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Preface

Malliavin suggested a new stochastic analysis at an International Symposium at Kyoto

University in 1976. It was not enough accurate mathematically at the time. However,

Ikeda and Watanabe noticed the importance of his idea. After that, by the contribu-

tions of many mathematicians including many Japanese, the analysis was progressed

dramatically and established fully as a new method of stochastic analysis, which is called

Malliavin calculus now. Malliavin calculus is another version of the theory of Sobolev

spaces. In Malliavin calculus, one discusses integrals and differentials on infinite dimen-

sional Gaussian spaces instead of Euclidian spaces with the Lebesgue measures. Because

of fine properties of Gaussian measures, one can make analogies of the theory of Sobolev

spaces, though Gaussian spaces might be infinite dimensional. It is also called “Analysis

on Wiener spaces.”

Malliavin calculus was established in order to know regularity properties of distribu-

tions of solutions of stochastic differential equations. Thereby we can see that the density

has regularity according to the smoothness of the coefficients of the stochastic differential

equation. The first result on this fact was proved by Kusuoka and Stroock [13, 14, 15].

Their theory was simplified and made arrangement later by many mathematicians, which

can be found in [24]. On the other hand, there are variety of Malliavin calculus, because

many mathematicians had tried to formulate original Malliavin’s idea. One of them was

given by Bismut [1]. After that, many applications and extensions of Malliavin calculus

were established, one of which is Malliavin calculus to stochastic differential equations

on manifolds (c.f. [26], [2]). Another important extension is Malliavin calculus for Lévy

processes (c.f. [6]). This is useful for mathematical finance, and is a hot topic right now.

A result of the present author [17] is related to this theory. There is an application to nu-

merical analysis (c.f. [12]), which is also for mathematical finance and plays an important

role in practical business.

The aim of this thesis is to apply Malliavin calculus to stochastic differential equations

which have never been attacked. Two results are shown. The first result [16] is an

application of Malliavin calculus to stochastic differential equations whose coefficients are

not necessarily Lipschitz continuous. In Malliavin calculus, Lipschitz continuity of the
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coefficients is always assumed. If one tries to apply Malliavin calculus to equations with

non-Lipschitz continuous coefficients, many difficulties will occur. The second result [17] is

an application of Malliavin calculus to stochastic differential equations driven by rotation-

invariant stable processes, where we mean stable processes in the sense of [23]. The theory

by Di Nunno et al [6] can be applied to the equations driven by square-integrable Lévy

processes. However, the present author makes another formulation of Malliavin calculus

for such stable processes, because their theory is not applicable to the problem concerned.

The formulation given by the author is also applicable for subordinated Brownian motions.

Here, we mean subordinated Brownian motions in the sense as in Section 4.4. In this

thesis, after a short review of Malliavin calculus for Brownian motions, the problems

mentioned above will be discussed.
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Chapter 1

Introduction

Malliavin calculus is well known as a method to prove regularity properties of distributions

of solutions of stochastic differential equations, and one of the most important results is

that regularity of the density of a stochastic differential equation is inherited by the

smoothness of their coefficients under some suitable conditions of ellipticity. The present

author applies Malliavin calculus to stochastic differential equations which it have never

been applied to, and obtains two results.

The first result is to apply Malliavin calculus to equations whose coefficients are not

necessarily Lipschitz continuous. Let T > 0, d and r positive integers, (B(t)) an r-

dimensional Brownian motion, and

σ = (σi
j)i=1,...,d,j=1,...,r ∈ Cb([0, T ] × R;Rd ⊗ Rr),

b = (bi)i=1,...,d ∈ Cb([0, T ] × Rd;Rd).

We consider the d-dimensional stochastic differential equation:{
dX(t) = σ(t, X(t))dB(t) + b(t,X(t))dt,

X(0) = x0 ∈ Rd.

We assume that this equation has some conditions about ellipticity, for example uniformly

elliptic, Hörmander condition, and so on. As we see in Section 2.3, if n ∈ N,

σ ∈ C0,n+2
b ([0, T ] × Rd;Rd ⊗ Rr), b ∈ C0,n+2

b ([0, T ] × Rd;Rd),

then the distribution of the solution P ◦X(t)−1 has its density, which belongs to Cn
b (Rd).

Concerning the existence of the density, as we see in Section 2.4, there is a result of

Bouleau and Hirsch [4]. This result implies that under some conditions about ellipticity

and Lipschitz continuity with a constant K

|σ(t, x) − σ(t, y)| + |b(t, x) − b(t, y)| ≤ K|x − y|, x, y ∈ Rd, t ∈ [0, T ],
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then the distribution of solution P ◦ X(t)−1 has its density function.

Roughly speaking, under some conditions about ellipticity, it seems that the solution

has its density, even if Lipschitz continuity is not satisfied on the coefficients. The author

considers if the solution has its density or not when the coefficients are not Lipschitz

continuous. However, when stochastic differential equations whose coefficients are not

Lipschitz continuous, the solutions would not belong to any Sobolev space in general.

Hence, we prepare the class Vh which is larger than Sobolev spaces, and considered the

relation between absolute continuity of random variables and the class Vh. This relation

is associated with a theorem of Bouleau and Hirsch. Moreover, we obtain a sufficient

condition for solutions of stochastic differential equations to belong to the class Vh, and

show that solutions have their densities in a special case by using the class Vh.

The second result is a formulation of Malliavin calculus for stochastic differential

equations driven by subordinated Brownian motions. As we see in Chapter 2, Malliavin

calculus is well known as a method to know regularity properties of distributions of so-

lutions of stochastic differential equations driven by Brownian motions, and we can see

that the densities of the solution has the regularity according to the smoothness of the

coefficients of equations. There is a natural interest in applying to the equation driven by

stable processes. Consider the following N -dimensional stochastic differential equation: dX(t) =
r∑

k=1

σk(t,X(t−))dZk(t) + b(t, X(t))dt

X(0) = x0,

where {Zk} are independent rotation-invariant stable processes, and the coefficients are

Lipschitz continuous. The indices of the stable processes may be different. The definition

of the stochastic integral can be found in [9], and the detail of the definition is given in

Section 4.4. If the equation satisfy some conditions about ellipticity, it seems that the

distribution of the solution has its density function at each time.

On the other hand, there is Malliavin calculus for Lévy processes (c.f. [6]). The

method works in mathematical finance very well. However their theory is not applicable

to the problem concerned. Another idea is needed for the problem concerned here.

By using subordination, the classical formulation of Malliavin calculus is applicable

to functionals of rotation-invariant stable processes. This method enables us to prove

that the ellipticity of a stochastic differential equation driven by subordinated Brownian

motions implies existence of the density of the solution. In this thesis, we mean subor-

dinated Brownian motions in the sense as in Section 4.4. We can find Malliavin calculus

for equations driven by subordinated Brownian motions in [18]. In [18] the case that the

number of subordinators is one and the subordinator is an increasing Lévy process with

some condition is considered.
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We consider the case including that the number of subordinators is more than one and

the subordinators are not necessary increasing Lévy processes. We prove our theorems

in a similar way to [24], and show regularity properties of distributions of solutions of

equations driven by subordinated Brownian motions. The proof consists of two parts. One

is Malliavin calculus for stochastic differential equations driven by Brownian motions with

deterministic time change, and the other is the inheritance of the regularity of densities

from those of conditional probabilities. That is because the discussion is simplified by

considering the equation under the conditional probability given by the σ-field generated

by the subordinators. Hence we make two steps to prove it. In the last section, we

consider the case of stochastic differential equations driven by stable processes. We show

that the ellipticity of equations driven by stable processes implies existence of the density

of the solution. Moreover, in the case r = 1, we can also prove the regularity of the

density according to the regularity of the coefficients.

In this thesis, we discuss the results. Before stating the results, we give a short review

of Malliavin calculus for Brownian motions in Chapter 2. We discuss the first result and

the second result mentioned above in Chapter 3 and in Chapter 4, respectively.

6



Chapter 2

Review of Malliavin calculus

In this chapter, we review the standard formulation of Malliavin calculus given in [24]. [19]

and [6] are also elementary textbooks of Malliavin calculus, but the notation is different

from [24]. In this section, we use the notation of [24].

2.1 Preliminaries

Let B be a Banach space, B∗ be the dual space, and ⟨ , ⟩ be the pairing of the components

of them. For a Hilbert space H, we denote the inner product by ( , ) and the norm by

| · |H . We often identify a Hilbert space and the dual space.

First we give the notation of functional spaces. Let

C0([0,∞);Rd) := {w ; w is Rd-valued continuous function, w(0) = 0}

The probability measure on C0([0,∞);Rd) which is the law of a d-dimensional Brownian

motion is called the Wiener measure. The pair (C0([0,∞);Rd), µ) is called the Wiener

space.

Let T > 0. We restrict the Wiener space on [0, T ] and consider (C0([0, T ];Rd), µ). We

define a Hilbert space HT by

HT := {h ∈ C0([0, T ];Rd) ; h is absolutely continuous

with respect to the Lebesgue measure and ḣ ∈ L2([0, T ];Rd)}.

Here ḣ means the derivative of h. Then HT is embedded in C0([0, T ];Rd) continuously

and densely. The triplet (C0([0, T ];Rd), HT , µ) is also called the Wiener space.

As an extension of the Wiener space, we have abstract Wiener spaces as follows.
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Definition 2.1.1 Let B be a separable Banach space and H a Hilbert space embedded in

B continuously and densely. Let µ be a Gaussian measure on B satisfying that∫
B

exp{
√
−1⟨w, φ⟩}µ(dw) = exp{−1

2
|φ|H∗

2}, φ ∈ B∗ ⊆ H∗.

The triplet (B, H, µ) is called an abstract Wiener space.

Then we have ∫
B

⟨w,φ⟩2µ(dw) = |ι∗φ|2H∗ .

B∗ is a subset of H∗ by the embedding ι∗ : B∗ → H∗. Thus the mapping from H∗ to a

subspace of L2(µ) is isometry. Therefore we can define ⟨w, h⟩ for h ∈ H. If h, k ∈ H are

orthogonal, then∫
B

exp{
√
−1⟨w, h + k⟩}µ(dw) = exp{−1

2
|h|H∗

2} exp{−1

2
|k|H∗

2}.

Therefore ⟨w, h⟩ and ⟨w, k⟩ are independent under µ.

Second we define H-derivative which plays the most important role in Malliavin calcu-

lus. Let K be a separable Hilbert space, and Ln
(2)(H;R) be the n-linear Hilbert-Schmidt

class operators on H × . . . × H. Ln
(2)(H;R) is a Hilbert space with the inner product

(S, T )Ln
(2)

(H;R) :=
∞∑

i1,...,in=1

S(ei1 , ei2 , . . . , ein)T (ei1 , ei2 , . . . , ein), S, T ∈ Ln
(2)(H;R),

where {ei} is H a complete orthonormal system.

Definition 2.1.2 K-valued function F on B is H-differentiable at x ∈ B if there exists

an h∗ ∈ H∗ such that
d

dt
F (x + th)

∣∣∣∣
t=0

= ⟨h, h∗⟩, h ∈ H.

We call h∗ an H-differential of F at x, and denote it by DF (x).

We define the class S by the total set of F satisfying that

F (x) = f(⟨x, φ1⟩, . . . , ⟨x, φn⟩) (2.1.1)

where n ∈ N, φ1, . . . , φn ∈ B∗, f ∈ C∞(Rn), and all the derivatives of f are growing in

polynomial order. We can define the class S(K) of K-valued functions similarly.

We define Lp-norm for K-valued functions F on B by

||f ||p :=

(∫
B

|f(x)|pKµ(dx)

) 1
p

.
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Let Lp(B, µ; K) be the completion of S(K) by Lp-norm. Then H-derivative D can be

regarded as a closed operator from Lp(B, µ; K) to Lp(B, µ;L(2)(H; K)).

Now we define Sobolev spaces with respect to H-derivative.

Definition 2.1.3 For k ∈ N, we denote the completion of S with respect to the norm∑k
l=0 ||Dlf ||p by W k,p, and call them Sobolev spaces.

Next we consider H-derivative of stochastic integrals. Let (Bk(t); [0, T ]) be inde-

pendent d-dimensional Brownian motions associated with (B, H, µ) and (Ft) the σ-field

generated by (Bk(s); 0 ≤ s ≤ t, k = 1, 2, . . . , r).

We define some classes of stochastic processes. Let (C0([0, T ];Rd), HT , µ) be the

Wiener space, K a separable Hilbert space, and p > 1. In this section, we use E[·]
as the expectation with respect to the Wiener measure.

We define Lp(w; K) by a class of Rd⊗K-valued (Ft)-adapted processes Φ = (Φ1, Φ2, . . . , Φd)

satisfying that

||Φ||Lp(w;K) := E

[{∫ T

0

|Φ(t)|2Rd⊗Kdt

}p/2
]1/p

< ∞,

where |Φ(t)|Rd⊗K means the norm of Φ(t) on Rd ⊗ K defined by

|Φ(t)|2Rd⊗K :=
d∑

i=1

|Φi(t)|2K .

Then, Lp(w; K) is a Banach space with the norm || · ||Lp(w;K), and we can define stochastic

integral for elements of Lp(w; K).

We define Lp(dt; K) by a class of K-valued (Ft)-adapted processes Ψ satisfying

||Ψ||Lp(dt;K) :=

∫ T

0

E[|Ψ(t)|pK ]1/pdt < ∞.

We define Ln,p(w; K) by a class of Rd⊗K-valued (Ft)-adapted processes Φ = (Φ1, Φ2, . . . , Φd)

such that Φ(t) ∈ W n,p(Rd ⊗ K) for all t, DkΦ ∈ Lp(w;Lk
(2)(H; K)) for k = 1, 2, . . . , n,

and

||Φ||Ln,p(w;K) := E

[
n∑

k=0

{∫ T

0

|DkΦ(t)|2Rd⊗Lk
(2)

(H;K)dt

}p/2
]1/p

< ∞.

We define Ln,p(dt; K) be a class of K-valued (Ft)-adapted processes Ψ such that

Ψ(t) ∈ W n,p(K) for all t, DkΨ ∈ Lp(dt;Lk
(2)(H; K)) for k = 1, 2, . . . , n, and

||Ψ||Ln,p(dt;K) :=
n∑

k=0

∫ T

0

E[|DkΨ(t)|pLk
(2)

(H;K)
]
1/p

dt < ∞.
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Using the classes mentioned above, we can give the proposition about the H-derivatives

of stochastic integrals as follows.

Proposition 2.1.4 Let A = (A1, A2, . . . , Ad) ∈ Ln,p(w; K), B ∈ Ln,p(dt; K), and Γ =

(Γ(t); 0 ≤ t ≤ T ) K-valued (Ft)-adapted processes such that Γ(t) ∈ W n,p(K) for all t,

DkΓ is Lk
(2)(H; K)-valued (Ft)-adapted for k = 1, 2, . . . , n, and

n∑
k=0

E

[
sup

0≤t≤T
|DkΓ(t)|pLk

(2)
(H;K)

]
< ∞.

Let

Ψ(t) :=
d∑

i=1

∫ t

0

Ai(s)dwi
s +

∫ t

0

B(s)ds + Γ(t).

Then, Ψ(t) ∈ W n,p(K) for all t, DkΨ is Lk
(2)(H; K)-valued (Ft)-adapted for k = 1, 2, . . . , n,

and

DΨ(t)[h] =
d∑

i=1

∫ t

0

DAi(s)[h]dwi
s +

d∑
i=1

∫ t

0

hi(s)Ai(s)ds +

∫ t

0

DB(s)ds + DΓ(t), h ∈ HT ,

where DΨ(t)[h] means the value DΨ(t) at h.

2.2 Smoothness of distributions on Wiener spaces

In this section, we consider regularity property of Wiener functionals. The results of this

section are of the H-differential version of the theory of Sobolev spaces with the Lebesgue

measure. Let (B, H, µ) be an abstract Weiner space.

Theorem 2.2.1 Let p > N . For an Wiener functional F : B −→ RN , we assume that

there exists a vector K = (K1, K2, . . . , KN) satisfying that

E[∂jϕ ◦ F ] = E[(ϕ ◦ F )Kj], ϕ ∈ C∞
K , j = 1, 2, . . . , N.

Here C∞
K is the total set of functions in C∞ with compact support.

(i) If K ∈ Lp(µ), then the image of the measure ρ = µ ◦F−1 has a bounded continuous

density function f ∈ Cb(R
N) and there exists a constant C = C(N, p) such that

||f ||Cb(RN ) ≤ C||K||NLp(µ).
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(ii) Assume further that for H0 ∈ Lp(µ), there exists an Rd-valued function

H = (H1, H2, . . . , HN) ∈ Lp(µ) satisfying that

E[(∂jϕ ◦ F )H0] = E[(ϕ ◦ F )Hj], ϕ ∈ C∞
K , j = 1, 2, . . . , N.

Then ν = (H0µ) ◦ F−1 has a bounded continuous density function k ∈ Cb(R
N) and

there exists a constant C = C(N, p) such that

||k||Cb(RN ) ≤ C||H||
N
p

Lp(µ)||H0||
1−N

p

Lp(µ)||f ||
1− 1

p

Cb(RN )
.

(iii) Let α be a multi-index. If, in addition, for 0 < |α| ≤ n there exists Hα ∈ Lp(µ)

satisfying

E[(∂αϕ ◦ F )H0] = E[(ϕ ◦ F )Hα], ϕ ∈ C∞
K ,

then k ∈ Cn−1
b (RN) and there exists a constant C = C(N, p) such that

||k||Cn−1
b (RN ) ≤ C

||H0||Lp(µ) +
∑

0<|α|≤n

||Hα||Lp(µ)

 ||f ||
1− 1

p

Cb(RN )
.

Next we consider non-degeneracy of Wiener functionals.

Fix F = (F 1, F 2, . . . , FN) : B → RN .

Definition 2.2.2 Let p ≥ 1 and F ∈ W 1,p(RN). We define ∆ : B → RN ⊗ RN by

∆ij := (DF i, DF j)H∗ .

∆ is called Malliavin’s covariance matrix.

Then the non-degeneracy can be expressed as the integrability of (det ∆)−1. We can

know the diffusivity from it.

Now we give a formula of the integration by parts formula. Set

ΦiG := D∗

(
N∑

j=1

(det(∆−1))ijDF jG

)
,

where D∗ is the dual operator of D in L2. For a multi-index α = (α1, α2, . . . , αN) let

ΦαG := Φα1
1 ◦ Φα2

2 ◦ . . . ◦ ΦαN
N G.

These definitions depend on F . We have an estimate of Φα as follows.

11



Proposition 2.2.3 Let k = 0, 1, 2, . . ., p > 1, α multi-index. We define

M(α, k) :=
1

2
|α|2 +

3

2
|α| + k|α|.

Let r > 1. Assume that F ∈ W k+|α|+1,4Np, ∆−1 ∈ L2p(µ), and G ∈ W k+|α|,r.

Then ΦαG ∈ W k,s where s is defined by

1

s
=

M(α, k)

p
+

1

r
,

and there exists a constant C = C(N, k, p) satisfying

||ΦαG||k,s ≤ C||DF ||2NM(α,k)
k+|α|,4Np||∆

−1||M(α,k)
2p ||G||k+|α|,r.

In particular, if G = 1, it holds for r = ∞, ||G||n,r = 1.

We can describe the integration by parts formula.

Proposition 2.2.4 Let p, r > 1 satisfying 1 > 2
p

+ 1
r
. If F ∈ W 2,2Np(RN), (det ∆)−1 ∈

L2p, and G ∈ W 1,r, then

E[(∂jϕ ◦ F )G] = E[(ϕ ◦ F )ΦjG], ϕ ∈ C∞
K (RN), j = 1, 2, . . . , N.

Furthermore, for multi-index α, we choose p and r such that 1 > M(α,0)
p

+ 1
r
. If F ∈

W |α|+1,4Np, ∆−1 ∈ L2p(µ), and G ∈ W |α|,r, then

E[(∂αϕ ◦ F )G] = E[(ϕ ◦ F )ΦαG], ϕ ∈ C∞
K (RN).

The integration by parts formula is a remarkable idea of Malliavin. It is also called

Malliavin’s trick. From the results above, we can conclude the following theorem about

existence of densities and their regularities of Wiener functionals.

Theorem 2.2.5 Let p > N . If F ∈ W 2,8Np(RN) and ∆−1 ∈ L4p, then µ ◦ F−1 is

absolutely continuous with respect to the Lebesgue measure, and its density function f

belongs to Cb(R
N) and there exists a constant C = C(p,N) such that

||f ||Cb(RN ) ≤ C||DF ||4N2

1,8Np||∆−1||2N
4p .

Let n ∈ N, M = n2/2 + 3n/2. Assume that F ∈ W n+1,4NMp and ∆−1 ∈ L2Mp(µ). Then,

it follows that f ∈ Cn−1
b (RN) and there exists a constant C ′ = C ′(p,N, n) such that

||f ||Cn−1
b (RN ) ≤ C ′ (1 + ||DF ||2NM

n,4NMp||∆−1||M2Mp

)
||f ||

1− 1
p

Cb(RN )
.
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2.3 Malliavin calculus for stochastic differential equa-

tions

In this section we give applications of Malliavin calculus for stochastic differential equa-

tions.

Let (Bk(t); [0, T ]) be independent d-dimensional Brownian motions and (Ft) the σ-

field generated by (Bk(s); 0 ≤ s ≤ t, k = 1, 2, . . . , r). We consider the following N -

dimensional stochastic differential equation: dX(t) =
r∑

k=1

σk(t,X(t−))dBk(t) + b(t,X(t))dt

X(0) = x0,

(2.3.1)

where {σk} are Rd ⊗ RN -valued measurable functions on [0, T ] × RN , b is also an RN -

valued continuous function on [0, T ] × RN , and x0 ∈ RN . Moreover they satisfy with a

positive constant K

max
k

|σk(t, x) − σk(t, y)| + |b(t, x) − b(t, y)| ≤ K|x − y|, x, y ∈ RN , t ∈ [0, T ].

Then we have the following theorem.

Theorem 2.3.1 The equation (2.3.1) has the unique (Ft)-adapted solution X = (X(t))

satisfying that

E

[
sup

0≤t≤T
|X(t)|p

] 1
p

≤ x0e
Mt,

for all p > 1 where M is a constant depending on r, p and K.

Now we apply Malliavin calculus to the solution X = (X(t)) of the equation (2.3.1).

Theorem 2.3.2 Let n ∈ N. We assume that σk ∈ C0,n
b ([0, T ] × RN ;Rd ⊗ RN) for

k = 1, 2, . . . , r, b ∈ C0,n
b ([0, T ]×RN ;RN). Then we have X(t) ∈ W n,p(RN) for t ∈ [0, T ],

and there exists a constant M depending on r, p, n and the bounds of the spatial derivatives

of σk and b up to order n such that

||X(t)||n,p ≤ x0e
Mt, t ∈ [0, T ].

Next we consider the relation between the ellipticity of equations and the non-degeneracy

of Malliavin covariance matrices.
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Theorem 2.3.3 We assume that σk ∈ C0,1
b ([0, T ] × RN ;Rd ⊗ RN) for k = 1, 2, . . . , r,

b ∈ C0,1
b ([0, T ] × RN ;RN), and that there exists a positive constant ε such that

r∑
k=1

σk(0, x0)
tσk(0, x0) ≥ ε.

Then, Malliavin covariance matrix ∆(t) = ((DX i(t), DXj(t))H∗)ij is invertible, and there

exists a constant C satisfying that for all p > 1

E[det(∆(t))−p] ≤ Ct−NpeCt, t ∈ [0, T ].

Thus, applying Sobolev’s inequality with respect to H-derivative, we have the following

theorem.

Theorem 2.3.4 In (2.3.1) we assume that σk ∈ C0,n+2
b ([0, T ] × RN ;Rd ⊗ RN) for k =

1, 2, . . . , r, b ∈ C0,n+2
b ([0, T ] × RN ;RN), and there exists a positive constant ε such that

r∑
k=1

σk(0, x0)
tσk(0, x0) ≥ ε.

Then the law P (t, x0, dy) of X(t, x0) is absolutely continuous with respect to the Lebesgue

measure and whose density function p(t, x, y) has the estimate

max
0≤l≤m

sup
y∈Rd

∣∣∇l
yp(t, x0, y)

∣∣ ≤ c1 min{ϕi(t); i = 1, 2, . . . , r}−c3 exp

{
c2

(
t +

r∑
k=1

ϕk(t)

)}
(2.3.2)

with positive constants c1, c2, c3. Moreover, if there exist positive constants ε and t0 such

that
r∑

k=1

σk(t, x) tσk(t, x) ≥ ε, t ∈ [0, t0], x ∈ RN ,

then we can choose constants c1, c2, c3 in (2.3.2) dependently only on t0.

There are further known results. In the last theorem, we assume the non-degeneracy

of the diffusion coefficient at starting point. However, this condition can be relaxed to

Hörmander’s condition. The result is also seen in [24]. On the other hand, there is a

similar theorem for Itô’s equations in [13]. Itô’s equations mean stochastic differential

equations whose coefficients depend on the past.
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2.4 The method for absolute continuity by Bouleau

and Hirsch

Bouleau and Hirsch studied existence of densities of solutions of stochastic differential

equations when the coefficients have less regularity. They also used Malliavin calculus,

and they applied coarea formula instead of the theory in Section 2.2. In this section, we

give the outline of their theory.

The following theorem is the coarea formula. The precise arguments of the coarea

formula can be found in [7].

Theorem 2.4.1 Let m and n be positive integers satisfying that m > n, and Hm−n be the

(m − n)-dimensional Hausdorff measure on Rn. We assume f : Rm −→ Rn is Lipschitz

continuous, and let Jnf be the Jacobian of f . Then we have∫
Rm

g(x)Jmf(x)dx =

∫
Rn

(∫
f−1({y})

g(x)Hm−n(dx)

)
dy

for all Borel measurable positive function g on Rm.

The idea of Bouleau and Hirsch is to apply the theorem to Gaussian measures. Any

non-degenerate finite-dimensional Gaussian measure is absolutely continuous with respect

to the Lebesgue measure. Furthermore, the symmetrization of the Jacobian is associ-

ated with the Malliavin covariance. Thus, the absolute continuity follows from the non-

degeneracy of Malliavin covariances. By the method, the following theorem is obtained.

It is a simple version of a theorem given by Bouleau and Hirsch.

Theorem 2.4.2 We consider the stochastic differential equation (2.3.1), and assume that

{σk; k = 1, 2, . . . , r} and b are Lipschitz continuous in the spacial component. And there

exists a positive constant ε such that

r∑
k=1

σk(0, x0)
tσk(0, x0) ≥ ε.

Then, the law of X(t) is absolutely continuous with respect to the Lebesgue measure.

Bouleau and Hirsch also used the result of the previous section for the non-degeneracy

of Malliavin covariances.

Bouleau and Hirsch obtained further results. In the above theorem, we assume the

non-degeneracy of the diffusion coefficient at starting point. However, this condition can

be weaken to Hörmander condition. We remark that Hirsch showed a similar theorem for

Itô’s equation in [8].
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Chapter 3

Existence of densities of solutions of

stochastic differential equations by

Malliavin calculus

In this chapter, we discuss application of Malliavin calculus to equations whose coefficients

are not necessarily Lipschitz continuous. We will introduce a class Vh of random variables

and discuss it in Section 3.1, and the relation between the solution of stochastic differential

equation and the class Vh in Section 3.2.

3.1 Analysis in class Vh

First we introduce a class of random variables. When we consider stochastic differential

equations whose coefficients are not necessarily Lipschitz continuous, the solutions would

not belong to any Sobolev space in general. So we need a larger class than Sobolev space.

Let (Ω, F , P ) be a probability space which is an orthogonal product measure space of

an abstract Wiener space (B,H, µ) and another probability space (Ω′,F ′, ν). Of course,

our argument includes the case that Ω′ is trivial, for example, Ω′ = {0}. Throughout this

chapter we identify ω ∈ Ω as (x, ω′) ∈ B × Ω′.

Let F be a random variable on (Ω,F , P ). When the limit

lim
ε→0

1

ε
(F (x + εh, ω′) − F (x, ω′))

exists for h ∈ H, then we denote this limit by DhF (x, ω′). Dh is regarded as the derivative

in direction h.

We prepare some notation. Let h ∈ H be fixed and {hk} a complete orthonormal
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normal system of H∗ such that h = h1. Since B∗ ⊂ H∗ is a continuous embedding,

B ∋ x 7−→ (⟨x, h1⟩, ⟨x, h2⟩, . . .) ∈ R∞

is injective. Here we denoted ⟨x, h⟩ in the sense of Wiener integral of 1-order. Hence let

y = ⟨x, h1⟩ ∈ R, x̃ = (⟨x, h2⟩, ⟨x, h3⟩, . . .) ∈ R∞,

then we can identify x as (y, x̃).

Next we describe the measures of y and x̃. By the orthogonality of {hk} in H∗, if

k ̸= j, ⟨x̃, hk⟩ and ⟨x̃, hj⟩ are independent under µ. Since {⟨x, hk⟩} is a Gaussian system

under µ, {⟨x, hk⟩} are independent. In particular, y = ⟨x, h1⟩ and x̃ = (⟨x, h2⟩, ⟨x, h3⟩, . . .)
are independent under µ. We regard the measure space (B, µ) as an orthogonal measure

space for y and x̃. Moreover we have the following decomposition:

B ∼= R × B̃, µ ∼=
1√
2π

e−
y2

2 dy ⊗ µ̃.

Here we used the fact that y = ⟨x, h1⟩ has a normal distribution with mean 0 and variance

1 under µ. We denote partial derivative with respect to y by ∂y.

Definition 3.1.1 We define Vh(B×Ω′) by the total set of random variables F on (Ω,F , P )

such that there exists a random variable F̂ on (Ω,F , P ) satisfying that F = F̂ a.s. and

F̂ (x+ th, ω′) is a function of bounded variation on any finite interval with respect to t for

all x and ω′. If Ω′ is trivial, for example, Ω′ = {0}, then we denote it by Vh(B) simply.

Now we give a criterion for a random variable to belong to the class Vh.

Theorem 3.1.2 Let (Ω,F , P ) be a probability space which is an orthogonal product mea-

sure space of an abstract Wiener space (B,H, µ) and another probability space (Ω′,F ′, ν).

Let p > 1, h ∈ H, and F ∈ Lp(Ω,F , P ). We assume that there exists a sequence

{Fn : n ∈ N} in Lp(Ω, F , P ) so that

(i) Fn converges to F almost surely,

(ii) {Fn} are uniformly bounded in Lp(Ω,F , P ),

(iii) Fn(x + th, ω′) is absolutely continuous in t with respect to the one-dimensional

Lebesgue measure for all x and n,

(iv) {DhFn} are uniformly bounded in L1(Ω,F , P ).

Then F ∈ Vh(B × Ω′).
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Proof. To simplify the notation, we assume that |h|H = 1. Since {Fn} are uniformly

bounded in Lp(Ω,F , P ), {Fn} are uniformly integrable. Since Fn converges to F almost

surely, Fn also converges to F in L1∗(Ω,F , P ). For given a positive number M let us

define a function ϕ ∈ C∞(R) such that

0 ≤ ϕ ≤ 1, 0 ≤ ϕ′ ≤ 2, ϕ(y) =

{
1, if |y| ≤ M,

0, if |y| ≥ M + 1.

Then for t, s ∈ [−M, M ] we have∫
Ω′

∫
B̃

∫
R

|F (y + t, x̃, ω′)ϕ(y + t) − F (y + s, x̃, ω′)ϕ(y + s)|

× 1√
2π

exp

(
−y2

2

)
dyµ̃(dx̃)ν(dω′)

= lim
n→∞

∫
Ω′

∫
B̃

∫
R

|Fn(y + t, x̃, ω′)ϕ(y + t) − Fn(y + s, x̃, ω′)ϕ(y + s)|

× 1√
2π

exp

(
−y2

2

)
dyµ̃(dx̃)ν(dω′)

≤ lim inf
n→∞

1√
2π

∫
Ω′

∫
B̃

∫
R

|Fn(y + t, x̃, ω′)ϕ(y + t) − Fn(y + s, x̃, ω′)ϕ(y + s)|

×dyµ̃(dx̃)ν(dω′)

= lim inf
n→∞

1√
2π

∫
Ω′

∫
B̃

∫
R

∣∣∣∣∫ t

s

∂y[Fn(y + v, x̃, ω′)ϕ(y + v)]dv

∣∣∣∣ dyµ̃(dx̃)ν(dω′)

≤ lim inf
n→∞

1√
2π

∫ t

s

∫
Ω′

∫
B̃

∫
R

|(∂yFn(y + v, x̃, ω′))ϕ(y + v) + Fn(y + v, x̃, ω′)ϕ′(y + v)|

×dyµ̃(dx̃)ν(dω′)dv

= lim inf
n→∞

1√
2π

∫ t

s

∫
Ω′

∫
B̃

∫
R

|(∂yFn(y, x̃, ω′))ϕ(y) + Fn(y, x̃, ω′)ϕ′(y)|

×dyµ̃(dx̃)ν(dω′)dv

≤ 1√
2π

|t − s| sup
n

∫
Ω′

∫
B̃

∫ (M+2)

−(M+2)

[ |(∂yFn(y, x̃, ω′)))ϕ(y)| + |Fn(y, x̃, ω′)ϕ′(y)| ]

×dyµ̃(dx̃)ν(dω′)

≤ 2|t − s|e
(M+2)2

2 sup
n

∫
Ω′

∫
B̃

∫ (M+2)

−(M+2)

[ |(∂yFn(y, x̃, ω′)))| + |Fn(y, x̃, ω′)| ]

× 1√
2π

exp

(
−y2

2

)
dyµ̃(dx̃)ν(dω′)

≤ 2e
(M+2)2

2 |t − s| sup
n

( ||Fn||L1(Ω) + ||DhFn||L1(Ω) ).

Therefore for s, t ∈ [−M, M ]∫
Ω′

∫
B̃

∫
R

|F (y + t, x̃, ω′)ϕ(y + t) − F (y + s, x̃, ω′)ϕ(y + s)|
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× 1√
2π

exp

(
−y2

2

)
dyµ̃(dx̃)ν(dω′)

≤ CM |t − s|, (3.1.1)

where CM is a constant depending only on M and supn(||Fn||L1(Ω) + ||DhFn||L1(Ω)). We

define a functions {Fm
ϕ } on B × Ω by

Fm
ϕ (y, x̃, ω′) := 2m

∫ 1
2m

0

F (y + v, x̃, ω′)ϕ(y + v)dv, m = 1, 2, 3, . . . .

Then∫
R

|∂yF
m
ϕ (y, x̃, ω′)|dy

≤ 2m

∫
R

|∂y

∫ 1
2m

0

F (y + u, x̃, ω′)ϕ(y + u)du|dy

= 2m

∫
R

|∂y

∫ y+ 1
2m

y

F (u, x̃, ω′)ϕ(u)du|dy

= 2m

∫
R

∣∣∣∣F (
y +

1

2m
, x̃, ω′

)
ϕ

(
y +

1

2m

)
− F (y, x̃, ω′)ϕ(y)

∣∣∣∣ dy

≤ 2m

∫
R

{∣∣∣∣F (
y +

1

2m
, x̃, ω′

)
ϕ

(
y +

1

2m

)
− F

(
y +

1

2m+1
, x̃, ω′

)
ϕ

(
y +

1

2m+1

)∣∣∣∣
+

∣∣∣∣F (
y +

1

2m+1
, x̃, ω′

)
ϕ

(
y +

1

2m+1

)
− F (y, x̃, ω′)ϕ(y)

∣∣∣∣} dy

= 2m+1

∫
R

∣∣∣∣F (
y +

1

2m+1
, x̃, ω′

)
ϕ

(
y +

1

2m+1

)
− F (y, x̃, ω′)ϕ(y)

∣∣∣∣ dy

= 2m+1

∫
R

|∂y

∫ 1
2m+1

0

F (y + u, x̃, ω′)ϕ(y + u)du|dy

=

∫
R

|∂yF
m+1
ϕ (y, x̃, ω′)|dy.

This means that {
∫
R
|∂yF

m
ϕ (y, x̃, ω′)|dy} are increasing in m. Thus, from (3.1.1), it follows

the inequality∫
Ω′

∫
B̃

(
sup
m

∫
R

|∂yF
m
ϕ (y, x̃, ω′)|dy

)
µ̃(dx̃)ν(dω′)

= sup
m

∫
Ω′

∫
B̃

(∫
R

2m

∣∣∣∣F (
y +

1

2m
, x̃, ω′

)
ϕ

(
y +

1

2m

)
− F (y, x̃, ω′)ϕ(y)

∣∣∣∣ dy

)
×µ̃(dx̃)ν(dω′)

≤
√

2π exp

(
(M + 1)2

2

)
sup
m

{
2m

∫
Ω′

∫
B̃

∫
R

∣∣∣∣F (
y +

1

2m
, x̃, ω′

)
ϕ

(
y +

1

2m

)
−F (y, x̃, ω′)ϕ(y)| 1√

2π
exp

(
−y2

2

)
dyµ̃(dx̃)ν(dω′)

}
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≤
√

2π exp

(
(M + 1)2

2

)
CM .

This implies that for µ̃ × ν-almost all (x̃, ω′)

sup
m

∫
R

|∂yF
m
ϕ (y, x̃, ω′)|dy < ∞.

On the other hand, by the definition of Fm
ϕ , there exists a function F (·, x̃, ω′) for all (x̃, ω′)

so that

lim
m→∞

Fm
ϕ (y, x̃, ω′) = F (y, x̃, ω′)ϕ(y),

F (·, x̃, ω′) = F (·, x̃, ω′), dy-a.e.

Hence, by Corollary 5.3.4 of [30], F (·, x̃, ω′)ϕ is a function of bounded variation on R for

µ̃ × ν-almost all (x̃, ω′). For µ̃ × ν-almost all (x̃, ω) and for all M > 0, F (·, x̃, ω′) is a

function of bounded variation on [−M, M ], from which we have that F ∈ Vh(B × Ω′). ¤

Example 3.1.3 Let (Ω, F , P ) be a probability space, L a Lévy process on (Ω, F , P ),

FL a σ-field generated by L, and F an FL-measurable random variable on (Ω, F , P ).

Then, from the Lévy-Itô decomposition and A3.2 in [29], we can regard F as a random

variable on a product space generated by a space (W, B(W ), µ) of the part of Brownian

motions and a space (Ω′, F , ν) of the jump part. We denote the Cameron-Martin space

associated with (W, B(W ), µ) by H. Now let h ∈ H and p > 1. Assume that there

exists a sequence of random variables {Fn : n ∈ N} in Lp(W × Ω′, µ ⊗ ν) so that {Fn}
converges to F almost surely and {DhFn} are uniformly bounded in L1(W × Ω′, µ ⊗ ν).

Then F ∈ Vh(W × Ω′).

Now we give an application of Vh. The following theorem tells the relation between

the class Vh and the absolute continuity. It is associated with that of Bouleau and Hirsch.

Theorem 3.1.4 Let (Ω,F , P ) be a probability space which is an orthogonal product mea-

sure space of an abstract Wiener space (B,H, µ) and another probability space (Ω′,F ′, ν).

Let F be a random variable such that F ∈ Vh(B × Ω′). If F̂ is the modification of F

appeared in the definition of Vh(B × Ω′), then the measure

(|DhF̂ |P ) ◦ F̂−1

is absolutely continuous with respect to the one-dimensional Lebesgue measure.
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Proof. Since F̂ (·, x̃, ω′) is a function of bounded variation on any finite interval, a limit

function

F (y, x̃, ω′) := lim
ε↓0

F̂ (y + ε, x̃, ω′)

exists, which is a right-continuous version of F̂ (·, x̃, ω′). Hence we have

F = F, P -a.e.

Fix a constant M > 0. To translate the domain, we define a function FM(y, z) on

[0, 2M ] × B̃ × Ω′ by

FM(y, x̃, ω′) := F (y − M, x̃, ω′), y ∈ [0, 2M ], x̃ ∈ B̃, ω′ ∈ Ω′.

Then for every nonnegative continuous function f on R we have∫
Ω′

∫
B̃

∫ M

−M

f(F̂ (y, x̃, ω′))|∂yF̂ (y, x̃, ω′)|dyµ̃(dx̃)ν(dω′)

=

∫
Ω′

∫
B̃

∫ 2M

0

f(FM(y, x̃, ω′))|∂yFM(y, x̃, ω′)|dyµ̃(dx̃)ν(dω′). (3.1.2)

Now we interpolate the discontinuous points of FM(y, x̃, ω′) linearly with respect to

y, and make a continuous function. First we fix x̃ and ω′. Let C ⊂ [0, 2M ] be the set

of continuous points of FM(y, x̃, ω′) with respect to y, and {ξk} ⊂ [0, 2M ] discontinuous

points of FM(y, x̃, ω′) with respect to y. Set

jx̃,ω′ : [0, 2M ] −→ R,

jx̃,ω′(y) := FM(y, x̃, ω′) − FM(y−, x̃, ω′),

where

FM(y−, x̃, ω′) := lim
ε↓0

FM(y − ε, x̃, ω′),

and

Jx̃,ω′ : [0, 2M ] −→ R,

Jx̃,ω′(y) :=
∑

0<ξk≤y

|jx̃,ω′(ξk)|.

Define τ by

τ : [0, 2M + Jx̃,ω′(2M)] −→ [0, 2M ],

τ(ỹ) :=

{
inf{u ∈ [0, 2M ]; u + Jx̃,ω′(u) > ỹ}, if ỹ ∈ [0, 2M + Jx̃,ω′(2M)),

2M, if ỹ = 2M + Jx̃,ω′(2M).
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Since τ is an inverse function of the increasing function · + Jx̃,ω′(·), it is continuous and

increasing. Then the function F̃M(ỹ, x̃, ω′) defined on [0, 2M + Jx̃,ω′(2M)] × B̃

F̃M(ỹ, x̃, ω′) := FM(τ(ỹ), x̃, ω′) + sgn(jx̃,ω′(τ(ỹ))){ỹ − (Jx̃,ω′(τ(ỹ)) + τ(ỹ))},

sgn(u) :=


1, if u > 0,

0, if u = 0,

−1, if u < 0,

is continuous with respect to ỹ. When τ(ỹ) ∈ C,

F̃M(ỹ, x̃, ω′) = FM(τ(ỹ), x̃, ω′).

From the fact that the total set of discontinuous points of a function of bounded variation

is a null set with the Lebesgue measure, for every nonnegative continuous function f it

holds ∫ 2M

0

f(FM(y, x̃, ω′))|∂yFM(y, x̃, ω′)|dy

=

∫ 2M

0

f(FM(y, x̃, ω′))|∂yFM(y, x̃, ω′)|1C(y)dy

=

∫ 2M+Jx̃,ω′ (2M)

0

f(FM(τ(ỹ), x̃, ω′))|(∂yFM)(τ(ỹ), x̃, ω′)|1C(τ(ỹ))dτ(ỹ)

=

∫ 2M+Jx̃,ω′ (2M)

0

f(F̃M(ỹ, x̃, ω′))1C(τ(ỹ))|(∂yFM)(τ(ỹ), x̃, ω′)|dτ(ỹ)

≤
∫ 2M+Jx̃,ω′ (2M)

0

f(F̃M(ỹ, x̃, ω′))1C(τ(ỹ))|dỹFM(τ(ỹ), x̃, ω′)|

≤
∫ 2M+Jx̃,ω′ (2M)

0

f(F̃M(ỹ, x̃, ω′))|dỹF̃M(ỹ, x̃, ω′)|. (3.1.3)

By Theorem 6.4 of Chapter IX in [22], we have the following lemma.

Lemma 3.1.5 Let ψ be a function of bounded variation on [a, b], and Nψ
[a,b](c) the number

of crossing points on [a, b] between the graphs y = ψ(x) and y = c for c ∈ R. Then∫ b

a

f(ψ(x))|dψ(x)| =

∫ ∞

−∞
f(y)Nψ

[a,b](y)dy, f ∈ C(R).

From this lemma we have∫ 2M+Jx̃,ω′ (2M)

0

f(F̃M(ỹ, x̃, ω′))|dỹF̃M(ỹ, x̃, ω′)| =

∫ ∞

−∞
f(u)N

F̃M (·,x̃,ω′)
[0,2M+Jx̃,ω′ (2M)](u)du,
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This and (3.1.3) yield∫ 2M

0

f(FM(y, x̃, ω′))|∂yFM(y, x̃, ω′)|dy ≤
∫ ∞

−∞
f(u)N

F̃M (·,x̃,ω′)
[0,2M+Jx̃,ω′ (2M)](u)du

for µ̃ × ν-almost every (x̃, ω′). From this and (3.1.2) one can derive∫
Ω′

∫
B̃

∫ M

−M

f(F̂ (y, x̃, ω′))|∂yF̂ (y, x̃, ω′)|dyµ̃(dx̃)ν(dω′)

≤
∫

Ω′

∫
B̃

∫ ∞

−∞
f(u)N

F̃M (·,x̃,ω′)
[0,2M+Jx̃,ω′ (2M)](u)duµ̃(dx̃)ν(dω′) (3.1.4)

for every nonnegative continuous function f , and hence for every nonnegative Lebesgue

measurable function f . It is easily seen that∫
Ω′

∫
B̃

∫ M

−M

1A(F̂ (y, x̃, ω′))|∂yF̂ (y, x̃, ω′)|dyµ̃(dx̃)ν(dω′) = 0

holds for any null set A in R. Since this equation holds for all M > 0,∫
Ω′

∫
B̃

∫
R

1A(F̂ (y, x̃, ω′))|∂yF̂ (y, x̃, ω′)|dyµ̃(dx̃)ν(dω′) = 0.

This means

E[1A(F̂ )|DhF̂ |] = 0.

¤

3.2 Applications to stochastic differential equations

In this section we consider if solutions of stochastic differential equations whose coefficients

are not Lipschitz continuous have their densities or not. We begin with the following

lemma which plays the most important role in this chapter.

Lemma 3.2.1 Let r be a positive integer, (Ω,F , P ) a probability space, (B(t)) an r-

dimensional Brownian motion on (Ω, F , P ), (Ft) a reference family, σ = (σj)j=1,2,...,r an

Rr-valued adapted function on [0, T ] × Ω, and b an adapted function on [0, T ] × Ω. Let

a one-dimensional (Ft)-adapted continuous process X = (X(t)) on (Ω, F , P ) satisfy the

equation

X(t) = x0 +
r∑

j=1

∫ t

0

σj(s, ω)X(s)dBj(s) +

∫ t

0

b(s, ω)ds,

where x0 is a constant. Assume that

max
j

sup
t,ω

|σj(t, ω)| < ∞,
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and there exist constants M,K and a finite measure η on [0, T ] satisfying

|b(t, ω)| ≤ M + K

(∫ t

0

|X(s)|dη(s) + |X(t)|
)

, (t, ω) ∈ [0, T ] × Ω,

Then there exists a constant C which depends on only T , x0, M , K, and η([0, T ]) such

that

E[|X(t)|] ≤ C, t ∈ [0, T ].

Proof. We choose 1 > a1 > a2 > . . . > 0 such that∫ 1

a1

1

u
du = 1 ,

∫ a1

a2

1

u
du = 2 , . . . ,

∫ am−1

am

1

u
du = m, . . . .

It is obvious that am → 0 as m → ∞. For {am}, we can define continuous functions ψm

on [0,∞) such that

supp ψm ⊂ (am, am−1) , 0 ≤ ψm(u) ≤ 2

mu
,

∫ am−1

am

ψm(u)du = 1.

It is easily seen that the functions

φm(y) =

∫ |y|

0

du

∫ z

0

ψm(z)dz

defined on R have the properties

φm ∈ C2(R) , |φ′
m(y)| ≤ 1 , φm(y) ↗ |y| (m −→ ∞).

Itô’s formula leads to

E[φm(X(t))]

= φm(x0) +
1

2

r∑
j=1

∫ t

0

E[φ′′
m(X(s))(σj(s, ω))2(X(s))2]ds +

∫ t

0

E[φ′
m(X(s))b(s, ω)]ds.

The second term of the right hand side is estimated as follows;∣∣∣∣∣12
r∑

j=1

∫ t

0

E[φ′′
m(X(s))(σj(s, ω))2(X(s))2]ds

∣∣∣∣∣
≤ 1

2

r∑
j=1

∫ t

0

E[|φ′′
m(X(s))|(σj(s, ω))2|X(s)|2]ds

≤ 1

m

r∑
j=1

∫ t

0

E[(σj(s, ω))2|X(s)|]ds

−→ 0 (m −→ ∞).
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For the third term∣∣∣∣∫ t

0

E[φ′
m(X(s))b(s, ω)]ds

∣∣∣∣ ≤
∫ t

0

E[|b(s, ω)|]ds

≤ Mt + K

∫ t

0

(

∫ s

0

E[|X(u)|]dη(u) + E[|X(s)|])ds

≤ Mt + K(η([0, T ]) + 1)

∫ t

0

sup
0≤u≤s

E[|X(u)|]ds.

Therefore, letting m −→ ∞, (3.2.1) yields

sup
0≤s≤t

E[|X(s)|] ≤ |x0| + Mt + K(η([0, T ]) + 1)

∫ t

0

sup
0≤u≤s

E[|X(u)|]ds.

Applying Gronwall’s lemma to this inequality, we have

sup
0≤s≤t

E[|X(s)|] ≤ K(|x0| + MT )eK(η([0,T ])+1)T .

¤

Now we give some notation. We denote Sobolev space with respect to H-derivative

with indices k and p by W k,p, and the total set of smooth functions on C([0, T ];Rd) by

C∞(C([0, T ];Rd)), where the smoothness means that in the sense of Gâteau derivative.

The precise definition of C∞(C([0, T ];Rd)) can be seen in [13]. We define C∞
b (C([0, T ];Rd))

by the total set of the elements of C∞(C([0, T ];Rd)) whose derivatives are bounded. We

denote partial derivative with respect to spatial component by ∂x. For real numbers a

and b, we denote max{a, b} and min{a, b} by a ∨ b and a ∧ b, respectively. Let r be a

positive integer and T be a positive number. For fixed r and T , let

W := {w ∈ C([0, T ];Rr); w(0) = 0},

H := {h ∈ W ; h is absolute continuous and

∫ T

0

ḣj(t)2dt < ∞, j = 1, 2, . . . , r},

and let µ be the Wiener measure on W . Clearly (W,H, µ) is an abstract Wiener space.

The following lemma is a version of Lemma 3.2.1 about H-derivative of a stochastic

differential equation.

Lemma 3.2.2 Let T > 0 be fixed. Let d and r be positive integers, (W,H,P ) the r-

dimensional Wiener space, (B(t)) the r-dimensional Brownian motion associated with

(W,H, P ), B(W ) a Borel σ-field of W , (Ft) a reference family,

σ = (σi
j)i=1,...,d,j=1,...,r ∈ Cb([0, T ] × R;Rd ⊗ Rr), σi

j(t, ·) ∈ C∞(R), t ∈ [0, T ],

b = (bi)i=1,...,d ∈ Cb([0, T ] × C([0, T ];Rd);Rd),

bi(t, ·) ∈ C∞(C([0, T ];Rd)), t ∈ [0, T ].
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We assume that a d-dimensional (Ft)-adapted continuous process X = (X(t)) on

(W, B(W ), P ) satisfies the stochastic differential equation: dX i(t) =
r∑

j=1

σi
j(t,X

i(t))dBj(t) + bi(t,X)dt, i = 1, 2, . . . d,

X(0) = x0 ∈ Rd.

Moreover, we assume that there exist constants M, K and a finite measure η on [0, T ]

satisfying that

max
i,j

|σi
j(t, x)| ≤ M, (t, x) ∈ [0, T ] × R,

max
i

|bi(t, w) − bi(t, w′)| ≤ K

(∫ t

0

|w(s) − w′(s)|dη(s) + |w(t) − w′(t)|
)

,

t ∈ [0, T ], w, w′ ∈ C([0, T ];Rd).

Then, for all t in [0, T ], k = 1, 2, . . ., and p ≥ 1, X(t) belongs to W k,p, and there exists a

constant C which depends on only M , K, and η([0, T ]) such that

E[|DhX
i(t)|] ≤ C|h|H , h ∈ H, i = 1, 2, . . . , d.

Proof. By the Lipschitz continuity of the coefficients and theorem (2.19) of [13], X

can be expressed as a functional on (W,H, µ) which is the Wiener space generated by the

Brownian motion (B(t)), and we have X(t) ∈ W k,p for any positive integer k and p ≥ 1.

Hence it’s sufficient to prove the existence of a constant C. Let h ∈ H be fixed. Consider

the H-derivative of the stochastic differential equation for X, then we have

DhX
i(t) =

r∑
j=1

∫ t

0

∂xσ
i
j(s,X

i(s))DhX
i(s)dBj(s)

+
r∑

j=1

∫ t

0

ḣj(s)σi
j(s,X(s))ds +

∫ t

0

Dhb
i(s,X)ds,

i = 1, 2, . . . , d.

From the condition of b, it follows that for almost all w

|Dhb
i(t, X(·, w))|

= lim
ε→0

1

ε
|bi(t,X(·, w + εh)) − bi(t,X(w))|

≤ lim
ε→0

K

ε
(

∫ t

0

|X(s, w + εh) − X(s, w)|dη(s) + |X(t, w + εh) − X(t, w)|)

= K(

∫ t

0

|DhX(s, w)|dη(s) + |DhX(t, w)|).
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Hence we can show the estimate by similar discussion to the proof of Lemma 3.2.1. ¤

Now we will give a sufficient condition for solutions of stochastic differential equations

to belong to the class Vh. The advantage of the following theorem is that we assume only

bounded on the diffusion coefficient σ.

Theorem 3.2.3 Let d and r be positive integers, (B(t)) an r-dimensional Brownian mo-

tion, and

σ = (σi
j)i=1,...,d,j=1,...,r ∈ Cb([0, T ] × R;Rd ⊗ Rr),

b = (bi)i=1,...,d ∈ Cb([0, T ] × C([0, T ];Rd);Rd).

Assume that there exist constants M, K and a Radon measure η on [0, T ] satisfying

max
i,j

|σi
j(t, x)| ≤ M, (t, x) ∈ [0, T ] × R,

max
i

|bi(t, w) − bi(t, w′)| ≤ K

(∫ t

0

|w(s) − w′(s)|dη(s) + |w(t) − w′(t)|
)

,

t ∈ [0, T ], w, w′ ∈ C([0, T ];Rd).

In addition, we assume the d-dimensional stochastic differential equation: dX i(t) =
r∑

j=1

σi
j(t,X

i(t))dBj(t) + bi(t,X)dt, i = 1, 2, . . . d,

X(0) = x0 ∈ Rd

has pathwise uniqueness.

Then the solution (X(t)) can be defined on the Wiener space (W,H, µ) and X i(t) is in

Vh(W ) for all t in [0, T ], i = 1, 2, . . . , d, and h ∈ H. Moreover, if we denote the version

of X i(t) appeared in Definition 3.1.1 by X̂ i(t), then(∣∣∣DhX̂ i(t)
∣∣∣ µ

)
◦ X i(t)−1

is absolutely continuous with respect to the one-dimensional Lebesgue measure.

Proof. Pathwise uniqueness of the equation implies that the solution X can be ex-

pressed as a functional on the Wiener space (W,H, µ) generated by the Brownian motion

(B(t)). By Lemma 5.2 of [8], there exist the sequences {σn} and {bn}

{σn} ⊂ Cb([0, T ] × R;Rd ⊗ Rr), {bn} ⊂ Cb([0, T ] × C([0, T ];R);Rd)
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which satisfy that

{σn(t, ·)} ⊂ C∞
b (R), lim

n→∞
||σn(t, ·) − σ(t, ·)||Cb(R;Rd×Rr) = 0

max
i,j

|(σn)i
j(t, x)| ≤ M, (t, x) ∈ [0, T ] × R,

{bn(t·, ·)} ⊂ C∞
b (C([0, T ];Rd)),

lim
n→∞

|bn(t, w) − b(t, w)| = 0, t ∈ [0, T ], w ∈ C([0, T ];Rd),

|bn(t, w) − bn(t, w′)| ≤ K

(∫ t

0

|w(s) − w′(s)|dη(s) + |w(t) − w′(t)|
)

,

t ∈ [0, T ], w, w′ ∈ C([0, T ];Rd).

Let {Xn} be the strong solutions of the stochastic differential equations mentioned above

with coefficients σ and b replaced by σn and bn, respectively. By [10], we have for all

t ∈ [0, T ]

Xn(t) −→ X(t) a.s..

On the other hand, by a standard method of stochastic differential equations, we have for

all t ∈ [0, T ]

sup
n

E[|Xn(t)|2] < ∞.

Therefore we can use Theorem 3.1.2 so that we have X i(t) ∈ Vh(W ) for all t ∈ [0, T ] and

i = 1, 2, . . . , d. The last assertion follows from Theorem 3.1.4. ¤

In the arguments above, we did not assume the ellipticity. In the case that the coef-

ficients are Lipschitz continuous, it is known that some conditions about ellipticity of a

multi-dimensional stochastic differential equation implies the positivity of

| det(DX i(t), DXj(t))H |. In general when the coefficients are not Lipschitz continuous,

these facts may not hold. However in a special case we can show the positivity of |DhX
i(t)|

for a special h as follows.

Theorem 3.2.4 Let r be a positive integer, and (B(t)) an r-dimensional Brownian mo-

tion. Assume that the one-dimensional stochastic differential equation: dX(t) =
r∑

j=1

σj(t, X(t))dBj(t) + b(t,X(t))dt

X(0) = x0 ∈ R

has pathwise uniqueness, when the coefficients

σ = (σj)j=1,...,r ∈ Cb([0, T ] × R;Rr), b ∈ Cb([0, T ] × R;R),
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are assumed to satisfy

max
j

|σj(t, x)| ≤ M, (t, x) ∈ [0, T ] × R,

|b(t, x) − b(t, y)| ≤ K|x − y|, x, y ∈ R, t ∈ [0, T ]

with some constants M and K. In addition we assume that there is a closed subset S of

[0, T ]×R satisfying that σj is in C0,2(([0, T ]×R) \S) for all j = 1, 2, . . . , r, and
∑r

j=1 σj

is positive on ([0, T ] × R) \ S. We set St := {x; (t, x) ∈ S}.
Then

µ ◦ X(t)−1
∣∣
R\St

is absolutely continuous to the one-dimensional Lebesgue measure restricted on R \St for

all t in [0, T ].

Proof. It is sufficient to prove the case t = T . Theorem 3.2.3 implies that the solution

(X(t)) can be defined on the Wiener space (W,H, µ) and X(T ) ∈ Vh(W ). For simplicity

we also use X(T ) in the place of X̂(t) in the definition of Vh(W ). Now we can choose

σ(n) = (σ
(n)
j )j=1,2,...,r ∈ Cb([0, T ] × R;Rr) and b(n) ∈ Cb([0, T ] × R;R) for n = 1, 2, 3, . . .

so that

σ
(n)
j (t, ·) ∈ C∞

b (R;Rr), j = 1, 2, . . . , r, t ∈ [0, T ],

lim
n→∞

sup
t∈[0,T ],x∈R

|σ(n)
j (t, x) − σj(t, x)| = 0, j = 1, 2, . . . r,

b(n)(t, ·) ∈ C∞
b (R;R),

lim
n→∞

sup
t∈[0,T ],x∈R

|b(n)(t, x) − b(t, x)| = 0,

|b(n)(t, x) − b(n)(t, y)| ≤ K|x − y|, x, y ∈ R, t ∈ [0, T ],

and for any closed subinterval I of R \ S

lim
n→∞

sup
t∈[0,T ],x∈I

∣∣∣∂xσ
(n)
j (t, x) − ∂xσj(t, x)

∣∣∣ = 0, j = 1, 2, . . . r,

lim
n→∞

sup
t∈[0,T ],x∈I

∣∣∣∂2
xσ

(n)
j (t, x) − ∂2

xσj(t, x)
∣∣∣ = 0, j = 1, 2, . . . r,

lim
n→∞

sup
t∈[0,T ],x∈I

∣∣∂xb
(n)(t, x) − ∂xb(t, x)

∣∣ = 0.

Let Xn be the solution of the following stochastic differential equation: dXn(t) =
r∑

j=1

σ
(n)
j (t,Xn(t))dBj(t) + b(n)(t,Xn(t))dt

Xn(0) = x0.
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Then, from the result in [10] we have

lim
n→∞

E

[
sup

t∈[0,T ]

|Xn(t) − X(t)|2
]

= 0.

Hence, we can choose a subsequence of {Xn} which converges to X in the topology of

C([0, T ]) almost surely. For simplicity we denote the subsequence by {Xn} again. Thus

we have

lim
n→∞

sup
t∈[0,T ]

|Xn(t) − X(t)| = 0, a.s. (3.2.1)

Calculating the H-derivative of Xn(T ), we have

DhXn(T ) =
r∑

j=1

∫ T

0

∂xσ
(n)
j (s,Xn(s))DhXn(t)dBj(s)

+
r∑

j=1

∫ T

0

ḣj(s)σ
(n)
j (s,Xn(s))ds +

∫ T

0

∂xb
(n)(s, Xn(s))DhXn(s)ds.

For given Xn, this equation can be regarded as a stochastic differential equation of

DXn(·)[h] with linear coefficients. Thus by Problem 6.15 of Chapter 5 in [11] we have

DhXn(T ) =

∫ T

0

(
r∑

j=1

ḣj(s)σ
(n)
j (s,Xn(s))

)
exp

(
r∑

j=1

∫ T

s

∂xσ
(n)
j (u, Xn(u))dBj(u)

−1

2

∫ T

s

r∑
j=1

[∂xσ
(n)
j (u,Xn(u))]2du +

∫ T

s

∂xb
(n)(u, Xn(u))du

)
ds.

Take

hj(t) := t, t ∈ [0, T ], j = 1, 2, . . . , r.

Then h ∈ H,

DhXn(T ) =

∫ T

0

(
r∑

j=1

σ
(n)
j (s,Xn(s))

)
exp

(
r∑

j=1

∫ T

s

∂xσ
(n)
j (u,Xn(u))dBj(u)

−1

2

∫ T

s

r∑
j=1

[∂xσ
(n)
j (u,Xn(u))]2du +

∫ T

s

∂xb
(n)(u,Xn(u))du

)
ds,

(3.2.2)

and

DhXn(T ) ≥ 0, n = 1, 2, 3, . . . .

To obtain some information about the exponential part, we consider the time-reversal

process of (Xn, B) by following the argument given in Section 4 of Chapter VII in [21].
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Let ∆ be the point of one point compactification of Rr+2 and Zn an r + 2-dimensional

Markov process defined by

Zn(t) :=


Xn(t)

t

B1(t)
...

Bj(t)

 , if 0 < t < T, and Zn(t) := ∆, if t ≥ T.

We denote the starting point of Zn by x̃0. Clearly Zn(0) = x̃0 = (x0, 0, . . . , 0). Let W r+2

be C([0,∞);Rr+2 ∪∆), B(W r+2) a Borel σ-field of W r+2, and PZn a probability measure

on (W r+2, B(W r+2)) the law of Zn. We define ζ by

ζ(w) := inf{t > 0; w2(t) > T}, w ∈ W r+2,

where w2 means the second component of w. It is clear that ζ is the lifetime and ζ = T a.s.

under PZn . Moreover, ζ becomes co-optional time, because of the definition of ζ. Since

Zn is a Markov process, we can define a semi-group associated to PZn . Let {Tt} be the

Feller semi-group on C∞(Rr+2 ∪ ∆), where

C∞(Rr+2 ∪ ∆) := {f ∈ C(Rr+2 ∪ ∆) ; lim
|x|→∞

f(x) = 0}.

We define a measure ν on Rr+2 ∪ ∆ by∫
Rr+2

f(x)ν(dx) =

∫ ∞

0

Tsf(x̃0)ds, f ∈ C∞(Rr+2 ∪ ∆).

By the definition of ζ, this integration is well-defined. Then, it is easy to see that {Tt} is

a strong continuous and contractive semi-group on L2(ν). Next we define T̂t by the dual

operator of Tt on L2(ν). Then we have the following lemma.

Lemma 3.2.5 {T̂t} is a strong continuous and contractive semi-group on L2(ν).

Proof of Lemma 3.2.5. It is clear that {T̂t} is a semi-group on L2(ν). Contractivity of

{T̂t} on L2(ν) follows from that of {Tt}. Thus it is sufficient to show the strong continuity

on L2(ν). Let f and g ∈ C∞(Rr+2 ∪ ∆). Then∫
Rr+2∪∆

f(T̂tg)dν =

∫
Rr+2∪∆

(Ttf)gdν −→
∫

Rr+2∪∆

fgdν, as t → 0. (3.2.3)

For all f ∈ C∞(Rr+2 ∪ ∆)∫
Rr+2∪∆

(T̂tf)2dν
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=

∫
Rr+2∪∆

(TtT̂tf)fdν

= E[

∫ ∞

0

(TtT̂tf)(Zn(s))f(Zn(s))ds]

= E[

∫ ∞

0

E[T̂tf(Zn(t + s))|Fs]f(Zn(s))ds]

= E[

∫ ∞

0

(T̂tf)(Zn(t + s))f(Zn(s))ds]

= E[

∫ ∞

0

(T̂tf)(Zn(t + s))f(Zn(t + s))ds]

−E[

∫ ∞

0

(T̂tf)(Zn(t + s))(f(Zn(t + s)) − f(Zn(s)))ds]. (3.2.4)

By the contractivity of {T̂t} on L2(ν) and (3.2.3), we have∣∣∣∣E[

∫ ∞

0

(T̂tf)(Zn(t + s))f(Zn(t + s))ds] − E[

∫ ∞

0

f(Zn(t + s))2ds]

∣∣∣∣
=

∣∣∣∣E[

∫ ∞

0

{((T̂t − I)f)(Zn(t + s))}f(Zn(t + s))ds]

∣∣∣∣
≤

∣∣∣∣E[

∫ ∞

0

{((T̂t − I)f)(Zn(s))}f(Zn(s))ds]

∣∣∣∣ +

∣∣∣∣E[

∫ t

0

{((T̂t − I)f)(Zn(s))}f(Zn(s))ds]

∣∣∣∣
≤

∣∣∣∣∫
Rr+2∪∆

((T̂t − I)f)fdν

∣∣∣∣ + E[

∫ t

0

{((T̂t − I)f)(Zn(s))}2ds]
1
2 E[

∫ t

0

f(Zn(s))2ds]
1
2

≤
∣∣∣∣∫

Rr+2∪∆

f((Tt − I)f)dν

∣∣∣∣ + ||(T̂t − I)f ||L2(ν)||f ||∞
√

t

−→ 0, as t → 0. (3.2.5)

On the other hand, by the contractivity of {T̂t} on L2(ν), we have∣∣∣∣E[

∫ ∞

0

(T̂tf)(Zn(t + s))(f(Zn(t + s)) − f(Zn(s)))ds]

∣∣∣∣
≤ E[

∫ ∞

0

{(T̂tf)(Zn(t + s))}2ds]
1
2 E[

∫ ∞

0

{f(Zn(t + s)) − f(Zn(s))}2ds]
1
2

≤ E[

∫ ∞

0

{(T̂tf)(Zn(s))}2ds]
1
2 E[

∫ T

0

{f(Zn(t + s)) − f(Zn(s))}2ds]
1
2

= ||T̂tf ||L2(ν)E[

∫ T

0

{f(Zn(t + s)) − f(Zn(s))}2ds]
1
2

−→ 0 as t → 0. (3.2.6)

Therefore, (3.2.4), (3.2.5), and (3.2.6) yield

lim
t→0

∣∣∣∣∫
Rr+2∪∆

(T̂tf)2dν − E[

∫ ∞

0

f(Zn(t + s))2ds]

∣∣∣∣ = 0.
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From ∣∣∣∣E[

∫ ∞

0

f(Zn(t + s))2ds] − E[

∫ ∞

0

f(Zn(s))2ds]

∣∣∣∣
=

∣∣∣∣E[

∫ t

0

f(Zn(s))2ds]

∣∣∣∣ ≤ ||f ||2∞t −→ 0, as t → 0,

it follows that

lim
t→0

∣∣∣∣∫
Rr+2∪∆

(T̂tf)2dν −
∫

Rr+2∪∆

f 2dν

∣∣∣∣ = 0.

Therefore, by this equation and (3.2.3)∫
Rr+2∪∆

|T̂tf − f |2dν

=

∫
Rr+2∪∆

(T̂tf)2dν − 2

∫
Rr+2∪∆

(T̂tf)fdν +

∫
Rr+2∪∆

f 2dν

=

∫
Rr+2∪∆

(T̂tf)2dν −
∫

Rr+2∪∆

f2dν − 2

(∫
Rr+2∪∆

(T̂tf)fdν −
∫

Rr+2∪∆

f 2dν

)
−→ 0, as t → 0.

¤

Now we continue to prove Theorem 3.2.4. Lemma 3.2.5 implies that a Markov process

associated with {T̂t}. Let

Ẑn(t) :=


Zn(ζ−), if t = 0,

Zn(ζ − t), if 0 < t < ζ,

∆, if t ≥ ζ.

Let F̂ n
t be σ(Ẑn(s); s ≤ t). Then, from Theorem (4.5) of Chapter VII in [21], it follows

that the process Ẑn is a Markov process with respect to (F̂ n
t ) associated with transition

semi-group {T̂t}. On the other hand, ζ = T . The processes (X̂n(t); t ∈ [0, T ]) and

(B̂(t); t ∈ [0, T ]) defined by

X̂n(t) := Xn(T − t), t ∈ [0, T ],

B̂(t) := B(T − t), t ∈ [0, T ],

are (F̂ n
t )-adapted processes. Moreover, we define (B̃(t); t ∈ [0, T ]) by

B̃(t) := B̂(t) − B̂(0).
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Since (B̂(t); t ∈ [0, T ]) is a Gaussian process, so is (B̃(t); t ∈ [0, T ]). By checking its mean

and its covariance, it is easy to see that (B̃(t); t ∈ [0, T ]) is an (F̂ n
t )-Brownian motion.

By Exercise(2.18) of Chapter IV in [21], we have

r∑
j=1

∫ T

T−t

∂xσ
(n)
j (s,Xn(s))dBj(s)

=
r∑

j=1

∫ t

0

∂xσ
(n)
j (T − s, X̂n(s))dB̂j(s)

+
r∑

j=1

∫ t

0

∂2
xσ

(n)
j (T − s, X̂n(s))σ

(n)
j (T − s, X̂n(s))ds a.s.

=
r∑

j=1

∫ t

0

∂xσ
(n)
j (T − s, X̂n(s))dB̃j(s)

+
r∑

j=1

∫ t

0

∂2
xσ

(n)
j (T − s, X̂n(s))σ

(n)
j (T − s, X̂n(s))ds a.s.

(3.2.7)

Note that all of stochastic integrals here are in the sense of Itô integral. Let m be any

positive integer. Let

τm
n := inf

{
t > 0; max

1≤j≤r

{∣∣∣∂xσ
(n)
j (T − t, X̂n(t))

∣∣∣ ∨ ∣∣∣∂2
xσ

(n)
j (T − t, X̂n(t))

∣∣∣} > m,

r∑
j=1

σ
(n)
j (T − t, X̂n(t)) <

1

m
, or (T − t, X̂n(t)) ∈ S

}
∧ T

for each m = 1, 2, 3, . . .. Then τm
n is an (F̂ n

t )-stopping time for every m = 1, 2, 3, . . ..

Hence,

E[ sup
t∈[0,T ]

|
∫ τm

n ∧t

0

∂xσ
(n)
j (T − s, X̂n(s))dB̃j(s)|2] ≤ m2T, j = 1, 2, . . . , r,

sup
t∈[0,T ]

|
∫ τm

n ∧t

0

∂2
xσ

(n)
j (T − s, X̂n(s))σ

(n)
j (T − s, X̂n(s))ds| ≤ MmT, j = 1, 2, . . . , r.

From these one can derive

E[ lim inf
n→∞

sup
t∈[0,T ]

|
∫ τm

n ∧t

0

∂xσ
(n)
j (T − s, X̂n(s))dB̃j(s)|2] ≤ m2T, j = 1, 2, . . . , r,

lim inf
n→∞

sup
t∈[0,T ]

|
∫ τm

n ∧t

0

∂2
xσ

(n)
j (T − s, X̂n(s))σ

(n)
j (T − s, X̂n(s))ds| ≤ MmT, j = 1, 2, . . . , r.
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Therefore we have

lim inf
n→∞

sup
t∈[0,T ]

|
∫ τm

n ∧t

0

∂xσ
(n)
j (T − s, X̂n(s))dB̃j(s)| < ∞ a.s., j = 1, 2, . . . , r,

lim inf
n→∞

sup
t∈[0,T ]

|
∫ τm

n ∧t

0

∂2
xσ

(n)
j (T − s, X̂n(s))σ

(n)
j (T − s, X̂n(s))ds| < ∞, j = 1, 2, . . . , r.

Let

τm := inf

{
t > 0; max

1≤j≤r

{
|∂xσj(T − t,X(T − t))| ∨

∣∣∂2
xσj(T − t,X(T − t))

∣∣} > m,

r∑
j=1

σj(T − t,X(T − t)) <
1

m
, or (T − t, X(T − t)) ∈ S

}
∧ T

for m = 1, 2, 3, . . .. Since
∑r

j=1 σj(T − t, X(T − t)) > 1
2m

for all t in a neighborhood of

τm, oscillation occurs in the neighborhood of τm. Because of this fact, (3.2.1), and the

definition of τm
n , it follows that

lim
n→∞

τm
n = τm a.s.

Hence, by (3.2.1) again, there exists a subsequence {n(k)} of N such that

lim
k→∞

sup
t∈[0,T ]

|
∫ τm

n(k)
∧t

0

∂xσ
(n(k))
j (T − s, X̂n(k)(s))dB̃j(s)| < ∞ a.s.,

j = 1, 2, . . . , r,

lim
k→∞

sup
t∈[0,T ]

|
∫ τm

n(k)
∧t

0

∂2
xσ

(n(k))
j (T − s, X̂n(k)(s))σ

(n(k))
j (T − s, X̂n(k)(s))ds| < ∞ a.s.,

j = 1, 2, . . . , r.

If we set

Yn(k)(t, T ) :=
r∑

j=1

∫ T

T−t

∂xσ
(n(k))
j (s,Xn(k)(s))dBj(s),

then by (3.2.7) there is a random variable C such that for almost all w

sup
t∈[τm

n(k)
(w),T ]

|Yn(k)(t, T )(w)| < C(w), k = 1, 2, 3, . . . .

On the other hand, by the definition of τm
n (w), for almost all w

sup
t∈[τm

n(k)
(w),T ]

∫ T

t

r∑
j=1

[∂xσ
(n(k))
j (u,Xn(k)(u, w))]2du ≤ rm2T, k = 1, 2, 3, . . . .
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This and (3.2.2) yield that for almost all w

DhXn(k)(T, w)

≥
∫ T

τm
n(k)

(w)

r∑
j=1

σ
(n(k))
j (s,Xn(k)(s, w)) exp

(
Yn(k)(s, T )

−1

2

∫ T

s

r∑
j=1

[∂xσ
(n(k))
j (u,Xn(k)(u,w))]2du +

∫ T

s

∂xb
(n(k))(u,Xn(k)(u,w))du

)
ds

≥ exp

(
−C(w) − 1

2
rm2T − KT

) r∑
j=1

∫ T

τm
n (w)

σ
(n)
j (s,Xn(s, w))ds

≥ 1

2m
(T − τm

n (w)) exp

(
−C(w) − 1

2
rm2T − KT

)
.

Hence for almost all w

lim inf
k→∞

DhXn(k)(T, w) ≥ 1

2m
exp

(
−C(w) − 1

2
rm2T − KT

)
lim inf

k→∞
(T − τm

n (w)).

If w satisfies X(T, w) ∈ S and lim infk→∞ τm
n(k)(w) < T , then

lim inf
k→∞

DhXn(k)(T, w) > 0.

On the other hand, for almost all w with respect to µ

DhX(T, w) = lim inf
ε→0

1

ε
(X(T, w + εh) − X(T,w))

= lim inf
ε→0

lim inf
k→∞

1

ε
(Xn(k)(T, w + εh) − Xn(k)(T, w))

= lim inf
ε→0

lim inf
k→∞

1

ε

∫ ε

0

DhXn(k)(T,w + uh)du

≥ lim inf
ε→0

1

ε

∫ ε

0

lim inf
k→∞

DhXn(k)(T,w + uh)du

= lim inf
k→∞

DhXn(k)(T, w)
h
,

where lim infk→∞ DhXn(k)(T, w)
h

means a right-continuous version of

lim infk→∞ DhXn(k)(T, w) for direction h. Since any non-degenerate Gaussian measure is

absolute continuous to the Lebesgue measure, we have

DhX(T ) ≥ lim inf
k→∞

DhXn(k)(T ) a.s.

From this it follows that there exists a null set N1(m) such that if w satisfies X(T, w) ∈ S,

lim infk→∞ τm
n(k)(w) < T and w /∈ N1(m), and hence

DhX(T, w) > 0.
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Now we define ST
m by

ST
m :=

{
x ∈ R; max

1≤j≤r

[
|∂xσj(T, x)| ∨

∣∣∂2
xσj(T, x)

∣∣] > m and
r∑

j=1

σj(T, x) >
1

m

}
.

Then, by the definition of τm
n(k) and (3.2.1), there exists a null set N2(m) such that

if X(T,w) ∈ ST
m and w /∈ N2(m), lim infk→∞ τm

n(k)(w) < T . Thus, if w satisfies that

X(T, w) ∈ ST
m and w /∈ N2(m), then

DhX(T, w) > 0.

This implies that

DhX(T, w) > 0, w ∈ (X(T ))−1(ST ) ∩

( ∪
m∈N

N2(m)

)c

.

By Theorem 3.2.3 we have the conclusion of Theorem 3.2.4. ¤

Example 3.2.6 Consider a one-dimensional stochastic differential equation:{
dX(t) =

√
X(t)dB(t) + b(t,X(t))dt

X(0) = x0 ∈ [0,∞),

where (B(t)) be a one-dimensional Brownian motion,

b ∈ Cb([0, T ] × [0,∞);R), b(t, 0) > 0, t ∈ [0, T ],

and there exists constants K satisfying that

|b(t, x) − b(t, y)| ≤ K|x − y|, x, y ∈ [0,∞) and t ∈ [0, T ].

Let (X(t)) be the solution of the stochastic differential equation. Then, the distribution

of X(t) has its density function for all t in [0, T ].

In fact, the condition of the coefficients implies that there exists a solution (X(t))

with state space [0,∞). Moreover according to the result in [28] tells that the stochastic

differential equation has pathwise uniqueness. Theorem 3.2.4 is applicable to it with

S = [0, T ] × {0}, so that

µ ◦ X(t)−1
∣∣
(0,∞)

is absolutely continuous to the one-dimensional Lebesgue measure restricted on (0,∞) for

all t in [0, T ]. Because of the condition of coefficients, it can be seen that µ◦X(t)−1({0}) =

0. Therefore the distribution of X(t) has its density function for all t in [0, T ].
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Chapter 4

Malliavin calculus for stochastic

differential equations driven by

subordinated Brownian motions

In this chapter we discuss Malliavin calculus for stochastic differential equations driven by

subordinated Brownian motions. We prepare the techniques for calculating the integrals

with deterministic time change in Section 4.1. These techniques enable us to apply to

the standard stochastic calculus to our case. In Section 4.2, we discuss Malliavin calculus

for stochastic differential equations with deterministic time change. In Section 4.3, we

discuss the inheritance of regularity of densities from those of conditional probabilities.

That is the reason why we consider stochastic differential equations with deterministic

time change. In Section 4.4, we derive the general results from Section 4.2 and Section 4.3.

In Section 4.5 we discuss the most interesting example: stochastic differential equations

driven by rotation-invariant stable processes.

Throughout this chapter, we use {Cj; j = 0, 1, 2, . . .} as positive constants and the

dependent parameters are written such as C0(p).

4.1 Malliavin calculus for functionals of Brownian

motions with deterministic time change

For a fixed positive number T , let ϕ be a right-continuous and increasing function on [0, T ]

with ϕ(0) = 0, where “increasing” means ϕ(t1) < ϕ(t2) for t1 < t2 through this chapter.
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We define the inverse function ϕ−1 by

ϕ−1(s) :=

{
inf{t; ϕ(t) > s}, if s ∈ [0, ϕ(T )),

T, if s = ϕ(T ).

Set

W := {w ; w is Rd-valued continuous function on [0, ϕ(T )], w(0) = 0},

H := {h ∈ C([0, ϕ(T )];Rd); h is absolutely continuous and ḣ ∈ L2([0, ϕ(T )];Rd)},

and let µ be the Wiener measure on W . The triplet (W,H, µ) is an abstract Wiener

space. Hence we can apply Malliavin calculus to the functionals on (W,H, µ). Let (B(t))

be the canonical d-dimensional Brownian motion associated with (W,H, µ), Ft the σ-field

generated by (B(s); 0 ≤ s ≤ ϕ(t)), D the H-derivative operator, and Dh the differential

in direction h for each h ∈ H. Then for all h ∈ H we have

DhB(ϕ(t)) = h(ϕ(t)), t ∈ [0, T ],

Dh

∫ T

0

f(t)dB(ϕ(t)) =

∫ T

0

f(t)dh(ϕ(t)), f ∈ C([0, T ]).

Here the integral of the left-hand side is in the sense of stochastic integrals by (Ft)-

martingales, and that of the right-hand side is in the sense of Stieltjes integrals. More

generally, we have an analogue of Proposition 6.1 in [24]. We need some lemmas and some

notation before we state the analogue.

Lemma 4.1.1 Let f be a right-continuous function with left limits. Then we have∫ T

0

f(t−)dϕ(t) =

∫ ϕ(T )

0

f(ϕ−1(s)−)ds.

Proof. Since ϕ is a function of bounded variation, the contribution of the small jumps

for the integrals are sufficiently small. We assume that the number N of the jumps

of ϕ is finite. Let {ξi; i = 1, 2, . . . , N − 1} be the discontinuous points of ϕ, ξ0 := 0,

ξN := T , and {ti,j; j = 0, 1, . . . , Ni} a partition of [ξi−1, ξi] for i = 1, 2, . . . , N . We denote

maxi,j(ti,j − ti,j−1) by ∆. Then,∫ T

0

f(t−)dϕ(t)

= lim
∆→0

N∑
i=1

[
Ni−1∑
j=1

f(ti,j−1−){ϕ(ti,j) − ϕ(ti,j−1)} + f(ti,Ni−1−){ϕ(ti,Ni
−) − ϕ(ti,Ni−1)}

+ f(ti,Ni
−){ϕ(ti,Ni

) − ϕ(ti,Ni
−)}

]
.
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If we set si,j := ϕ(ti,j), then ϕ−1(si,j) = ti,j for j = 0, 1, . . . , Ni − 1. Therefore∫ T

0

f(t−)dϕ(t)

= lim
∆→0

N∑
i=1

[
Ni−1∑
j=1

f(ϕ−1(si,j−1)−){si,j − si,j−1} + f(ϕ−1(si,Ni−1)−){ϕ(ti,Ni
−) − si,Ni−1}

+ f(ϕ−1(si,Ni
)−){ϕ(ti,Ni

) − ϕ(ti,Ni
−)}

]

=
N∑

i=1

∫ ϕ(ξi−)

ϕ(ξi−1)

f(ϕ−1(s)−)ds +
N∑

i=1

f(ϕ−1(si,Ni
)−){ϕ(ξi) − ϕ(ξi−)}.

Since ϕ−1(s) is a constant on [ϕ(ξi−), ϕ(ξi)],

f(ϕ−1(si,Ni
)−){ϕ(ξi) − ϕ(ξi−)} =

∫ ϕ(ξi)

ϕ(ξi−)

f(ϕ−1(s)−)ds, i = 1, 2, . . . , N.

Thus we have ∫ T

0

f(t−)dϕ(t) =

∫ ϕ(T )

0

f(ϕ−1(s)−)ds.

¤

Similarly we have the following lemma.

Lemma 4.1.2 Let Ψ be an (Ft)-adapted right-continuous process with left limits satisfy-

ing that

E

[∫ T

0

|Ψ(s−)|2dϕ(s)

]
< ∞.

Then we have ∫ T

0

Ψ(t−)dB(ϕ(t)) =

∫ ϕ(T )

0

Ψ(ϕ−1(s)−)dB(s) a.s.

Here the integral of the left-hand side is in the sense of stochastic integrals by (Ft)-

martingales, and that of the right-hand side is in the sense of stochastic integrals by

(FB
t )-martingales, where (FB

t ) is the σ-field generated by (Bs; 0 ≤ s ≤ t).

Let A(t) be [B(ϕ(·)), B(ϕ(·))](t) where the definition of [·, ·] is in Section 6 of Chapter

II in [20]. We show the following lemma which is a version of Burkholder’s inequality (c.f.

Theorem 92 of Chapter VII of [5]).
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Lemma 4.1.3 Let p be a positive number, and Ψ an (Ft)-adapted right-continuous pro-

cess with left limits satisfying

E

[∫ T

0

|Ψ(s−)|2dϕ(s)

]
< ∞.

Then, we have[(∫ T

0

Ψ(s−)2dA(s)

) p
2

]
≤ C0(p)E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

Ψ(s−)dB(ϕ(s))

∣∣∣∣p]

≤ C1(p)E

[(∫ T

0

Ψ(s−)2dϕ(s)

) p
2

]
.

Proof. Theorem 92 of Chapter VII of [5] implies the first estimate. Hence we prove

the second estimate. Let

M(t) :=

∫ t

0

Ψ(ϕ−1(s)−)dB(s).

Then, M is a continuous martingale. From Burkholder’s inequality, Lemma 4.1.1, and

Lemma 4.1.2 it holds with a constant C(p) that

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

Ψ(s−)dB(ϕ(s))

∣∣∣∣p] = E

[
sup

0≤t≤T
|M(ϕ(t))|p

]
≤ E

[
sup

0≤t≤ϕ(T )

|M(t)|p
]

≤ C(p)E
[
⟨M(t)⟩(ϕ(T ))

p
2

]
= C(p)E

(∫ ϕ(T )

0

Ψ(ϕ−1(s)−)2ds

) p
2


= C(p)E

[(∫ T

0

Ψ(s−)2dϕ(s)

) p
2

]
.

¤

The following lemma is a version of Gronwall’s inequality.

Lemma 4.1.4 Let α, β be positive constants, f a right-continuous positive function on

[0, T ] with left limits. If

f(t) ≤ α + β

∫ t

0

f(u−)dϕ(u), t ∈ [0, T ],

then

f(t) ≤ αeβϕ(t), t ∈ [0, T ].
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Proof. Since ϕ−1(ϕ(t)) = t, it follows from Lemma 4.1.1 that

f(ϕ−1(ϕ(t))) ≤ α + β

∫ ϕ(t)

0

f(ϕ−1(u))du, t ∈ [0, T ],

which implies that

f(ϕ−1(ϕ(t−))) ≤ α + β

∫ ϕ(t−)

0

f(ϕ−1(u))du, t ∈ [0, T ].

Since ϕ−1(s) = ϕ−1(ϕ(t−)) for s ∈ [ϕ(t−), ϕ(t)], we have

f(ϕ−1(s)) ≤ α + β

∫ s

0

f(ϕ−1(u))du, s ∈ [0, ϕ(T )].

Applying Gronwall’s inequality to f ◦ ϕ−1, we have

f(ϕ−1(s)) ≤ αeβs, s ∈ [0, ϕ(T )],

and hence have the assertion of Lemma 4.1.4 by letting s = ϕ(t) and the equality

ϕ−1(ϕ(t)) = t. ¤

We prepare some notation. Let p > 1, n a positive integer, K a Hilbert space, W n,p(K)

the Sobolev space of K-valued functions associated with H-derivative with indices n and

p, and L n
2 (H; K) the total set of K-valued n-linear operators of Hilbert-Schmidt class

on

n︷ ︸︸ ︷
H × . . . × H. Now let us introduce two classes of stochastic processes. We define

Ln,p(dB(ϕ); K) by the total set of (Ft)-predictable Rd ⊗K-valued functions α satisfying

that α(t) ∈ W n,p(Rd ⊗ K) for all t ∈ [0, T ] and

||α||Ln,p(dB(ϕ);K) := E

[
n∑

k=0

{∫ T

0

|Dkα(t−)|2L k
2 (H;Rd⊗K)dϕ(t)

} p
2

] 1
p

< ∞.

Next we define Ln,p(dϕ; K) be the total set of (Ft)-predictable K-valued functions β

satisfying that β(t) ∈ W n,p(K) for all t ∈ [0, T ] and

||β||Ln,p(dϕ;K) :=
n∑

k=0

∫ T

0

E
[
|Dkβ(t−)|p

L k
2 (H;K)

] 1
p
dϕ(t) < ∞.

Let α = (α1, α2, . . . , αd) ∈ Ln,p(dB(ϕ); K), β ∈ Ln,p(dϕ; K), and γ = (γ(t); 0 ≤ t ≤ T ) an

(Ft)-adapted K-valued process. We assume that γ(t) ∈ W n,p(K) for all t ∈ [0, T ], and

Dkγ is an (Ft)-adapted L k
2 (H; K)-valued function such that

n∑
k=0

E

[
sup

0≤t≤T
|Dkγ(t)|p

L k
2 (H;K)

]
< ∞.
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Define Φ by

Φ(t) :=

∫ t

0

α(s−)dB(ϕ(s)) +

∫ t

0

β(s−)dϕ(s) + γ(t).

Then, the following proposition holds.

Proposition 4.1.5 Φ(t) ∈ W n,p(K) for all t ∈ [0, T ], DkΦ are (Ft)-adapted L k
2 (H; K)-

valued processes for k = 0, 1, . . . n, and there exists a constant C such that

E[ sup
0≤t≤T

|DkΦ(t)|pLk
2(H;K)

]
1
p

≤ C

(
||α||Ln,p(dB(ϕ);K) + ||β||Ln,p(dϕ;K) +

n∑
k=0

E

[
sup

0≤t≤T
|Dkγ(t)|p

L k
2 (H;K)

])
.

Furthermore, DΦ(t) is given by

DΦ(t)[h] =

∫ t

0

Dα(s−)[h]dB(ϕ(s)) +

∫ t

0

α(s−)dh(ϕ(s)) +

∫ t

0

Dβ(s−)[h]dϕ(s)

+Dγ(t)[h], h ∈ H.

Here the equality is in the sense of elements of Lp(H ⊗ K). Therefore, if we denote one

of the complete orthonormal systems of H by {hλ}, then

DΦ(t) =

∫ t

0

Dα(s−)dB(ϕ(s))

+
∑

λ

hλ ⊗
∫ ϕ(t)

0

α(ϕ−1(s)−)ḣλ(s)ds +

∫ t

0

Dβ(s−)dϕ(s) + Dγ(t).

Proof. To prove the first assertion, we use induction on n. For n = 0, by Lemma 4.1.3,

we have

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

α(s−)dB(ϕ(s))

∣∣∣∣p
K

]
≤ C1(p)E

[{∫ T

0

|α(s−)|2Rd⊗Kdϕ(s)

} p
2

]
= ||α||pL0,p(dB(ϕ);K).

The other terms are estimated easily. Thus we have the first assertion for n = 0.

Assuming the result for n − 1, we will show the estimate for n. We check only the

estimate of the stochastic integral, since that of the integral with respect to dϕ follows

similarly and clearly the part of γ follows. To simplify the notation, let d = 1. We will

show it in the case that α is a step function such as

α(t) = α(tj), for t ∈ [tj, tj + 1),
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where 0 = t0 < t1 < . . . < tN = T . For the general case it is obtained by taking the limit.

Note that α is left-continuous.

In this case, the stochastic integral is expressed as∫ T

0

α(t)dB(ϕ(t)) =
N−1∑
j=0

α(tj) {B(ϕ(tj+1)) − B(ϕ(tj))} .

It follows that for h ∈ H

Dh

∫ T

0

α(t)dB(ϕ(t))

=
N−1∑
j=0

Dhα(tj) {B(ϕ(tj+1)) − B(ϕ(tj))} +
N−1∑
j=0

α(tj) {h(ϕ(tj+1)) − h(ϕ(tj))}

=

∫ T

0

Dhα(t)dB(ϕ(t)) +

∫ T

0

α(t)dh(ϕ(t)).

Let Iα[h] :=
∫ T

0
α(t)dh(ϕ(t)). Now we show that Iα ∈ W n,p(H ⊗ K). Similarly to the

proof of Lemma 4.1.1 we have

Iα[h] =

∫ ϕ(T )

0

α(ϕ−1(s))dh(s),

and hence

Iα =
∑

λ

hλ ⊗
∫ ϕ(T )

0

α(ϕ−1(s))ḣλ(s)ds.

From this it follows that

DkIα =
∑

λ

hλ ⊗
∫ ϕ(T )

0

Dkα(ϕ−1(s))ḣλ(s)ds,

and

∣∣DkIα

∣∣2
Lk

2(H;H⊗K)
=

∑
λ

∣∣∣∣∣
∫ ϕ(T )

0

Dkα(ϕ−1(s))ḣλ(s)ds

∣∣∣∣∣
2

L k
2 (H;K)

=

∫ ϕ(T )

0

|Dkα(ϕ−1(s))|2L k
2 (H;K)ds

=

∫ T

0

|Dkα(t)|2L k
2 (H;K)dϕ(t)

by virtue of Lemma 4.1.1. Therefore we have that

Iα ∈ W n,p(H ⊗ K),

||DkIα||p ≤ ||α||Lk,p(dB(ϕ);K),
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and

D

(∫ T

0

α(t)dB(ϕ(t))

)
[h] =

∫ T

0

Dα(t)[h]dB(ϕ(t)) +

∫ T

0

α(t)dh(ϕ(t)) (4.1.1)

in the sense of elements of Lp(H ⊗ K). It is easy to see that the equation (4.1.1) is also

hold with T replaced by t ∈ [0, T ]. Hence we have

DΦ(t)[h] =

∫ t

0

Dα(s−)[h]dB(ϕ(s)) +

∫ t

0

α(s−)dh(ϕ(s)) +

∫ t

0

Dβ(s−)[h]dϕ(s) + Dγ(t)[h],

h ∈ H,

in the sense of elements of Lp(H⊗K), and the second assertion is obtained. Now we note

that DΦ satisfies the assumption of n−1. Indeed, the third term satisfies the assumption

of γ for n− 1. Therefore, by the assumption of induction, for k = 1, 2, . . . , n− 1, we have

E

[
sup

0≤t≤T
|DkDΦ(t)|L k

2 (H;H⊗K)

] 1
p

≤ C2(p)
{
||Dα||Ln−1,p(dB(ϕ);H⊗K) + ||Dβ||Ln−1,p(dB(ϕ);H⊗K)

+E

[
sup

0≤t≤T

∣∣DkIα(t)
∣∣p
L k

2 (H;H⊗K)

] 1
p

+ E

[
sup

0≤t≤T

∣∣DkDγ(t)
∣∣p
L k

2 (H;H⊗K)

] 1
p

}

≤ 2C2(p)

{
||α||Ln,p(dB(ϕ);K) + ||β||Ln,p(dB(ϕ);K) + E

[
sup

0≤t≤T

∣∣Dk+1γ(t)
∣∣p
L k+1

2 (H;K)

] 1
p

}
.

Thus we have the conclusion for n. ¤

4.2 Malliavin calculus for stochastic differential equa-

tions with deterministic time change

We fix T > 0. Let r be a positive integer, d1, d2, . . . , dr positive integers, ϕ1, ϕ2, . . . , ϕr

right-continuous increasing functions on [0, T ] starting at 0. Set

Wk := {w ; w is Rdk-valued continuous function on [0, ϕk(T )], w(0) = 0},
Hk := {h ∈ C([0, ϕk(T )];Rdk); h is absolutely continuous and ḣ ∈ L2([0, ϕk(T )];Rdk)},

and let µk be Wiener measure on Wk for k = 1, 2, . . . , r. We define the probability space

(W,P ) by

W := W1 × W2 × . . . × Wr,

P := µ1 ⊗ µ2 ⊗ . . . ⊗ µr.

45



If we set

H := H1 ⊗ H2 ⊗ . . . ⊗ Hr,

then (W,H, P ) is an abstract Wiener space. Let (Bk(t)) be the canonical dk-dimensional

Brownian motion associated with (Wk, Hk, µk) for k = 1, 2, . . . , r. Clearly, B1, B2, . . . , Br

are independent under P .

Next we consider stochastic differential equations with deterministic time change. Let

Zk(t) := Bk(ϕk(t)) for t ∈ [0, T ] and k = 1, 2, . . . , r and Ft the σ-field generated by

(Zk(s); 0 ≤ s ≤ t, k = 1, 2, . . . , r). Then, Zk is a square-integrable (Ft)-martingale for

every k = 1, 2, . . . , r. We consider the following N -dimensional stochastic differential

equation:  dX(t) =
r∑

k=1

σk(t,X(t−))dZk(t) + b(t,X(t))dt,

X(0) = x0,

(4.2.1)

where σk is an Rdk ⊗RN -valued continuous function on [0, T ]×RN for k = 1, 2, . . . , r, b is

an RN -valued continuous function on [0, T ]×RN , and x0 ∈ RN . We assume the estimate

max
k

|σk(t, x) − σk(t, y)| + |b(t, x) − b(t, y)| < K|x − y|, x, y ∈ RN , t ∈ [0, T ],

max
k

|σk(t, x)| + |b(t, x)| < K(1 + |x|), x ∈ RN , t ∈ [0, T ]

with a positive constant K. Then we have the following theorem.

Theorem 4.2.1 The equation (4.2.1) has a unique (Ft)-adapted solution X = (X(t))

satisfying for any p > 1

E

[
sup

0≤t≤T
|X(t)|p

]
≤ x0 exp

{
M

(
T +

r∑
k=1

ϕk(T )

)}
, (4.2.2)

where M is a constant depending on r, p and K.

Proof. It is sufficient to show (4.2.2) in the case of p ≥ 2. We use Picard’s successive

approximation. Let (Ft)-adapted right-continuous processes {Xn} with left limits be

defined by

X0(t) := x0,

Xn+1(t) := x0 +

∫ t

0

r∑
k=1

σk(s,Xn(s−))dZk(s) +

∫ t

0

b(s,Xn(s))ds.

It is to be noted that the discontinuous points of Xn correspond with the discontinuous

points of ϕ for any n almost surely. Now we show that there exists a constant M depending
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on p and K such that

E

[
sup

0≤s≤t
|Xn+1(s) − Xn(s)|p

] 1
p

≤ x0

2n
exp

{
M

(
t +

r∑
k=1

ϕk(t)

)}
(4.2.3)

by induction on n. When n = 1, it is easy to see that the inequality (4.2.3) holds for

sufficiently large M . We assume the inequality (4.2.3) for n − 1. Lemma 4.1.3 leads to

E

[
sup

0≤s≤t
|Xn+1(s) − Xn(s)|p

] 1
p

≤
r∑

k=1

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

(σk(u,Xn(u−)) − σk(u,Xn−1(u−)))dZk(u)

∣∣∣∣p] 1
p

+E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

(b(u, Xn(u)) − b(u,Xn−1(u)))du

∣∣∣∣p] 1
p

≤ C3(p)


r∑

k=1

E

[(∫ t

0

|σk(u,Xn(u−)) − σk(u,Xn−1(u−))|2dϕk(u)

) p
2

] 1
p

+E

[∣∣∣∣∫ t

0

(b(u,Xn(u)) − b(u,Xn−1(u)))du

∣∣∣∣p]
1
p

}

≤ C4(p,K)


r∑

k=1

E

[(∫ t

0

|Xn(u−) − Xn−1(u−)|2dϕk(u)

) p
2

] 1
p

+E

[(∫ t

0

|Xn(u) − Xn−1(u)|du

)p] 1
p

}

≤ C4(p,K)

{
r∑

k=1

(∫ t

0

E[|Xn(u−) − Xn−1(u−)|p]
2
p dϕk(u)

) 1
2

+

∫ t

0

E[|Xn(u) − Xn−1(u)|p]
1
p du

}
.

From the assumption of induction we derive

E

[
sup

0≤s≤t
|Xn+1(s) − Xn(s)|p

] 1
p

≤ x0

2n
C4(p, K)


r∑

k=1

(∫ t

0

exp

{
2M

(
u +

r∑
k=1

ϕk(u−)

)}
dϕk(u)

) 1
2

+

∫ t

0

exp

{
M

(
u +

r∑
l=1

ϕl(u)

)}
du

}
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≤ x0

2n
C4(p, K)

[
r∑

k=1

exp

{
M

(
t +

∑
l ̸=k

ϕl(t−)

)}(∫ t

0

exp (2Mϕk(u−)) dϕk(u)

) 1
2

+ exp

(
M

r∑
l=1

ϕl(t)

) ∫ t

0

eMudu

]
.

Since ϕk(ϕ
−1
k (s)−) ≤ s, Lemma 4.1.1 implies∫ t

0

exp (2Mϕk(u−)) dϕk(u) =

∫ ϕk(t)

0

exp
(
2Mϕk(ϕ

−1
k (s)−)

)
ds

≤
∫ ϕk(t)

0

exp(2Ms)ds

≤ 1

2M
exp(2Mϕk(t)).

Hence it is holds that

E

[
sup

0≤s≤t
|Xn+1(s) − Xn(s)|p

] 1
p

≤ x0

2n
C4(p,K)

[
r∑

k=1

exp

{
M

(
t +

∑
l ̸=k

ϕl(t−)

)}
1√
2M

eMϕk(t)

+ exp

(
M

r∑
l=1

ϕl(t)

)
1

M
eMt

]

≤ x0

2n
C4(p,K)

{
r√
2M

+
1

M

}
exp

{
M

(
t +

r∑
l=1

ϕl(t)

)}
.

If we choose M sufficiently large such that(
r√
2M

+
1

M

)
C4(p,K) ≤ 1

2
,

then the inequality (4.2.3) holds for n + 1. Therefore we complete the induction.

The inequality (4.2.3) leads to

E

[
sup

0≤s≤t
|Xn(s) − Xm(s)|p

] 1
p

≤ x0

2m
exp

{
M

(
t +

r∑
k=1

ϕk(t)

)}
.

for any positive integers n and m such that n > m. This inequality implies that {Xn} is

a Cauchy sequence. Hence there exists an (Ft)-adapted right-continuous process X with

left limits such that the discontinuous points of X correspond with the discontinuous

points of ϕ almost surely, and

lim
n→∞

E

[
sup

0≤s≤t
|X(s) − Xn(s)|p

] 1
p

= 0.
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It is easily seen that X is a solution of the equation (4.2.1). The estimate of X follows

easily.

To prove the uniqueness, let X and Y be two solutions of the equation (4.2.1). A

similar discussion as above yields

E

[
sup

0≤s≤t
|X(s) − Y (s)|2

]
≤ C5(p, r,K)

{
r∑

k=1

∫ t

0

E[|X(s−)) − Y (s−)|2]dϕk(s) +

∫ t

0

E[|X(s)) − Y (s)|2]ds

}

≤ C5(p, r,K)

∫ t

0

E

[
sup

0≤u≤s
|X(u−)) − Y (u−)|2

]
d

(
s +

r∑
k=1

ϕk(s)

)
.

Applying Lemma 4.1.4 to this inequality, we have

E

[
sup

0≤t≤T
|X(t) − Y (t)|2

]
= 0.

¤

Now we apply Malliavin calculus to the solution X = (X(t)) of the equation (4.2.1).

Theorem 4.2.2 We assume that σk ∈ C0,m([0, T ]×RN ;Rdk⊗RN) and ∇σk ∈ C0,m−1
b ([0, T ]×

RN ;RN⊗Rdk⊗RN) for k = 1, 2, . . . , r, b ∈ C0,m([0, T ]×RN ;RN), and ∇b ∈ C0,m−1
b ([0, T ]×

RN ;RN ⊗ RN). Then we have X(t) ∈ Wm,p(RN) for t ∈ [0, T ], and there exists a con-

stant M depending on r, p,m and the bounds of the spatial derivatives of σk and b up to

order m such that

||X(t)||m,p ≤ exp

{
M

(
t +

r∑
k=1

ϕk(t)

)}
, t ∈ [0, T ]. (4.2.4)

Proof. It is sufficient to show (4.2.4) in the case p ≥ 2. We define Xn as in the proof of

Theorem 4.2.1. The proof of Theorem 4.2.1 implies that Xn(t) converges to X(t) in Lp

for each t ∈ [0, T ]. Now we proceed to show that Xn(t) is in Wm,p for every t ∈ [0, T ] and

all n, and satisfies that the inequality

E

[
sup

0≤s≤t
|DjXn(s)|p

L j
2 (H;RN )

] 1
p

≤ exp

{
M

(
t +

r∑
k=1

ϕk(t)

)}
(4.2.5)

with a constant M depending on p,m and the bounds of the spatial derivatives of σk and

b up to order m such that for n = 0, 1, 2, . . . , j = 0, 1, . . . , m. For it we use the induction

on (n, j). By the proof of Theorem 4.2.1, we know that Xn(t) is in Lp for each t ∈ [0, T ]
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and all n, and there exists a constant M such that (4.2.5) holds for j = 0. Clearly X0(t)

is in Wm,p for each t ∈ [0, T ], and there exists a constant M such that (4.2.5) holds for

n = 0. Let j0 ≤ m. Next, as the hypothesis of the induction we assume that Xn(t)

is in W j,p for “each t ∈ [0, T ], all n and j = 0, 1, . . . , j0 − 1” and for “each t ∈ [0, T ],

n = 0, 1, . . . , n0 and j = 0, 1, . . . , j0”, and that there exists a constant M satisfying (4.2.5)

for “all n and j = 0, 1, . . . , j0 − 1” and for “n = 0, 1, . . . , n0 and j = 0, 1, . . . , j0”. Then

we show that Xn0+1(t) is in W j0,p for each t ∈ [0, T ], and that there exists a constant

M satisfying (4.2.5) for n0 + 1 and j0. Proposition 4.1.5 gives the explicit expression of

DXn0+1

DXn0+1(t) =
r∑

k=1

∫ t

0

∇σk(s,Xn0(s−))DXn0(s−)dZk(s) +

∫ t

0

∇b(s,Xn0(s))DXn0(s)ds

+
∑

λ

r∑
k=1

hλ
k ⊗

∫ ϕk(t)

0

σk(ϕ
−1
k (s), Xn0(ϕ

−1
k (s)))ḣλ

k(s)ds,

where {hλ = (hλ
1 , h

λ
2 , . . . , h

λ
r )}λ is a complete orthonormal normal system of H = H1 ⊗

H2 ⊗ . . . ⊗ Hr. Repeating this procedure, we have

Dj0Xn0+1(t)

=
r∑

k=1

∫ t

0

{
∇σk(s,Xn0(s−))Dj0Xn0(s−)

+

j0∑
l=1

Ak
l (s,Xn0(s−))Qk

l (DXn0(s−), . . . , Dj0−1Xn0(s−))

}
dZk(s)

+

∫ t

0

{
∇bk(s,Xn0(s))D

j0Xn0(s)

+

j0∑
l=1

Ãk
l (s,Xn0(s))Q̃

k
l (DXn0(s), . . . , D

j0−1Xn0(s))

}
ds

+
∑

λ

r∑
k=1

hλ
k ⊗

∫ ϕk(t)

0

j0−1∑
l=0

Âk
l (ϕ

−1
k (s), Xn0(ϕ

−1
k (s)))

×Q̂k
l (DXn0(ϕ

−1
k (s)), . . . , Dj0−1Xn0(ϕ

−1
k (s)))ḣλ

k(s)ds,

(4.2.6)

where Ak
l , Ã

k
l ∈ C1

b ([0, T ] × RN ; (RN)⊗l ⊗ Rdk ⊗ RN) , Âk
l ∈ C1([0, T ] × RN ; (RN)⊗l ⊗

Rdk ⊗ RN) satisfy that

max
l,k

|Âk
l (t, x)| ≤ C6({||∇lσk||∞}1≤l≤m,1≤k≤r)(1 + |x|), x ∈ RN , t ∈ [0, T ],

and Qk
l , Q̃

k
l , Q̂

k
l are (RN)⊗l ⊗ Hj0-valued functions whose components are polynomials of
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order l. Therefore, from Lemma 4.1.3, it follows that

E

[
sup

0≤s≤t
|Dj0Xn0+1(s)|p

L
j0
2 (H;RN )

] 1
p

≤ C7(p)E

[(
r∑

k=1

∫ t

0

|∇σk(s,Xn0(s))D
j0Xn0(s)

+

j0∑
l=1

Ak
l (s,Xn0(s))Q

k
l (DXn0(s), . . . , D

j0−1Xn0(s))|2L j0
2 (H;RN )

dϕk(s)

) p
2


1
p

+

∫ t

0

E
[
|∇bk(s,Xn0(s))D

j0Xn0(s)

+

j0∑
l=1

Ãk
l (s,Xn0(s))Q̃

k
l (DXn0(s), . . . , D

j0−1Xn0(s))|
p

L
j0
2 (H;RN )

] 1
p

ds

+
r∑

k=1

E

[(∫ ϕk(t)

0

|
j0−1∑
l=0

Âk
l (ϕ

−1
k (s), Xn0(ϕ

−1
k (s)))

× Q̂k
l (DXn0(ϕ

−1
k (s)), . . . , Dj0−1Xn0(ϕ

−1
k (s)))|2

L
j0
2 (H;RN )

ds

) p
2

 1
p

.

From Lemma 4.1.1 the last term of this inequality equals to

r∑
k=1

E

(∫ t

0

|
j0−1∑
l=0

Âk
l (s,Xn0(s−))Q̂k

l (DXn0(s−), . . . , Dj0−1Xn0(s−))|2
L

j0
2 (H;RN )

dϕk(s)

) p
2


1
p

.

On the other hand, the induction assumptions imply that

E

[
sup

0≤s≤t
|DjXn0(s)|

p

L j
2 (H;RN )

] 1
p

≤ C8

(
m, p, {||∇lσk||∞}1≤l≤m,1≤k≤r, {||∇lb||∞}1≤l≤m

)
× exp

{
C8

(
m, p, {||∇lσk||∞}1≤l≤m,1≤k≤r, {||∇lb||∞}1≤l≤m

) (
t +

r∑
k=1

ϕk(t)

)}
,

j = 0, 1, . . . , j0.

Hence, by Hölder’s inequality, we have

E
[
|Ak

l (s,Xn0(s))Q
k
l (DXn0(s), . . . , D

j0−1Xn0(s))|
p

L
j0
2 (H;RN )

]
≤ C9

(
m, p, {||∇lσk||∞}1≤l≤m,1≤k≤r, {||∇lb||∞}1≤l≤m

)
× exp

{
C9

(
m, p, {||∇lσk||∞}1≤l≤m,1≤k≤r, {||∇lb||∞}1≤l≤m

) (
t +

r∑
k=1

ϕk(t)

)}
.
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The same estimates also hold for Ãk
l Q̃

k
l and Âk

l Q̂
k
l . Then we can make similar argument

to the proof of Theorem 4.2.1, so that Xn0+1(t) ∈ W j0,p and (4.2.5) holds for sufficiently

large M depending on r, p,m and the bounds of the spatial derivatives of σk and b up to

order m. Thus we have

Xn(t) −→ X(t) in Lp, sup
n

||Xn(t)||m,p < ∞.

In help of Lemma 1.5.3. in [19], we have the conclusion. ¤

Next we consider the relation between the ellipticity of equations and the non-degeneracy

of Malliavin covariance matrices.

Theorem 4.2.3 We assume that σk ∈ C0,1([0, T ] ×RN ;Rdk ⊗RN) and ∇σk is bounded

for k = 1, 2, . . . , r, b ∈ C0,1([0, T ] × RN ;RN), ∇b is bounded, and that there exists a

positive constant ε such that

r∑
k=1

σk(0, x0)
tσk(0, x0) ≥ ε.

Then, Malliavin covariance matrix ∆(t) = ((DX i(t), DXj(t))H∗)ij is invertible, and there

exists a constant C = C(x0, N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞) such that for all p > 1

E[det(∆(t))−p] ≤ C min{ϕi(t); i = 1, 2, . . . , r}−Np exp [C(t + max{ϕi(t); i = 1, 2, . . . , r})] .
(4.2.7)

Moreover, if there exists a positive constant ε and t0 such that

r∑
k=1

σk(t, x) tσk(t, x) ≥ ε, t ∈ [0, t0], x ∈ RN ,

then we can choose a constant C = C(t0, N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞) satisfying

(4.2.7).

Proof. Let

Ak(t) := [Bk(ϕk(·)), Bk(ϕk(·))](t), t ∈ [0, T ], k = 1, 2, . . . , r.

We define two N ×N -matrix-valued processes J1 and J2 as the solutions of the following

stochastic differential equations, respectively. dJ1(t) =
r∑

k=1

∇σk(t,X(t−))J1(t−)dZk(t) + ∇b(t,X(t−))J1(t−)dt,

J1(0) = I,
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

dJ2(t) = −
r∑

k=1

J2(t−)∇σk(t,X(t−))dZk(t) − J2(t−)∇b(t,X(t−))dt

+
r∑

k=1

J2(t−)∇σk(t,X(t−))∇σk(t,X(t−))dAk(t),

J2(0) = I.

Corollary 2 and Theorem 29 of Section 6 of Chapter II in [20] imply that J1(t)J2(t) = I

for all t ∈ [0, T ], from which it follows that J1(t) = J2(t)
−1 and

J2(t)DX(t)[h] =
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−))dhk(ϕk(s)),

with h = (h1, h2, . . . , hr) ∈ H. By virtue of Lemma 4.1.1 this can be expressed as

J2(t)DX(t)[h] =
r∑

k=1

∫ ϕk(t)

0

J2(ϕ
−1
k (u)−)σk(ϕ

−1
k (u), X(ϕ−1

k (u)−))ḣk(u)du.

Hence, for a complete orthonormal normal system {hλ} of H we have

∆(t) = J1(t)
∑

λ

r∑
k=1

∫ ϕk(t)

0

J2(ϕ
−1
k (u)−)σk(ϕ

−1
k (u), X(ϕ−1

k (u)−))ḣλ
k(u)du

×
∫ ϕk(t)

0

t[J2(ϕ
−1
k (u)−)σk(ϕ

−1
k (u), X(ϕ−1

k (u)−))]ḣλ
k(u)du tJ1(t)

= J1(t)
r∑

k=1

∫ ϕk(t)

0

J2(ϕ
−1
k (u)−)σk(ϕ

−1
k (u), X(ϕ−1

k (u)−))

× tσk(ϕ
−1
k (u), X(ϕ−1

k (u)−)) tJ2(ϕ
−1
k (u)−)du tJ1(t)

= J1(t)
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)
tJ1(t).

From this one can derive

det(∆(t)) = det(J1(t))
2 det

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)

)
.

(4.2.8)

For the estimate of det(J1(t)), the following lemma holds.

Lemma 4.2.4

E[| det(J2(t))|p]
≤ C10(p,N, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)

× exp [C10(p,N, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)(t + max{ϕi(t); i = 1, 2, . . . , r})] .
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Proof of Lemma 4.2.4. Lemma 4.1.3 enable us to make similar discussion in the proof of

Theorem 4.2.1, and it follows

max
i,j

E

[
sup

0≤s≤t
|(J2(s))ij|p

] 1
p

≤ C11(p, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)

×
∫ t

0

max
i,j

E

[
sup

0≤u≤s
|(J2(u))ij|p

] 1
p

d

(
s +

r∑
k=1

ϕk(s)

)
.

Lemma 4.1.4 yields that

max
i,j

E[|(J2(t))ij|p]
1
p ≤ C11(p, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)

× exp [C11(p, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)

×(t + max{ϕi(t); i = 1, 2, . . . , r})] .

By Hölder’s inequality, we have

E[| det(J2(t))|p] ≤ N ! max
i,j

E[|(J2(t))ij|Np]
1

Np .

Therefore we have the conclusion of Lemma 4.2.4.

The estimate of Lemma 4.2.4 is sufficient for the part det(J1(t)). We estimate the

other part. Let ξ ∈ SN−1 where SN−1 is the (N − 1)-dimensional sphere centered at 0.

From the assumption of ellipticity and the compactness of SN−1, we can choose n ∈ N,

open sets Gi in SN−1, and ki = 1, 2, . . . , r, for i = 1, 2, . . . , n such that

n∪
i=1

Gi = SN−1,

tξσki
(0, x0)

tσki
(0, x0)ξ >

ε

2r
, ξ ∈ Gi, i = 1, 2, . . . , n.

By the continuity of {σk}, there exist Ri > 0 and ti ∈ (0, T ] such that

tξσki
(s, x) tσki

(s, x)ξ >
ε

3r
, x ∈ B(x0, Ri), s ∈ [0, ti] , ξ ∈ Gi

for i = 1, 2, . . . , n. Let R := mini Ri and t0 := mini ti. We define a stopping time ζ by

ζ := inf{t ∈ [0, T ]; |X(t) − x0| > R or |J1(t) − I| > δ} ∧ T,

where δ ∈ (0, t0) is chosen so small that

tξJ2(s)σki
(s, x) tσki

(s, x) tJ2(s)ξ ≥ ε

4r
,

x ∈ B(x0, R), s ∈ [0, ζ), ξ ∈ SN−1.
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To simplify the notation, we denote min{ϕi(t); i = 1, 2, . . . , r} by η(t). We note that η is

also a right-continuous increasing function on [0, T ]. Since Lemma 4.1.1 yields that for

i = 1, 2, . . . , n and ξ ∈ Gi

tξ

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)

)
ξ

≥
∫ t∧ζ

0

tξJ2(s−)σki
(s,X(s−)) tσki

(s,X(s−)) tJ2(s−)ξdϕki
(s)

≥ ε

4r
η(t ∧ ζ),

we have

det

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)

)
≥ 4−Nr−NεNη(t ∧ ζ)N .

Hence

E

[
det

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)

)−p]
≤ 4NprNpε−NpE[η(t ∧ ζ)−Np]

= 4NprNpε−NpE[η(t)−Np; ζ ≥ t] + 4NprNpε−NpE[η(ζ)−Np; ζ < t].

Since η(η−1(u)−) ≤ u, from Lemma 4.1.1 we have

η(ζ)−Np − η(t)−Np = Np

∫ η(t)

η(ζ)

u−Np−1du

≤ Np

∫ η(t)

η(ζ)

η(η−1(u)−)−Np−1du

= Np

∫ t

ζ

η(s−)−Np−1dη(s).

Hence we have

E

[
det

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s, X(s−)) tJ2(s−)dϕk(s)

)−p]
≤ 4NprNpε−Npη(t)−NpP (ζ ≥ t)

+4NprNpε−NpE

[
Np

∫ t

ζ

η(s−)−Np−1dη(s) + η(t)−Np; ζ < t

]
= 4NprNpε−Npη(t)−Np
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+4NprNpε−NpNpE

[∫ t

0

1(ζ,t](s)η(s−)−Np−1dη(s); ζ < t

]
= 4NprNpε−Npη(t)−Np

+4NprNpε−NpNp

∫ t

0

η(s−)−Np−1E[1(ζ,t](s); ζ < t]dη(s)

= 4NprNpε−Npη(t)−Np + 4NprNpε−NpNp

∫ t

0

η(s−)−Np−1P (ζ < s)dη(s). (4.2.9)

On the other hand, we have the following estimate for ζ.

Lemma 4.2.5

P (ζ ≤ t) ≤ 2Nr exp{−C12(N, r,R, δ, ||∇b||∞)η(t)−1}.

Proof of Lemma 4.2.5. Note that it is sufficient to prove the estimate for small t. Set

ζ1 = inf{t ∈ [0, T ]; |X(t) − x0| > R} ∧ T,

ζ2 = inf{t ∈ [0, T ]; |J1(t) − I| > δ} ∧ T.

Then it is sufficient to prove the same estimate for ζ1 and ζ2. Since the estimates for

ζ1 and ζ2 are proved similarly, we prove the estimate only for ζ2. We define continuous

martingale (Mk(t)) by

Mk(t) :=

∫ t

0

∇σk(ϕ
−1
k (s), X(ϕ−1

k (s)−))J1(ϕ
−1
k (s)−)dBk(s), k = 1, 2, . . . , r.

Denoting
∑N

i,j=1⟨(Mk)ij⟩ by ⟨Mk⟩ for k =, 1, 2, . . . , r, we have

⟨Mk⟩(ϕk(t ∧ ζ2)) =

∫ ϕk(t∧ζ2)

0

|∇σk(ϕ
−1
k (s), X(ϕ−1

k (s)−))J1(ϕ
−1
k (s)−)|2ds

≤ C13(δ)ϕk(t ∧ ζ2).

From Lemma 4.1.2, it follows that

sup
s∈[0,t]

|J1(s ∧ ζ2) − I| ≤
r∑

k=1

sup
s∈[0,ϕk(t∧ζ2)]

|Mk(s)| + C14(||∇b||∞)t.

Therefore, if t ≤ δ
2C14(||∇b||∞)

, then by Proposition 6.8 of [24], we have

P (ζ2 ≤ t) ≤ P

(
sup

s∈[0,t]

|J1(s ∧ ζ2) − I| ≥ δ

)

≤ P

(
r∑

k=1

sup
s∈[0,ϕk(t∧ζ2)]

|Mk(s)| ≥
δ

2

)
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≤
r∑

k=1

P

(
sup

s∈[0,ϕk(t∧ζ2)]

|Mk(s)| ≥
δ

2r

)

=
r∑

k=1

P

(
sup

s∈[0,ϕk(t∧ζ2)]

|Mk(s)| ≥
δ

2r
, ⟨Mk⟩(ϕk(t ∧ ζ2)) ≤ C13(δ)ϕk(t ∧ ζ2)

)

= 2N
r∑

k=1

exp

(
− δ2

8N2r2C13(δ)ϕk(t)

)
.

This completes the proof of Lemma 4.2.5.

From Lemma 4.2.5 it holds that

P (ζ < t) ≤ 2Nr exp{−C12(N, r,R, δ, ||∇b||∞)η(t−)−1}.

Therefore, by (4.2.9) we have

E

[
det

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)

)−p]
≤ 22NprNpε−Npη(t)−Np

+22Np+1rNp+1ε−NpN2p

∫ t

0

η(s−)−Np−1 exp{−C12(N, r,R, δ, ||∇b||∞)η(s−)−1}dη(s).

Now we estimate the second term in the right hand side of above inequality. Let

f(x) := x−Np−1e−C12(N,r,R,δ,||∇b||∞)x−1

.

It is easily seen that f is a positive, bounded, and concave function on (0,∞), and

the maximum is attained at x = C12(N,r,R,δ,||∇b||∞)
Np+1

. We denote the maximum jump of

(η(t); t ∈ [0, T ]) by J . Since u − J ≤ η(η−1(u)−) ≤ u, the following inequalities hold by

Lemma 4.1.1∫ t

0

η(s−)−Np−1e−C12(N,r,R,δ,||∇b||∞)η(s−)−1

dη(s)

=

∫ η(t)

0

η(η−1(u)−)−Np−1e−C12(N,r,R,δ,||∇b||∞)η(η−1(u)−)−1

du

≤
∫ J+

C12(N,r,R,δ,||∇b||∞)
Np+1

0

η(η−1(u)−)−Np−1e−C12(N,r,R,δ,||∇b||∞)η(η−1(u)−)−1

du

+

∫ ∞

J+
C12(N,r,R,δ,||∇b||∞)

Np+1

η(η−1(u)−)−Np−1e−C12(N,r,R,δ,||∇b||∞)η(η−1(u)−)−1

du

≤ ||f ||∞
(

J +
C12(N, r,R, δ, ||∇b||∞)

Np + 1

)
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+

∫ ∞

J+ 1
Np+1

(u − J)−Np−1e−C12(N,r,R,δ,||∇b||∞)(u−J)−1

du

≤ ||f ||∞
(

J +
C12(N, r,R, δ, ||∇b||∞)

Np + 1

)
+

∫ ∞

0

u−Np−1e−C12(N,r,R,δ,||∇b||∞)u−1

du.

Changing variables in the integral of the right hand side, we have∫ ∞

0

u−Np−1e−C12(N,r,R,δ,||∇b||∞)u−1

du = C12(N, r,R, δ, ||∇b||∞)−NpΓ(Np).

Here Γ is the gamma function. This leads to the inequality∫ t

0

η(s−)−Np−1e−C12(N,r,R,δ,||∇b||∞)η(s−)−1

dη(s) ≤ C15(N, p, r, R, δ, ||∇b||∞)(1 + J).

Therefore, we can conclude that for all t ∈ [0, T ]

E

[
det

(
r∑

k=1

∫ t

0

J2(s−)σk(s,X(s−)) tσk(s,X(s−)) tJ2(s−)dϕk(s)

)−p]

≤ 22NprNpε−Npη(t)−Np + 22Np+1rNp+1ε−NpN2pC15(N, p, r, R, δ, ||∇b||∞)(1 + J)

≤ C16(N, p, r, ε, R, δ, ||∇b||∞)(1 + J + η(t)−Np).

Note that R and δ are determined by {||∇σk||∞}1≤k≤r, x0, and ε. From (4.2.8), this

estimate, and Lemma 4.2.4, the first assertion follows. Since the condition of the second

assertion implies that the constants for the estimates can be chosen independently of x0

but dependently on t0, the second assertion is derived. ¤

Theorems 4.2.2 and 4.2.3 enable us to apply Sobolev’s inequality with respect to H-

derivative to the solution of the stochastic differential equation (4.2.1), and the following

theorem follows.

Theorem 4.2.6 For the stochastic differential equation (4.2.1), we assume that σk ∈
C0,m+2([0, T ] × RN ;Rdk ⊗ RN), ∇σk ∈ C0,m+1

b ([0, T ] × RN ;RN ⊗ Rdk ⊗ RN) for k =

1, 2, . . . , r, b ∈ C0,m+2([0, T ] × RN ;RN), ∇b ∈ C0,m+1
b ([0, T ] × RN ;RN ⊗ RN), and there

exists a positive constant ε such that

r∑
k=1

σk(0, x0)
tσk(0, x0) ≥ ε.
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Then, the law P (t, x0, dy) of X(t, x0) is absolutely continuous with respect to the Lebesgue

measure and its density function p(t, x, y) is estimated as

max
0≤l≤m

sup
y∈Rd

∣∣∇l
yp(t, x0, y)

∣∣ ≤ c1 min{ϕi(t); i = 1, 2, . . . , r}−c3 exp

{
c2

(
t +

r∑
k=1

ϕk(t)

)}
.

(4.2.10)

with positive constants c1, c2, c3. Moreover, if there exist positive constants ε and t0 such

that
r∑

k=1

σk(t, x) tσk(t, x) ≥ ε, t ∈ [0, t0], x ∈ RN ,

then the constants c1, c2, c3 in (4.2.10) can be chosen independently of x0 but dependently

on t0.

Proof. The conclusion follows from Theorems 4.2.3, 4.2.2, and Theorem 5.9 of [24]. ¤

4.3 Regularity properties of conditional probabilities

In this section, we consider the inheritance of regularity of densities from those of condi-

tional probabilities.

Let (Ω, F , P ) be a probability space, and G a sub-σ-field of F . We assume that there

exists a regular conditional probability p(ω, dω′) of P with respect to G . First we discuss

the absolute continuity.

Theorem 4.3.1 If the regular conditional probability p(ω, dω′) is absolutely continuous

with respect to a measure ν on (Ω,F ) for almost all ω, then P is also absolutely continuous

with respect to ν.

Proof. Let A ∈ F be a ν-null set. Since A is also p(ω, dω′)-null set for almost all ω,∫
Ω

1A(ω)P (dω) =

∫
Ω

∫
Ω

1A(ω′)p(ω, dω′)P (dω) = 0.

Thus we have the conclusion. ¤

Next we consider the regularity in case of Ω := RN and F := B(RN). Assume that

the regular conditional probability p(ω, dω′) has the density function p(ω, y) for almost

all ω.

59



Theorem 4.3.2 Let p(ω, ·) ∈ Cn
b (RN) for almost all ω and there exists a positive random

variable Y such that E[Y ] < ∞ and for almost all ω

||∂αp(ω, ·)||∞ ≤ Y (ω), |α| ≤ n.

Then P has its density function q ∈ Cn
b (RN).

Proof. Theorem 4.3.1 implies that P has its density function q. For f ∈ C∞
0 (RN) and

multi-index α, |α| ≤ n we obtain∣∣∣∣∫
RN

(∂αf)(x)q(x)dx

∣∣∣∣ =

∣∣∣∣∫
RN

(∫
RN

(∂αf)(y)p(ω, y)dy

)
P (dω)

∣∣∣∣
=

∣∣∣∣∫
RN

(∫
RN

f(y)(∂α
y p)(ω, y)dy

)
P (dω)

∣∣∣∣
≤

∫
RN

(∫
RN

|f(y)||(∂α
y p)(ω, y)|dy

)
P (dω)

≤
∫

RN

|f(y)|dy

∫
RN

Y (ω)P (dω).

From this q ∈ W n,∞(RN , dx) follows, and hence the assertion by Theorem 2 of Chapter

V in [25]. ¤

4.4 Regularity properties of solutions of stochastic

differential equations driven by subordinated Brow-

nian motions

In this section, we combine the results of Sections 4.2 and 4.3.

Let r be a positive integer, d1, d2, . . . , dk positive integers, (Ω, F , P ) a probability

space, and Zk(t) a dk-dimensional right continuous process on [0, T ] with left limits for

k = 1, 2, . . . , r, where {Zk; k = 1, 2, . . . , r} are independent totally. Let (Ft) be a σ-field

generated by {Zk(s); 0 ≤ s ≤ t, k = 1, 2, . . . , r}.
We assume that (Zk(t)) can be expressed as (Bk(τk(t))) for k = 1, 2, . . . , r, where

(Bk(t)) is a dk-dimensional Brownian motion for k = 1, 2, . . . , r, {τk; k = 1, 2, . . . , r}
are one-dimensional right continuous increasing processes starting at 0, and {Bk; k =

1, 2, . . . , r} and {τk; k = 1, 2, . . . , r} are independent totally. We call such a process Zk(t)

a subordinated Brownian motion and τk a subordinator. Let ZJ
k be the jump part of Zk

for k = 1, 2, . . . , r. We define a Poisson point process pk by

pk(t) := ZJ
k (t) − ZJ

k (t−),
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and decompose the counting measure Npk
(dtdx) on [0, T ] × Rdk of pk as

Npk
(dtdx) = 1D(x)Npk

(dtdx) + 1Dc(x)Npk
(dtdx),

where D is a unit ball with center 0 in Rdk . Then it holds that

ZJ
k (t) =

∫ t+

0

∫
Rdk

x1D(x)Npk
(dsdx) +

∫ t+

0

∫
Rdk

x1Dc(x)Npk
(dsdx).

In additional, we assume that the first term of the right-hand side is square integrable,

and the second term is a function of bounded variation with respect to t. Note that

the first term is martingale. This assumption implies that we can define the stochastic

integrals by {ZJ
k } and therefore by {Zk}. The detail of the definition can be found in [9].

We consider the following N -dimensional stochastic differential equation: dX(t) =
r∑

k=1

σk(t,X(t−))dZk(t) + b(t,X(t))dt,

X(0) = x0,

(4.4.1)

where σk ∈ C([0, T ] × RN ;Rdk ⊗ RN) for k = 1, 2, . . . , r, and b ∈ C([0, T ] × RN ;RN).

It is known that the solution of the stochastic differential equation has pathwise unique-

ness when the coefficients are Lipschitz continuous (c.f. Section 9 of Chapter IV in [9]).

We denote the σ-field generated by {τk; k = 1, 2, . . . , r} by F τ . Then, the argument

in Section 4.2 is available when we consider the equation (4.4.1) on (Ω, F , P (·|F τ )), and

the argument in Section 4.3 yields the following theorem.

Theorem 4.4.1 Assume that σk ∈ C0,1([0, T ] × RN ;Rdk ⊗ RN), ∇σk is bounded for

k = 1, 2, . . . , r, b ∈ C0,1([0, T ] × RN ;RN), ∇b is bounded, and there exists a positive

constant ε such that
r∑

k=1

σk(0, x0)
tσk(0, x0) ≥ ε.

Then the equation (4.4.1) has the unique solution (X(t)), and the distribution of X(t) has

its density for t ∈ (0, T ].

Proof. Under the probability P (·|F τ ) we can apply Theorems 4.2.2, 4.2.3, and The-

orem 1 of Chapter VIII in [25], so that P (·|F τ ) is absolutely continuous with respect

to the N -dimensional Lebesgue measure almost surely. Thus the conclusion follows from

Theorem 4.3.1 ¤

For the regularity of the density function of the solution, we have the following theorem.
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Theorem 4.4.2 Assume that σk ∈ C0,m+2([0, T ]×RN ;Rdk⊗RN) and ∇σk ∈ C0,m+1
b ([0, T ]×

RN ;RN ⊗ Rdk ⊗ RN) for k = 1, 2, . . . , r, b ∈ C0,m+2([0, T ] × RN ;RN), and ∇b ∈
C0,m+1

b ([0, T ] × RN ;RN ⊗ RN), and there exists a positive constant ε such that

σ(0, x0)
tσ(0, x0) ≥ ε.

Moreover, we assume that

r∑
k=1

E
[
(τk(T ))−A exp (Aτk(T ))

]
< ∞, for all A ∈ [0,∞).

Let (X(t)) be the solution of the stochastic differential equation (4.4.1). Then the distri-

bution of X(T ) has its density q(x), and q ∈ Cm
b (RN).

Proof. Under the probability P (·|F τ ) we can use Theorem 4.2.6. Therefore we have

the conclusion by Theorem 4.3.2. ¤

4.5 Regularity properties of solutions of stochastic

differential equations driven by stable processes

In this section, we consider special, but the most interesting, case of above results, that

is, stochastic differential equations driven by stable processes.

Let r be a positive integer, d1, d2, . . . , dk positive integers, (Ω, F , P ) a probability

space, αk ∈ (0, 2] for k = 1, 2, . . . , r, and Zk(t) a dk-dimensional rotation-invariant αk-

stable process for k = 1, 2, . . . , r, where {Zk; k = 1, 2, . . . , r} are independent. Let (Ft)

be a σ-field generated by {Zk(s); 0 ≤ s ≤ t, k = 1, 2, . . . , r}. We consider the following

N -dimensional stochastic differential equation: dX(t) =
r∑

k=1

σk(t,X(t−))dZk(t) + b(t,X(t))dt,

X(0) = x0,

(4.5.1)

where σk ∈ C([0, T ] × RN ;Rdk ⊗ RN) for k = 1, 2, . . . , r, and b ∈ C([0, T ] × RN ;RN).

The stochastic integrals are defined as in the previous section.

Now we use subordination. (Zk(t)) can be expressed as (Bk(τk(t))) for k = 1, 2, . . . , r,

where Bk is a dk-dimensional Brownian motion for k = 1, 2, . . . , r, τk is a one-sided αk/2-

stable process if αk ̸= 2 and τk(t) = t if αk = 2 for k = 1, 2, . . . , r, and {Bk; k = 1, 2, . . . , r}
and {τk; k = 1, 2, . . . , r} are totally independent. If necessary, we extend the probability
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space (Ω, F , P ). Note that the assumptions of Section 4.4 are satisfied. We denote the

σ-field generated by {τk; k = 1, 2, . . . , r} by F τ . Then, by Theorem 4.4.1, we have the

following theorem.

Theorem 4.5.1 Assume that σk ∈ C0,1([0, T ] × RN ;Rdk ⊗ RN), ∇σk is bounded for

k = 1, 2, . . . , r, b ∈ C0,1([0, T ] × RN ;RN), ∇b is bounded, and there exists a positive

constant ε such that
r∑

k=1

σk(0, x0)
tσk(0, x0) ≥ ε.

Then the equation (4.5.1) has the unique solution (X(t)), and the distribution of X(t) has

its density for t ∈ (0, T ].

Finally we consider the regularity of the density function of the solution. Theorem

4.4.2 is not available, because the condition of the expectation of exponential function

does not hold. However, in the case that r = 1, the following theorem holds.

Theorem 4.5.2 Assume that r = 1, σ ∈ C0,m+2([0, T ]×RN ;Rd⊗RN), ∇σk ∈ C0,m+1
b ([0, T ]×

RN ;RN ⊗Rd ⊗RN), b ∈ C0,m+2([0, T ]×RN ;RN), ∇b ∈ C0,m+1
b ([0, T ]×RN ;RN ⊗RN),

and there exists a positive constant ε such that

σ(t, x) tσ(t, x) ≥ ε, t ∈ [0, T ], x ∈ RN .

Let (X(t)) be the solution of the stochastic differential equation (4.5.1). Then, the distri-

bution of X(T ) has its density q ∈ Cm
b (RN).

Proof. Fix T0 > 0. We define an F τ -measurable random time ρ by

ρ := sup{t > 0; τ(T ) − τ(t) > T0}.

Let F τ,T0 be the σ-field generated by τ and (B(t); 0 ≤ t ≤ (τ(T )−T0)∨ 0). Consider the

following stochastic differential equation on [0, T − ρ] under P (·|F τ,T0):{
dX̃(t) = σ(ρ + t, X̃(t−))dZ̃(t) + b(ρ + t, X̃(t))dt,

X̃(0) = ξ0 + ξ,
(4.5.2)

where Z̃(t) := B(τ(ρ + t)) − B(τ(ρ)),

ξ0 := X(ρ−) + σ(ρ,X(ρ−))(B(τ(T ) − T0) − B(τ(ρ−))) + b(ρ,X(ρ−))(τ(ρ) − τ(ρ−)),

ξ := σ(ρ,X(ρ−))(B(τ(ρ)) − B(τ(T ) − T0)).
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Note that (Z̃(t)) is a Brownian motion with deterministic time change and ξ0 is a con-

stant under P (·|F τ,T0). According to Theorem 4.2.1, the equation (4.5.2) has the unique

solution X̃ on (Ω,F , P (·|F τ,T0)), and it holds that

X̃(t) = X(ρ + t) for t ∈ [0, T − ρ], P (·|F τ,T0)-a.s. (4.5.3)

On the other hand, if (W,H, µ) is the Wiener space generated by (B(t); τ(T ) − T0 ≤
t ≤ τ(T )), then Malliavin calculus is available for ξ and (X̃(t)) under P (·|F τ,T0). It is

easy to see that |Dξ|H ≤ ||σ||∞ and that Dkξ = 0 for k ≥ 2. By the similar discussion to

that in the proof of Theorem 4.2.2, for all p > 0 there exists a constant M such that

m+2∑
k=1

EP (·|F τ,T0 )
[
|DkX̃(ρ)|p

L k
2 (H;RN )

]
≤ M exp{M(T + τ(T ) − τ(ρ))}.

Since τ(T ) − τ(ρ) ≤ T0, we have

m+2∑
k=1

EP (·|F τ,T0 )
[
|DkX̃(ρ)|p

L k
2 (H;RN )

]
≤ M exp{M(T + T0)}. (4.5.4)

Now we consider the case that τ(T ) > T0. From the equation (4.5.2) and Proposition

4.1.5, it is clearly derived that for h ∈ H

DX̃(T − ρ)[h]

= Dξ[h] +

∫ T−ρ

0

∇σ(ρ + t, X̃(t−))DX̃(t−)[h]dZ̃(t)

+

∫ T−ρ

0

σ(ρ + t, X̃(t−))dh(τ(ρ + t)) +

∫ T−ρ

0

∇b(ρ + t, X̃(t))DX̃(t)[h]dt.

We make similar discussion to that in the proof of Theorem 4.2.3. Let

Ã(t) := [Z̃, Z̃](t), t ∈ [0, T − ρ].

We define two N ×N -matrix-valued processes J̃1 and J̃2 on [0, T − ρ] by the solutions of

the following stochastic differential equations, respectively. dJ̃1(t) = ∇σ(ρ + t, X̃(t−))J̃1(t−)dZ̃(t) + ∇b(ρ + t, X̃(t))J̃1(t−)dt,

J̃1(0) = I,
dJ̃2(t) = −J̃2(t−)∇σ(ρ + t, X̃(t−))dZ̃(t) − J̃2(t−)∇b(ρ + t, X̃(t))dt

+J̃2(t−)∇σ(ρ + t, X̃(t−))∇σ(ρ + t, X̃(t−))dÃ(t),

J̃2(0) = I.
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By Corollary 2 and Theorem 29 in Section 6 of Chapter II in [20], J̃1(t)J̃2(t) = I holds

for all t ∈ [0, T − ρ], and hence it follows that J̃1(t) = J̃2(t)
−1. To simplify the notation,

let J̃2(t) = I for t < 0. By Corollary 2 and Theorem 29 in Section 6 of Chapter 2 in [20]

again, we have

J̃2(T − ρ)DX̃(T − ρ)[h] = Dξ[h] +

∫ T−ρ

0

J̃2(t−)σ(ρ + t, X̃(t−))dh(τ(ρ + t)).

From this and (4.5.3) one can derive

J̃2(T − ρ)DX̃(T − ρ)[h] = Dξ[h] +

∫ T

ρ

J̃2((t − ρ)−)σ(t,X(t−))dh(τ(t)).

Lemma 4.1.1 and the definition of ξ yield

J̃2(T − ρ)DX̃(T − ρ)[h]

= σ(ρ,X(ρ−))(h(τ(ρ)) − h(τ(T ) − T0))

+

∫ τ(T )

τ(ρ)

J̃2((τ
−1(t) − ρ)−)σ(τ−1(t), X(τ−1(t)−))ḣ(τ−1(t))dt

=

∫ τ(ρ)

τ(T )−T0

σ(ρ,X(ρ−))dh(t)

+

∫ τ(T )

τ(ρ)

J̃2((τ
−1(t) − ρ)−)σ(τ−1(t), X(τ−1(t)−))ḣ(τ−1(t))dt

=

∫ τ(T )

τ(T )−T0

J̃2((τ
−1(t) − ρ)−)σ(τ−1(t), X(τ−1(t)−))ḣ(τ−1(t))dt.

Hence, if we denote the Malliavin covariance matrix ((DX̃ i(t), DX̃j(t))H∗)ij by ∆̃(t), then

∆̃(T − ρ) = J̃1(T − ρ)

∫ τ(T )

τ(T )−T0

J̃2((τ
−1(t) − ρ)−)σ(τ−1(t), X(τ−1(t)−))

× tσ(τ−1(t), X(τ−1(t)−)) tJ̃2((τ
−1(t) − ρ)−)dt tJ̃1(T − ρ),

and hence

det(∆̃(T − ρ))

= det(J̃1(T − ρ))2 det

(∫ τ(T )

τ(T )−T0

J̃2((τ
−1(t) − ρ)−)σ(τ−1(t), X(τ−1(t)−))

× tσ(τ−1(t), X(τ−1(t)−)) tJ̃2((τ
−1(t) − ρ)−)dt

)
.

Smilarly to the proof of Theorem 4.2.3, we conclude that for p ≥ 1 and τ(T ) > T0

EP (·|F τ,T0 )[det(∆̃(T − ρ))−p]

≤ C16(N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)T−Np
0

× exp [C16(N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)(T + T0)] .
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In the case τ(T ) ≤ T0 it holds that ρ = 0. Theorem 4.2.3 implies that for p ≥ 1 and

τ(T ) ≤ T0

EP (·|F τ,T0 )[det(∆̃(T ))−p] ≤ C17(N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)τ(T )−Np

× exp [C17(N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)(T + T0)] .

For p ≥ 1 and for all τ we have

EP (·|F τ,T0 )[det(∆̃(T ))−p] ≤ C18(N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)(T0 ∧ τ(T ))−Np

× exp [C18(N, p, ε, r, {||∇σk||∞}1≤k≤r, ||∇b||∞)(T + T0)] .

Therefore, by (4.5.4) and Theorem 5.9 in [24], the law of X̃(ρ) under P (·|F τ,T0) has its

density function pτ,T0 belonging to Cm
b (RN) P -almost surely and satisfying

max
0≤l≤m

sup
y∈Rd

∣∣∇l
ypτ,T0(T − ρ, ξ0 + ξ, y)

∣∣ ≤ c1(T0 ∧ τ(T ))−c3 exp {c2(T + T0)} , (4.5.5)

for some positive constants c1, c2, c3 independent of ξ

By (4.5.3), (4.5.5), and the Markov property of X under P (·|F τ,T0), we have that for

f ∈ C∞
b (RN) and a multi-index β = (β1, β2, . . . , βd), |β| ≤ m,∣∣EP [∂βf(X(T ))]

∣∣ =
∣∣EP [EP [∂βf(X(T ))|F τ,T0 ]]

∣∣
=

∣∣∣EP
[
EP (·|F τ,T0 )[∂βf(X̃τ,T0(T − ρ))]

]∣∣∣
=

∣∣∣∣EP

[∫
RN

∂βf(y)pτ,T0(T − ρ, ξ0 + ξ, y)dy

]∣∣∣∣
≤ EP

[∫
RN

|f(y)| |∂β
y pτ,T0(T − ρ, ξ0 + ξ, y)|dy

]
≤ c1E

p[(T0 ∧ τ(T ))−c3 ]||f ||L1(RN ) exp {c2(T + T0)} .

Since τ is a one-sided α/2-stable process and

EP [τ(T )−n] =

∫ ∞

0

∫ ∞

ηn

. . .

∫ ∞

η3

∫ ∞

η2

EP [exp(−η1τ(T ))]dη1dη2 . . . dηn−1dηn,

we have

EP [(τ(T ))−c3 ] < ∞.

Therefore applying Theorem 4.3.2 leads to the assertion of the theorem. ¤
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[18] R. Léandre, Calcul des variations sur un brownien subordonné, Séminaire de Proba-
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