

assessment based on autoregressive models and substructure approach. It introduced 

an effective damage detection method with fewer sensors. The proposed method is 

suitable for use in a parallel and distributed damage detection system and can work 

more efficiently for large scale structures. The identifiability of the substructure was 

also carefully studied. The identifiability has been rarely been considered in using 

substructure method. A structure division method to make the substructure identifiable 

was proposed when the substructure is not strongly system identifiable (SSI). 

The damage assessment measures based on autoregressive (AR) model is very 

attractive in damage detection as the simplicity of AR model and the efficiency of the 

distance measures method. However, this method is susceptible to noise, and it is very 

difficult to decide the optimal AR order for distance measures. The improvements on 

this method aim at strengthening the noise immunity of the method and offer a 

feasible method to decide the optimal AR order. Thus, the cepstral distance based on 

the low-order AR models was adopted as the damage indicator, as the low-order AR 

models have advantages in terms of computational efficiency, emphasis of 
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high-energy frequency range, and less sensitivity to spectral peaks caused by noise. 

Moreover, the adaptive component weighting (ACW) was introduced to improve 

further the ability of this method in noise resistance, which is widely used in speaker 

identification to reduce the noise. It was found that the order determined by Akaike 

Information Criterion or Bayesian Information Criteria is not the optimum AR order 

for the distance measure. The method based on the ratios of the cepstral distance can 

be used to choose the optimum AR order for distance measures. The standard 

deviations of the AR coefficients have a significant effect on the accuracy of 

identification, especially when the standard deviations are not small enough relative to 

the damage indicators; on the contrary, the severity and location of the damage have 

little effect on the standard deviations of the AR coefficients. This problem can be 

overcome by reducing the standard deviations of AR coefficients in increasing the data 

length. 

Most of the damage detection methods need complete information of the structure, 

which means many sensors are required to be installed into a building. It may be 

feasible for small systems. However, it is impossible for large-scale civil structures, as 

the large number of sensors results in long setup time, high equipment costs as well as 

enormous efforts needed for wiring and designing. Another problem for large civil 

structures is that data measurement and identification are not easy tasks. A new 

method, based on substructure approach, for the local damage detection of a shear 

structure was proposed for these problems. A substructure algorithm was used to 

divide a complete structure into substructures. Each substructure has a considerably 

smaller number of degrees of freedom (DOFs) when compared with the entire 

structure. It should be noted that a substructure is a feedback system as it has feedback 

forces from the remainder of the structure. This method confines each substructure 

one DOF and cuts substructure with overlaps, thus each substructure can satisfy the 

identifiability condition, and ARMAX models can be directly used to determine the 
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modal information of each substructure. Each substructure can be treated 

independently. Three sensors are enough for analyzing a substructure in this method, 

and for the top substructure, only two sensors are needed.  

The study on identifiability of substructure showed that it was not true that the 

substructure can have as many DOFs as we want. To clarify the identifiability of the 

substructures, the substructures were classified into three types. Conclusions were 

obtained that in the case of forced vibration, the substructure with free end is always 

identifiable if the number of independent external inputs is equal to the number of 

inputs to the system. As for the other substructures, they are unidentifiable unless the 

order of the rest of the structure is higher than that of the substructure. In the case of 

free vibration, the substructure with free end with more than half of all of the DOFs is 

unidentifiable. The conclusions obtained from the other two substructures are similar 

in cases of forced and free vibration. To overcome this unidentifiability, a structure 

division method which ensures a higher order of regulator than that of the substructure 

was proposed. It was also found that a substructure with many DOFs deteriorated the 

accuracy of the identification. If accuracy is a primary object in identification, it is 

recommended that the substructures have as few DOFs as possible. 

To reduce the sensors needed for damage detection, a method combing substructure 

approach and support vector machine (SVM) method was proposed. It was found that 

the frequency change vectors are very sensitive to the damage in story. The use of 

SVM simplified the process of damage detection further. As the use of SVM method, 

at most 3 sensors are needed to detect the damage for multiple-mass substructure, and 

only two sensors are needed for the top multiple-mass substructure. This can reduce 

the sensors needed to detect the damage of the whole structure significantly. One 

thing needs to be paid more attention is that similar to the method proposed in the 

Chapter 3, each substructure should be identifiable when dividing the structure. 
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Although much has been done for this damage assessment of shear structures based 

on autoregressive models and substructure approach, there are still several respects 

needs to be improved and extended. 

Distance measures of AR models: In this thesis, the ratios of the cepstral distance are 

used as the indicators to choose the optimum AR order for distance measures. 

However it may not work if the structure to be detected is complicated. It will be 

attractive if a more general method on choosing the optimum AR order for distance 

measures is proposed. Another problem is that pre-whitening filter, which is very 

essential for this method, is needed to remove the strong mutual correlation in the 

acceleration data. Pre-whitening filter needs complete information of the structure. 

However, it is impossible for large-scale civil structures, since the large number of 

sensors results in long setup time, high equipment costs as well as enormous efforts 

needed for wiring and designing. Complicated and expensive SHM systems are by no 

means practical for most civil structures. If this problem can be overcome, it will be 

great improvement for this method. 

Substructure approach: The improvements can be conducted on two respects: One is 

extending this method to a more general structure. The method proposed in this thesis 

is confined to detect the damage in a shear structure with conventional shape. 

However, the structure is more complicated in real application. Extending this method 

to a more complicated structure is urgently needed. Another task is making this 

method capable of detecting every element of a structure. A structure can be divided 

into much smaller elements. It will be extremely promising, if this method can detect 

the damage in any element of the structure. Moreover when these two improvements 

are conducted, the structure division method and the identifiability of substructure 

needs to be studied all over again, as structure division method and identifiability of 

substructure are also needed to be extended to the new structure and new requirements.
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