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Chapter 1
Introduction

The idea of weather forecast was conceived by Bjerknes [3] in 1904, and then
numerical weather forecast was executed by Richardson in 1920’s ([33]). He
derived a system of equations describing the motion of the atmosphere, which
is similar to the Navier—Stokes equations. His attempt unfortunately failed be-
cause of mainly the lack of stability of the calculations, however many attempts

have carried on him.

Since around 1940-50’s, digital computers made possible automatic calcu-
lations, so that the weather forecast with numerical calculation became prac-
tical; the first success was done by Charney, Fjortoft and von Neumann [9]
(see also [32]). In that period, many simplified models such as geostrophic
and quasi-geostrophic models were proposed in order to lessen the amount of
numerical calculations. For example, Charney [8] proposed the atmospheric
circulation modeling with the quasi-geostrophic equations, which describes the
conservation of absolute vorticity under the approximation of small Rossby
number. The serious defficiency of this model is that it works well only over

the limited regions, where the Coriolis force is dominant.

The first success in applying the primitive equations to modeling the at-
mosphere was achieved by Smagorinsky [35]. The main difference between his
model and Richardson’s was the presence of the frictional force, which was not
taken into account (although Richardson recognized the necessity of it) in the
Richardson’s model. Other features of Smagorinsky’s model are that the atmo-

sphere is incompressible, its pressure is taken as a vertical coordinate (called



”p-coordinate system”, which was found in Richardson’s work [33]), and that
the vertical wind velocity vanishes on the ocean surface. Smagorinsky also
alloted the rigid lid hypothesis, which means that the ocean surface is fixed
and flat. As for the ocean, in 1969, Bryan [6] formulated the ocean circulation
with the application of the hydrostatic and Boussinesq approximations, and
turbulent viscosity terms, which are anisotropic in the horizontal and the ver-
tical directions. Nowadays his model equations are called primitive equations
for the ocean [45].

Following Bryan’s formulation Semtner [34] proposed the general circulation
model and studied it in detail numerically. Although almost all works for the
primitive equations were done under the rigid lid hypothesis, Crowley [10]
regarded the ocean surface as a free surface, and considered the numerical
model of the ocean.

Phillips [32] later reviewed various models used for the weather prediction,
and revealed the cause of Richardson’s error in 1970. Nowadays, the prim-
itive equations can be solved numerically since the power of the computers
intensively increases.

Mathematical arguments of primitive equations were begun in 1990’s. The
followings are the momentum and continuity equations of the primitive equa-

tions for the atmosphere (cf. Section 3):

ov ov 1 0*v 1
9 _
0o 0
a5t +V-(ov) + 8_353(Qw) =0.

The fourth term in the left-hand side of the momentum equation is the effect
of the frictional force, which is called as turbulent viscosity, and the fifth the
Coriolis force. The second equation is derived from the hydrostatic approxima-
tion. Note that the atmosphere is compressible, and the continuity equation
takes the form of the third equation. The equation of state for the ideal gas,

p = oR# is also utilized. They are also described in the spherical coordinate



system. The corresponding parts of primitive equations for the ocean are for-

mulated as follows:

ov ov 0*v 1
— . _—— A — Av=—— F
8t+(v V)v+wax3 {ul v+ugax§]+f v QVer 1,
op _ _
axS_ QQJ
ow
VV—Fa—%—O

Here o may be taken to be a positive constant, or the Boussinesq approximation
with ¢ = o(p, 0, 5) is applied. One of the main features of primitive equations
is the fact that the vertical velocity is determined by the horizontal velocities
via the continuity equation, since the vertical velocity disappears in the vertical
component of equations of motion due to the hydrostatic approximation.

In [23] and [24], Lions, Temam and Wang formulated the evolution problem
of primitive equations for the atmosphere and the ocean, respectively, and
showed the existence of a weak solution in Ly(0,7; H'(Q)) () Loo(0,T; Lo(Q2))
by the Galerkin method. In [24], the region is Q = (J, My, each M; is a
connected domain with both horizontally and vertically flat boundaries, while
in [23], © = S? x [0,1]. They also investigated the Hausdorff dimension of
the attractor to the slightly modified equations in these papers. In a series
of papers [25], [26], [28]-[30], they studied the evolutionary 3-dimensional
problem of the primitive equations for the coupled atmosphere and ocean model
under the rigid lid hypothesis. In [30] they showed the well-posedness of the
model formulated in [28] in the same function space as above. In [27] they
derived the following quasi-geostrophic equations from primitive equations by
the asymptotic expansion with respect to the Rossby number:

0 op 1 1 0?
Ap+ —(o ' ! A — A
P 0z (U 8z> +f Rey * 02 Rey 022] P

ol /1 12N (op\| o,
—&[“ (Rh“mz@) <a_>] =5, (-7Q),

and showed the existence and uniqueness of a weak solution, global in time,

0
a—FV'V

in the similar function spaces as above. However, their approaches were based



mainly on the Galerkin method, which are not applicable to the free bound-
ary problem. Besides, from the viewpoint of the phenomena, the boundary
conditions imposed in [28]-[30] was not realistic, since the interaction of the

atmosphere and the ocean was not taken into account.

The stationary problem of the linear primitive equations was discussed by
Ziane [47], [48]. In [47], he showed the existence of a weak solution to the
stationary linear problem in S? x [0, 1] under the boundary conditions similar
to Lions [23] et al. However, this result is very restrictive, in the sense that
it make little contributions to the evolutionary problems. In [48], he showed
the H? regularity of the solution to the linear stationary problem in the region
with sidewalls (the vertically flat lateral boundary) perpendicular to the ocean
surface (ocean surface is also fixed and flat). This result itself is restrictive, but
some of the following results concerning the strong solution of the evolutionary

primitive equations referred to it.

Guillén-Gonzalez, Masmoudi and Rodriguez-Bellido in [14], [15] discussed
the initial boundary value problem of the primitive equations for the ocean
in the domain surrounded by the rigid lid, sidewalls and the bottom. They
showed the existence of a global strong solution with small data and a local
strong solution with any data in L>(0,7; H(Q)) W5 (Qr). In the similar
situation as that in [15], Temam and Ziane [44] verified the existence and
uniqueness of a strong local in time solution of primitive equations for the
ocean in C(0,T; Ly(2)) () L2(0,T; H*()). Their results are based on [48].
Later, Cao and Titi [7] showed the existence and uniqueness of a global solution
in C(0, T; H'(9)) () Lo(0, T; HA(Q)) (YW} (0,T; Ly(2).

Now, we review the results in two-dimensional case. In this case, we have
a few results concerning the strong global in time solution. Guillén-Gonzalez
and Rodriguez-Bellido [13] showed the existence and uniqueness of the strong
solution to the primitive equations for the ocean in the two-dimensional region
with a sidewall under the smallness condition of data. Bresch et al. [5] also
showed the existence and uniqueness of the strong solution with large data, and
also showed the uniqueness of the weak solution in the similar region as [13].
However, in these cases, Coriolis force does not appear, and are not interest-

ing from the viewpoint of the phenomena. Hu et al. [19] proved the existence



and uniqueness of the strong solution of the primitive equations on thin do-
mains with a non-flat bottom. Owing to this, Hu [20] discussed the primitive
equations for the ocean under the small depth assumption, and proved that
the solution asymptotically becomes a barotropic flow both in the horizontal
and vertical directions as the depth of the ocean goes to zero. For the weak
solutions in the domain without sidewalls, as far as the present author knows,
we have had only two results so far, Azerad and Guillén-Gonzélez [1] for non-
stationary case, and Besson and Laydi [4] for the stationary case. In [1], they
showed the existence of the weak solution of the Navier—Stokes equations with
anisotropic viscosity terms and its convergence to a weak solution of primitive
equations as the aspect ratio of depth to width of the domain tends to zero.
However, the uiqueness of weak solution is remained open. Besides, as far as
the present author knows, we have no results concerning the strong solutions

for such a problem.

Until now, comparing to the mathematical results of the primitive equations
for the ocean, we have had fewer results for the atmosphere. One of the reasons
why we have fewer results concerning the atmosphere model than those of the
ocean is that the atmosphere should be considered to be compressible fluid.
In order to avoid the difficulty, the p-coordinate system is used to make the
compressible framework to the incompressible one. Thereby, in the atmosphere
model equation, the unknown temperature appears in the turbulent viscosity
term, which gives another difficulty. In a series of works by Lions, Temam and
Wang and Ewald and Temam [11], the temperature in the viscosity term was
replaced by the average temperature along the isobar of the pressure, which
makes all the situations of the problem easier to analyze. Besides, they added
the known functions in the equations after the coordinates transform, which
seems to be unrealistic from the original phenomena. In [11], they considered
the potential temperature of the atmosphere model following Lions et al. [23],
and showed the positivity of the temperature by using the maximum principle.
However, their discussion is based on a weak solution, and it seems incredible

to us whether the results holds true in the pointwise sense.

Now we state the mathematical issues concerning the present prolems and
the features of our works [17], [18].



First, almost all the results cited above were obtained under the rigid lid
hypothesis, and the addition of the turbulent viscosity terms as an empirical
claim. In this thesis, we take into account the effect of the surface movement
following Crowley [10], and model the ocean surface as a free surface. For
Navier—Stokes equations, we have many important results concerning the free
boundary problems and two phase problems due to Solonnikov and Tani ([36]-
[38], for example) and Tanaka and Tani ([22], [39]-[43], for example). In these
papers, the existence and uniqueness of strong solutions to the free boundary
problem was established. As far as the present author knows, however, unlike
the Navier—Stokes equations, the primitive equations have not been investi-
gated its derivatives and formulations rigorously from mathematics, geophysics
and oceanography. It seems important to study the primitive equations from
the viewpoint of the free boundary problem. In the present author’s works [17]
and [18], in addition to the standard terms in the primitive equations, there
appear the nonstandard terms in the boundary conditions such as heat flux
due to the movement and the surface tension, which is similar to those in [43],

for example.

Second, it is to be noted that in the papers cited above, ocean and atmo-
sphere models are described in Cartesian and p-coordinates, respectively. Lions
et al. [25], [26], [28]-[30] used these coordinates for the coupled ocean and at-
mosphere model in each layer, and made a physically unrealistic assumption
that the height of the pressure isobar coincides with that of the ocean surface.
Aiming the study of the coupled model in future [16], we use p-coordinates
both for the ocean and the atmosphere models in this thesis, which is the first

study on the primitive equations for the ocean.

For the atmosphere model, since the temperature appears in the hydrostatic
equation through the equation of state p = oR6, two unknown functions, tem-
perature 6 and pressure at the upper boundary h, appear in all the transformed
equations. Especially, # in the transformed equations is determined by an im-
plicit form, as is seen just after (3.1.11). This makes it difficult in estimating
the coordinates transformed functions since we need to estimate 6 in the Carte-
sian coordinates by the coordinate transformed one. Due to the same reason,

the spatial and temporal derivatives of the ocean surface ¥ are provided by

10



more complicated calculations than in the case of the ocean model. Moreover,
the additional regularity for 6 is required due to the form of the hydrostatic
equation. In this thesis, we are concerned with the free boundary problems of
the primitive equations for the ocean and the atmosphere. Here, we enumerate

the major features of this thesis:
1. The surface of the ocean is free, not the rigid lid.

2. The boundary conditions on the free surface are described by the stress

tensor and the effect of vapour evaporation.

3. p-coordinate system is applied both to the ocean and the atmosphere

models.
4. We consider the problem in the 3-dimensional strip without sidewalls.

5. The existence of the strong solution is proved in the Sobolev—Slobodetskii

spaces.

This thesis is organized as follows. In Chapter 2 and Chapter 3, we study
the initial boundary value problem of the primitive equations for the ocean
and the atmosphere in 3-dimensional strip, respectively. Definitions of the
function spaces and proofs of some lemmas are provided in Appendices A and

B, respectively.
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Chapter 2

Primitive Equations for the

Ocean

In this chapter, we study the initial boundary value problem of the primitive
equations for the ocean. First, we formulate the problem in the orthogonal co-
ordinate system, and then rewrite it in the p-coordinate system. Furthermore,
another transform of the coordinate system is introduced in order to make
the free boundary fix. Then we study the transformed problem in Sobolev—

Slobodetskil spaces by an iteration method.

2.1 Formulation of the Problem

By adopting f-plane approximation, our problem can be formulated in the
strip-like region. By x = (1, %2, x3), we denote an orthogonal Cartesian co-
ordinate system with x3 being the vertical direction. Let the unknown free
surface and the known bottom of the ocean be represented by the equations
g3 = d(2/,t) and x5 = b(2") (' = (x1,22)), respectively, where d(a’,t) is as-
sumed to be a function satisfying d(z’,t) > b(z') for any 2/ € R* and ¢ > 0.
Then the domain () of the ocean at time ¢ is represented as {(2/,z3)|z" €
R? b(2') < x3 < d(2',t)}. The equations that we consider in this chapter are

as follows:

13
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( Ov

0 0 1
-+ (V-V)V—l—w—v — {ulAv%—ug V] + fAv = —EVp—l—Fl,

ot D 0x2
o _
a_p = I3 — 09 =: Fi3,
T3
ow
V'V‘i‘a—xg—o, (2.1.1)
00

00 020
i v A =R
ot ‘|‘(V )9+wax3 |:,u3 9+M4ax§:| 2,

oS oS 0%8
. = _ A — | = F Q .
G IS g [us s+u6ax§] W e Q) £ 0

Here, fAv is a Coriolis force with A = (1) _01 ) and the Coriolis parameter
f (a positive constant); V and A are 2 dimensional gradient and Laplacian,
respectively; F| and Fy5 are the horizontal and vertical components of external
forces given in R? x [0, 00). The horizontal component of the velocity is repre-
sented by v and the vertical component w; p is the pressure, g is the density (a
positive constant), g is gravity force (a positve constant), 0 is the temperature,
S is the salinity; F; and F3 are the sources of heat and salinity, respectively;
p1 and po are the coefficients of turbulent viscosity; (us, p4) and (us, 1) are,
respectively, given by scaling sum of turbulent and molecular diffusivities of
heat and salinity.

The conditions on the free surface I'y(t) = {x € R3|x3 = d(2/,t),t > 0} are

as follows:

(

T(v)n— (T(v)n-n')n’ = |v|?V,

- (ugw ‘' mg—eng) = —la(0.)V + g |v[*0 + LK,  (2.1.2)
L3

\ (97 S,p) = (967867170)7

where

241 M1 | 25)
. 8[E1 61’2 8x3
T(v) = S v oo (2.1.3)

t 8271 i (91'2 H2 8%3
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is a part of the stress tensor, V is the normal velocity of the free surface, la(0,)
is a latent heat with saturation temperature 6., S, is the salinity on the surface
of the ocean, o is the surface tension coefficient (a positive constant), K is twice
mean curvature, n = (ny,ny,ng)’ = (n’T, ng)T is the unit normal vector to
[s(t) at time ¢ pointing to the atmospheric region, L is the heat capacity, ¢
is a given function representing the turbulent transition on the free surface
including the albedo of the earth, and pg is atmospheric pressure at the ocean
surface (positive constant). The conditions of the form (2.1.2) are called bulk
formulae ([12], [23], [31], [45]).

Since V = % V/1+|Vd[?, the condition (2.1.2), can be written in the

explicit form

od
yri Lygd+ Gea(v,0), 2 €R? t>0, (2.1.4)

where

I oL L (4NTY O, 0d 0d _od
T 0(0,) (1 + [Vd)?) 0y 0x? 0wy Oxg Ox10x9
E)xl (91‘% ’
o0
(1)
+g1v/1+ |Vd|2|v|a9‘Fs(t)}.

K—NSV@’rsm Vd + e
The conditions on the bottom Iy, = {(2/,b(2’))|z’ € R?} are

81'3

(v,w,0,9)(z',b(x),t) = (0,0,0,S)(z',t), 2 €R* t>0. (2.1.5)
Initial conditions are

(v,0,9)(z,0) = (vo,00,5)(x), xe€Q:=Q0), (2.1.6)

d(2',0) = do(2)), 2’ €R> (2.1.7)

Let us introduce the “p-coordinate system”. From (2.1.1), and (2.1.2)3, p

can be represented as

x3 ap z3
p=Dpo+ / a_ dxg = Do +/ F13 dl‘3. (218)
d €3 d

15



We assume that

|Fis| <09 in R®x[0,00),

which means the gravity force is dominant in the vertical direction. Now we

denote the pressure at the bottom of the ocean by

b
h(x',t) == po +/ Fi3 duws,
d

and

b
ho == po +/ Fisli—o dxs.

do
We assume dy(z') — b(2’) > ¢y on R? with a positive constant cy. Since

Op/dxs = Fi3 < 0, we can define a map

b
Y3 — Do +/ Fig dag =: ©41(y3),

Y3

for which there exists an inverse function
d=V(2,t;h) = &' (h)
first, and a map

ys
Y3 — Do +/ Fig dxg =: ©o(ys; h),
Y (y';h)

for which there exists an inverse function
w3 = Xa(2',p,t; h) = ®5 (i ).
From (2.1.8), we get
Vp = —Fi3(2, d, t)Vd + /;3 VFy3 des = Fs(2/, 5, 1), (2.1.9)

8p ~ ’ od 3 aﬁlg ’
— = —F] — — =: F ) 2.1.1
(915 13(.1' ,d, t) 8t +/d‘ 8t dl’g 6(33' ,l’g,t) ( O)

Note that after introducing p-coordinates, the ocean surface becomes flat
and is represented by the equation p = py. Hereafter, we denote a function

f(2', x3,t) after this coordinate transform by

fW (@ p,t) = f(@, Xa(2', p, t; h), 1)

16



Moreover, we introduce another mapping:
p— h(z',t)
po — h(2/,t)

which is similar to that used in [2]. For simplicity, instead of Fisw we use .

y =2, yz=(po— ho(z")) + ho('), (2.1.11)

By composing these transformations, it is clear that the regions

U @@ x{th), U @x{th, [J @)= {t})

0<t<T 0<t<T 0<t<T

are transformed onto the regions

Qr = Qx[0,T], Doy :=T x [0,T], Dy :=T, x [0,7],
respectively, where

Q={(,us)ly’ € R?, po < ys < ho(y))},
Ly = {(v/, ys)ly € R?, y3 = ho(y)},
Lo ={(,y)ly' € R*, ys = po},
where R2 := R? x [0, 7.
We denote the inverse of transposed matrix of the Jacobian matrix by
(Tl p)/ (@ ye)]") = (a7) = (a”(h)) (i, =1,2,3).

Then one can easily derive

-1

— ho)(p(y,t) — po) po — p(y, 1)
a’ = (a'?, a* T (Po 0 ’ Vh+——="2Vh
( ) (po — h)? po—h ‘

= Al (ya t)Vh + Bl(ya t)v

(po — h)(ys — ho)

+ h,
po — ho

p(y,t) =

—h
a33 _ Po 0’
po—h
In the following, we use the notation

(%) (%)
y ;y -
w3 ’ dys

a¥ =6y (i=1,2, j=1,2,3). (2.1.12)

X3(y/7 Y3, tv h) = X3(-T/7p7 tv h)

FO (Y ya, t) o= fP(2, p,t)

z'=y’, p=p(y,t)’

x'=y', p=p(y,t)°

17



Here V,, is the derivative with rispect to y’. Now let us derive the explicit
representation of Féh)* and Fﬁ(h)*. Representing the integral term in (2.1.8) by

p-coordinate system, we have

~ D 1 _ 8F(h)
R = Rl (T [ (VR R )

Ppo 13

We have the following boundary condition from this integral equation
F|,epy = —F V(2 t
5 ’p=p0 = 13|963=‘I’(z’7t) (2',1).

We derive the explicit representation

_ p 7 ()
RO = B (v + [0 )

ro Fig

and hence
h)*
FU (y s, 1)

. W . OFP™N po—h
_ p(h)x A A\, / / - ( (h)* 3 13 Po
= y,t)+ = VE3" +a’(h dy
13 { ( ) . Fl(g)*g 13 ( ) ayg Do — ho 3

= —FD"TU(y t) + Ci(y, t). (2.1.13)

Similarly, we obtain

- oW P11 9FY
h h
Fy )(ﬂi’apat)_F1(3)<—E(33/,’5)+/ 0B 81;, dp),
po

13

. = (h)x* * (h)*
— ph)x _a_qj / /y3 1 OF 3 Jys '\ OFis po—h d
13 { ot (y 7t) + F(h)*Q ot + ot ay?) Do — h(] Ys

po I'y3

N Oys\ " oh
— —EP 2 1)+ Cal), (a—i) - Ao (2.1.14)

Differentiating the relation
b ~
h(x';t) = p(2’, b(z"),t) = po +/ Fi3 das

4

18



with respect to 2’ and ¢ leads us to the following equalities, respectively:

1 - b~
VU = ~—{—Vh + F13|x3:be + / VFlg d[[’g}
F13|13:‘l/ v
Vh
= -+ Dl, Dl = (Dh DQ)T, (2115)
F13|:L"3:\I!
PV 1 & _a( 1 >6h+8DZ~
dy;0y; F13|z3:\11 dy;0y;  Oy; F13|z3:\11 dy; Oy,
1 0%h
= +H: (i,j=12), 2.1.16
F13|q;3:\11 ayzay] J ( ) ( )
0w 1 oh  [POF 1 0oh
o {__ +/ 15 dmg} =+ E. (2.1.17)
ot F13’x3:\11 ot v ot F13‘I3=‘I/ ot

Now, rewriting the problem (2.1.1)—(2.1.7) in y-coordinates and denoting
(v pM* 9= Sh* Y by (u,ug, 0,5, h) for brevity, we have

( Ou ~

o Ly pu+ Gy p(u,usg),
~ BV U ~
Visus — (Vh,stéf) )F(—i)* = Gsp(u),
13

o0 ~ -
E = L27h9 + G47h(u, us, 9), (2118)
% = L37h5 -+ ég;}h(u, us, g) n QT,
oh ~ .

L E = L47hh -+ G6’h(u, 9) m R%,

( Byu = Gg(u),

(év 5’) = (667 Se)’mg,:\p(y',t) on fsT,
(w,u3,0,8) = (0,0,0p, S)|ss=b(yy o0 Lyr, (2.1.19)

(1,8, 5)(y,0) = (v, 65", 58V (y) on Q,

[ 2(y',0) = ho(y') on R?,

19



where

Lypu = py Ly pu+ poLiopu,

" 0?
Liypu = |l p + 2l2 + |Féh) ? (a33)2 22| W
8?43
I F(h)*2 ( 33)2 0%u
u:= a —
12,h 13 ayg 9
0 0? 0
iy =V2+42a% Vo + a5, Loy = a®F V),
11,k + 2a 905 + |a”| 2 12,h ‘= a7 Fy hayg
~ 2 33 (h)= 9
Gin(u,ug) == py [(Vy, —lipp) + Vi - (a F, )
ys
0a’ 0 h 0
L gBEW* ( I <a33F( )*)) ]u
° dys ~ Oys i ys

+ l( 33]31(h)* 0 )2 ( 33F(h)*)2 0 ]u
a — ] —(a —
2 13 O3 13 8y§

. . ohN 0O
— [(u V) + ((th) ~u)a®® + uza® + Féh) a®® + A (y, t)a> a—yJ u
1 " "
—fAu—EF? +F™

~ ~ ~ 1 * *
=: ,ulGll,hu + M2G127hu — G137h(u, U3)11 — fAu — EFéh) + Fll(h)

9

~ . O
Gsp(u) == =V, -u— a33Féh) . 8_;,

Lop0 := pizLy w0 + p14Lna 40,
é4,h(117 us, é) = N3é11,h9~ + N4él2,h0~ - él?;,h(u; U:s)9~ + Fz(h)*y

LspS := psLinS + pigLianS,
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Gsn(u,us, S) == psGiinS + p6GronS — Grsp(w,uz)S + FI*,
Bpu:= ¢ {(n/  Vi)u+ (B n')a33a—u} + /~L2F1(§L)*a338_un3
ayi’) ayg

ys

~ Vs 0
e <a33—u . n’) ng}n’,

ys
Gs(u) := |ul*u,
2
oL 9*h
Liph = e
ol T N0 2,
1 0h\’ 1 0h\®
C11 =1+ (DQ—N——> , Co29 :1+ <D1—~——) s
F13|w3:\11 a3/2 F13|a;3:\1; 8y1
. . < 1 oh D ) ( 1 Oh D >
R=C1'=—|=—37— LU =7 — L2,
Fi3)ps—w O Fi3|py—w Y2
~ 5 ~ oL 2
0) := Fi3|es—wiy o) | F1 — CH.
Gen(u,0) 13|:C3_\Il(y ,t)|: 1 100 (11 V(. OP) Z Cij ;5

ij=1

0 0 !
y3=‘1’(y’,t)3_y3> 0- V\Il(y 7t)

I 83,7\ ()
FICA) { s (Vh + a>(h)F;

+ M4F1(:l;)*

00 \ 5 i
ot @+ (110G 0F) v},

a
m; n' = (n1,n2)T

T
h)* h)x  7(h)*
a:_(Fél) ) F5(2) 5 F1(3) ) )
where la(0.) = la(0.(y, V(v t),t)). It is to be noted that we can extend

(u| o’ é‘ o S ‘ o) (y) and d into the half space ¢ > 0 preserving the regularity,
which is denoted by (1, 6o, So, dy). We also define the extension of hy by

n-= (n17n27n3>T -

b
ho = ho(y',t) = po +/ Fis dxs.
do

For the detail, see Section 2.3.

21



Then the problem (2.1.18), (2.1.19) can be rewritten as the following one
for (u’, uj, 6.5, R = (u-— o, us, 0 — 09, S — So, h — ho):

( ou’ ou
5 = = Lypu’ + Ly pug — a—tO—I—Glh(u u3),
/ * u{ ~
Vists = (VisFis ) =g = Gaa(u),
Fis
06" _ 90,
N = Ly 0 +L2h90—§+G4h(u us, 0), (2.1.20)
08’ . = 9§ o
o L3S+ L3,h50 — 6_t0 + G5 a(a,ug, S) in Qr,
on' Ohy .
L 61% —L4hh +L4hh0—§+G6h( 6) IHR%,

( Bhu’ = —Bhﬁo + Gg(u),
(él7 5") = (ee’xgz\IJ(y’,t) - éOa Se‘xg,:llf(y’,t) - SO) on f‘sTa

(u/) uéa 5/7 S’/) - (_ﬁ07 07 9b|x3:b(y’) - éOu Sblxg:b(y’) - g()) on be7 (212]‘)

(W, 6, 5)|—o = (0,0,0) onQ,

[ W]i=o=0 onR?

where (u, 6, S, h) is replaced by (u'+1i, §’+9:0, §’~|—§0, h'+hg) in the right-hand

sides.
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2.2 Main Theorem

In this section, we state the main theorem of this chapter. For the notation of

function spaces, refer to the Appendix A (see also, for instance, [37], [38]).

Theorem 2.2.1. Let | € (1/2,1), and T be an arbitrary positive number.

Assume that

(i)
(i)

(iil) vo € WSTHRQ), by, So € Wy (), dy € W

(iv)

(vi)

a=2ora>2l+1;

la(-) : R — R* = {k € R|k > 0} satisfies la(z) > 0, and is bounded and
Lipschitz continuous together with its derivatives such that la € C**E(R)

(i.e. continuously differentiable up to the second order, with the Lipschitz

(L)

continuous second order derivatives) with the norm
2
lltall := ) |sup

d\’ d\’
— | — |
—~ |zeR <dx) al@) (dx) “

—==1+1 341

+ < 00,

where |la|'") is Lipschitz coefficient of la;

(R?), 0 < 0y < Oy(x) and
0 <8, < So(x) with positive constants 8, and S, respectively;

2 l
0., 0,, S., Sy € W;H (R3), Q= 90 85 05 ¢ W;H (R2), 0. — 6y,

7 Ozxg’ 81’3’ Oxrsz Oxsz

Oy — 00, S. — So, Sy — So € W25 (RE), 0 < 0, < 0.(x), On(x) and

0< §0 < Se(x>> Sb<x>7'

_5
be W22+Z(R2) for any do(z') — b(z') > co for any 2’ € R? with a positive

constant cy;

~ 1
Fy, Fy and F3 € I/VQI’2 (R3.), and their derivatives with respect to x3 satisfy
the Hélder condition with exponent 3 > 1/2 with respect to x3 (we call

this property as condition (A)). For the function with this property, we
introduce the notation
of

B\ 2
10 = s e \ 3], )

where \f\iﬁs) stands for the Hélder coefficient of f in x3 with exponent (3

uniformly in x' and t;
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(vi)) g1 € W23 (R3);

(viii) Fi3 € W;H (R3) , and |Fi3] < og in R3..

Moreover, the following compatibility conditions are satisfied:
vi(z,0) =vy, x€,
T(Vg)n}tzo — (T<V0)n‘t:0 . n"tzo) n’|t:0 = |vo|*vo, x € T4(0),
Oc(2', do, 0) = bp(z), Se(a',do,0) = Sp(z), € I'5(0),
Op(2',b(2"),0) = Oo(x), Sp(a’,b(2"),0) = Sp(x), = €Ty.

Then, there exists T* € (0,T] such that the pmblem (2.1.20)—(2.1.21) has a

o 1,10

unique solution (0',us, 0, S" h') € Z(T*) := W2+l s 2(Qp) x W21+l’2+2(QT*) X
Lo 5541 L =

W;H’HQ (Qp+) x WZH s (Qpe) % VV;H"‘Jr2 (RZ.) satisfying 0 < 0 = 0'+0 and

0<S=8+5 on Qrs.

2.3 Auxiliary Lemmas

In this section, we prepare some lemmas used in the proof of the main theorem

in Section 2.5. It is to be noted that vy € W, (Q), 6, So € W;JFI(Q),

do € Wi (R2) (1/2 < 1 < 1) imply v € Wa+(€), 80, 5 e WL (€0).
By the trace theorem, they are extensible into the half space ¢ > 0 so that the
extended functions (uy, 6o, So, dp) satisfy for some constant C' (see, for instance,

[46])
( = ho)*
Hu0HW22+z,2T+l &) < C||vy 0) ”WQ“(Q)»
= )*
||90||7 20 < CHQ(hO ||—1+z =
) W, (@) O(h) W @) .
0)*

| 1ol < Clldal .

WQ%_H’%"_%(R%)
Now, making use of the well known inequalities

vy < ellullyrsigy vl for Vu, v e Wy™(Q),

[[uv|l ) < cl||u||W1+z ollwy@) for Vu € WiHQ), Yo € WL(Q)
(2.3.2)
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with a positive constant ¢; (see, for instance, [40]-[43]), we prepare some lem-

mas concerning the estimates used later. In the followings in this chapter, C’s

stand for constants depending on ||b||7%+l(R2 I 13||~3+l o Rsy’ ||d0|\W2%+,(R2),
Vol HHOHW; » [1So]l51 Lgay and Ps polynomlals of their argu-

ments with coefﬁcients havmg the same dependency as C’s. Proofs of Lemmas

are given in Appendix B.

Lemma 2.3.1. Let I, I, by € Wi T3 5(R2) and h = ' + ho, by = I} +
ho (i = 1,2). Then the following estimates hold:

(||h’|y yeiio) ) (i=0,1,2,3), (2.3.3)

2
PRI gy s,

7,
2

1W(5 hy) — W (5 ho)|)? v

(R%)

(R7)
Z\WHQ IW h|* (i=0,1,2)
W2%+l +% 1+z+11+1+l(R2T) Ly &)

(2.3.4)

311,34

l —
Lemma 2.3.2. Let I/ € W} 2(R%) and h = W + hy. Then the following

inequality holds:
Xy ys,ts h) — Xs(y y3. ts )2

< P(”h/H §+l z,r+§( )) (|yll o y2/‘2 + |y3 2‘2) '

Now we turn to the estimates of the functions appearing in the conditions
of Theorem 2.2.1.

Lemma 2.3.3. Let I/, b, hly € Wy it >(R2), h="Hh +hg, hi =h,+ho (i =
1,2) and 1/2 <1 < I.
(1) For a function f satisfying condition (A), the following estimates hold:

2 <P(h’ 55l ) 2 2.3.5
O g0 < PO gt ) )UTE (235)
f(hl)*_ hQ 2
H T s
2
/ / 1112 2
< P(Z 1450 vty VS = 0% g g I (230
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141,24

(2) For a function f € I/V2 2 (R3), the following estimates hold:

Hf(h)*”sz,#(@ ) < P(thuwgw, )HﬂLm ; (2.3.7)
2 T 2

T (R3

(h1)x _ p(h2)x|2
L

(Z I, >Hh’ IR g g i

(R}
(2.3.8)
(3) For a function f € W. 2“ 1+2(R%), the following estimates hold:
O g o < PO g g VI P g (239
|0 — b2 o

2
!/ !/ /12
S PSSl ety V5 g W

(R3)
(2.3.10)

Lemma 2.3.4. Let I/, I, by € Wi T3 (R2) and h = W + ho, h = K, +
ho (i = 1,2). Then the following estimates hold:

(h)* 12
B2

g =PI 3t )
T
2
(h1)* (h2)*|2 /
IFs™ = B ”l(fmSP(;;'mj”wf“’%*%(R%))

x |1k = Bll” (i=0,1,2).

1 1 l+l
+z+l + 2
(RT)
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Similarly as Lemma 2.3.4, we can obtain the following lemma.

54051 _
Lemma 2.3.5. Let I, I, and by € Wi " 5(R2) and h = W + ho, hi =
ki + ho (i = 1,2). Then the following estimates hold:

h
1 ”valﬂ,%m) < p(uhfu%gﬂ,g%% )

2

h1)* ho)*
W,

2
/

/ 1112
X ||h1 - h2HW2%H’%+%(R%).

2.4 Linear Problems

Let us introduce the linear operators L, (i = 1,2,3,4), which are obtained
from L;y (i = 1,2,3,4) with (h, ¥) replaced by (ho,dp). From the assumptions
of Theorem 2.2.1, it is easily seen that the coefficients of L;;, (i = 1,2,3)
34y 341L
2 472

Lo —
belong to W;H’HQ (Q27), and those of L,y to W3 (R2). In this section

we consider the following linear problems.

(- ou’
ot Llﬁou, =1L,
o0’ .
E L2JL06, l4,
0S5’

ot T (2.4.1)

(0, 6,5)|,_, = (0,0,0) on
\
hl
aa_t — Lyj W =1s inR7, (2.4.2)
hl‘t:O =0 onR?
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~o)ey UL s
vﬁo,?)“g - (VB0,3F1(30) ) ~(;i)* =13 in Qp,
I (2.4.3)

Ug =0 on be.
For problems (2.4.1)—(2.4.2), we have

L ~ L ~
Lemma 2.4.1. (i) Let I, € Wy (), 1 € WETTTE (P, b, s € W2 (Qr),
8., 5, € Wt THE )y € W TR () 8, S, € W TR (Ryr), and

satisfy the compatibility conditions

1_10 = 07 éb(ya O) = 07 Sb(yv O) = Oa Yy e f‘ba

|,y =0, 0.(y,0)=6(y), Se(y,0)=So(y), yel.

Then problem (2.4.1) has a umque solution (u',8', S") € Z'(T) =

><W22+l 1+2(QT) W;H s 2(Qp) satisfying

N’ ! !
Iy < Ol g+ Wl ey + DMl

I8N, genet o, IS 3t s
. \|aouw2g+l%+%m Ul 3ot g, + 10 3ot |

(2.4.4)

( ) For s € WQH it 2(R%), problem (2.4.2) has a unique solution h' €
Wy i (R2) satisfying

190, gt gy S Ol gkt (2.4.5)
T

Proof. Note that the operator L;, (i =1,2,3 4) is uniformly elliptic. Indeed,
31 32

for 5/ = (517§2>T7 (ng’ 53) € R3\{O} and Q) = (CLO ) ) ( 13(]_10>7 a23(l_10))T7
ad? = a®(h), the charasteristic polynomial of L, 7, is
i (€2 + 288 - €'6 + [a8263) + 2maf? (FI™" - €5 + af - FY"63)
Fn[E P a6 + Pl (a6

ho) ho)*
= ¢ + a6 + a¥FLV G + o FiY " ()6 > 0.

28



This means that L, j, is uniformly elliptic. In exactly the same method, other
operators L, (i = 2,3,4) are also uniformly elliptic. Then the general theory
for linear partial differential equations of parabolic type [21] leads to the desired
result. O

1,0
Lemma 2.4.2. Forl3 € W21+l’2+2(QT), the problem (2.4.3) has a unique so-

—~ 1,1 +
lution ufy € W21+l’2+2(QT) such that

! !
||u3||W21+l,%+%(QT) < C3||l3||W21+z,%+%

(@r)
Proof. Problem It is easy to see that by an integration with respect to x3,

(2.4.3) has an exact solution given by

o w
ul(t, 2 zs) = FEO% (8, 2/ 25) [/ -2 dmg,] :
ho

33 ra(ho)*
ap” Fis

—~ 1,1 <
This directly implies u} € W21 Tt (Qr). O
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2.5 Nonlinear Problem (Proof of Theorem 2.2.1)

2.5.1 Successive Approximations

In this section, we prove Theorem 2.2.1 by an iteration method. Let

(ufg), us(o) (0)7 5(0)7 ) = (0,0,0,0,0)

and (u| Wint1) ué(erl) 9m+1 S/erl)?
h’(m +1)) (m = 0, 1, 2,.. ) be a solution of the following problem for a given

( Ou/
m+1 _
(8t ) Ll hou(m+1) [Ll h(m) Llfbo} u,(m-i-l) + L17h<m> Uo
au0 (m+1)
875 + Gl h(m)< (m)vu?)(m)) = l1 )
/
ho)* 3(m+1)
Vﬁo,sué(mﬂ) (Vi 3F( ) ) 7o = —(Vips — Vh(m>,3)ué(m+1)
13
G _. l(m+1)
G5y (Wmnr1), Um)) =1 1377
o0, _ . (2.5.1)
(m+1)
ot — Lo g, (m+1) = [Lzh(m) - L2J€o]9£m+1) + Lo,y 00
80: ~ ~ m
_Z70 + G4,h )(ll(m), U3(m), H(m)) = lz(l +1)’
ot
DS/ 8 . =
m+1
(8t L L3,7LOSEm+1) - [Lgvh(M) o L37B0)} ng—"l) T LS,h(m) S0
8§0 A N m+1 A
5 + GS,h(m)( (m)> Ug(m), Om)) = lé ) in Qr,
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r _ -

B;lou/(m-ﬁ—l) = _Bh(m)uo + (Bﬁou/(m-i-l) o Bh(m)u/(m-i-l)) + GQ(u(m))

=: lémﬂ)

I

(92m+1)7 SEm—H)) = (96 - 90’ Se o SO) on FST’ (252)

(ul(m+1)’ U3(mt1) Q£m+1)v SEm—i—l)) = <_ﬁ07 0,0, — éo, Sp — go) on be,

(u/(m—i-l)’ 92m+1) m+1))|t =0 — (0 0 O) on Q?

( Oh;

(m+1) —
ot L4 ,ho (m+1) (L4 hamy — L4 ho) (m+1) + L47h('m) ho

Ohy | ~ : : m+1 2.5.3
5 T G (Wem), On+1), Oy =: Y iRy, (299)
\ h(mJrl li—o=0 on R%
Here U(py) = u’(m) + Uy, é(m) = éEm) + :0, g(m) gzm + Sy, and
B ou,,
Gty (W), W) = =V gty — 6% (B Fy a( 2,
Ys
G6,h(m) (u(m)a é(m—&-l); é(m))
N oL 2
=F y/a\P /at;hm 7t |:E - ZH
13y, WO 8 g )- 1) la(8.) (1 + [VU(, t; him))[?) ;::10] Y

_; _ 33 (h(m))* a ~ ’
la(He){ M3 (V’W“L“ (A )F'5 o Omy - V(Y t Ay )

4 gl (1+\V\If Yt him)| >2IU<m)I“9~<m)H

I (Fly 0y o0,
~ la(6.) [(F“(y Lt hem). 1) = (09))a™ () 55
: o0
+ 2a33 h " m+1:|
(Qg) ( ( )) v
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with la(6.) = la(0e(y', V(' t; b)), 1))
The unique existence of (u’(m+1),ug(m+1),9(m+l S’m+

teed by Lemmas 5.1 and 5.2 and the fixed point arguments [21].

1)s Pmy1)) 18 guaran-

Now applying Lemmas 2.4.1 and 2.4.2 again, we estimate (u’(
m+1 S/ h/

By the interpolation and Young’s inequalities, it is easy to confirm that

/
m+1)r Y3(m+1)

0!

(m+1) m+1))‘

[l e,y < ellgnog,, + C / Jul?,

oul)?

o.7?
+ ot

(2.5.4)

< dlullypo,)

()

for any € > 0 if m > k and u|,—o = 0. Using (2.3.2), (2.5.4) and Lemmas 2.3.1-
2.3.5, we shall estimate the right-hand side of (2.5.1)—(2.5.3). In the followings,
P(-) stands for the polynomial of its arguments, € an arbitrary positive number,
and 1/2 <l <.

First, we state some lemmas concerning the estimates of the right-hand side
of (2.5.1)—(2.5.3).

Lemma 2.5.1.

(m+1) (m+1) (m—+1)
Hll H 2’% ) Hl H 2%-&-1%'*'%( ”l5 H 2% v %(Qt)
< Cgt m + ) h/
(e+Cet) 1 (HU3( )HW21+1712Z(Q ) | (m)”Wﬁ "3 %(Rf))

x (Hu<m>HiV;+z,22+’ o Tl oz H“<m+l>sz+z,22+’(Qt)>

2 2

P(Hh’<m>HW§+z,i+g(R?)) IVollywi+i0y-

Proof. First, making use of (2.3.2), (2.5.4), multiplicative inequalities and the
fact that

33 ) !
1o ) < P (Wl oot gy ) 1 sty (259

W 2 (R2?)
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241, 2

(1 =1,2) hold for any f € W,

u m = o~
( )Hwé’é(gt)
2 , .
0a™ (h(, , 0a® (hy,
20> (M ))+azg(h(m)) (hm))
» Yi Y3 141,44 -
i=1 W, 2 ()
3 (h(m))*) ‘ au(m)
+ th( ) (a (h(m))F WQIHITH(@) y3 WQHN’%N
3
33 (h(m))* da’(him))
+ Ha (h(m))F5 HW22+Z,QTH(Qt) (H ays W1+171T+Z(Q )
2
)F(h(m>)*> aU(m)
5?/3 i w, T =R () Jys3 W;“”#(Qt)

< (e Ct) Pl 5.

Z+§(R2)) Hu(m) HW;H,QTH 4

Similarly, we have

o ngé ()

(B(m))*
FIS( )

< (e+ Cet) Pl 7|l 5

st o ([um a2y
W2+l (RQ)) H W23+l, 2 (0 (m) W22+l’

(m

It is easy to estimate the lower order terms in 1 H), for example,

H (u(m) . Vh<m)> U () HWZ’%(Q)

0
= “u(m)HW“l 2“ 5 H (V +a’(h m))a_) U(m)

wht @)
o 2 ()
(him))* o)
HFﬁ (m) a33(h(m))—a L
Y3 Alwy 2 (@)
(h(m))* 33 aU.(m)
< HF a” (h(m
L Wy @ () s w5 q,)
el A [
g e ) ) 170 Wit g 1y 50

33

S

2 (), we can show the inequalities

(§2t)

o

(%)



by virtue of (2.3.2) and (2.5.5). Since the extended functions of the initial

data have explicit representations

0 y{ho)* ALY,
X 0;h — 0
ayl (y,y:s) oz, (?J 3(9 Ys, 0))( )
ov 0X ,
=+ O(y X3(y y370 h’O))_s(yI?ySvO;h’O) (2 = 17273>7
ors Oy
we get
_ a1_10 ? / — 112
HLl’h“’”uO Ot [l =1 (Hh LY % S P A L R T

/ (ho)* (12
< P (Wil gt g ) 05 By

t

’ 2
=1 <”h<m>“W2%+a%+%<Rf>) Vol s1(qy

Moreover, the first term in the right-hand side of 15’”*” is estimated by noting

the following inequalities:

! !
< P (Wl oot ) Pl it

2

and in general

I(f e — FROI T2l

Wy 2 (Q)

< Ct)P (|1 ¢
< (e COP (Wl st g ) 11, sty Il st

241,24

for f € W,

have the desired estimate. The terms [,

(R3) Consequently, with the aid of Lemmas 2.3.3-2.3.5, we

() im ) are estimated in exactly

the same way as l(m+1) O

Lemma 2.5.2. For l(m+1), we have

m-+1
[t

a+1 3
~ (E + Ct Hu (m) | 2+l 2+l (Q ) + Hu(m)”WQJrl,QQ“(Qt))

1 1 l
+l,1+g(
2 t 2

s

o
+(e+Ct) P (Hh/ g+zi+§(Rg)) Hu(m—i-l)HW;H,QT‘H(Qt)

+P (Hh/(m)HWQEHvZ%(R?)) HVOHW;H(Q)-
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Proof. Note that

I ‘U(m) ” ’y3=P0 |’W2%+l’%+% (R?)

< 2 1 a2 2.5.
—_ O”u(m)HW2+l’g-‘2i(Qt) ( + Hu(m)HW2+l’22H(Qt)) ( 5 6)

2 2

holds for a > 2. Indeed, we first show

a 2 a—2
g |y:s:poHWQ%”‘O(R%) = CHu(m)”W?*l’QTH(Qt) (1 ) Wi (G ) '

2 (€2)
(2.5.7)
Since in the case a = 2, (2.5.7) is obvious by (2.5.4), we consider the case

a>2 ie,a=2+¢§ with 6 > 0. Then we have

0 0 2
@ 17 «a 2/
m ) at - m ) >t
‘ayi (lal®) 0" p0,8) = 5 (fuem|*) 2o, )
0 9 2
s U(m) 1 s U(m) o
= m m) ;Do,t) — m m) , Do, t
Oé[|u( )T ugm) v, (¥ pos t) — [aim) " Uim) o0, (v, po )]
) ) 2 au( 2
< C |u(m)’ u(m)(yllapmt) - ’LI(m)} u(m)(y2lap07t) ay (y1/7p07 )

ouy,, Uy,
o2 | = v o ) — 2 (g, t)

0y; 0y;

+ [am) (¥, po, 1)

2]
The first term is estimated by using the mean value theorem, so that

2
}u(m) |6 U(m) (ylla Do, t) - |u(m) ‘6 U(m) (y2,7 Do, t)

20
S O |:’u(m) (91,7]907 t)’ + |u(m) <y2,7P07 t)|:|

2
X ’u(m) (y1/7 Do, t) — Um) (y2/7 Do, t) |

This makes it possible to get the desired estimate for the first term. The sec-

are estimated

(0%
ond term and the lower order norm H |u(m)‘ |%:p0

easily, and finally we have (2.5.7). For H [ ‘a} , we have

1.1
Y3=P0 WQO’ZI""?(R%)

gCH |
. | ||

«
||
H‘ (m) Y3="Po Y3=pro

1,1
LaR2WAE T2 (0t La(R2;W1(0,t))

S C|’u(m)|’;/22+z,1+%(ﬁt).
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Thus we have (2.5.6), and consequently

« 3 2
et | = C||u(m)||w2“‘27+l<fzt) (1 el Wit s (@)) '

Y3=p0 |W2+z i+4 2 (R2) :
Other terms in lgmﬂ) are estimated in the same way as the corresponding terms

in 1§m+1). Thus we have the assertion of the lemma. ]

Lemma 2.5.3. For I{"™, we have

(m+1) /
115 ||W2Hl’%+%(fst) <P (||h(m)||w2§+z,i+é(R%)) ||u(m+1)||W2+l ﬁ(gt)

+&+QﬂPOWmH

5 5,1
41,245
wy e (R?)>

/
||u3(m+1)||'w721+z,1;fl (@) + Hu(m)”WQz-‘-z,zjl (Qt):| .
Proof. Since
1G53,y (Wnt1)s Uim)) IIW;+Z,%+{, .
ou m * ou m
< (V4 @3 (hmy)) - )y 33y R ) 2200 .
3y3 893 W21+l’7+7(§2t)

/
P (It 3345 ) Tms

/ (h(m))*
et G0 P (Il g gy ) TES" " st Bl st

by virtue of (2.5.4) and (2.5.5), we have the assertion of the lemma. O

Lemma 2.5.4. For I{"™™, we have

(m+1) S\
||l6 HWQ%H +%(R2) < H(L47h’(m) - L47h0)h(m4r1)HWZ%H,:{#%(R%)
_ 8h0 -
+ ||L4,h(m) hOHWZ%H Z+7(R2 H 2%%%%(11?) + HG&h(m) ||W2%+l’711+%(Rt2)
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/
<(e+CH)P <||h(m)||wf+l b 2)) (1 + ||h(m+1 ||W23+z,%+%(f{§))
1_'_ 1+ é/m , , Ui « , f + U(m 2 , ’ )
(L Wl i ) (B0l e+ e

# 0 (1 Wl ) (1 W ijﬂ,,zgum)

/
2 (Wl 10354 ) Dl 505

Proof. We begin with estimating the term ég,h(m). First, it is easy to get

la(6,)]|?
0O 44

2 2
2 . 2 2
< P (1 1) g, ) (10007 s )

Second, the term containing |ug,)|* is estimated in exactly the same way as

ég(ll(m)). Indeed, we have

e

1
= 1410
v=pollwz ™ (m3)

N/ 2
sc(1+||9m||wj+l,22+zm> <||um||wz+z,22+l@ ., 2“@))

2

by making use of (2.5.7), and we also have

N’/ «
wokbmy = (H Il 20 M@t)) Hu”’”wi”’z?l(fza’

Then we easily obtain

[

Y3=po

~ N /
”GG,h (u(m 0 m+1)>9(m))” +l,§+%(R2) < (E + Cet)P (||h(m)”w2§+l,2+§(R%))

N/ Ie%
x {1 i (1 10 m>||W§H,22+zm) (||u(m>||w22+l,22+z® o . wm)

+ 16, 24l }
10 +1>HW22+Z,2;l .

and finally we have the desired estimate. O
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2.5.2 Proof of Theorem 2.2.1
Now we proceed to the proof of Theorem 2.2.1. Introduce the notation
En(t) = [[(Wy), Wy, Em)’gzmﬁh/m Nz, Ep(t) = ||(u/(m)79’m)7gfm))HZ’(t)

where Z'(T') = W;H s 2(Qr) x W;H 1+ 2(Qr) x W;H s 2(Qr) as defined in
the statement of Lemma 2.4.1. Applying Lemmas 2.4.1 and 2.4.2 to prob-
lems (2.5.1)—(2.5.3), and making use of Lemmas 2.5.1-2.5.4, we arrive at the

inequalities
Epualt) £ G114 (e COf01(Enlt) + B ) Buin0} | 258)
and

! /
HU:’,(m—&-l) HW;H}T'H () + ”h(m—‘rl) ||W2%+z,%+% (R2)

2|1 0a(En0) (I8l st )+ Wil k)

+ (e + Cet){¢1(Em(t)) + ¢a(En(t))

<Hu3 m+1) ||~1+l L 5 () + Hh(m+1 ||W2 +1,3 +%(R2)> }] (259)

for any ¢t € (0,T], where Cy = Cy 4+ C5 and ¢; (i = 1,2,3) are monotonically
increasing. Adding (2.5.8) and (2.5.9) multiplied by 1/(2C2¢3(E(t)), we get
the inequality

B (1) < Cult)| 1+ (e + GO {n(Bu(0) + a(En(e) Bus(0)}

with some constant Cy(t) depending on ¢ monotonically increasingly.
Let a positive constant M such that Cy(T) < M. Take € first small enough
so that

Cu(T)pa(M) < 1,  eCo(T) |1 (M) + qﬁg(M)M] < M — Cy(T)

hold, and then T; € (0,7 so that

C4(T)CE¢2(M)T1 <1- C4(T)€¢2(M),
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Cy(T)CT {1 (M) + po(M)M} < M — Cy(T) — €Co(T) {1 (M) + po( M) M}

hold. Consequently we obtain

04(T){(e + CTy)1 (M) + 1}

Em+1(T1) < 1— 04(T)(e + C€T1)¢2(M)

<M

from the assumption £y, (77) < M. By induction the sequence {(u(,,,, u3,,), ézm),
Sy Py Yoig i well defined in Z(T1) and E,,(Ty) < M for m =0,1,2,....

Now we prove its convergence. Subtract (2.5.1)—(2.5.3) with m replaced by
(m —1) from (2.5.1)-(2.5.3). Then

(u/(erl)? U3 (m+1) 9/m+1 S (m+1)> h/(m+1)>
= (Wng1) = Wonys Us(ms1) — Uaimyr Omar) = Oy Stonsry = Stanys Plonsry = Alomy)

satisfies the equations

hy
A

~ u
V ho3Ws(m41) — (Vhp By )—3(m+1) 1§ g,

/ ~
W) L& mm)
ot 250 (m11) = U4 4

:/
O8n+1) (1) _ )
5

at - L3,l_10‘§£m+1) = l5 ln QTl?

m—+1 m
Bhou(m+1 —].(2 +)—lg )

’Sém—l-l)) = (9€’$3=‘1’(';h(m)) - 96’$3=‘P(’;h(m—1>)7

Se|x3:\ll(~;h(m)) - Se|x3:\ll(-;h<m,1>)) on FsTla

(051) @g1)> Vmaty Smgry) = (0,0,0,0) on Loy,

L (ul(m+1)> QEerl)’ Sém+1))|t:0 =(0,0,0) on Q,
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on!

(m+1) 7 m-+1 m .
8t L4,i7,0 zm—‘rl) = lé ) - lf(i ) m R%H?

Then Lemmas 2.4.1 and 2.4.2 yield for any ¢t < T} the estimates

H(u(m+1)7 8/m+1 St m+1)) “Z’(t)

(m+1) (m) (m+1) (m)
< O =g A g
+ l(m+1) _ l(m) L+ l(m+1) _ l(m) .
” 4 4 HW2Z g(Qt) H 5 5 ” 215( )

+ ||06(y/7 \I’(y/, t; h(m))» t) - 9e(y/, qj(?//a t; h(m—l))a t) || %H,%Jrl

+ HSe(y,a \Ij(yla t; h(m))> t) — Se(y/> \Ij(y/> t; h(mfl))7 1) 341,341 )

W ?(R?)
~, (m~+1) (m)
Hh(m_,_l)sz.;_z Z+2(R2) < C Hl lﬁ "W2%+l’i+%(Rf)’
(m+1) _ 4(m)
Hu3 1) HW;H’#(Q) < Cs|l5 L szlﬂ’ljfl(fzt)
Each term in the right-hand side of the above inequalities except for ||l§m+1) -

m m+1 m . .
1§ )||W2%H A and ||l( ) l( )HW%“ A e, can be estimated just as we
have done for |[1™ V) i Jm+h) _ (¢=4,5)and Jm+h)
IV g B g, (6= 48) and 7V e

Then we have

1(m+1) . l(m I (m+1) l(m
||1 1 W211~ +Zl| || 21%(@)

S(e—{—ct P(H( (m~+1)> m)>uzm—1))H

W22+l,1+% 3 v”ué(m—l)”fwzuz,%l

Y

()

0/

H(~Em+1)79(m))H 2+1,1+4
W, (€2

{Qx
N
[ V)
—~

o]l
-
N
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2 (Wil oot g ) | o s S

Z’(t)] ’

m-+1 m
1257 — ™)

Wy @)
< (e+ Cet) P(H(u/(m+1)’u2m))HW;HJ%(Q)’H“g(mﬂ)nwyh%@)’
B )y 4 )
(Wt gy * 1ol g + Bl 304 )

P (”h/(ml)”wﬁﬂ’%Jr%(Rf)) ||ﬁl(m+1)HW22+l,22+l(Qt)] .

l(m—l—l m)H

In estimating H , the terms except the one containing

WTH 0 Rt)
|u(m)‘a Om) — ‘u(m_1)| O(m—1) are rather easy to do. Hence we show only its

estimates. Let f(u,0) := |u|*0|y,—p,.- Then the mean value theorem implies

f(u(m), é(m)) - f(u(mflﬁ 9(m71))

1 d 5 5
/O o/ (S(u(m), Omy) + (1 = s)(U(m-1), 9(m—l)>> ds

2

[ af of _ _
— A Zzl a_’lj/i(u87 05)<u(m)z - U(m_l)i) + %(usu 08)(0(777,) — Q(m—l)) dS

1 -
= / ouy|* % u, - (05 + [us]" 6,
0

ds,

where u, = sug,) + (1 — s)uum_1), s = sé(m) +(1— s)é(m_l). For the estimate
f (g, Oamy) — f(Um—1), 9(m—1))||

term

" , it is sufficient to estimate the
Lo (0t; W7 (R2))

1
0 a=2 u 1 0 a—2 ~ 2
\/0 |:8yl (|u5| Us - u/(m)es) (y ,7p07t) - 6yl (|us| Us - u/(m)es) (y ,7p07t) ds.
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Let

7% u, - 0,y 0ds

a—4 aus ~/
= /0 [(O‘ —2) uy] (us : 8_%) (us - u(m))es

a2 0 .
+ |us] 2 @ ((us . u(m))es)] ds,

and estimate

1I t G (y2/ t>|2 d lld 2/

R2 JR2? |?/1'—92/|1+2l v
Gily",0) = Gy D 1y
=y |51 |yl — g2 |12 Yy 4y

|G 17 t) ( 21 t)l b
dy 'dy~. 2.5.10
//?;1/_y2/|<1 |y _ 2/|1+2l Yy Yy ( )

Estimating the second term in (2.5.10) is more difficult than the first one, and
Ju, ,
(t7 Yy 7p0)7 we have

we first estimate it. Denoting K;(t,y) := |u,|*™* <us 3
Yi

Gy, 1) — Gi(y” )|

<C[/ | Ki(y' Ki(y 6)|” [us - @ (", 9o, ) 210s (5" 1o, 1)]* ds
/ |K ‘ ’us ﬁl(m)(?/l/?pU;t) —Us - ﬁ/(m)( » Do, )| ‘0 ( 7p07t>’2 ds
/ |K |us ﬁ/(m)( » Do, )| |9 ( pOut) - 95(3/2/7170775)‘2 ds

2

0 ~/ /
+/ “us|a 2(3/ 7p07t) o ‘us’a 2(3/ 7p07t)‘2 '@ ((us : u(m))QS) (yl 7p07t) ds
0 i

1
4 / s (7, po, £) 22
0

a ~/ /
B Jy; ((Us : u(m))es) (92 , Pos t)

0

a_y ((us . ﬁ/(m))es> (y1/7p0at)

2d4. (2.5.11)

Among the terms in the right-hand side of (2.5.11), the first term is the most
difficult due to its singularity, so that we show its estimate. Take 0 < 0 < 1,
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which will be determined later. Then, by applying the mean value theorem,

there exists 0 < § < 1 such that
|Ki(y1/7 t) - Ki<y2,7 t) ’2

~ ~ o o 2—20
= |VE;(sy" + (1= 8)y”. )|y — v¥ | | Ki (v, 1) — Ki(y™. )| .

Taking into account

0 o—6 ( 8u3) ( aus) oy O ( 8u3)
—K,=(a—4)|u, u; - u; - + |ug — | us- ,
oy, T T oy ) \™ ) I ey,

and putting 2’ := y" — y¥ in (2.5.11), we have for the first term,

" [Ki(y", ) — Ki(y" + 2, 1) *us - @y, 05(y", po, )| Qs
R2 J|2'[<1 |21+ v

t
1
SCE /dt// T
j=1"70 R2 J|2/|<1 Ed

8]_1 20’ au 20’
1r / 20(a—4) S s .1 /
X ||us(y™” + 2, po, y' + 2, po,t (v + 2, po,t)
[| ( e |2 )| |5
0*u 20
+ |u8<y1/+2/7p07t)|20(a 3 a as (y +Z p07t> :|

a 2—20
U

. t
ayl ( » Do, )‘)

X |2/ [P - g, 05 (y", po, t)]? d2'dy"

3 /|20
2 |2
< CZSUDW (',Pof)’ /|,|<1 |2/ [1+21 dz'

X 2 (SUp lus (-, po, -)|* " sup
R? R2

X |sup [u, (-, po, -)[**777 sup / 8,y (y", po, t)[* dy"
| R? t JR2

/ t ou,
X sup
0 R2

Dy

1

20p’ o
dt

s('aPOat)

1
2p P t
dt) ( / sup ai
0 R?

( p()?t) ayj

+ sup ‘us('apm ')|2(a_2) sup |ﬁ/(m)(7p07 )|2
R7 R}
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1
20q’ q
dt )
Ly(R2)

(2.5.12)

Q=

0%u,

3%5%’

Oug
0y;

(*spo, 1) (*sp0, 1)

t (2—20)q t
X / sup dt /
0 R2 0

Here we applied the Holder inequality, and 1/p+ 1/p' = 1/q¢+1/¢ = 1. Tt is
to be noted that the integral

‘Z/|2U , 1 r2cr+1
/|Z,<1 27121 dz’ = , i dr
[
is determined as a finite value for o > 1 —1/2 and W2 *(0,t) C L9,(0,%)
L2<7p’<0 t)mL272o)q(0 t>nL2aq’(O t) with o < 1277 n = Z/Q - 1/4 1 <
p < 11277, — 21077, < q < G 210) - 77 = 3/4 —1/2. Now if we take o such
that I — 1/2 < o < min{a — 2, {75}, then the right most hand side of
(2.5.12) is determined as a finite value. The first term in (2.5.10) can be

estimated in the same manner by taking ¢ = 0. These give an estimate of
s Bom) = (1), Bn )| . Adding this to the I
F (), Omy) = F (Wn1), ) | a0 m2) ing this to the lower

order norms, which are easy to get, yields the estimate of H f (u(m),é(m))—

J(Um-1y, é(m_l))H %+l,O(R2). Similarly one can obtain the estimate of
~ t~
| f (agmys Oomy) — F(@gm—1), G(m_l))HW;%Jr%(R?). Consequently, we have

m—+1 m
[ T

. < (e ) P (| g ) s

(R)

| Bl Bom1)) 21044, 1 ”Wﬁﬂéwms)

/ /
< (Nl st g+ W0t g, + Wl 08

’ 5
P (Hh(m1)||W§+l7%+%(R?)> ||9(m+1)||W22+l,1+%(Qt).

10D g6 HW%H’%‘I‘@ ., is estimated in exactly the same way as above,
2
(m+1) _ q(m)
i =g, = 4 COP (1 s

/ ~/ 7!
uh<m>rrW§+l,g+g(Rg)) (uum)uW;H,%@) #1344 )
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In this case, we need only o > I+1/2. Using the notation Z'(T) = W, (Qr)

1. Ly
><W22+l71+2 (1) x W;H’H_? (Qr) again and denoting

() B 2y B (8) = @y, Oy Sty )l 210

U

Em<t) = H(ﬁ/(m)? ag(m)’ eém)’
we get for any t € (0,T1],

El, 1 (t) < Ci(e + Cet) [¢4(Em+1(T1) + En(Th) 4 Em-1(T1)) E, ()

4 05(Ea(T0) B8+ 06( B (1) + BT 31148 1 |
(2.5.13)

Prg+h

i + ||y
H 3(m+1)HW1+l,1T+l(Qt) H (m-l—l)”w2 (R2)

2

<Gy {¢7<Em(Tl)){||ﬁ/(m+1)HW22+l,1+§(Qt) + ||92m+1)”w2+z,1+§@t)}

2

+ (€ + Ct)pu (Bpnyr (Th) + B (Th) + Enyi(T1)) En(2)
et COEns D] el o+ Wil g0tk g )
(2.5.14)

where Cy = Cy+ Cs and ¢; (i = 4, 5,6,7) are monotonically increasing in their
arguments.
Adding (2.5.13) and (2.5.14) multiplied by 1/(2Cs¢7(Em(T1)), we get the

estimate

Emia(t) < C5(T) (e + Cat){ ¢a(Emns1(Th) + En(T1) + Epr(Th)) En(1)

+¢5(Em*1<T1))Em+1 (t) + ¢6<Em+1<T1> + Em<T1))Em(t)} (2-5-15)

for any ¢ € (0,77] with C5(¢) having the same property as Cy(t). Taking e

small enough again so that
€C5(T1) | pa(3M) + ¢5(M) + ¢ (2M) | < 1
holds, and then T5 € (0, 73] so that

C5(T1)C€¢5(M)T2 <1-— C5(T1>€¢5(M),
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C5(Th)Ce [9a(3M) + ¢5(M) + ¢6(2M)] T
<1—=€eC5(Th) [0a(3M) + ¢5(M) + ¢6(2M)]
hold. For these € and T5, we obtain

Cs(Th)(e + CTy) | ¢4(3M) + ¢p6(2M)

Em+1(T2) S TEm<T2), T = 1 05(T1)(6 T CET2)¢5(M) < (O, ].)

Then we can verify that {(u,,), @3, éEm)7 S’Em)’ iL’(m))}Zf:O is a Cauchy se-

quence in Z(T,). Therefore the limit function

(ﬁlv ﬂ/37 5,7 ‘§/7 ﬁ,) = Trlbi_I)noo(ﬁ,(m)v a/3(m)7 :Em)7 gém)v Bl(m))
exists in Z(7T3), which is our desired solution.
Now we shall show that 0 < 8,/2 < 8(y,t) and 0 < S,/2 < S(y,t) hold by

~ ~ = 241 o
taking the time interval small enough again. Since ' =60 — 6, € W; 5 (Qr),

we have

0(y,1) = Bol,_y(w) = (185, 0)] + 1ol 1) — ol 0)1)

>0, —t" (sup 10y, )] + sup 8oy, t>|£”) :

yeQ yeQ

where |f |£7) stands for the Holder coefficient of f with respect to ¢ with expo-
nent v € {0 <7< % — }1} Note that the Sobolev embedding inequality leads

to
sup |0 (y, )| < || ¢/ . su 7 DI < 0 .
o 70,017 < 10t o SR o O < Wl
If we take
-
0
T3: =0 9

2( (6 + (16,
(H HWi“’QT“(ﬁT*) | OHWE*“QQ”(@T*))

then we have 6(t,z) > 6,/2 on [0,T3]. A similar argument holds for S. Denote

again the time interval by [0,73] on which both 6,/2 < 6(y,t) < oo and

S,/2 < S(y,t) < oo hold. T* = min{Ty, T3} provides the desired result.
Uniqueness of the solution can be proved by virtue of an analogous inequal-

ity to (2.5.15).

This completes the proof of Theorem 2.2.1.
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Chapter 3

Primitive Equations for the

Atmosphere

In Chapter 3, we study an initial-boundary value problem of the primitive
equations for the atmosphere in the three-dimensional strip. Since the unknown
functions 6 and h appear in the hydrostatic equation, the estimates of functions
after the coordinate transform are more complex than those in the case of the
ocean. Due to the same reason, we should note that more regularity for 6 is

necessary in the present case.

3.1 Formulation of the Problem

In this section, we formulate the free boundary problem of primitive equa-
tions for the atmosphere. As in the case of the ocean, our problem can be
formulated in the strip-like region by adopting f-plane approximation. By
r = (x1,x2,23), we denote orthogonal Cartesian coordinate system with z3
being the vertical direction. Let the ocean surface (unknown free boundary)
and the upper boundary of the atmosphere be described by z3 = d(2’,t) and
r3 = H (2’ = (21, x2)), respectively, where H is a positive constant satisfy-
ing H > dy(2') = d(2',0), and d(2’,t) is assumed to be a function satisfying
d(z',t) < H for any ' € R* and ¢ > 0.

Then the domain €2(¢) of the atmosphere at time ¢ is represented as {(2’, x3)]

' € R?,d(2',t) < 3 < H}. The equations that we consider in this chapter
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are as follows:

( Ov ov 1 v 1
a5 +(v-V)v+ wa—x?) 5 |:,U1AV + Mga—x%} + fAv = —EVpﬁL Fy,
o _
0 0
_Gi) + V- (ov) + —8$3(9w) =0, (3.1.1)
o0 06 020
P vVt s A | = R
o TV Ve {“3 +“4ax§] ?
dq dq *q|
E%—(V-V)q—kwa—w3 - [M5Aq+u68—xg =F;, xe€Qt), t>0.

The first equations stand for the equations of motion of the atmosphere in
the horizontal directions, while the second one is derived by applying the hy-
drostatic approximation to the vertical component of the equations of motion.
The third one is the continuity equation, and the fourth and the fifth ones are
diffusion equations of the heat and the moisture, respectively. We describe only
the notations different from those in Chapter 2; In (3.1.1) F; is the horizontal
components of the external forces given in R3 x [0, 00). g is the density, ¢ is the
moisture; F, and Fj are the sources of heat and moisture, respectively; (s, f6)
are given by scaling sums of turbulent and molecular diffusivities of moisture.
In addition to (3.1.1), we use the equation of state for the ideal gas, p = oRf.
The conditions on the free surface I'y(t) = {z € R3|z3 = d(a/,t),t > 0} are
imposed as follows:

(

T(v)n— (T(v)n-n')n’ = |v|?V,

) <“ VO “’4%”3) = ~la(0)V + glv[*0 + oLK,  (312)
3

\ (9,q,p) = (667qe7p0>7

where

H1 21 H2
_ 0z, 01y 0xs
T(v) = Dy o, Do, (3.1.3)

i 8271 # (91'2 K2 8%3
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is a part of the stress tensor, n = (ny,ng,n3)" = (n’T, ng)T is the unit inward
normal vector to I's(¢) at time ¢, and py is a positive constant which means the
atmospheric pressure at the ocean surface. The first condition in (3.1.2) means
a balance of the wind shear using bulk formulae, while the second one a balance
of the heat flux at the ocean surface, including the effect of the evaporation
and condensation. Since V = % m, (3.1.2), can be written as an
equation for d

d
% = L47dd + Gﬁyd(v, 6‘), = RQ, t> 0, (314)

where
. oL ad\*\ 9%d _8d dd 0*d
L = 1 -2
1ad la(&e)(1+|Vd]2){< * (axg) ) 022 "0y Oxg Ox101,
Oy 0x3 )’

00

K—MSV%@ Vg

Fs(t))
b/ T O], )

The conditions at the upper surface of the atmosphere are

(v,w,0,q)(z,t) = (0,0,04, qy)(z,t), x€Tly:={( H)|z' € R*}, t>0.

(3.1.5)

Initial conditions are
(v,0,9)(z,0) = (vo,00,q)(x), x€Q:=Q(0), (3.1.6)
d(z',0) = do(z'), 2 € R (3.1.7)

Let us introduce the p-coordinate system. From (3.1.1); with the equation

of state and (3.1.2)3, it is easily seen that p can be represented as

x3
— (', x5, 1) = — — 9 dx). 3.1.8
p = p(a',13,t) = poexp ( /d(x/’t) RO(z, 5, 1) 96‘3) ( )

We denote the pressure at the upper boundary of the atmosphere by

9
$/,$3,t

h=h(z',t) = pla’, H,t) = poexp (- /dH T )dajg) . (3.1.9)
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and hy = ho(z") = h(z’,0). It is natural to assume dy(z') < H for any 2’ € R
Since (3.1.8) leads to dp/0z3 = —pg/RH < 0, we can define a map

H
g
Y3 — Do €XP (—/ = dxg) =: &y (ys;0),
vs RO

for which there exists an inverse function
d=V(2',t;0,h) = ®;'(h;0)

first, and a map

Y3
Y3 — Do EXP (—/ % dxg) =: Dy(y3; 0, h),
U(y';0,h)

for which there exists an inverse function
x3 = X3(2',p, t;0,h) == 03" (p; 6, h).

We can take p as an independent variable in place of x3. From (3.1.8), it is

easily seen that

ng /J»‘s gve /
- = F 1.1
vp p(RHE(x’,d(ac/,t),t) T . Ro? das 5(2', 23,t), (3.1.10)

o _ g @Jr/x?’iag
ot~ P\ Ro.(v,d(x' 1), t) 0t * J,
(3.1.11)

Notice that after introducing p-coordinates, the ocean surface becomes flat
and is represented by the equation p = py, while the upper surface given
by p = h(z/,t) is unknown. For a function F'(a’,x3,t), in order to indicate
explicitly the dependence on 8* = 6o X3 and h after this transform, we use the

notation like

PO, p,t) = F(a!, Xs(a', p, ;0. ), 1),
6*<$lap7 t) = 0(3:,7 X3(37/,p, t; 67 h‘)? t)

By introducing

w :=dp/dt =0p/Ot+ (v-V)p+ wdp/dxs = Fs + v - F5 + wdp/Oxs,
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dp/0xs = —gp/ RY,

w is represented as

RQ(U_J - F6 — V- F5)
gp
From (3.1.1)2 and (3.1.1)3, we immediately arrive at

d [ op op Jp Ow
— | = . 1.12

w=—

Since the first term is represented as

d(fop\_ 0 (dp\_ov o OwIp
dt 81'3 _8x3 dt 8x3 P

(3.1.12) becomes

After rewriting this in p-coordinates, we have

Op ow* op ov* * 0
p P -Fée ,h)+ p

« py OV*
Oxrs Op  Oxz Op 0xs (V M dp 0

for (v*,w*) defined by (v*,w*)(z/,p,t) = (v, w)(z', x3,t). Hence, we obtain

V. -v'+ 0w /Op=0

(cf. [23]). Moreover, we introduce another mapping (z’,p) — (v/, y3) defined

in (2.1.11). By composing these transformations, the regions

U @0 x{th), | Cux{th), U @)= {t})

0<t<T 0<t<T 0<t<T

are transformed onto the regions

QT = Q X [O,T], fHT = f‘H X [O,T], fsT = fs X [O,T],

respectively, where

Q={(, )|y € R* po<ys < holy)},
fH = {(y/ﬂy3)|y, € R27 Y3z = h[)(y/)},
I, = {(,y3)ly € R?, y3 =po}.
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We denote the inverse of transposed matrix of the Jacobian matrix of this

transform by

(Tl )/ (¢ ys)]") " = (a¥) = (a¥(h)) (i, = 1,2,3).

In the followings, the operator (Vj,, V}3) is the same as that in Chapter 1,

and

X3(y/7 Y3, ta 0**7 h) = X3<x/ap7 t7 0*7 h)

o'=y,p=p(y;t)’

9**<y,7 Y3, t) = 0*(33',,}?, t)

a'=y’ ,p=p(y,t)’

FONY yant) = fON ()]

x' =y’ ,p=p(y,t)”

Now let us derive the explicit representation of Fég**’h) and Fée**’h). Repre-

senting the integral term in (3.1.9) by p-coordinate system, we have

. \A P « 1 0"
PO g _/ R T LAY
5 (2 pt)=p B0 U 0.8 ), o Vo* + Fy o )

We have the following boundary condition from this integral equation

PogVV¥ (2, t)
RO (x', V(' t),t)

0% h
Fé )<Ct?/,p, t)|p:p0 -

We derive the explicit representation

: U t) [P Ve
F M (2 p,t) £(gv - )_/ Vp dp>,
D

= 0* R 0
and hence
Fég**,h) (y/7 Y3, t)
p(y,t){gv‘lf(y’,t) po—h /y3 1 ( o 389**> }
= — — (VO +a d
0+ R Po — ho Po p(y,1) 0y Y3
t
= p(ey*’* : %V‘P(y’, t) + Ci(y,1). (3.1.13)

Here, and henceforth, V stands for the gradient operator with respect to /.

Similarly, we obtain

*7 / p ga\Ij / plae*
Fﬁ(e h)(iﬂvp,t)=§(§5(lﬂt)—/ ot dp |,
D

0
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6** h
FM (s, t)

_plyt)fgov _po—h/y3 1 g™ Oys 06
o {R at(y’t) po—ho J,, py,t)\ Ot " ot Oy s -

_. ply,t) g ov % Ays\" oh
= e B W TG, (5| =Alg (L)

Differentiate the relation (3.1.9) with respect to ' and ¢, and rewrite them

in the y-coordinate system. Then we have

Vh g ho 1
AR v\ -
h v RO, /po 0p(y, t)

x |V + (A1 Vh + B +F5 | = dys,
[ ( ' 1) 0ys3 i ( dp 0ys3 po — ho Y3

10h 0V g /ho 1
po

hot Ot RO, 0*p(y, 1)
06" oh oo™ Oys\* 007 [ po—h
b A 4+ F == d
X{@t * 1(‘9t8y3+ 6(3]?) ay?,](po—ho) oo

where A; amd B; are the same as defined in Section 2.1, right before (2.1.12),

(0" =i
p po = hly's1)
Inserting (3.1.13) and (3.1.14) into the above equalities, and noting that

and

i_/ho g 89** _ g
RO, v R(0%)? Oys ROy (y', H,t)

holds, we have the following equalities:

VU = g (B OVA 4K, 1), (3.1.15)
0% E 0*h

= — H; (,7=12 A1
ayzayj F@yzay] + i (Zaj ) )a (3 6)
oV 1 oh
— = EW t)— + Ky(v/ 1.1
= o (005 + K0 (3.0.17

where
I g
F(y 7t) - RQH(y’7H7t)7
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. 1 po—h /ho (A, + Dy) 00"
Bl 1) = + dys,
WD =500 Tt L, b 0o oy
p(y,t) /y3 Ay 00*
Dy(y.t) = — ,
19 ) o~ | py,t) oys

/ Po — h /ho |: 1 ( sk 89**) :|
K, (¢, 1) = —— (ve~+B +L,| d
1(y ) Do — o . p(y, t)@** 1 Dys 1 Y3

= (th K12)T )

1 o] 00** 00**
L = — 0 + B d
1(y,t) 2 (/1;0 p(y, 1) <V + b Dys > y3) Bys
0 (E\ Oh 0 [ Ky; .
H. — i I —_J =1.2
() ayz (F) ay] + ayz < F > (Z>] ) )7

—h fho 1 00™*
TR Ly R T P

1 vs 1 06 o00**
L _ _t 9 o
2(4:%) 02 (/po p(y,t) ot dyg) dys

Now, let the problem (3.1.1)~(3.1.7) be rewritten in y-coordinates for (u, us, 8, §

7h)7 (u,ug)(y’,yg,t) = (V*,U_)*)(.Z'/,p,t), 6 = 0**7 qN(ylaySHt) = q*(l'/,p,t) =
q(2',x3,t), h(y',t) = h(2',t). Then we have

( Ou ~

o0 _ N
o = Logul + Gyl s, ) (31.15)
aq .~ ~
ot Lyg,0+ G5,§,h(uv us,G) in Qr,
oh ~ ~
Ot =Ly g,0+ G6,é,h(u’ ) in R%
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(éu (j) = (06, qe)la:gz\I/ on f‘sTy
(u,u3,0,4) = (0,0,0,qu)|oserr  on g, (3.1.19)

(0,8,)(y,0) = (v{oho) gloho) gliohoyy on Q)

\ h(y',0) = ho(y') on R2,

where

Lygpu = pi Ly gu+ poly, 5,

0

é?
Lyygpu= lipu+ 2l 5,0+ ‘Fé h)‘2(a33)2 7|
w 13 w Oys3

RO Y3’
0 0? g 0
lll,h == VQ + 2a3 . Va—y:}) + \a3|28—y§, l12,§,h = a33Fé ) . Vha—%,
- - mRO[ _, 53 O
G, ; 0) = —1 . F —
1,0,h(u’u37 ) (g, 1) |:(vh 11,0) + Vi (a 5 ) Dy
5 oa? 0 j 0
L Bpl (_ L9 (assF(e,h)» _} u
> 0y3 0ys3 > 0ys
PELY Kaggp(y>f)gi)2 - (aggp(y,f)g)2 0? ]u
p(y,t) RO Oys RO oy3

~ a N . a
— {(u . Vh) + (F(59,h) . u)a33a_ 4 ¢33 (u3 . Fée’h) —u- Féﬁ,h)) v
Ys

. h é - .
+ F(j(@,h)a?)Si + A Oh 0 :|u — fAu — R F(@,h) + F(a,h)

Oys Ot Oys (y.1) ° !
. i - RO in) | i
= ﬂlGn,é,hu + N2G12,é,hu - G13,é,h(ua uz)u — fAu — p(y—t)F5 +F,
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- . Ou
G37h(u) = —Vh -u— a5 . a—yg,

L2,9~,h9~ = #SLn,é,hé + M4L12,§,h9~7

T T )
G4,§,h(u’ uz, 0) == M3G11,5,h0 + M4G12,é,h0 - G13,§,h(u7 uz)0 + Fz( )a

L3,§,hq = :“5L11,§,hq~ + M6L12,é,th7

N 5 5 . A "
Gs,é,h(lh us, q) = N5G11,é,hq + NﬁGlQ,é,hq - G1379~,h(u7 uz)q + F:)f )a

) du H2Pog 33 0u
Bé,hu = {,ul {(n' -Vip)u+ (Fé67h) . n')a33—] - a”’—ng3
0ys RO, |$3:‘1’(y’ ) ys
—m [<n’ Vauen o (B ) “’]
y3
. H2Pod a338_u . 1,1/ n n/
Ree‘ = / ayS 3 ’
z3="(y',t)
G, (u) := [u|*u,
2
FolL 9%h
L,;,h:= Ciim———
10t B U 0P 2= By,

E dh 2 E dh 2
cip =1+ (Fa_yg +K12> , Copi=1+ <F6_y1 + Kll) )

E 0oh E 0oh
Clpg = Cg1 := — (F(’?_yl + Ku) (Fa_yg + K12> )

56



Fol 2

la(0.) (1 + VU (y,t)]?) > ity

ij=1

F 33 @m 0\ 5 !
S Fpiém 7 VU
la(Qe){ 143 <Vh+a (h)F} o 0], V.1
HaPog 33 00
_ HaPog 83y 2
RQ@‘ a ( )8y3 Y3=P0

3=V (y',t)

+

~ l n
#o™ (1 90 0F) i, b,

a * * s * T
n= (n17n2)n3)T = Ha l’ll = (n17n2)T7 a= < _FS(?) 3 _F5(£L) ) Fl(g) )

with la(6.) = la(0.(y', V(y',t),t)). It is to be noted that the functions <u’t:0’
9~|t:0,5’|t10)(y) and do(y') = do(2’) are extensible into the half space ¢ > 0

preserving the regularity, which are denoted by (1, éo, o), and dy, respectively.

We also denote the extension of y(x) and hy(y') by

— — H g
90(35775), ho = ho(y/,t) = Po €XP <—/ — d$3) )

respectively.

Then the problem (3.1.18)-(3.1.19) becomes the following one for (', u}, 6/,
q‘/7 hl) = (11 — Uy, Us, é - 907 g - (_?07 h — BO):

( ou’ . Ouy 5
E = LLé’hu/ + Ll,é,huo - W + Gl,é,h(‘“l’ us, 0)7

Vhauy = és,h(u),

o ; = 90y - )
< ot Lygnt + Lygnfo = a_to + Gy p(u,us,0), (3.1.20)
't ; O g o
E = L379~,hql + L3’§7hQO - 8_150 + GS,é,h<u7 us, q) in QT7
oh' _ aBO B _ '
L Of = L4,é,hh’ + L4,(§,hh0 T + G67§7h(u, 0) in R2T7

o7



Bé’hu’ = —Bé’hl_lo + Gg(u),
(9/7 (j/) = (96|$3:\If - éOa QB‘a:g:\Il - C?O) on I~‘sT7

(11/, u/37 éla g/) = <_ﬁ07 07 GH‘:c;;:H - éOa QH|x3:H - 50) on f‘uTa (3121)

(u',0,d)]=0 = (0,0,0) on €,

[ W|i=o=0 onR?

where (u,6,§,h) in the right-hand sides is replaced by (0’ + @y, 0’ + 6’:0,@’ +
o, h + ho).

3.2 Main Theorem

Now we state the main theorem in this chapter.

Theorem 3.2.1. Let | € (1/2,1), and T be an arbitrary positive number.

Assume that
(i) a=2o0ora>20+1;

(i) la(-) : R — RY = {k € R|k > 0} satisfies la(z) > 0, and la € C*™*(R)
(i.e. continuously differentiable up to the second order, with the Lipschitz
continuous second order derivatives) with the norm

;i [(D)

d Zl <
— | la 00
dz ’

2

d i
la) == sup || — | la(x
el =3 |sup () 1o

where |la|!") is Lipschitz coefficient of la;

+

. — 3
(ii) vo € WEH(Q), 8 € W2 (Q), g0 € Wy (), dy € W2 T (R2), 0 < 6, <
bo(x) and 0 < g, < qo(x) with some positive constants 0, and q,;

: Tt s T2t Ry 0 dam - Tir2thiE @3
(IV) 06: QH € W2 (RT); Qe;, dH € W2 (RT): dz3’ Oxs € W2 (RT);
34,251 o1yt

0, — 0, 0y — 0y € W, (R}), ¢c — @0, qu — @0 € W, (R%),
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0 <0y <be(z), On(x), 0 < g, < qe(), qu(z) with the same constants as
in (iii);
(v) H —do(a") > co >0 on R?;

ey
(vi) Fy € WQHZ (R3), Fy, F3 € I/VQI’2 (R3.), and their derivatives with respect

to x3 satisfy the Hélder condition with exponent 3 > 1/2 with respect to
xg (we call this property as condition (A)). For the function f with this
property, we introduce the notation:

0\ 2
1132 —Hf|!~l§ ( ) :

where |f|§£) stands for the Holder coefficient of f in x3 with exponent (3

af
0xs

uniformly in 2’ and t;

=241, 2+l

(vii) g1 € Wy 7% (R7).

Moreover, the following compatibility conditions are satisfied:

do 0

ot t:07$3:dovo) |w3:do 03 prCLY =0,

+V-(Q{

t=0,z3=dgp t=0,z3=do

vo(z,0) =vg, z€Q,

T(Vo)n|t:0 - (T(Vo)n‘tzo ) n/}tzo) n/{t:() = [vo[*vo, @ € T(0),
Qe(xla dOa 0) = 90(1‘)7 QG(xla d07 0) = q0<x)7 MRS FS(O)a
QH(w/aH7O) ZQO(w)7 QH(xlaHvo) ZQO(x)v T € Fbv

880;;{ _— + (Vo{m: V)90|x _ +w|t 0,23= ngz
11320 + 4 ?;95 - = F2|t:0,x3:H’

889; . + (V0|:p3:d0 : v)eo‘mzdo + w‘t:O,zgzdog_zz _—
M3A90‘$3:d0 + /M@;_;é) - 2|t:0,x3:do’

Then, there exists T* € (0,T] such that the pmblem (3.1.20)—(3.1. 21) has a

unique solution (W', us, @', ¢, h') € Z(T*) := W22+l T+ 2(Qpe) x W,y SEEA (Qp-) %
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Sy

34l 547541 -
WQBH’ 2 (Qps) X WzH 1+2(QT*) X W22+l’4+2(R%*), satisfying 0 < 6 = 0" +
and0<G=q +q on Qp-.

3.3 Auxiliary Lemmas

In this section, we state some lemmas used in the proof of the main theorem
in Section 3.5 without proofs. Since vo € Wit(Q), 6, € W§+I(Q), q €
Wy Q) and dy € Wf ( 2) (1/2 < 1 < 1) imply v ¢ Wi+ (§), 9590’%) S
W§+Z(Q) q(eo’h’O € W (Q), respectively, the extended functions (i, 6o, Go, do)
introduced in the end of Section 3.2 satisfy

901

_ ho)
”u()”w“h%“ Qr) < Clhug™™ i@y

2
j (fo,h0)
Boll st g,y = W™ vy (3.3.1)
~ 9 7h . .
||QOHW2-H,2T+Z(~ < CHqO 0,720 HWéH

ar) @
) <l g

for some constant C' (see, for instance, [46]). In the followings, C’s stand for

constants depending on ||dpl| Wi gy’ [Volly2+tq) HQOHW?’Z(Q)’ HC_IOHW;-H(Q),

and C(-)’s monotone increasing functions of their arguments.

Lemma 3.3.1. Let ' € Wi ™5 (R2), & € W™ (Qp), h = W + ho,
0 =040y and 1/2 < ' < 1. Then the following estimates hold:

RICTAD ] , <C<Hh/H R, H@'H g )>, (3.3.2)

.0 / N/
”\II(,’Q7 h)HW +i+1, Z+~#(R%) (Hh || +z+l Z+7d2;l(R ) ||6 ||W3+l/73‘02’l/(QT))

2 2

(i=0,1,2). (3.3.3)

341,35
* (

Lemma 3.3.2. Let I € Wi T3 (R2), 6 € W) Or), h = W' + ho,
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=0+ 9:0. Then the following estimates hold:

(é,h) ‘ A/ /
E2 st < O sz Wt )

2 2

(6.h)
LR I (e L |

2

Lemma 3.3.3. Let by, hy € Wy ST R2) @ e WETT (), b =
R, + ho, 0, —9 +60 (1=1,2), 0’—9’1—5’2, and b = hy—hy, and 1/2 <l < 1.
Then the following estimates hold:

|\I’(yllay§;9~1, hi) — \If(y”,yyf;éz, h2)|
2 2
N’ /
C(Zl He H 3+l 3+l ~T)7 ; Hh]”W2g+l’2+é(R%))

j
XHW|,HN FIRN 4 " =77 (3.3.4)
3+l Q ) W2§+Z+ AT o (R%)

T

Y SHETSR2Y 7 b 34,55
Lemma 3.3.4. Let I/, b, hly € W2 " *(R2), ¢, 6,, 0, ew, " ® (QT)
h=W +ho, 6 =0+ 00, hi =, + ho, 6 = 0+ 0 (i =1,2), 0 = 8§, — 8, and
W ="h—hh, and 1/2 <1' < 1. Then the following estimates hold:

2
61,h G2,k
L e O L ey Zuh ot g, )
j=1

f 7/
<H9 H 3+z/ 34l o) + Hh HWQ%HH,};*T(R%))?

2
(él,hl) (927}742) ! ;
HF6 — Fy H 1+l 1+l (Z H@ H 3+l 2 (@) JZI ||hj||W2%+l’%+%(R2T)>

~ /
X (HGHWSH/’MQ—V(QT) + Hh H 2+z+l +§(R2T)>.

~ 34+l - _
Lemma 3.3.5. Let ' € Wi i 3(R2), & € W2™ % (), h = I + ho,
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6 =0 +6y. The following inequalities hold:
| Xa(y",y3. t:0,h) — Xa(y™, 43,80, h)
7 1 22 1212
< C<||8/HW23+1/,3451/(~ IR s 54,3 +%(QT)> (|y "— v+ lys — usl ) )

|X3(y/a Y3, t7 éa h) - X?)(y/u Ys, t— 75 97 h)|2

w5

N 2
(P N I3

~ 3+l —
Lemma 3.3.6. Let ' € Wi i 3(R2), & € W™ 5 (), h = I + ho,
=0+ 90, and 1/2 < 1" < 1. Then the following inequalities hold:

~ /
HVX3|p=p(y7t)||W22+l,1+%(QT) <C (HQ ||W23+l/’3+2l ® ||h || v, %(R%‘)) )
0X3 ( .
= < (18N vse W govse ) |
L P—— W21+l’1TH(QT) w, TRy wy At )

Now let X3(y/7y37t) = X3(y/7y37t; éla hl) - X3(y,7 Ys, tu 6~27 h?) For thiS, we
have

~ ~ 3+l o
Lemma 3.3.7. Let I/, Iy, hy € W, V3 (R), 0, 6, 0y € wy™F (),
h=h+ho, 0=0+0, hy =+ ho, 0, =0+ 0y (i =1,2), ' =0, — @, and
W = by — hl. Then the following inequalities hold:

2
v / 2 N/ I
| X3(y', ys, 1) gc*(; ||ez.||W;+l,2+l ) ZHh ’|W2%+l 1.1 RZ))

2 2
I s, -+

7‘” 345 oo |?
(R7 )}
|X3(y1/7y?1nt) - X3(y2,a yg,t)|2

2 2
n' /
<C <; H‘giHW;H,QT“(QT): ZZ:; |’hiHW2%+z,g+%(R2T)>

o [

17 2/ 2 212
—_ + ,
. (RQTJ (ly *+ lys — v31)
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X3y, ys.t) — X5y, ys, t — 7)|

< [né’nQ o IR,

2L 3+1,3+% }
Wy, 2 (Qr) w2 (RY)

The following lemma will be used in the proof of Lemma 3.3.9, whose proof

is found in that of Lemma 2.3.4, given in Appendix B.1.4.

Lemma 3.3.8. There exists a constant §, 0 < § < min {2 — 2, 21227[;) }, such

that the following inequality holds:

1fgllwro@,) < COA+ sup [ol)’ ||f|| ||g||W2 +4+h o (3.3.5)

Now we turn to the estimates of the functions appearing in the assumptions
of Theorem 3.2.1.

Lemma 3.3.9. Let I, I, I, € Wi "T*3(R2), @, @, 0} e Wj“ (Qr),
h:h,—i-}_l(),ézé/+§0,hi:hi—l-ho,éi:ég—i-éo(121,2),0/:9/1—9/2,
W=h,—hyand1/2 <1 <I.

(1) For a function f satisfying condition (A), the following estimates hold:

(0,h) (2 / / 2
Hf ”WQL’%(QT) < C(||9 ” 2+l 1+4 ||h ” §+l,i+§(R2T)> |||f|||Ta (3'3'6)

Wy

70 = F R

o (ZH’H . Zn’nwwmm)

1112 77112 2
o (PO WP I /S L
—~ 1 [
(2) For a function f € WQHZ (Qr), the following estimates hold:
(6,h) (2 < n' o /
A (L N NP [ I/ O
(3.3.8)
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2

2
(61,h1) _ f(02,h2)||2 i , /
I£0u0) — FORPE s gc(zuejnwsw ~ Znh gt )
]:

77112 7712
o (A Ly | T/ O

T) 2
(3.3.9)
(3) For a function f € W. 2“ 1+2(QT) the following estimates hold:
(6,h) ]2 ' L /
PO i, < c(ue [P L PRI [ 11 S,
(3.3.10)

2
(01,h1) _ £(B2,h2) |2 Zv /
lFm =7 QHWE“’%MSC(Fl Hej”wi’“’%“m’”hjuwﬁ“’?l%m%))
37112 77112
< (16 sy I g VI s

(3.3.11)

3.4 Linear Problems

Let us introduce the linear operators L, 5 (i =1,2,3,4), which are obtained
from L5, (i = 1,2,3,4) with (0, h, \I/) replaced by (GO,hO,dO) From the as-
o (0=

sumptions of Theorem 3.2.1, it is easily seen that the coefficients of L. G0k
to W2+l’4+2( R%). In this

1,2,3) belong to W2+l s (Qr), and those of LGk

section we consider the following linear problems.

( ou’
E B legoﬁou/ =1,
00’ .
ot 2,5071—109, =y,
aq ~
__L:,qN':l5 iHQT,
ot ko (3.4.1)

Béojl()u/ — 12, (5/7 q‘/) — (967 qe) on fsT7
(o, g, q') = (=0, 0m|zs—r — 6o, Qi |os—r — @o) on Dy,

(o', él» ¢)lt=0 = (0,0,0) on QQ
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/
QQ—L W =15 inR%,
ot oho (3.4.2)

h/‘t:o =0 onR?

V;Z073ug = lg in QT,
) (3.4.3)
uy =0 on [y

For problems (3.4.1), (3.4.2), we have

. Lt & TR e 14+, ~
Lemma 3.4.1. (i) Let |y € VV2 (QT) l, € W3 (F T), ls € W, (QT)

3
Is € W2 (Qp), 0., g € Wi ™" T3 (Pyp), By, qu € Wi THiTE (T

the compatibility conditions

Cur), and satisfy

( ﬁU - Oa Q_H(yv O) - Oa qH(y7 0) = 07
00y ~
—_— =4, . , T E FH,

at 120, ys—ho ‘t—o,y3—h0
12‘75:0 =0, ée(y, O) =0, (76(% 0) =0,
00 -
c = l4 . L T & Fs'
\ Ot +=0, y3=po ‘t—O,ys—po

Then the problem (3 4 1) has a unique solution (w',0',§') € Z'(T), Z'(T) =
241,141

W, (Qr) x W;H (Qr) x W2+“+2(QT) satisfying

N =l !
||<u,e,q>||zmsol[nhnwé,;m)+||12|| bt g I g o
l g, Je
L YO [ S S [ B M
0l gongeg g 10 e ol g
(3.4.4)

(ii) For ls € W2+l it (RQ) and hy € WZ%H(RQ), problem (3.4.2) has a

unique solution h' € WQH it (R2) satisfying

(3.4.5)

B < ol :
” ||W2%+l’%+%(R2T) = 2|| GHWQ%H’%L?(RQT)
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The proof of Lemma 3.4.1 is similar to Lemma 2.4.1, and we omit it here.

1+

1,0
Lemma 3.4.2. Forl; € W, ’2+2(QT), the problem (3.4.3) has a unique so-
14

1.1
lution uy € W, ’2+2(QT) such that

/ /
Hu3||wzl+z,%+%(QT) < C3HZ3HW21+1,%+%(QT)'

Proof. 1t is easy to see that by the integration with respect to x3, problem

(3.4.3) has an exact solution given by

1 3
us(y', s, t) = ﬁ/ I3 dys.
g~ Jhy

—~ 1,1 ~
This directly leads to uj € VV21+Z72+2 (Qr). O
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3.5 Nonlinear Problem (Proof of Theorem 3.2.1)

3.5.1 Successive Approximations

In this section, we prove Theorem 3.2.1 by an iteration method. Let

(u/(0)7 u2/3(0)7 920)7 620)7 /(0)) = (07 07 07 07 O)

and (UI(mH) 3(m+1)? 0/m+1 52m+1> h/(m+1)) (m=0,1,2,...) be asolution of the
following problem for a given (u/ w,,,u m)’ 9/ ~ - h/(m)) € Z(T).
( Ou/
(m+1) ) , B ) ] / ~ _
T - l,éo,ﬁou(erl) o [L1,9(7rz)7h(m) - Ll,éoﬁo} u(m+1) -+ Llﬂ(m),h(m)uo
Mo, ¢ ) (m+1)
_W + Gl,é(m>,h(m) (u(m)7 u3(m), e(m)) = ll ,
g m+1
ViosUWsms1) = —(Vigs = Vi 3)Wms1) T G3 b (Want1), Um)) = 1imen,
o0 ) ~ _
(m+1) B ’ B ) ) : ~
ot Lz,éo,ﬁoe(mﬂ) - [LM(m)»h(m) N L2,9~0,7Lo} (m+1) T L2,0<m>7h<m>90 (3.5.1)
90, - i -
“op T Gty (B Us(m), Om)) =2 147
Oy 11 )
(m ) B - B ~ ) , ~ )
ot 3,9~0ﬁoq(m+1) - [L?),@(m),h(m) - L3’§07E0)} Q(m+1) + L379(m)7h(m) qo
Ot q (m+1) . &
ot + G5’é(m>7h(m) (u(m)’ U3(m); q(m)) =: 5 in Qp,
\
r B , B ) ~ ) , ~ ,
Béoﬁou(m{»l) N _Be(m)7h(m) Uo + (Béo,ﬁou(m+1) - Ba(m)vh(m) u(m+1)>
+G (Wim)) = 1(m+1)
2 (m)) — 12 )
(‘ggm—i-l)? Em-{—l)) - (Qe - 807 qe — 50) on FST’ (352)

(u,(m+1)v “§(m+1)’ ~Em+1)> quJrl)) = (=110,0,0p — 9~0> g — Go) on Cur,

( (m+1) ’ezm—&—l (m+1))|t 0 — (07 07 O) on Q7
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( Oh]

(m+1) —
at - 4,50,Boh/(m+1) = (L4,é(m),h(m) - L4’§07ﬁo)h/(m+1) + L4,9~(m),h(m) ho
< 8710 ~ ~ A m—+1 . 3.5.3
ot T Gﬁ,é(m)’h(m)<u(m)’ Om+1), Oim)) = l((i i RQTv( )
Here U(p) = u’(m) + ug, é(m) = éém) + éo, (7( ) = q~2m) + Cj(), and
~ Ju
_ 3 (m)
Gy (Wom 1) Wy = =V Wemen) = @7 (hgmy) - =5 =
G6,9~<m),h(m> (u(m)7 9(m+1)7 H(m))
= ! { Ko (O, o))
E(@N(m), h(m)) 2\Y(m) 1¥(m)

FolL

la (9)(1—|—|V\If(y 5 0m), hy)| )

Z ng 1] m)> h(m )

7,0=1

F 33 Omyshimy) O
_ _ By VR om) 9
la(@e){ H3 (vhm) + a”(hm))F5 o
Oy |y~ VW' 15 Oy Fomy)
HaPog 39~m 1
R ) o
Claz=T Ys Y3=po

+g(9<m) Pm)) (1 + ‘V\I’ y t: 9 hm))

with la(6.) = la(0.(v', V(Y t; 0

2\ 2 B

> himy ) £).-

By the same way as in Chapter 1, we estimate the right-hand side of (3.5.1)—

.0.3). In the followings, € 1s an arbitrar ositlive number, an <" <.
(353)1 he followings, € i bi y positi ber, d1/2 ' <1

Similar estimates as those in Lemmas 2.5.1-2.5.3 hold for this problem. We

state the statements without proof.
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Lemma 3.5.1. For 1™ we have
(m+1) I (m+1) l (m+1)
T ™ R R L I RE R
s@+awc@mmmlﬂw Wl st g Wil 5103 )
W2 ( t)
< (| aozet - A || aezs A 0| a2
Wy T () Wy T () W, T ()

C (Helm)HW;H,?'“ - “h/m)HW?H ( )) ||V0||W21+Z(Q).

Lemma 3.5.2. For 1" we have

(m+1) a+l1 3
T (S LT

[SE

0/ /
+(e+Ct)C (HQ(m)HWS’H’Sﬁ#(Q)’ ||h(m)|| 541,54 (R?)) Hu(m'f‘l)HW;-ﬁ—l,gjl

W2 ()

+ Clivollw+iq)-
Lemma 3.5.3. For I{"™, we have

(m+1)
N, sk e

~ '
C (HQ(M)HW;H,%H(Q), |’h(m)HWQg+l,g+%(R%)) Hu(m+1)||W2+l,2T+l(Qt)

2

0’ /
e+ € (Wl soogt g Wl 5103

2 t 2

X [Hug(m—i-l)HWHl,l;r’(Q ) + Hu(m)HW2+z,22‘H(Q)] .
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Lemma 3.5.4. For I{""" we have

(17l
6 Mygthatz g

~ !
<(e+Ct)C (||9<m)||wj“v3z“(fzt)’ ||h(m)||wgg“’i+é(R?>)

/ N’
X (1 + ”h(m+1)||W2%+l,%+é(R$)) 1+ (1 + |0 m)||W§+l/,:Héll(Qt)>

X (Hu(m)H;/;H/ﬁzL’(Q

t 2

2 N/
+ Hu(m)”wjﬂ/’%ﬂ(ﬁt) + ||Q(m+1)||W3+z/73-§l(Qt)]

+C (1 + ’ld()’lWZ%H(R?)) <1 + HHOHWE-H(R?’)) )

3.5.2 Proof of Theorem 3.2.1

Based on Lemmas 3.5.1-3.5.4, we can easily show the boundedness of || (uy,,,), éEm)’

qNEm))H 71ty Let us introduce the notation

En(t) = [[(Wnys wmys Omys Uomys M) | zys B (8) := 10y Oy s Qomy )| 22 0)-

Applying Lemmas 3.4.1 and 3.4.2 to problems (3.5.1)—(3.5.3), and making use

of Lemmas 3.5.1-3.5.4, we arrive at the inequalities

ELa(t) <G {1 + (e + Cet){qsl(Em(t)) + @(Em(t))E;nH(t)}] (3.5.4)
and

/
o) + Hh(erl)“WQ%H,%Jré(R?)

||u§(m+1) ‘|W;+l’1TH(Qt

< Cal 14 03B ) 1l 0ret g, + Wl )

(2

+ (e + CO){ 61(En(1) + 62 En(t))

!/ !/
< (Iimenl griosst )+ Wil gesit gy )} 659)

for any t € (0,T], Co = Cy + Cs, and ¢; (i = 1,2,3) are monotonically
increasing. Adding (3.5.4) and (3.5.5) multiplied by 1/(2Cs¢3(En(t)), we get
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the inequality

EmH(Tl){l (e + c;t)asz(Em(t))} < c4<t>{<e - C)1(En(t) + 1}

with a constant Cy(t) depending on ¢ monotonically increasingly.
Let a positive constant M such that Cy(T") < M. Take € first small enough
so that

cCo(T)da(M) <1, €Co(T)| o (M) + ¢2(M)M] < M — C4y(T)

hold, and then T € [0, 7] so that

C4(T)CG¢Q(M)T1 <1- C4(T)E§Z52(M),
Cy(T)CT1 {p1(M) + ¢o(M)M} < M — Cy(T) — €Ci(T) {1 (M) + (M) M }

hold. Consequently we obtain F,,,1(T}) < M from the assumption E,,(7T7) <
M. By induction {(uj,,, 0 .q Wimy) Fon=o is well defined in Z(77) and

7 (ma (m

E.(Ty) < M for m =0, 1,2, -
Now we prove its convergence. Subtract (3.5.1)-(3.5.3) with m replaced by
(m — 1) from (3.5.1)-(3.5.3). Then

(ﬁ/(m-l—l)’ 7:/L{S(m—‘rl)? Em—i—l)? §Em+1)7 h/(m—i-l))

= (W) = Wonys Usim1) — Uiy Oy = Oomys Aonsr) = omys Pl = Plomy)

satisfies the equations

( aﬁ/(m-H) L - i l(m+1) B l(m)
3t 1,00, (m+1) 1 1
vho,?)uii(m-l,-l) = (m+1) —l
WL—H — L = 0:/ o l(m_H) B l(
ot 2,00,ho ~ (m+1)
oq. ) )
(m+1) B ~ (me) m) .
ot o L379~0,7Loq2m+1) - l5 - l5 mn QT17
\
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. (m+1) (m)

= 6 = - =
( E|z3:qj(‘§0(m)vh(m)) e|fﬂ3=‘1/(~;9(m71)7h<m71>)’
on FST17

qe‘xi’):@(';é(m))h(m)) qe|x3:@('§é(m—l)7h(m—1)))

(u(m+l)7 ~/ 3(m+1) sz-ﬁ-l)? qgm-ﬁ—l)) = (07 Oa 07 0) on FuT17

(ﬁ/(m—i-l)’ 92m+1)7 §Em+1))’t:0 = (07 0, O) on €2,

\

oh! -
(m+1) _ o m41) _(m) i p2

;L,(m+1) ’t:O =0 onR%

Then Lemmas 3.4.1 and 3.4.2 yield for any ¢t < T} the estimates

H (ﬁ/(erl)’ 02m+1)7 §Em+l)> HZ,(t)

(m+1) (m) (m+1)
G 1l o+ =y
(m+1) _ m) (m+1) (m)
+ I et g I =7t o

+ ||‘96(y/7 \Ij(yla t; é(m)u h(m))y t)

71 (m+1) (m)
Pl 50 gy < G =7, 410 g
(m+1) _ ;(m)
||u3 m+1) ||W21+1,1T“(Qt) < C3||l3 l3 HWQHZ’ITH(Q)
Each term in the right-hand side of the above inequalities except for ||l(m+1) -
1™ and |1 — m) can be estimated just as we
||W2%H'%+é(fst) g | 22+z 141 5 (R2) J
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have done for 1™V
W,

125"+

(m+1) l(m-‘rl) d
b It T g

w14t - Thus we have
T2 ()
2

m-1 m m-1 m m-+1 m
i 1l o ey Vol [T [/ ey F O

Lt~ ,
Wy 2 (Q) W, () W2 7(Qt)

?

<(e+Ct)C <H (u/(m+1)’ W), u/(m—l)) ||W22+l’1+%(ﬁt)’ Isn HW;%I;Z (€)
q

~/

~1
(Q(m+1) ) Q(m)) HW22+l,1+% Q) ’

H (éEm+1)7 ézm)) ||W§+l’%ﬂ(ﬁt)

1 oy 3055 ) o i By o o),

m—+1 m
IS™D — ™| e

w, " (@)

< (e+C) (H( Wy W) | vt
2

(60’ ||U§(m+1) HWN/;”’%(Q,&)’

||<hzm>,hzm_1>>||wg+l,g+gmg))

2

~/ 71
(U ls0-8 g, + I ensst ) el 543 )

-, .,
C (Hh(m1)||w2%+z +%(R2)) ||u(m+1)HW22+l’22+l(Qt).

The following estimates have already been obtained in Chapter 2:

(m+1) (m)
Hlb‘ - l6 ||W2%+l’i+%(Rf)

< (e € C (W )] 014
H (ézm)a ~Em—1)) HWSH ¥(~ )7 ”h/ HWQEH"Sﬁé(Rf))

:, ¥
(Wl e g+ Wl st g+ Wil 080

/ :/
0 (Wl st g ) Wl st
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i)

1 !, 1
+hs+71 5
W2? 277 (Fst)

~, ,
< (E + Cet) C(He(m)HW;H’SQJA(Qt)’ Hh(m)H

s ” Qmel) HW23+1, En (Qt)’

5 5,1
+3+
w2 TT2(R2)

sl 354 )
< | (10 h,
[ .

!/ / ~/
(Wl 0t g, + e ) ) + I8t |

In this case, we need only a > [ + 1/2. Introducing the notations

En(t) = | (@onys Ty Gmys Gy Bl | 200 B () := | (@,

%l?

(o Gom) 270
we get for any ¢ € (0,71],
B () < Cile+ Ct) |64 (B (Tr) + En(Th) + Byt (T1) B (1)

+ 0Bt (10) By (1) + 0 Bara (1) + Ba( Ty | g115:45, |

(3.5.6)

7!

< 02 [qf)?(Em(Tl)) <Hﬁ/(m+1) “W;H’Hé(@t)

+ (e + Cet)ps(Epnyr (Th) + Em(Th) + Em—l(Tl))Em(t)

5/
+ | (mH)HWQM’H%(Qt))

et Cos B C 1|t o+ Il 3t g

2

(3.5.7)

where ¢; (i = 4,5,6,7) are monotonically increasing in their arguments.

Adding (3.5.6) and (3.5.7) multiplied by 1/(2C5¢7(En(T})), we get the
estimate

Epii(t) < Co(T) (e + Ct){¢a(Emir(Th) + Eni(Th) + Ep1(Th)) Ena(2)

+05(Em1(T1) Emst (t) + 06(Emsr (T1) + En(T))En(t)}  (3.5.8)
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and hence

{1 T oet>¢5<Em_1<T1>>}Em+l<t>
< Cy(Th) (e + Oet){@(EmH(Tl) + En(Th) + Ep-1(Th))

+ G5(Bma(T3) + Em<T1>>}Em<t>

for any t € (0,T;1]. Take € small enough again to satisfy

(CH(T1) [ u(31) + 65(30) + 6u(230)| <1,
and then T € (0, T3] so that
CU(T)Cobs(M)Ty < 1= Cu(Ti)eds(M),
CA(TL)C. [6:(3M) + 65(M) + 65(2M)] T
< 1= Cy(T3) (s BM) + 65(M) + Gs(2M)

hold. For these € and T3, we obtain

Cy(Tr)(e + CTo) | p4(3M) + ¢p6(2M)

Em+1(T2) S TEm<T2), T = 1— C4(T1)(6 T OET2)¢5(M) S (O, 1)

This means that {(ﬁ’(m),ﬂg(m),sz),ézm),ﬁ’(m))}ﬁzo is a Cauchy sequence in
Z(T3). Therefore the limit function

(ul, ug, 91, ql, h/) = lim (ﬁ/(m), 'i:l/:lg(m) / ézm), h/(m))

m—00

exists in Z(7T3), which is our desired solution.
Now we shall show that 0 < 6,/2 < A(y,t) and 0 < 4,/2 < q(y,t) hold
by taking the time interval small enough again. Indeed, since 0 =0—0,c
34,3 ~

W, (Qr), we have

0(,1) = Bol,_y(w) — (185, 0)] + 1ol £) — ol 0)1)

>0, — 17 | sup |0 (y, )" + sup |6o(y, 1) ],
yeQ =y)
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where |f |§7) stands for the Holder coefficient of f with respect to ¢ with ex-

ponent 0 < vy < é — i. Sobolev embedding theorem implies sup |0~’(y,t)|§7) <
~ ~ yeQ

g’ ! Csup 0o (y, )| < |16 } . If we take

H HWQBH,% o, yeg‘ O(y )’t = H OHW;“’%(QQ)

2=

Oy

6 241 )
I it

15 =
2 (10 s,

then we have 6(t,z) > 6,/2 on [0,73]. A similar argument holds for §. Denote
again the time interval by [0, T3] on which both 8,/2 < 8(y, t) and 4,/2 < q(y,t)
hold. T* = min{T5, T3} provides the desired result.

Uniqueness of the solution can be proved by virtue of an analogous inequal-
ity to (3.5.8).

This completes the proof of the main theorem.

Ta
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Appendix A

Anisotropic

Sobolev—Slobodetskii spaces

Let G be a domain in R"™ and [ a non-negative number. By WI(G) we

mean a space of functions u(z),z € G, equipped with the norm HuHIQ/Vé(G) =
Y ID%ulEy ) + ), where

|| <l

|U||WI(G Z ||D"‘u||L2(G Z/ |D%u(x)|*dz  if [ is an integer,

|a|=t |a|=t

| D%u(x) — D*u(y)|?
S |U|ywl(G Z / / ]m—y[””{l} dzdy

|a|=[1]

if [ is a non-integer, | = [I] + {l}, 0 < {I} < 1.

\

We also define the following function spaces with m > 1:

W7 (6) = {1

o 2 2
it gy = S L+ U+ 105 gy < 0

1
Next we introduce anisotropic Sobolev—-Slobodetskii spaces W2l72(GT) =
!
WH(Gr) N WQO’E(GT) (Gr := G x [0,T]), whose norms are defined by

T
2 2 2
P A oy AT T

. 2 2
= lellygoe,) ”unf’é(GT)'
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We also define function spaces

—~. L

W (Gy) = {f wht (e 2L

¥
oL ewion)

with the norm

9
3x3

Y

2
= -
12,5 =W +]

1
W2 (Gr)

and for m > 2,

W3 Gr) = {01125, =0 LI+ 50D 1P e
2

) Gr z€G W, 2 (0,T)
+ sup 2 em —i—Dme m + IDfI1P ., e
S0 Wiy + 1D s 4 IDAIR

<o},
Gr)

where D, and D; represent the differential operators with respect to x and

t, respectively. The norms of the vector spaces and the product spaces are

defined by the standard vector norm and the sum of the norms of each space,

respectively.
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Appendix B

Proofs of Lemmas

B.1 Lemmas in Chapter 2

B.1.1 Proof of Lemma 2.3.1

Making use of the relation (2.1.17), we have

()

+ HElHiQ(RQ)). (B.1.1)

This and

1912, ) < ol ”H (B.12)

Ly(R32)

yield the estimate of ||| R2)"

The fractional norm [|¥|? is easily estimated from the inequality

O(T

m\»—t

—
2

2
1
Wy, t;h) — V(" R < C | ———=— | ||h(y",t) — h(y*,1)|?
inf:c,t |F13|

+ [b(y") — b(y™) P sup [Fis(y", x5, 1)
x3

+sup | Fis(y", 2s,t) — Fia(y”, s, 0 (Jo(y™)* + [V (y" ; h)IQ)]
x3

(B.1.3)
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with h = pg + f; Fi5 dzs. Indeed, applying the Holder inequality and the

Sobolev embedding theorem, one can easily confirm that

yll t h | ’F13(y1,7x37t> _F13(y2/7x37t)‘2d 1/d 2/
17 _ 4,21|1421 Y Y
R2 JR2 |3/ Y |

_ (Y, M7 mey | Fra(yY s 2s,) — Fis(y — 2, fﬂsat)H%q(m)d ,
— R2 ‘21’14*2[ <

2 2 ‘ 2
< IO, ey (I9Faloaa Oy + W FiaCalE, g )

(1/p+1/q = 1/2) holds with a postive constant C'. Other terms in (B.1.3) can

be estimated in the same way.

For ||[¥| b4 s’ using the relation h = py + f; Fi3 dzs again, we have
VVQY RT

H‘IJH2 3 HhH2 3

(R2 )

b +sup [T | || Fusll? .
(n 12 3y + 0 |)|| I 14 g,

Making use of these facts, we arrive at (2.3.3) with ¢ = 0.

(R%) B

For i = 1, we make use of (2.1.15). Since
|V\P(y1/a t; h’) - V‘I;(y2l7 t; h)l

< C F13(y1/7 \I’(ylla ta h)? t) - F13(y2/7 \I/(y2/’ t? h)? t)‘

d
—Vh+ Fia(y',b(y),t) Vb + / VFi3 das
b

+|Vh(y",t) = Vh(y”, )]

+ sy, b(y"), V(") = Fis(y”, b(y™), ) Vb(y”)

s 97l (100500 = W26+ ) ~ 0067 )
RT

+ (sup |¥] + sup |b]) sup IV Fis(yY, 25, t) — VF13<y2,,$3,t)’] ,
RZ R 3
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the estimate of ||[VW(-,; h)

le’% ) follows from tracing the argument in the
2
case of (2.3.3) with ¢ = 0. Similarly ||\P||W07%+%(R2) is estimated as in the case
T

2
i =0, and hence we have the estimate of ||¥| 1.
W, 2'271(R2)

For the higher order norms (i = 2, 3) of ¥, one can easily estimate them by
(2.1.16)—(2.1.17).

Estimates in (2.3.4) are obtained in exactly the same way as (2.3.3).

Nl
N

B.1.2 Proof of Lemma 2.3.2

X3(Zl,‘/7p7t)

Since p = po + / F3 dxs by the definition of X3,
v

XB("EQ/aﬁvt) ~
pP—Dp= / Fiz(z", x3,t) das

X3(I1/7p7t)

X3(:L‘2/,ﬁ,t) ~ ~
+/ [F13($1/,I3,75) — Fia(2?¥, 23,t)| drs
U (zl t;h)

U(x t;h) 5
+ / Fia(z”, 23,1) das
U (z2 t;h)

holds. Each term in the right-hand side is estimated as follows:

X3(a? pt)
/ Fis(z", z3,t) das

X3($1/7p7t)

> C1X(2",p,t) — Xs(a®, p,t)],

X3(z? pt) y B .
/ |:F13(JZ ,xg,t)—Flg(I ,$3,t>i| dl’g

U(zl t;h)

3

< (sup 0] + sup !‘PI) sup |[Fig(zY, w3,t) — Fis(a?, z3,1)]
R? RZ

< { sup [b] + sup [¥| | sup |V Fygl|" — ¥,
R? RZ RZ

(! t;h)
/ F13(1’2/, zs3, t) dxs
W (z2 t;h)

< | sup |Fi3| + og | sup [VU[|z" — 27|.
R, R,
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Thus we have

| X3(xY p,t; h) — Xs(x?, p, t; h)|?

2
< C (I oy 112 g ) Ve

Ll

+(1meuwal )H%F o e = =)
(R3) R2)

From this and (2.1.11) the assertion is derived easily.

B.1.3 Proof of Lemma 2.3.3

To prove (2.3.5), (2.3.7), (2.3.9), we use the relations

f(h)*<y,7 Ys, t) = f(y/a X3(y,7 Ys, t7 h)7 t)?

h)* W) (2 2, 1|2
\y“— 2’!2+ |y3 —y§l2) 2

_/ f (", Xs(y", y3, t;h), 1) — f(y*, X5y, 03, h), 0)]?

— — = 3+21
(Jy" — v + | Xs(y", v3, t; h) — Xs5(y?, y3, t; h)|?) 2

1 272 % v ,1 (20 3421
y" =y + | Xs(y", g5t h) — Xs(y”, u3, 65 h) )72
=P Kl 1) = Kl R

(Y = v + lys — v31?)

Applying Lemma 2.3.2, changing the variables X5(y", yi,¢; h) and Xs(y¥, 93, t; h)

in the integrand to g3 and g3, respectively , and noting

, _
a(yﬂ%ﬁi) _ Flg( i~ t>p0 hO

7y37

oy’ 75) po—h’
we can get the estimate
O Oy < P (W ooy ) IO (B0
The estimate of ||f"*(y)||? L can be obtained in a similar way, and
W2 (0,)
hence we arrive at the estimate of || f()*||?
)

Higher order derivatives of f("* can be estimated analogously.
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To prove (2.3.6), (2.3.8), (2.3.10), we use the following expression of fi=
FEO(y ys, t) — fP2*(y  ys, ) derived from the mean value theorem (see, for
instance, [36]):

1
9 3 _
f(y/a Ys, t) = X3(y,7 Ys, t) / 8!53 (yla X3(y/a Ys, t7 h2) + SX3(y,7 Ys, t)) dS?
0

X3(y/7 Ys, t) = X3(y/7 Ys, t7 hl) - X3<y,7 Ys, ta h'2)

B.1.4 Proof of Lemma 2.3.4

First, we show

2
3 ! ! !
gy < PRI gt od ) )V = 150, o0t g I

j=1

Indeed, the above expression yields

F",ys3,t) — Fy? va b))

1 0 » 5
= / {8_f<y1/’3X3(yll’y§’t9 hi) + (1= 5)X3(y", ys, t; h2)7t>
0 T3
af 20 Y 20,2 4. o2 2 . 2
_8_133 Yy 75X3(y 7y37t7h1)+<1_5)X3(y 7y37t7h2>7t ds
= 2
X ‘Xs(yllayéam
Lo - B 2
[ L (sl tit) + (1= 9Kl 158 1) d
o 0T3
X | Xy yh t) — Xa(? 43, 0)|" = I + . (B.1.5)

On the other hand, from p(y,t; h) = Po=Ms=ho) | 1, and (2.1.8), we derive

po—ho
the relation

X3y p(ystiha)stsha) V(y' tsha)
p(y,t;ha) — py, t; he) = / Fi3 dws +/ Fi3 dus,
X3(y',p(y,t;h2),t;ha) Wy’ t;h1)
which easily leads to

2

U(y' tsha)
/ F13 dll'g

W(y' t;h1)

[ Xa(y, ) < C | Ip(y, t; ) — ply, t; ho) > +
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Noting that

(po — ys)(hy — hy)
Po — ho

= b '

in:,;3 Flg(y/, s, t) ’

Ip(y, t; ha) — p(y, t; he)| = ‘

|\I/(y/’t7 hl) - \Ij(y,7t7 h2)| S

we obtain

— 2 ~
| Xs(y, )" < C (1 + ||F13”12;V3+l’37” o

2 ( T

) W - W)W OF.  (BL6)

Inserting (B.1.6) into I; in (B.1.5), and proceeding to evaluate in the same

way as (B.1.4), we have

T
L
dt// ‘ dylldy2/dyldy2
/0 aJo (v — 2P +lys — y312)°5 o

2 2
of
1112
=7 (; " HWQ%“’%(R%)) ‘

1L ||ﬁ||?/vg+l’%+% (B.1.7)
2

05 llwy* g,

(R%)
In the similar manner as above, using a notation h := h} — h}, we obtain

[p(y" ys. t;ha) — p(y", y3, 6 ha)] — [Py, 43, 6 ) — p(y”, y3, 5 ho)|

. ! ING (0,11
- LDO —ho(y")  po— ho(yQI):| (po — y3)h(y"', 1)

(y§ — y%)il(yU? t) Po — yi’Q) T (.11 7 (20
+ Ay 1) — h(y? 1),

\P(yllvt;hQ) - 1 \Ij(y2l7t§h2) - 9
/ F13(y 7.7)3,t) dl‘g—/ F13(y ,Z‘g,t) de

\P(yllzt;hl) \I/(y2/7t;h1)

< Sup|F13(y1/a 3, t)”‘;[l(yll’ U hl) - \Ij(yh? t; h2)|
z3

+ Sup\ﬁls(yz’, z3, )| Uy, t; ha) — Wy, ¢ ho)|.
3
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These yield

- . 2
| Xs(y",us. 1) — Xs(y?, 43, 1)]

2
2 ~
§C7(1+2§VM+HEﬂmeym%o o) — holg™)[* g, )
2 . 2
+ys — w3’ h(y", O + (Hsgglho\) ‘h(yl’,t) — h(y*,1)
2 ~ ~
b (11l s, ) (BGY O + G2 0P)
x sup | Fis(y", x3,t) — Fis(y?, z3,1)]°. (B.1.8)

3

As for I5 in (B.1.5), we need to estimate the right-hand side of (B.1.8). For

the terms except the second, we make use of the estimate

(B.1.9)

5 2 2
1 9llwro@m SC(HSlgglho\) HfHW;,é(QT)HgH §41d+

Wy ?(R7)

Lo 34341

for any f € WQl’Q(QT) and g € W22+l’4+2(R%) in general with some positive
constant 0. Indeed, let v =2 — 2] — § with 6, 0 < 6 < min{2/(2l — 1)/(3 —
20), 2 — 2l}. Then, it is easy to see that

17 2! 2
gy, t) —gly=,t
Q (ly

3421

Y212 + lys — y3]?)

v y2/’2—7

- Y
< amwsuplg0) sup V(7 [ AL gy
R R a (ly" =y + lys —y3l*) 2

1
s4mwmwwwmme”B@—1J——+z)
R2 R2

2 2" 9
Sup|h0| 1 211 21 1
></ lys —y3|" 77 dys,

Po

where B(z,y) is the beta function. This leads to the estimate

F”,us, D)1 lg(y" 1) — g(y?, 1)]?
/ e o dy'dy” dyzdy;
(Jy¥ = v + |lys —y3I*) 2

) Y 2—y
< Ot +sup ol g 4., 1960 s 17O oy

2

93



Applying the Holder inequality yields the estimate

T
/0 917 31 19O i O

< oI 4o 1915 rasen I, orsaoy
=1

2

l
The assumption on ¢ and the Sobolev embedding theorem imply W2 (0,T) C
L2 (O T) and WQ( >(0,T) C szTy(O,T), so that (B.1.9) holds. For the

second term in the right-hand side of (B.1.8), it is sufficient to consider

3421

‘f y 93a ’ |y3 y?%’Q‘h(yl, t)|2 dvdv? dutdu?
TR FETE

Lo
in the region |y — y3| # 0 with f € WQZ’2 (Qr). Then we have

T sup |ho| 1,22
/ dt/ 1 2/’?13 yf| 2|2\ 32 dyé
0 Po (Jy" — ¥ 1> + lys — y31?) 2

x / PO )1 dy?dy? / B dy
Q R?

_ 7T||inQ(@T) Slip Hh(t>||%2(R2) sup |hol -
< T30 / Y3 — v3] Ys

Po

T tsupme ol e e
arapi-0  Wlen Il b gy

Therefore, we can get the estimate of the second term of (B.1.8), and conse-

quently ||fHWz,0(Q )-

The estimate of || f || is obtained in a similar manner under the
QW (0.7))

assumption of the Holder continuity of df/0x3. Actually, in this case, the
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right-hand side of (B.1.5) is replaced by

|

+

1

8 / < / Y !

/ {8f (y X3 (Y st ) + (1 — 8) Xa(Y', ys, 6 h2)’t>
0 €3

2

D) N N
- a_f <y/7 8X3(y,7 Y3, ta hl) + (]' - S)X?)(y,; Y3, ta h?)at - T) } ds
T3

! af / % ! . % / . o
a_ y73X3(y7?J37t7 h1)+(1_8)X3(y7y37t7 h2)7t T
0 3

0 ~ ~
- a_f<y/7 5X3(y/73/37t — T, hl) + (1 - S)X?)(y/?y?nt - T, h‘2)7t - 7-)} ds
T3

|

2

X ‘Xﬁl(y/a Ys, t){Q

1

0 L e o

+ / a—f<y,3X3(yay37t—7_;hl)+(1—S)Xg(y,yg,t—T;hQ),t—7‘> ds
o O3

- 5 2
X |X3<y/7 Ys, t) - X3(y/7 y?nt - T)‘

It is easily seen that J; and J5 in (B.1.10) can be estimated in exactly the same

way as in (B.1.5). For J;, we have

1

a / < / X !

/ {a_f(y 8 XY st ha) + (1= 8) Xa(y', ys, £ ho), T — T)
0 3

2

a_f <y/7 SX3(y,7y3at - T, hl) + (1 - S)X?)(y/?y?nt - T, h2)7t - T)} ds
T3

<o

In the same way as the proof of Lemma 2.3.2, we have

of (8) 23

65133

2
) > ‘Xg(y’, ys, b hi) — Xs(y', ys, t — 73 hy)
=1

3
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| X3(y', ys,t; h) — X3(y/, ys, t — 73 h)]

SODM%O—pwi—Tﬂ

+ (Sug) b + sup |\II|> sup |Fi3(y', x3,t) — Fi3(y', x3,t — 7)|
R RZ

T3

+ <1 + sup |F13|> U(y' t;h) —W(y', t —T; h)|} .
R

Thus we have

[w[ /_deKc(gf

€T3 o3

2 2
— 2
)szE:“mﬁ%ﬁ#
=1 2

28 23 23
o (N TCT AP N

2 T

)

28 25 I 12
+ (1 -+ “FISHWSH’%H(R%)) ||\II( )H +%( :|||h h ||W2%+l %jL%(R%)‘

and hence ||fH !

These complete the estimate of || f || T

(@)
Higher order norms can be estimated in a similar manner.

B.1.5 Proof of Lemma 2.3.5

According to the explicit form of F(h)* given in (2 1 13) it is sufficient to

estimate the second term C;. Since V ng‘ W22 A (QT) and
/
[1a* (A | e T (Ilh Hwﬁ“’%*%(r{%)) , (B.1.11)

we have

C <P Fus)?
TS L (T I S

with the aid of multiplicative inequalities. The latter assertion is proved in the

same way.
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B.2 Lemmas in Chapter 3

B.2.1 Proof of Lemma 3.3.1

Making use of the relation (3.1.17), we have

ov
1% el (100,
0t || Lym2) wr TR

/ N/
- C<”h st g 19 ||w3+“*35”<m>)'

This and

2

ov
191, < Wl + 1] 57 B21)

Ly(R7)

yield the estimate of H\IIH%Q( The fractional norm ||¥| , 1, is easily

2 - 1
RT) W2 2> (R%)
estimated from the inequality

W (y",¢;0,h) — U(y?,t;0,h)]> < Cexp (sup W\) [!h(yl’,t) — h(y¥,t)|?
R7Z

+ [ 1 +sup|r/|* | sup

RZ Y3

Indeed, it is sufficient to confine the following inequalities derived from the
relation (3.1.9).

0(y", ys, t) — O(y?, yg,t)‘zl ) (B.2.2)

‘\If(yl’,t; G,h) — W(y?, t:0, h)‘

h ll,t _h 2/,t ~ _
sc[’ W50 =01 (4 4 up i) sup|e<y1',y3,t>—9<y2',y3,t>|],
mfRZT‘h‘ RZ

Y3

and

inf |h| > poexp 9 H + sup | V| .
RZ RianTQ RZ,

Estimate of ||W[| ,; 1  can be achieved in a similar manner. Making use
W, 2 S(R7)

of these facts, we arrive at (3.3.3).
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For i = 0 in (3.3.4), we make use of (3.1.15). Since

1/ o 2 2
VU (yY, 80, h) — VU (y?,t;0,h)* < 'E(y 1) — E(y”,t)

IVh(y", 1)

F(yY.t)
2 1 1 2
E 2/ ¢ _ b U . )
+ | (y ) )| F(yll,t) F(y2,,t) |V (y , >|
E(v? 1) 2 Ky o o
‘# (Y 1) — VR 1) + ‘ 1 o ) _ 1(y2/, )

the estimate of |VW(+; 0, h)|| W
case of (3.3.3). Also, ||¥| , o
that for ||\IJ||

1 R? follows from tracing the argument in the

L1 can be estimated just in the same way as

W, Eag (R2)

: and hence we have the estimate of N2
W,

0, L1
2 A(RE) 2)

2
(R
The higher order norms (i = 2) of U can be easily estimated from (3.1.16)—
(3,1.17).

1 1
AP

B.2.2 Proof of Lemma 3.3.2

According to the explicit form of Féé’h) given in (3.1.13), it is sufficient to

estimate the second term C;. Making use of

HaS(h)HWM,QTH(QT) (Hh’H e 5(R2T))’ (B.2.3)

2

\cn

we have

Gl st g, € (191 sns W, o0t g

with the aid of Lemma 3.3.1 and the multlphcatlve inequalities. The second

inequality is proved in the same way with the aid of (3.1.14).

B.2.3 Proof of Lemma 3.3.3

It is easy to prove by making use of Lemmas 3.3.1-3.3.2, and rewriting 6 in

the integral terms by 6.

B.2.4 Proof of Lemma 3.3.4

One can easily prove by applying Lemma 3.3.3 to (3.1.13), (3.1.14), and rewrit-
ing 6 in the integral terms by 6.
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B.2.5 Proof of Lemma 3.3.5

From the definition of X3,

log <£) _ _/Xg(x’,p,t;H,h) idx?)
Po \Il(x’,t;é,h) RO

holds, which implies

~ Xa(x¥ p,t;0,h)
p p g 1 1
log( — ) —log| — | = —/ < — ) dx
& (p[)) & (po) R U (z2 t:0,h) 9($2/,l‘3,t> e(mllax?)at) ’

1s 1/ .0
/ (z t9h 1 g X3(z ,p,t;0,h) 1

des + 2 L
(22 £;0,h) ZE » L3, t) R X3 (a2 p,t;0,h) ‘9(‘7:1/7 T3, t)

dI’g.
Applying the mean value theorem to the left-hand side leads to
| Xs(z,p, t:0, h) — Xa(z?, p,t;0, h)|?

< Csup 0| |W(zY,t;0,h) — U(z¥,t;0,h)|
R

+ (1 + H\I/”Q P RRIE N I ) Sup ‘9(I1/7I3,t) - (9(:U2/,.T37t)‘2 + |p _]5’2 :
Wy (R7)

z3

From this and (2.1.11) the first assertion is derived. In the same way the second

one is proved.

B.2.6 Proof of Lemma 3.3.6

Making use of (3.1.8), we have

RQ F(é’h)

VX3|p= =— :
‘p p(y,t) p(y,t)g 5

from which we have the first assertion. The second one is proved similarly.

B.2.7 Proof of Lemma 3.3.7

Denoting by p(y,t) = p(y,t; h) = % + h, we derive from (3.1.8)
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log(p(y, t; 61, 1)) — log(p(y, t; b2, h2))
W(y' t:01,h1) X3(y'p(y:t:01,h1);01,h1)
- [/I’(y’,t;ém’w) +/Xa(y’vp(y7t;527h2);52,h2
. /Xg(y',p(y,t;él,hl),t;él,hl)( 1 - 1 ) .
Wy t:01,h1) Oa(y', x3,t) 01y, x3,1)

From this it is easy to get

_ 9 ~ ’
o0 < (1101, ) lexp <1+Z||h||wg+z Hm?))

2

2
x C(Z H9§HW22+Z,2+1 ' Z IIh’H g ) +1
i=1

x (m’(y’,m? T oup |é'<y',x3,t>|2) ,
T3

Jge drs

which leads to the first assertion. The second and the third inequalities can be

proved in the similar way.

B.2.8 Proof of Lemma 3.3.9

To prove (3.3.6), (3.3.8), (3.3.10), we use the relations [18]

f(9~7h) (yla Ys, t) = f(ylv X?)(y/v Ys, b 97 h)’ t)’

: f(é,h) y? 12, 1)|2

/ﬂ‘f 13/ y2/2) ( 3f2l)| dyl'dyQ'dy;’dyg
(JyY = v + lys —y3I?) 2

// Y Xa(yY ud 1 0,0),6) — F(?, Xa(y?, y2,t;0,h), 1))

YV — g2 + [ Xs(yV, ub, 150, h) — Xa(y?, 42, £:0,1)]2) 5"

1 2712 v ,1 0 (2 3421
vV — 2+ | X (yY, yd, 0, h) — Xs(y?,y3, 10,k
=P K 600 = Ko R DI g

(JyY = v?12 + lys — v31?) =

Applying Lemma 3.3.7, changing variables X5(y", v}, ¢; 0, h) and Xs(y¥,92,t;0, h)

( ’yd) = =
(v',3%) RO(y',4,t) po—h

to 1 and 2, respectively in the integrand, and noting 5 pg___po—ho (1=
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1,2), we can get the estimate

(é,h) N A / . 2
0y, < € (101 st o I o108 ) ) IO g

(B.2.4)
The estimate of || f@M2 can be obtained in a similar way, and hence we
W2( )
arrive at the estimate of || f@M|2 1
Va 4 QT)
h)

Higher order derivatives of f (@h) can be estimated analogously.

To prove (3.3.7), (3.3.8) and (3.3.9), we use the expression of

FW ys, t) o= ORIy ys t) — 2R (yf ys 1)

derived from the mean value theorem (see, for instance, [17], [36]):
f(yla Y3, t) = X?»(y/a Y3, t)
! af % / n
| o Y, sXa(y,ys, 101, ) + (1 — ) Xs (Y, ys, £ 02, ho) T ) ds.
0 0T3

First, we show

2 2
Flvo e < Z g Z Ml s
||f||W2lO(Q) >~ (]1 ” ]HW22+1,2érl (QT)’ p H _7”W27+l,§+%(R%)

Lot ) 1

W

(100t +
Indeed, we have

F",yi,t) — fy” u3 )

{8—f Y s Xa(yY, ys s 01, ha) + (1 — S)X3(y1’,y§,t;0~2,h2),t)
of ) ) 2
= B ( 2 sXs(y¥, y2 01, hy) + (1 — S)X3<y2/,y§7t;02,h2),t)} ds
3
X | Xs(y",yi, 1))
1 8f 5 » 2
[ o (07 sy 0 ) + (1= )Xoy, 0 80, ) ) ds
€3
x p‘(g(y Lyb ) = Xy g3 0| = I+ L (B.2.5)
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Applying the first inequality of Lemma 3.3.7 to I, we have

13,2
/ dt// Y- 2’|2+|yz>,—y3| o W dysdy;

/!
< Cexp (Hh Hwﬁ“’i*émg))
2
X C’<||9/||2 L2 (@ Sl L3+L(R2) H
+ 7) SHLI+3 93|l w2 e
(01 g I gt ) (B20)

As for I5 in (B.2.5), we use the second inequality of Lemma 3.3.7, in which it

is sufficient to consider

W™ u3, 1P lys — y?,I?\ﬁ(yl’,t)lz V3,23 17 2
// Yl — y2[2 4 |yl — ’2)# dy'dy”dy;dy;

Lo
in the region |y — 43| # 0 when f € VVQI’2 (Qr). Then, with the aid of Lemma
3.3.8, we have

T sup ho 1,22
/ dt/ |y3 y3‘ 3421 dy§
0 o (Y —y¥P+ys — 327

x / PO ) dy?dy? / B dy
R2

@ sup IR, @m2)  psupho o
< _ d
< a0 / lys — 3| Ys

Ppo

2 7112
||f||L2(QT)HhHWQ%H,}IJré(RQT)'

7r(p0 + Supg:2 h0>3_2l
ST a1

From this, one can derive the estimate for I, and consequently || f ||W21,0 @)

The estimate of || f || is obtained in a similar manner under the
AW (0.7))

assumption of the Holder continuity of df/0x3. Actually, in this case, the
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right-hand side of (B.2.5) is replaced by

Ui

! af / " / n % / N
a. (y )SX3(y y Y3, ta 917 hl) + (1 - S)X3<y 7y37t; 027 h2)7t>
o 03

2
0xs (y 5X3 Y, ys, t; elahl) (1—- 3)X3(y/’y3’t; 02, ha), t _T>} ds

y 3X3 Y, s, t; 91,h1) (1_S)X3<ylay3at352;h2)at_7->

_8_( ng(y Y3, t _TSélah1>

2

+ (1 - S>X3<y/7 y37t -7, é?v h2)7t - T>} ds

1
d ! N / n
/0 {a_zi<ya3X3(9793;t_7';91,h1)

+(1— s)f(g(y’,yg,t—r; 92,h2),t—7>} ds

] | Xs(y/, ys, )|

+

2

- 5 2
X ‘X3(y/7 Ys, t) - X3(y/7 y37t - T)‘

It is easily seen that J; and Js in (B.2.7) can be estimated in exactly the same

way as in (B.2.5) with the aid of Lemma 3.3.6-3.3.7. For J, we have

! af / v ! n Y / n
(y ) 8X3(y 7y37t; 617 hl) + (1 - S)X3(y 7y37t; 927 h2)7t - T)
o (03

8 ~ - ~ - 2
- 3_1{3 (y/7 3X3(?/a?/3;t - T, 017 hl) + (]' - 8)X3(y/7y37t - T, 027 hQ)Jt - T> } ds

of ®2 2 5
e Z ‘X:a(y/, ys,tihi) — Xs(y' ys t — 73 i)
3

3 =1

20
<C

Making use of the second inequality in Lemma 3.3.5, we have
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(8)2

af

0. hI%P 26
+ (1 UG, RT)) I,

T lz [Hh,H%SH +l R2

xr3 W22 T )

Nl
N~
—~

(T IO TR e
T

w2 TTTZ(R2

These complete the estimate of || f|| 0k (Q ) , and hence HfH whb @y’
T
Higher order norms can be estlma%ced in a similar manner.
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