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Abstract
Motivated to engineer micro-air vehicles, the relationship of the vorticity distribution

with force generated by a flapping rigid plate was investigated with stereo particle im-

age velocimetry. Measurements were conducted under the hovering condition with a

flapping rigid plate for the wing model and a sinusoidal function as the flapping motion.

The full deformation tensor was obtained by measuring the velocity vectors at three

measurement planes offset in the out-of-plane direction. The unsteady state of the flow

was resolved by phase averaging. Thus, the governing equations were decomposed into

the average and fluctuation terms.

Vortex structures were identified using the second invariant of the deformation tensor

and two-dimensional streamlines. Control volume analysis shows the interaction of the

vortex structures with the flapping plate as represented by the force acting on the control

volume. There is a phase difference between the generated force and flapping motion

for all the measured sections of the plate. Maximum force is generated when the plate

is at the start of either upstroke or downstroke, ie. the flapping motion is at low velocity.

On the leading edge, the unsteady term of the force increases with increasing Reynolds

number

The pressure field distribution around the flapping plate was visualized from the

velocity field by integrating the Poisson equation using two overlapping meshes. For

comparison, the torque of the flapping axis was calculated using the pressure estimation

and strain gauge measurement. In this study, qualitative agreement of the two meth-

ods is shown for the mid-chord section of the plate. The visualization of the pressure

field shows that the vortex flow increases the force generation at low flapping velocity

by creating a stagnation pressure from the flow induced by the vortices or inter-vortex

stream. This mechanism is responsible for the phase difference between the force and

the flapping motion. After the initial motion, there are pressure stagnations on the front

and rear surface of the plate. Front stagnation is produced by flow stagnation because of

the motion of the plate and rear stagnation is generated by the inter-vortex stream.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Micro-air vehicles and animal flight principles

A micro-air vehicle (MAV) is defined as an autonomous flying vehicle with dimensions

of less than 15 cm in length, width, and height (McMichael and Francis, 1997). It

functions as a platform for observations in close proximity or over an obstructed field

of view by at most two operators. Due to its size, MAV flies in low Reynolds number

regime similar to the flight of small birds and large insects. Animal flight is considered

for propulsion and lift as an alternative to conventional aerodynamics in designing an

MAV.

There is a fundamental difference between animal flight and the flight of fixed-wing

aircrafts. By definition, a fixed-wing aircraft does not flex its wing for generating lift and

a separate propulsion system is required for generating thrust. In animal flight, animals

use the motion of their wings to generate lift and to propel their body forward. There

are many variations in animal flight kinematics. Variations occur between species and

small variations within a species (Ellington, 1984; Azuma, 1992). Bird flight imposes an

active flexibility to the wing but insect flight has relatively simpler kinematics. Because

of this, much attention has been placed toward insect flight. A flapping stroke plane is

defined as the plane parallel with the path of the flapping stroke. Each flapping stroke

1



2 CHAPTER 1. INTRODUCTION

consists of an upstroke and a downstroke. Based on the orientation of the flapping stroke

plane relative to an inertial plane, three flapping strokes have been defined: horizontal,

vertical, and inclined stroke.

An example of flapping on the horizontal stroke plane can be seen in hummingbirds,

Chlorostilbon aureoventris, which hover with an eight-figure stroke path (Ellington,

1984). Detailed studies of flapping flight have been conducted for normal hovering by

Dickinson et al (1999); Birch and Dickinson (2001); Sane and Dickinson (2001, 2002);

Birch et al (2004); Poelma et al (2006) for the flight of Drosophila melanogaster or

fruitflies and by Ellington et al (1996); van den Berg and Ellington (1997); Van Den Berg

and Ellington (1997); Willmott et al (1997); Bomphrey et al (2005); Sane and Jacobson

(2006) for the flight of Manduca sexta or hawkmoths.

An example of flapping on the vertical stroke plane have been observed in butterflies

(Ellington, 1984; Srygley and Thomas, 2002; Mao and Xin, 2003), which show a vertical

stroke plane during the downward motion. In a vertical stroke plane, the wing motion is

perpendicular to the chord. At the start of the motion, the wings are clapped together and

then flung open and at the end of the downstroke the wings are almost clapped together

again. This motion produces a vortex ring. This flight mechanism is called clap-fling

and although initially observed to be utilized by butterflies, it is not restricted to vertical

stroke planes. Clap-fling mechanism at normal hovering was studied by Lehmann et al

(2005); Miller and Peskin (2005). This mechanism is used optimally for low Reynolds

number flight. At Re=32, the leading edge vortex forms and remains attached to the

wing compared for the flight at Re=64, where the leading edge vortex is shed during

each wing stroke, reducing the aerodynamic forces on the wing.

Studies of flapping wing mechanics of a dragon fly have shown an asymmetric wing

kinematics during the upstroke and downstroke in an inclined stroke plane (Azuma et al,

1985; Wang, 2004). This asymmetry produces different mean force for each stroke. The

vertical component of the force in inclined hovering is greater than the one generated

in normal hovering, which explains why dragonflies are among the best hoverers in the

insect world.

Animals fly by actively changing the shape of their wings by bending and twisting

to get the optimum thrust or lift (Shyy et al, 1999). Birds and bats change the shape of
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their wings with muscle tissue to deal with rapid changes of the flight environment. Bats

control their wing surface by changing the degree of surface tension of their wing mem-

brane, thereby changing the wing profile’s curvature by passive aeroelastic response of

the wing to aerodynamics loading. Flow control of MAV has been proposed using adap-

tive feedback control and actuators to change the shape of the wing (Ho et al, 2003). It

was found that the level of stiffness of the wing profile is essential in producing thrust for

an oscillating wing (Ho et al, 2003; Heathcote et al, 2004; Heathcote and Gursul, 2007)

and careful control of the spanwise flexibility of the wing with respect to the wing mo-

tion kinematics can enhance propulsive efficiency (Bandyoypadhyay, 2009; Heathcote

et al, 2008). Other ways to produce thrust are pitching rigid airfoils and purely plunging

airfoils (Lai and Platzer, 1999, 2000). Pitching airfoils have the prospect of producing

both lift and thrust at the same time when paired with the vertical oscillation motion of

the wing (Guglielmini and Blondeaux, 2004).

A variety of flight modes have also been observed depending on the behavior of

the insect: hovering flight, forward flight, and maneuver flight have been observed.

Hovering flight in flight vehicle is defined as flight with zero forward velocity as a result

of balancing the lift force and weight of the vehicle. Hovering in animal flight is defined

more loosely, where velocity and acceleration vectors of the body is low. In forward

steady flight the thrust balances the body drag of the insect. The ratio of the forward

velocity to the mean flapping velocity of the wing is called advance ratio. Hovering

flight can be defined when the advance ratio is almost zero. The mechanism of maneuver

flight has been investigated by Tobalske (2009). A yaw is defined as rotation of the body

on the vertical axis, which may happen due to gust or wind or by an asymmetric force

produced by the wings. A torque in the counter direction, called flapping counter torque,

is required to stop the yaw motion. Because of the rotation of the body, symmetric

motion of the wing relative to the body produces higher velocity on one of the wings,

which produces greater aerodynamic force compared to the other wing, which is moving

at lower velocity. The result is a torque of the body in the direction opposite of the yaw

motion, effectively stopping the yaw motion. The prediction of yaw damping as well

as pitch and roll damping have been formulated by Sunada et al (2010) experimentally

using a mechanical dragonfly and analytically using blade element theory.
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Two designs of micro air vehicle based on flapping wing are prevalent. The first is

the hybrid design using a plunging airfoil to generate thrust and a body in the shape of

a wing to generate lift while the vehicle is in forward motion. Lift and thrust genera-

tion from a plunging airfoil was studied by Knoller (1909) and Betz (1912) separately

and is called the Knoller–Betz effect (Jones et al, 1998). The flow has been reproduced

experimentally by Jones et al (1998); Lai and Platzer (1999). The flow downstream of

the airfoil was visualized by dye flow visualization and was quantified by laser doppler

measurements. A jet flow, instead of a wake, is produced from the shedding of vortices

from the trailing edges of a plunging airfoil above a critical flapping frequency. Thereby,

generating thrust instead of drag (Lai and Platzer, 1999). This jet flow is slanted pro-

viding a normal force component or lift on the wing at higher flapping frequency. The

profile of the wing is an important factor in the generation of thrust in hovering condi-

tion. Lai and Platzer (2000) had measured the velocity profile in front of the leading

edge and behind the trailing edge of a symmetrical airfoil and a circular cylinder. The

former produces thrust and the latter does not. The difference is that the circular cylin-

der has a symmetrical profile. The MAV design based on the Knoller-Betz phenomena

was discussed in Jones and Platzer (1997); Jones et al (2001); Jones and Platzer (2009).

Because forward motion is necessary to generate lift, this design lacks the maneuvering

capabilities that an insect or a bird has. These capabilities are potentially achievable by

the second design.

The second design mimics the kinematics of small birds or insects by solely using the

flapping wing to generate lift and thrust. This design mimics the flight characteristics

of insects and small birds. The design of a biologically inspired flapping wing was

discussed by Bandyoypadhyay (2009). The maneuvering capabilities of flapping birds

or insects can help the operation of MAV in tight and narrow spaces. The aerodynamic

study of MAV design has also given more information for zoologist because of the

similarities with animal flight.

1.1.2 Measurement history

Flapping wing research have mostly been done by zoologist in search of the mechanics

of insect and bird flight. The flight of insects has been studied at the Reynolds number of
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1000–10000 using qualitative visualizations of a tethered hawkmoth and a mechanical

scaled-up wing modeled after the same insect shows a conical vortex bubble stabilized

by a spanwise flow formed closely behind the leading edge of the wing and associated

with lift enhancement while the wing has a high angle of attack (Ellington et al, 1996;

van den Berg and Ellington, 1997; Van Den Berg and Ellington, 1997; Willmott et al,

1997; Bomphrey et al, 2005; Sane and Jacobson, 2006). The spanwise flow direction

from the base of the flapping wing to the tip limits the growth of the leading-edge vortex

by removing the energy from the vortex core. This mechanism is generated during the

translational phase of the wing. The spanwise flow decelerates indicating a breakdown

of the vortex bubble near the tip of the plate.

The flapping kinematics of a fruit fly is similar to that of a hawkmoth. In observa-

tions of mechanical wing of a fruit fly at Re=136, additional lift generating mechanisms

called wing rotation increases the flow circulation and wake capture interacts with the

separated vortex at the start of a stroke (Dickinson et al, 1999; Birch and Dickinson,

2001; Sane and Dickinson, 2001, 2002; Birch et al, 2004; Poelma et al, 2006). This

theory is taken as a generalized theory of insect flight with variations of the start of the

wing rotation to compensate for variations of species. The timing of the wing rotation

with the end of the stroke influences the increase of lift. Delaying the start of the wing

rotation produces 70% less lift than advancing the wing rotation and 65% less lift when

the wing rotates in conjunction with the end of the stroke. The position of the axis of

rotation of the wing also influences the induced circulation. Rotating the wing on the

leading edge have been shown to induce the highest added circulation and rotating the

wing on its trailing edge actually produces negative added circulation. Wake capture

enhances the lift of the flapping wing at the start of each stroke because of the induced

flow of the surrounding fluid from the shed vortices of the previous stroke. The flow

induced by these vortices is called inter-vortex stream. The effect of wake capture to

the force generation is a distinct force peak that develops immediately after the wing

changes the direction of motion. At Re=136, the axial flow of the vortex bubble is not

clearly distinguishable due to the prominence of viscosity whereas, at Re=1400, the

axial flow phenomena is prevalent during the translational phase of the flapping stroke

(Birch et al, 2004). At Re=1400, the spanwise flow from the base of the flapping wing
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to the tip limits the growth of the leading edge vortex by removing the energy of the

vortex core. While at Re=136 the spanwise flow is not clearly observed and the stability

of the leading edge vortex is postulated due to the downwash of the tip vortex, which

reduces the effective angle of attack of the wing.

Hovering motion in an inclined stroke plane shows relatively higher lift and aerody-

namic efficiency. Two-dimensional numerical simulations of wing kinematics, modeled

after a dragonfly at Re=1350, have shown that the increase in lift is explained by the con-

tribution of drag to the vertical component of force (Sun and Lan, 2004; Wang, 2004).

The inclined stroke plane improves the performance of insects at hovering condi-

tions. The flow generated by an accelerating vertical stroke plane was visualized by

Ringuette et al (2007) with the effect of tip vortex put under scrutiny. The tip vortex is

responsible for the increase of drag and suppression of the tip vortex reduces the drag

component. It shows that the tip vortex improves the stability of the attached leading

edge vortex and the three-dimensional effect may increase the vertical force.

Studies by Dickinson et al (1999); Ellington et al (1996); Wang (2004) were done

using qualitative visualization, force measurements using load cells, and numerical in-

vestigation. Flapping wing inspired MAV designs and analysis have been studied (Tsai

and Fu, 2009; Ansari et al, 2009; Ho et al, 2003). Aerodynamic experiments to obtain

the flow field generated by a two-dimensional profile of flapping wings have been done

by Poelma et al (2006), which visualizes the time-resolved and three-dimensional vortex

structure generated by flapping wing, and by van Oudheusden et al (2007); David et al

(2009); Spedding and Hedenström (2009); Jardin et al (2009) using particle image ve-

locimetry and momentum integration approach. The experiments have also focused on

quantifying the uncertainty of the available data. The momentum integration approach,

F(t) =−
Z

V

∂ρu
∂t

dV −
Z

S
ρu(u ·n)dS +

Z
S
(−pn+ τ ·n)dS (1.1)

utilized by Unal et al (1997); van Oudheusden et al (2007), uses the available velocity

data from planar measurements and spatially integrates the pressure gradient,

−∇p = ρ
∂u
∂t

+ρu(u ·n)−µ∇
2u (1.2)

to obtain the pressure on the control surface, S, where the control volume and control

surface is given in Fig. 1.1.
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Figure 1.1: The definition of control volume and control surface for Eq. (1.1).

A finite wing will produce a three-dimensional flow, which in the qualitative visual-

ization of Ellington et al (1996), shows an increase of vortex size along the spanwise of

the wing and vortex separation closer to the wing tip. Only a few three-dimensional mea-

surements have been conducted. Experimentation remains a challenge in the progress

for an efficient design of MAV (Platzer et al, 2008). One of the challenges in the mea-

surement of the performance of an MAV is the investigation of its aerodynamic char-

acteristics. Recent measurements of forces have used a scaled-up model of the wing of

a certain species of birds or insects, where force balance can be applied. Customized

force sensing have been developed for the measurement and use in feedback control of

MAV up to 25mm in wingspan (Wood and Fearing, 2001; Steltz et al, 2006; Haddab

et al, 2009). However, commercial intrusive sensors cannot be used for the actual MAV

because not only they are not sensitive enough, but also their dimension and wirings will

disturb the flow. For an MAV with a semi wing-span of 7.5cm (McMichael and Francis,

1997), the lift force of 0.39mN was estimated (Wang, 2001). This is about 0.4% of the

smallest range of a thin film micro load cell (Cooper Instruments, 2007); therefore, low

signal to noise ratio can be expected.

Flow visualization methods provide the dissemination of flow structures non-intru-

sively, thereby experiments can be conducted without worry of the sensor disturbing the

flow. Some methods, such as dye or ink injection, provide qualitative information for

the investigation of flow behavior. Quantitative methods, such as PIV, provide visual

information as well as estimations of the flow properties such as stress tensor, vorticity
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Figure 1.2: Summary of measurement techniques in flapping wing research.

vector, circulation, and force. Three-dimensional flow analysis and the estimation of

force can provide information on the interaction of vortex and rigid structure, which is

helpful in the engineering of an MAV. This interaction is one of the foundations of flap-

ping flight. In this case, rigid structure can be the wing or body of an MAV. Visualization

and force estimation can provide ingenious ways to increase the aerodynamic efficiency

of MAV.

The measurement history of flapping wing research is summarized in Fig. 1.2. Early

measurements had used qualitative visualization tools, which enabled the study of the

evolution of flow structures. Better measurement tools, such as laser doppler velocime-

try (LDV) and PIV, were available afterwards and quantitative visualization has been

conducted ever since. The measurement of force utilizes load balance and only recently

utilizes the control volume analysis of the measured velocity.

Two-dimensional computational studies of flapping flight have been conducted by

solving the vorticity and stream function equation on an elliptical coordinate system

(Wang, 2000, 2001), using the immersed boundary method (Miller and Peskin, 2005;

Sudhakar and Vengadesan, 2010), overset grid method (Mao and Xin, 2003). Three-

dimensional solutions of the Navier-Stokes equations have been solved using overset

grid method (Sun and Lan, 2004) and using the Navier-Stokes equations on a non-
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inertial frame of reference and body conformed grid (Sun and Tang, 2002; Wu and Sun,

2004; Mu-lin et al, 2006).

1.2 Objectives

The objectives of this study are two folds. First, to establish a quantitative method for

flow observation and force evaluation of a periodically flapping plate. Past studies have

focused on the measurement of force and the visualization of the vorticity distribution

around the flapping plate. However, the relation of vortices to the generation of force

has never been fully detailed. To answer this problem, the effect of vortices to force will

be studied by (1) Control volume analysis of the near field of a flapping plate, (2) by

estimating the surface pressure of the wing, and (3) temporally resolved measurements

of the flow field using particle image velocimetry.

In this study, the integration of the flow field and the arbitrary selection of the size

of the control volume within the flow field is explored to quantify the dynamics of the

flow generated by a flapping plate. The result of the control volume analysis is the force

acting on a control volume.

The mechanism to generate aerodynamic force is the pressure difference on the sur-

face of the body and the viscous force. The viscous force can be investigated directly

from a spatially accurate velocity field and is negligible except for very small Reynolds

numbers. The investigation of force from the pressure difference requires the calcula-

tion of the pressure that is expressed in the Poisson equation (Fujisawa et al, 2005; Obi

and Tokai, 2006; de Kat et al, 2008). The proposed method was designed to estimate the

pressure field of a flapping wing modeled as a rigid plate from a set of velocity measure-

ments to estimate the aerodynamic forces. The pressure field was estimated by solving

the three-dimensional Poisson equation evaluated on the phase-averaged velocity field.

The pressure field represents the pressure distribution on a planar field around the flap-

ping plate. The combination of two numerical meshes, one was at a fixed position and

the other was moving with the flapping plate, were required to solve the Poisson equa-

tion on a moving boundary. The performance of the pressure integration was compared

with measurement using strain gauges.
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The flow was measured with stereo PIV due to its capability of measuring three-

velocity components at multiple points instantaneously on a planar field. To measure

the full deformation tensor, including the velocity derivatives with respect to the out-of-

plane direction, measurements were conducted on a set of measurement planes offset

along the out-of-plane direction.

The second objective is to estimate the force acting on the flapping wing using in-

formation acquired using velocity measurements. This is considered because the en-

gineering of MAV requires the measurement of an actual size MAV to optimize the

aerodynamic, structure, and flight control. The technical difficulties of applying load

sensors to measure the force on an actual MAV are intrusiveness of the sensor and the

sensitivity of the sensor.

1.3 Methodology

A simplified wing in the shape of a rigid flat plate and a simplified wing kinematics

was visualized both qualitatively and quantitatively. Dye was injected manually from a

pipette near the spanwise of the plate to visualize the nearby vortex structure. Indepen-

dently, seeded flow was recorded using stereo particle image velocimetry. Phase-locked

measurements were applied to the recording, referring to the velocity measurement of

the individual phase angle associated with the flapping plate. As explained in §1.1, the

flow around a finite flapping plate is fully three-dimensional. A volumetric measure-

ment was approximated by measuring the flow in slices as the measurement plane or

laser sheet was positioned along the direction chordwise to the plate. The slices are

required in order to estimate the velocity gradients in the out-of-plane direction and to

integrate the three-dimensional Poisson equation. At the same time with stereo PIV

measurement, the torque produced by the flapping wing was measured by two strain

gauges attached on the rotational axis of the flapping wing.

The velocity field was treated with statistical tools. The average of the cycle-to-cycle

velocity field of each phase angle will be referred as the phase-averaged velocity field

and the process to obtain it is called phase-averaging. The phase-averaged velocity field

is a function of the spatial location and the phase angle of the plate. Hence, the phase-
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averaged velocity field of a group of planar measurements represents the evolution of

velocity distribution of the flow around a flapping plate. Due to phase-averaging, the

cycle-to-cycle velocity field can be decomposed as an average value and fluctuating

value. Hence, the governing equations are decomposed into terms including the phase-

averaged terms and fluctuation terms.

In flow measurements, the fluctuation of the velocity components can be of two

kinds:

1. Random velocity fluctuation, which is distributed according to the normal distri-

bution.

2. Non-random velocity fluctuation, which has a probability density with embedded

structures that deviates the normal distribution.

The first type can be neglected in the governing equations and in the process of analysis

is represented as measurement uncertainty (Bevington, 1969; Coleman and Steele, 1995;

Bendat and Piersol, 2000). The second kind, which could indicate vortical wake or

turbulent structure, is relevant to the understanding of flow dynamics and can not be

neglected (Pope, 2000; Bernard and Wallace, 2002).

Probability density functions are commonly used to indicate the normality of a sam-

ple, e.g. the time history of a velocity component. Several requirements for this state-

ment are that the flow was measured in steady state and at a defined spatial position of

the flow. In PIV, the flow was measured at multiple spatial positions and particular to

this study, low Reynolds number flow was measured close to the solid boundary that

it would be unwise to randomly pick the spatial locations to analyze the distribution of

the velocity components. A statistical test was applied to identify normal distributions

of every spatial location on the flow field of each phase angle. The statistical test is the

Shapiro–Wilk test and calculation of kurtosis and skewness (Shapiro and Wilk, 1965;

Masuda, 2006).

Quantitative flow visualization was presented by:

1. The second invariance of the deformation tensor, 〈Q〉, which is also the laplacian

of the pressure.

2. The vorticity in y-direction, ωy, to visualize the evolution of the leading edge

vortex.
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3. Two-dimensional streamlines.

4. Pressure field.

The pressure field was visualized numerically by integrating the three-dimensional Pois-

son equation for pressure. Overlapping mesh was proposed to obtain the pressure on the

surface of the plate, where the pressure obtained away from the surface was used to

resolve the pressure within the mesh close to the surface. The non-slip condition was

applied for the boundary condition of the surface of the plate. The pressure field was

validated by comparing the torque from the integration of the estimated surface pressure

distribution with the torque measured by strain gauges.

1.4 Thesis outline

Chapter 2 will discuss the governing flow equations that were used for control volume

analysis, surface pressure integration, and vortex visualization from a measured velocity

field distribution. The unsteady state was resolved by phase-averaging the velocity field.

Therefore, the governing equations were decomposed into the average and fluctuation

terms. The estimation of pressure field that was introduced in the previous chapter will

be further discussed in Chapter 3. The Poisson equation for pressure is formulated to

estimate the pressure around a circular cylinder. The flow around a flapping wing was

measured using stereo PIV. Simultaneously, the torque of the flapping axis was measured

with strain gauges. These experimental setups are discussed in Chapter 4. In Chapter 5,

the velocity field was analyzed using qualitative and quantitative visualization methods

and using the control volume analysis. In Chapter 6, the estimation of the pressure field

of the flow generated by a flapping rigid plate is formulated. Samples of the flapping

wing at certain flapping phase is presented. The discussion of the torque calculated by

the integration of the surface pressure is given in Chapter 7. Finally, conclusions and

recommendations derived from this study is given in Chapter 8.



Chapter 2

Theory

This chapter discusses the governing equations for control volume analysis, pressure

field visualization, and vortex visualization in §2.1. To represent one cycle of the flap-

ping motion, a large number of flapping cycles were recorded and the result was aver-

aged for each phase angle. This is discussed in §2.2.

2.1 Governing flow equations

Micro-air vehicles operate in 1000 < Re < 10000, which is within the flight operation of

small birds and insects. In the hovering mode, birds and insects generate aerodynamic

forces solely due to flapping wing. Hence, it is suggested that the unsteady term will

play a major role in the governing flow equation. The viscous effect of the flow caused

by a flapping wing is negligible for Re > 136. So, incompressible and inviscid flow can

be assumed at all instants. The governing flow equations are the continuity equation,

∂ui

∂xi
= 0 (2.1)

and the momentum conservation equation,

ρ
∂ui

∂t
+ρu j

∂ui

∂x j
=− ∂p

∂xi
(2.2)

where ui is the instantaneous velocity component, t is the temporal variable, xi is the

spatial variable, ρ is the density of the fluid, and µ is the kinematic viscosity of the fluid.

13
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Equations (2.1) and (2.2) are governing flow equations in the inertial frame of ref-

erence. With a stationary observer, the flow is measured relative to an inertial frame of

reference. However, in an unsteady motion such as a flapping wing, one is interested

in understanding the forces that the wing is experiencing. In this case, an observer has

to move with the wing. In other words, flow information is in the non-inertial frame

of reference. Direct measurements following the motion of the wing is practically dif-

ficult. Therefore, in this study the information in the non-inertial frame of reference is

constructed using measurements from the inertial frame of reference. The governing

flow equations in the non-inertial frame of reference are the continuity condition,

∂u′i
∂x′i

= 0 (2.3)

and the momentum conservation equation,

ρ
∂u′i
∂t

+ρu′j
∂u′i
∂x′j

=− ∂p
∂x′i

+µ
∂2u′i
∂x′j

2 −ρ

[
∂2Ri

∂t2 −
∂Ωi

∂t
r jεi jk +2Ωiu′jεi jk +Ωl(Ωir jεi jk)εlkm

]
(2.4)

where the subscript u′i indicates the velocity in the non-inertial frame of reference. The

acceleration and rotation of the non-inertial frame of reference, O′x′y′z′, are ∂2Ri/∂t2 and

Ωi, respectively. The non-inertial frame of reference and its parameters are shown in

Fig. 2.1, where the inertial frame of reference is Oxyz.

2.1.1 Control volume analysis

In the analysis of flows, it is sometimes necessary to integrate Eq. (2.2) or Eq. (2.4)

within a control volume to investigate the forces acting on the flow. A control volume

is a defined volume in space that may move or deform independently from the flow

field. Mass, momentum, or energy may flow across the boundary of the control volume,

called the control surface. Through mathematical manipulations, the force acting on the

surface of the body inside a control volume or the force acting on the control volume

can be known. Control volume analysis provide a simple way to study aerodynamics.

To study the effect of a periodically moving body, force was calculated with control

volume analysis of a fixed control volume, cf. Fig. 2.2,

Fi = ρ

Z
V

∂ui

∂t
dV +ρ

Z
S

uiu jn̂ j dS (2.5)
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Figure 2.2: Control volume surrounding an unsteady moving body such as flapping

wing. V is the control volume of the field and S is its control surface. Vb(t) is the

volume of the body as a function of time and Sb(t) is its control surface. The body is

moving at ub(t).
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Table 2.1: scaling parameters to non-dimensionalize Eqs. (2.1) and (2.2)

Scaling parame-

ter

Description Primary dimen-

sions

L Characteristic length {L}
V Characteristic speed {Lt−1}
f Characteristic frequency {t−1}
p0− p∞ Reference pressure difference {mL−1t−2}

where V is the control volume of the flow field and S is its control surface. The non-

dimensional form of Eq. (2.5) is

Fi
1/2ρU2bc

=
1

1/2U2bc

Z
V

∂ui

∂t
dV +

1
1/2U2bc

Z
S

uiu jn̂ j dS (2.6)

The right hand side of the non-dimensional terms of Eq. (2.6) can be interpreted

by transforming Eq. (2.2) into its non-dimensional form. For completeness the viscous

effect is taken into account. Introducing the non-dimensional variables

t∗ = f t; x∗ =
x
L

; u∗ =
u
U

; p∗ =
p− p∞

p0− p∞

;
∂

∂x∗i
= L

∂

∂xi
(2.7)

where the scaling parameters are summarized in Table 2.1.

Rearranging Eq. (2.7) in terms of the dimensional variables,

t =
t∗

f
; x = Lx∗; u = Uu∗; p = p∞ +(p0− p∞)p∗;

∂

∂xi
=

1
L

∂

∂x∗i
(2.8)

Substitute Eq. (2.8) to Eq. (2.1) to obtain

1
L

∂

∂x∗i
Uu∗i = 0 (2.9)

U
L

∂u∗i
∂x∗i

= 0 (2.10)

∂u∗i
∂x∗i

= 0 (2.11)

and to Eq. (2.2) to obtain

ρU f
∂u∗i
∂t∗

+
ρU2

L

(
u∗j

∂

∂x∗j

)
u∗i =− p0− p∞

L
∂p∗

∂x∗i
+

µU
L2

∂2u∗i
∂x∗j

2 (2.12)
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Table 2.2: Non-dimensional numbers in Eq. (2.13)

Non-dimensional

number

Description

St= f L
U Strouhal number (ratio of vortex

oscillation to mean speed)

Eu= p0−p∞

ρU2 Euler number (ratio of pressure

drop to dynamic pressure)

Re= ρUL
µ Reynolds number (ratio of flow in-

ertia to fluid viscosity)

multiplying every term by L/ρU2 and after some rearrangement,[
f L
U

]
∂u∗i
∂t∗

+u∗j
∂u∗i
∂x∗j

=−
[

p0− p∞

ρU2

]
∂p∗

∂x∗i
+
[

µ
ρUL

]
∂2u∗i

∂x∗i ∂x∗j
(2.13)

The products of the characteristic parameters are defined in Table 2.2. Equation 2.13 is

rearranged into,

[St]
∂u∗i
∂t∗

+u∗j
∂u∗i
∂x∗j

=− [Eu]
∂p∗

∂x∗i
+
[

1
Re

]
∂2u∗i
∂x∗j

2 (2.14)

Only the left hand side of Eq. (2.14) is represented by Eq. (2.6). The first term on

the right hand side of Eq. (2.6) is the unsteady term and the non-dimensional parameter

that represents this term is the Strouhal number. The second term is the diffusion term

and is expected to be unaffected with increasing flow frequency.

2.1.2 Integration of the surface pressure

The force acting on the surface of the flapping wing can be evaluated using control

volume analysis, as shown in Fig. 2.2. The control volume, V , is differentiated as control

volume of the body, Vb, and the control volume of the flow, V −Vb. The control surface,

Sb is the surface of the control volume Vb. Thus, the force acting on the body, Fi, is

Fi =−ρ

Z
V

∂ui

∂t
dV −ρ

Z
S

uiu jn̂ j dS−
Z

S
pn̂i dS

−ρ

Z
Sb(t)

(ui−ub(t))u jn̂ j dS
(2.15)
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where ui is the velocity in the inertial frame of reference, the shape and size of the

control volume and surface is a function of time, and the control volume is moving at

ub(t). The last term on the right hand side reflects the transfer of momentum on the

surface of the body, which is due to suction and/or blowing. In the absence of both, the

last term can be omitted.

The equivalent form of Eq. (2.15) is

Fi =−
Z

Sb(t)
−pn̂i dS (2.16)

In the calculation of Eq. (2.16), the surface of the body and the pressure field down to the

surface of the body have to be defined. The study by Obi and Tokai (2006) calculated the

pressure field from a set of measured velocity field by integrating the Poisson equation

for the pressure, which is derived by taking the divergence of Eq. (2.2),

∂

∂xi

(
∂p
∂xi

)
=− ∂

∂xi

(
∂ui

∂t

)
− ∂

∂xi

(
u j

∂ui

∂x j

)
=−

��
����∂

∂t

(
∂ui

∂xi

)
− ∂u j

∂xi

∂ui

∂x j

∂2 p
∂x2

i
=−∂u j

∂xi

∂ui

∂x j

(2.17)

where the omitted term is due to the continuity condition, ∂ui/∂xi = 0. Solving the Pois-

son equation on the surface of an unsteady body is practically difficult because the nu-

merical solver needs to be created for every phase angle and the velocity distribution

close to the wall must be resolved. In this study, to evaluate the pressure force and the

surface pressure distribution, the pressure field will be defined by solving Eq. (2.17) us-

ing two overlapping meshes: a rectangular mesh and a mesh that conforms to the surface

of the body and is a subset of the rectangular mesh. The Poisson equation is integrated

from the velocity information that is known on the rectangular mesh. The use of over-

lapping meshes will be discussed in Chapter 3. The advantage of the proposed pressure

estimation method to calculate force is the insight that can be obtained from evaluating

the pressure distribution of the flow field.

2.1.3 Vortex visualization

Flow separation behind a bluff body creates a region of strongly rotational flow. In
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x

y

U

Figure 2.3: Velocity profile created by the motion of the plate. The discontinuity creates

a strong rotational flow behind the body.

Fig. 2.3, the discontinuity of the velocity profile at the tips creates a strong rotational

flow downstream of the body. The motion of this fluid is described by the curl of the

velocity,

ωk = ∇×u =
∂

∂xi
u jêkεi jk (2.18)

The symbol ωk is defined as the vorticity of the flow. Qualitatively, a vortex is defined as

a connected fluid region with high concentration of vorticity compared to its surround-

ing.

A velocity field can be given as the sum of its rotational elements and its irrotational

elements,

u(x, t) = uv(x, t)+∇ψ (2.19)

The irrotational element, ∇ψ, is the potential flow problem. And the rotational element

is defined as

uv =
1

4π

Z
ω(x′, t)× (x−x′)
|x−x′|3 dx′ (2.20)

where x−x′ is the distance between the vorticity element, ω to the fluid element induced

by the rotational effect of ω. Equation (2.20) is illustrated in Fig. 2.4. The effect of ro-

tation is inversely proportional to the square of the distance between the vortex element

to a fluid element.
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x

x'' '

ω

uvuv

ω(x ,t)

Figure 2.4: The definition of Eq. (2.20).

Figure 2.5: The physical interpretation of Eq. (2.21).

When formed, a vortex plays an important role in organizing the flow. Thus, the

identification of a vortex provide an important information to the entire fluid mechanics.

The vortex element is identified by calculating the second invariance of the deformation

tensor.

Q = (‖Ω‖2−‖S‖2)

=
∥∥∥∥1

2

(
∂ui

∂x j
− ∂u j

∂xi

)∥∥∥∥2

−
∥∥∥∥1

2

(
∂ui

∂x j
+

∂u j

∂xi

)∥∥∥∥2

=−∂ui

∂x j

∂u j

∂xi

(2.21)

where Ω is the rotational tensor and S is the strain tensor. The second invariance Q

denotes dominance of the strength of rotation compared with that of the strain as illus-

trated in Fig. 2.5. The identification of the vortex element can also be done by taking
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the divergence of the momentum conservation equation, which will lead to Eq. (2.17).

Thus, the second invariance is equal to the Laplacian of the pressure.

Another useful method of visualization is streamlines. Along a streamline, the in-

stantaneous velocity vector is tangential to that streamline. Streamlines show the direc-

tion of a fluid element. A two-dimensional streamline is defined as,

dx
u

=
dy
v

(2.22)

Streamlines depicts the motion of instantaneous fluid motion. For the presentation

of the measurement results, streamlines are used with phase-averaged velocity vectors.

Therefore, giving different streamlines for every flapping phase angle. The phase-

averaging of the velocity vectors is described in the next section.

2.2 Phase-averaging

To improve the certainty of the measurement, ensemble averaging is commonly done

when presenting the result. For periodic flows, the averaging can be done for one phase

angle of every period of the source of disturbance. This is called phase-averaging.

In this study, the source of disturbance is the flapping plate. The phase-averaging of

velocity is

〈u〉(x,φ) = lim
N→∞

1
N

N

∑
n=1

u [x,(n+φ)/ f ] (2.23)

where 〈u〉 denotes the phase-averaged velocity and u is the instantaneous velocity. The

fluctuative velocity is defined as the difference between the two, u′= u−〈u〉. The phase

angle of the flapping plate is 0≤ φ < 2π. The phase-averaging operation is illustrated in

Fig. 2.6.

Because of phase-averaging, the governing flow equations has to be decomposed

into the averaged value and the fluctuative value. For the momentum conservation equa-

tion,

ρ
∂〈ui〉

∂t
+ρ〈u j〉

∂〈ui〉
∂x j

=−∂〈p〉
∂xi
−ρ

∂〈u′iu′j〉
∂x j

(2.24)

where the last term on the right hand side appears as the product of the fluctuative
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Figure 2.6: Phase averaging of an instantaneous velocity component, u, the phase-

averaged velocity, 〈u〉, and the fluctuating velocity, u′.

velocity components. Thus, the Poisson equation for pressure is also decomposed,

∂2〈p〉
∂x2

i
=−∂〈ui〉

∂x j

∂〈u j〉
∂xi
−

∂2〈u′iu′j〉
∂xi∂x j

(2.25)

And for vortex visualization, the second invariance of the deformation tensor is equal

to the right hand side of Eq. (2.25).

〈Q〉=−∂〈ui〉
∂x j

∂〈u j〉
∂xi
−

∂2〈u′iu′j〉
∂xi∂x j

(2.26)



Chapter 3

Estimation of the pressure field by the
integration of the Poisson equation on
two overlapping meshes

The two-meshes method to solve the pressure field on the surface of a body is explained

in §3.1. The method is evaluated in §3.2 for a circular cylinder in potential flow with

the discrete form of the governing equation explained in §3.3. The discrete equation set

was solved using numerical method explained in §3.4 and the results are shown in §3.5.

Finally remarks are given in §3.6.

3.1 Pressure Estimation

The pressure field can be estimated from the PIV velocity field by integrating the Poisson

equation of pressure as briefly described in §2.1.1. The Poisson equation is derived by

taking the divergence of the Euler equation, which in this chapter is formulated in the

23
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decomposed form,

∇ ·
(

∂〈u〉
∂t

+ 〈u〉 · 〈u〉
)

= ∇ ·
(
−∇

1
ρ
〈p〉−〈u′u′〉

)
∇〈u〉(∇〈u〉)T =−1

ρ
∇

2〈p〉−∇ · 〈u′u′〉

∇
2〈p〉=−ρ

[
∇〈u〉(∇〈u〉)T +∇ · 〈u′u′〉

] (3.1)

and in its tensorial form,

∂2〈p〉
∂x2

i
=−ρ

∂〈ui〉
∂x j

∂〈u j〉
∂xi
−ρ

∂2〈u′iu′j〉
∂xi∂x j

(3.2)

The solution is calculated by integrating Eq. (3.2) with the pressure gradient normal

to the boundary,

1
ρ

∂〈p〉
∂n̂

=−∂un̂

∂t
−un̂

∂un̂

∂n̂
−uŝ

∂un̂

∂ŝ
−uẑ

∂un̂

∂ẑ
− ∂〈un̂un̂〉

∂n̂
− ∂〈un̂uŝ〉

∂ŝ
− ∂〈un̂uẑ〉

∂ẑ
(3.3)

where n̂, ŝ, and ẑ are in the normal, tangential, and z-direction of the numerical boundary.

The discrete form of Eq. (3.2) is solvable using an iterative solver, where the con-

vergence of the solution is evaluated by the rate of the absolute value of the residual, R.

The residual is

∇
2〈p〉= Φ+R (3.4)

R = ∇
2〈p〉−Φ (3.5)

where Φ is the right hand side of Eq. 3.1. The convergence is

ε =
‖R(k)−R(k−1)‖

R(3)
(3.6)

where k is the iteration number and the difference is normalized by R(k = 3). For the

purpose of the estimation of surface pressure integration, the pressure on the surface of

the plate needs to be resolved. The Poisson equation is solved on two connecting nu-

merical meshes. The first mesh, which will be called global mesh, is a rectangular mesh

defined avoiding the surface of the plate and the second mesh, which will be called local

mesh, is attached to the plate and is moving with it. Spatial continuity of the pressure
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between the meshes is preserved by interpolating the pressure solution of the global

mesh to the numerical boundary of the local mesh. The out-of-plane derivatives are

approximated using the two adjacent measurement planes in the out-of-plane direction.

In PIV measurements, the velocity vectors are spatially distributed in a rectangular

mesh. This rectangular mesh is the global mesh that will be used to integrate Eq. (3.2).

Taking the rectangular coordinate system,

〈u〉= (〈u〉,〈v〉,〈w〉) (3.7)

x = (x,y,z) (3.8)

for the velocity components and coordinate bases. The governing equation to be solved

in the global mesh is,

∂2〈p〉
∂x2 +

∂2〈p〉
∂y2 +

∂2〈p〉
∂z2 =

−ρ

[(
∂〈u〉
∂x

)2

+
(

∂〈v〉
∂y

)2

+
(

∂〈w〉
∂z

)2

+2
(

∂〈u〉
∂y

∂〈v〉
∂x

+
∂〈u〉
∂z

∂〈w〉
∂x

+
∂〈v〉
∂z

∂〈w〉
∂y

)
+
(

∂2〈u′u′〉
∂x2 +

∂2〈v′v′〉
∂y2 +

∂2〈w′w′〉
∂z2

)
+ 2

(
∂2〈u′v′〉

∂y∂x
+

∂2〈u′w′〉
∂z∂x

+
∂2〈v′w′〉

∂z∂y

)]
(3.9)

Because the boundaries of the global mesh are parallel to either x, y, or z-axis, the

boundary conditions are pressure gradients normal to the x, y, and z-axis.

∂〈p〉
∂x

=−ρ

[
∂〈u〉
∂t

+ 〈u〉∂〈u〉
∂x

+ 〈v〉∂〈u〉
∂y

+ 〈w〉∂〈u〉
∂z

+
∂〈u′u′〉

∂x
+

∂〈u′v′〉
∂y

+
∂〈u′w′〉

∂z

] (3.10)

∂〈p〉
∂y

=−ρ

[
∂〈v〉
∂t

+ 〈u〉∂〈v〉
∂x

+ 〈v〉∂〈v〉
∂y

+ 〈w〉∂〈v〉
∂z

+
∂〈u′v′〉

∂x
+

∂〈v′v′〉
∂y

+
∂〈v′w′〉

∂z

] (3.11)
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∂〈p〉
∂z

=−ρ

[
∂〈w〉

∂t
+ 〈u〉∂〈w〉

∂x
+ 〈v〉∂〈w〉

∂y
+ 〈w〉∂〈w〉

∂z

+
∂〈u′w′〉

∂x
+

∂〈v′w′〉
∂y

+
∂〈w′w′〉

∂z

] (3.12)

The local mesh encompasses a small area from to the surface of the body. It is

constrained and conforms to the shape of the body. For the investigation of a periodically

moving body, the local mesh is defined in the non-inertial frame of reference (ξ1,ξ2,ξ3).

The velocity components (υ1,υ2,υ3) in the local mesh is obtained using the bi-linear

interpolation from the measured values. The velocity interpolation process requires

three steps. First, the coordinates of the local mesh (ξ1,ξ2,ξ3) is transformed to the

coordinates in the global mesh (x′,y′,z′).
x′

y′

z′

= F (ξ1,ξ2,ξ3,x,y,z) (3.13)

Second, the velocity components in the global mesh is interpolated on (x′,y′,z′).
u(x′,y′,z′)

v(x′,y′,z′)

w(x′,y′,z′)

= G(u,v,w,x,y,z,x′,y′,z′) (3.14)

Finally, the interpolated velocity components are transformed to the local mesh coordi-

nates, (ξ1,ξ2,ξ3).
υ1

υ2

υ3

= F (u(x′,y′,z′),v(x′,y′,z′),w(x′,y′,z′),x′,y′,z′,ξ1,ξ2,ξ3) (3.15)

The governing equation to be solved in the local mesh is in the non-inertial frame of

reference. Assuming that this frame of reference has an orthogonal basis, the pressure

gradient of inviscid and incompressible flow is,

1
ρ

∂〈p〉
∂ξi

=− ∂〈υi〉
∂t
−〈υ j〉

∂〈υi〉
∂ξ j
−

∂〈υ′iυ′j〉
∂ξ j

− εi jkΩiξ j−ΩiΩ jξ j +Ω
2
jξi−

∂2Ri

∂t2 −2(εi jkΩiυ j)

(3.16)
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where the variables are given in Fig. 2.1. Taking the divergence of Eq. 3.16,

1
ρ

∂

∂ξi

∂〈p〉
∂ξi

=
∂

∂ξi

(
− ∂〈υi〉

∂t
−〈υ j〉

∂〈υi〉
∂ξ j
−

∂〈υ′iυ′j〉
∂ξ j

− εi jkΩiξ j−ΩiΩ jξ j +Ω
2
jξi−

∂2Ri

∂t2 −2(εi jkΩiυ j)
) (3.17)

the Poisson equation of the local mesh is

1
ρ

∂2〈p〉
∂ξ2

i
=− ∂〈υi〉

∂ξ j

∂〈υ j〉
∂ξi
−

∂2〈υ′iυ′j〉
∂ξi∂ξ j

− ∂

∂ξk

(
εi jkΩiξ j

)
− ∂

∂ξ j

(
Ω jΩiξi−Ω

2
i ξ j
)
−2

∂

∂ξk

(
εi jkΩiυ j

) (3.18)

where ξi = (ξ1,ξ2,ξ3) is constrained to the shape of the surface. For example, ξi =

(r,θ,z) for cylindrical coordinate system or ξi = (ξ,η,ζ) for a rectangular coordinate

system. To solve Eq. (3.18), the pressure gradient normal to the surface of the body is,

∂〈p〉
∂ξn̂

=− (Ωŝξẑ−Ωẑξŝ)−
(
Ωn̂Ωŝξŝ−Ω

2
ŝ ξn̂ +Ωn̂Ωẑξẑ−Ω

2
ẑ ξn̂
)

− ∂2Rn̂

∂t2 −2(Ωŝυẑ−Ωẑυŝ)
(3.19)

The subscript (n̂, ŝ, ẑ) are in the normal, tangential, and out-of-plane direction of the

local mesh. Assuming the non-slip condition, υn̂ = 0, υŝ = 0, and υẑ = 0 on the surface

of the body. Ω and ∂Rn̂/∂t is the angular and translational velocity of the non-inertial

frame of reference, respectively. The surface pressure is calculated by extrapolating the

resolved pressure on the center node to the surface of the body using the second order

Lagrangian extrapolation.

The procedures of the method is summarized in Fig. (3.1). The Poisson equation,

Eq. (3.2), is solved using the velocity field measured with stereo PIV in the global mesh

with boundary conditions in Eq. (3.10)–(3.12). The local mesh is defined in the non-

inertial frame of reference, the velocity components in the local mesh are defined from

the global mesh using interpolation and coordinate transformation. For each phase of

one period, the velocity field is transformed from the rectangular grid of the global

mesh to the relative velocity of the local mesh. The Poisson equation of the local mesh,

Eq. (3.18) is solved using the Neumann-Dirichlet boundary condition. The Neumann
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Stereo PIV phase-averaged
velocity field

(<u>(x,yz), <v>(x,yz), <w>(x,yz))

Define boundary condition on
global mesh. Eqs. (3.10) - (3.12)

Define global mesh

Define local mesh. Fig. 6

Solve the pressure equation
on global mesh. Eq. (3.9)

Solve the pressure equation
on local mesh. Eq. (3.18)

interpolate pressure from
global mesh to local mesh

Define boundary condition
analytically on the surface. 

Eq. (3.19)

Start

End

Transform <u>,<v>,<w> to
local mesh. Eq. (3.13)-(3.15)

Figure 3.1: Flowchart for the general description for the estimation of phase-averaged

pressure based on stereo PIV velocity field.

boundary condition for the local mesh is given by Eq. (3.19) on the surface of the plate.

The Dirichlet boundary condition is the pressure interpolated from the global mesh ap-

plied to the numerical boundary of the local mesh.



3.2. CYLINDER IN POTENTIAL FLOW 29

3.2 Cylinder in potential flow

The steady potential flow around a circular cylinder was used to proof the concept of the

overlapping meshes system that was explained in the previous section. The components

of the velocity field of the potential flow over a circular cylinder in polar coordinates

were given as

Ur =
(

1− R2

r2

)
U∞ cosθ (3.20)

Uθ =−
(

1+
R2

r2

)
U∞ sinθ (3.21)

where Ur is the radial velocity, Uθ is the tangential velocity, R is the cylinder’s radius,

and U∞ is the freestream velocity. The components in Cartesian coordinate was obtained

from Eqs. (3.20)–(3.21), (
u

v

)
=

[
sinθ −cosθ

cosθ sinθ

](
Ur

Uθ

)
(3.22)

and the velocity components inside the cylinder were set to zero,

u(x,y) = 0, v(x,y) = 0 ; if
√

x2 + y2 < R (3.23)

The velocity field defined by Eqs. (3.22) and (3.23) were used to simulate the velocity

field of PIV as shown in Fig. 3.2.

The Navier-Stokes equation in cartesian coordinate is

u j
∂ui

∂x j
=−1

ρ

∂p
∂xi

(3.24)

and the Poisson equation is the divergence of Eq. (3.24),

∂2 p
∂x2

i
=−ρ

∂u j

∂xi

∂ui

∂x j
(3.25)

expanding the tensorial indices i = 1,2 and j = 1,2, where xi = (x1,x2) = (x,y) and

ui = (u1,u2) = (u,v),

∂2 p
∂x2 +

∂2 p
∂y2 = 2ρ

(
∂u
∂x

∂v
∂y
− ∂u

∂y
∂v
∂x

)
(3.26)
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Figure 3.2: Numerical velocity used to simulate PIV velocity field.

To solve Eq. (3.26) in the global mesh, the boundary condition is the pressure gradient

normal to the boundary,

∂p
∂n̂

=−ρ

(
∂un̂

∂t
+un̂

∂un̂

∂n̂
+uŝ

∂un̂

∂ŝ

)
(3.27)

with n̂ and ŝ are the bases in the normal and tangential direction of the boundary, re-

spectively. The velocity component un̂ and uŝ are the component associated with their

respective bases. The boundary conditions of the global mesh are

∂p
∂x

=−ρ

(
∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

)
(3.28)
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(a) Global mesh.
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(b) Local mesh.

Figure 3.3: Definition of numerical meshes.

for the boundaries parallel to the y-direction and

∂p
∂y

=−ρ

(
∂v
∂t

+u
∂v
∂x

+ v
∂v
∂y

)
(3.29)

for the boundaries parallel to the x-direction.

In this numerical evaluation, the numerical mesh to solve the pressure equation was

divided into two: the global mesh as shown in Fig. 3.3(a) and the local mesh as shown in

Fig. 3.3(b). The velocity distribution in the local mesh was interpolated from the global

mesh using

f (x,y)≈ f (x1,y1)
∆x∆y

(x2− x)(y2− y)+
f (x2,y1)

∆x∆y
(x− x1)(y2− y)

+
f (x1,y2)

∆x∆y
(x2− x)(y− y1)+

f (x2,y2)
∆x∆y

(x− x1)(y− y1)
(3.30)

and this equation is illustrated in Fig. 3.4. The pressure was solved on the nodes (red

dots) in Fig. 3.3. The pressure in the global mesh is solved only on the visible nodes and

outside the cylinder. The velocity field in the local mesh was given in Fig. 3.5 where

sparser vector density is shown here to easily illustrate the velocity field.
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f(x1,y1) f(x2,y1)

f(x2,y2)f(x1,y2)

f(x,y)

Figure 3.4: Illustration for bilinear interpolation. Bilinear interpolation uses the infor-

mation of 4 nodes closest to the unknown node.

The Navier-Stokes equations in polar coordinate are given in r and θ direction as

∂p
∂r

= ρ(hr +br) (3.31)

∂p
∂θ

= ρ(hθ +bθ) (3.32)

where

hr =−1
r

∂

∂r
(rurur)−

1
r

∂

∂θ
(uθur) (3.33)

br =
u2

θ

r
(3.34)

hθ =−1
r

∂

∂r
(ruruθ)−

1
r

∂

∂θ
(uθuθ) (3.35)

bθ =−uruθ

r
(3.36)

The pressure equation is obtained by taking the divergence of the Navier-Stokes

equation,

1
r

∂

∂r

(
r

∂p
∂r

)
+

1
r

∂

∂θ

(
1
r

∂p
∂θ

)
= ρ

[
1
r

∂

∂r
[r(hr +br)]+

1
r

∂

∂θ
(hθ +bθ)

]
1
r

∂r
∂r

∂p
∂r

+
r
r

∂2 p
∂r2 +

1
r2

∂2 p
∂θ2 = ρ

[
1
r

∂r
∂r

hr +
∂hr

∂r
+

1
r

∂r
∂r

br +
∂br

∂r
+

1
r

∂hθ

∂θ
+

1
r

∂bθ

∂θ

]
1
r

∂p
∂r

+
∂2 p
∂r2 +

1
r2

∂2 p
∂θ2 = ρ

[
hr +br

r
+

∂hr +br

∂r
+

1
r

∂

∂θ
(hθ +bθ)

]
(3.37)
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Figure 3.5: Velocity field in local mesh, interpolated from the global mesh using

Eq. (3.4)

The pressure gradient normal to the boundary of the local mesh is

∂p
∂r

= ρ(hr +br) (3.38)

where

hr =−1
r

∂

∂r
(rurur)−

1
r

∂

∂θ
(uθur) (3.39)

br =
u2

θ

r
(3.40)

because of the slip condition of the potential flow, Eq. (3.38) can be simplified to

∂p
∂r

= ρ
u2

θ

r
(3.41)
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where uθ on the wall is

uθ =−2U∞ sinθ (3.42)

The boundary condition on the numerical boundary of the local mesh is the pressure

values interpolated from the global mesh.

The analytical coefficient of pressure of the flow field is

Cp = 1−U2

U2
∞

(3.43)

and on the surface of the cylinder,

Cp = 1−4sin2
θ (3.44)

The numerical procedure in this section is summarized using the flowchart in Fig. 3.6.
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velocity field
(〈u〉(x,yz), 〈v〉(x,yz), 〈w〉(x,yz))

Fig. 3.2

Define boundary condition on
global mesh. Eqs. (3.28) - (3.29)

Define global mesh
Fig. 3.3(a)

Define local mesh. Fig. 3.3(b)

Solve the pressure equation
on global mesh. Eq. (3.26)

Solve the pressure equation
on local mesh. Eq. (3.37)

interpolate pressure from
global mesh to local mesh

Define boundary condition
analytically on the surface. 

Eq. (3.41)

Start

End

Transform 〈u〉,〈v〉,〈w〉 to
local mesh. Fig. 3.5

Figure 3.6: Flowchart for the estimation of the pressure field around a circular cylinder

in potential flow.

3.3 Finite differentiation

The finite differentiation scheme of the governing equation was needed to solve the

partial differential equation using an iterative solver. The Poisson equation was solved

using the Gauss-Seidel method on the center of the grid. The coordinates of the grid are
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x x+Δx
y

y+Δy

Δx

Δy

xc

yc

Figure 3.7: Definition of the node coordinates, xc,yc.

(x,y) and the coordinates of the grid center are (xc,yc),

xc =
(x)+(x+∆x)

2
(3.45)

yc =
(y)+(y+∆y)

2
(3.46)

and illustrated in Fig. 3.7

Two iterative solvers are required to solve the finite form of the Poisson equation,

one for each mesh.

3.3.1 Governing equations in global mesh

The Poisson equation of the global mesh is given as

∂2 p
∂x2 +

∂2 p
∂y2 = 2ρ

(
∂u
∂x

∂v
∂y
− ∂u

∂y
∂v
∂x

)
(3.47)

The right hand side of Eq. (3.47) will be denoted as ψglobal . Equation (3.47) was dis-

cretized as

p(xc−∆x,yc)−2p(xc,yc)+ p(xc +∆x,yc)
∆x2 +

p(xc,yc−∆y)−2p(xc,yc)+ p(xc,yc +∆y)
∆y2 = ψ(xc,yc)global (3.48)

Where the spatial derivatives on the right hand side of Eq. (3.47) were approximated as

∂ f
∂x
≈ ∆ f

∆x
=

f (x+∆x,y+∆y)+ f (x+∆x,y)− f (x,y+∆y)− f (x,y)
2∆x

(3.49)
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(a) Illustration of ∆ f
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(b) Illustration of ∆ f
∆y

Figure 3.8: Illustration of Eqs. (3.49) and (3.50), respectively.

∂ f
∂y
≈ ∆ f

∆y
=

f (x+∆x,y+∆y)+ f (x,y+∆y)− f (x+∆x,y)− f (x,y)
2∆y

(3.50)

Equations (3.49) and (3.50) is illustrated in Figs. 3.8(a) and 3.8(b), respectively. In those

figures, the gradient is proportional to the sum of the 4 neighboring points. Next to the

numerical boundaries, Eq. (3.48) was treated with the Neumann boundary condition of

the approximated form of the pressure gradient as

∂p
∂x
≈ ∆p

∆x
=−ρ

(
u

∆u
∆x

+ v
∆u
∆y

)
(3.51)

∂p
∂y
≈ ∆p

∆y
=−ρ

(
u

∆v
∆x

+ v
∆v
∆y

)
(3.52)

The treatment of Eq. (3.48) near the boundary depends on the orientation of the respec-

tive boundary. The boundaries treatment were

1. Forward scheme along the x-direction. For xc = xc
2, next to the numerical bound-

ary, and xc = xc
k−1, next to the surface of the cylinder, as shown in Fig. 3.9.

1
∆x2

(
p(xc

1,y
c)−2p(xc

2,y
c)+ p(xc

3,y
c)
)

1
∆y2

(
p(xc

2,y
c−∆y)−2p(xc

2,y
c)+ p(xc

2,y
c +∆y)

)
= ψ(xc

2,y
c) (3.53)
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(b) next to the cylinder.

Figure 3.9: Positions in the global mesh where the forward scheme along x was applied.

Substitute p(xc
1,y

c) with the one-sided pressure gradient,

∆p
∆x

∣∣∣∣
1
=
−3p(xc

1,y
c)+4p(xc

2,y
c)− p(xc

3,y
c)

2∆x

p(xc
1,y

c) =−2∆x
3

∆p
∆x

∣∣∣∣
1
+

4
3

p(xc
2,y

c)− 1
3

p(xc
3,y

c)
(3.54)

Thus, Eq. (3.53) becomes

1
∆x2

(
− 2

3
p(xc

2,y
c)+

2
3

p(xc
3,y

c)
)

1
∆y2

(
p(xc

2,y
c−∆y)−2p(xc

2,y
c)+ p(xc

2,y
c +∆y)

)
= ψ(xc

2,y
c)+

2
3∆x

∆p
∆x

∣∣∣∣
1

(3.55)

and the derivation was similar for the other boundary orientation.

2. Backward scheme in x-direction, where xc = xc
M−1, next to the boundary, and

xc = xc
k−1, next to the surface of the cylinder, as shown in Fig. 3.10.

1
∆x2

(
2
3

p(xc
M−2,yc)− 2

3
p(xc

M−1,yc)
)

+
1

∆y2

(
p(xc

M−1,yc +∆y)2p(xc
M−1,yc)+ p(xc

M−1,yc−∆y)
)

= ψ(xc
M,yc)− 2

3∆x
∆p
∆x

∣∣∣∣
M

(3.56)
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(b) next to the numerical mesh.

Figure 3.10: Positions in the global mesh where the backward scheme was applied.

! " # " !

!

$

"

%

#

%

"

$

!

&

'

!!!"!!#" # $ " "%" "%# ##!"#!#

"

#

$

!

!!"

!!#

"

"%"

"%#

$

$!"

$!#

(a) next to the nu-

merical mesh.

! " # " !

!

$

"

%

#

%

"

$

!

&

'

!!!"!!#" # $ " "%" "%# ##!"#!#

"

#

$

!

!!"

!!#

"

"%"

"%#

$

$!"

$!#

(b) next to the cylin-

der.

Figure 3.11: Positions in the global mesh where the forward scheme was applied.

3. Forward scheme in y-direction, where yc = yc
1, next to the boundary, and yc =

yc
l+1, next to the surface of the cylinder, as shown in Fig. 3.11.

1
∆x2

(
p(xc +∆x,yc

1)2p(xc,yc
1)+ p(xc−∆x,yc

1)
)

+
1

∆y2

(
−2

3
p(xc,yc

1)+
2
3

p(xc,yc
1 +∆y)

)
= ψ(xc,yc

1)+
2

3∆y
∆p
∆y

∣∣∣∣
1

(3.57)



40 CHAPTER 3. ESTIMATION OF THE PRESSURE FIELD

! " # " !

!

$

"

%

#

%

"

$

!

&

'

!!!"!!#" # $ " "%" "%# ##!"#!#

"

#

$

!

!!"

!!#

"

"%"

"%#

$

$!"

$!#

(a) next to the cylin-

der.

! " # " !

!

$

"

%

#

%

"

$

!

&

'

!!!"!!#" # $ " "%" "%# ##!"#!#

"

#

$

!

!!"

!!#

"

"%"

"%#

$

$!"

$!#

(b) next to the nu-

merical mesh.

Figure 3.12: Positions in the global mesh where the backward scheme was applied.

4. Backward scheme in y-direction, yc = yc
M−1, next to the boundary, and yc = yc

k−1,

next the surface of the cylinder, as shown in Fig. 3.12.

1
∆x2

(
p(xc +∆x,yc

M−1)2p(xc,yc
M−1)+ p(xc−∆x,yc

M−1)
)

+
1

∆y2

(
2
3

p(xc,yc
M−2)−

2
3

p(xc,yc
M−1)

)
= ψ(xc,yc

M)− 2
3∆y

∆p
∆y

∣∣∣∣
M

(3.58)

3.3.2 Governing equations in local mesh

The Poisson equation in the local mesh,

1
r

∂p
∂r

+
∂2 p
∂r2 +

1
r2

∂2 p
∂θ2 = ρ

[
hr +br

r
+

∂hr +br

∂r
+

1
r

∂

∂θ
(hθ +bθ)

]
(3.59)

where

hr =−1
r

∂

∂r
(rurur)−

1
r

∂

∂θ
(uθur) (3.60)

br =
u2

θ

r
(3.61)

hθ =−1
r

∂

∂r
(ruruθ)−

1
r

∂

∂θ
(uθuθ) (3.62)

bθ =−uruθ

r
(3.63)
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Figure 3.13: The notation for the local mesh.

In the following derivation, the right hand side will be symbolized as ψlocal . Equa-

tion. (3.59) was discretized as

1
r

p(r +∆r,θ)− p(r−∆r,θ)
2∆r

+
p(r +∆r,θ)−2p(r,θ)+ p(r−∆r,θ)

∆r2

+
1
r2

p(r,θ−∆θ)−2p(r,θ)+ p(r,θ+∆θ)
∆θ2 = ψ(r,θ)local (3.64)

The boundary condition in the r-direction was the surface pressure gradient and in the

θ-direction, periodic boundary was applied,

θ1 = θM +∆θ (3.65)

θM = θ1−∆θ (3.66)

where the subscript M is the last node along θ. The boundary condition on the numer-

ical boundary, r = rN , was the pressure values interpolated from the global mesh. The

boundary condition next to the surface, r = r1, was

∂p
∂r
≈ ∆p

∆r

∣∣∣∣
w

= ρ

(
−∆hr1

∆r
− 1

r
∆hr2

∆θ
+

u2
θ

r

)
(3.67)

The notation of the local mesh is given in Fig. 3.13.
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The Poisson equation was treated for the boundary condition on r = r2,

1
r

4
3 p(r3,θ)− 4

3 p(r2,θ)
2∆r

+
−2

3 p(r2,θ)+ 2
3 p(r3,θ)

∆r2 +

1
r2

p(r2,θ−∆θ)−2p(r2,θ)+ p(r2,θ+∆θ)
∆θ2 = ψ(r2,θ)local +

2
3

(
1

∆r
− 1

2r

)
∆p
∆r

∣∣∣∣
1

(3.68)

and on the numerical boundary r = rN−1,

− 1
r

p(rN−2,θ

2∆r
+
−2p(rN−1,θ)+ p(rN−2,θ)

∆r2

+
1
r2

p(rN−1,θ)−2p(rN−1,θ)+ p(rN−1,θ+∆θ)
∆θ2

= ψ(rN−1,θ)−
(

1
2r∆r

+
1

∆r2

)
p(rN ,θ) (3.69)

The pressure on the surface of the cylinder was extrapolated from the pressure solved

on the center nodes,

p|w =
15
8

p(r1,θ)− 5
4

p(r2,θ)+
3
8

p(r3,θ) (3.70)

where

p(r1,θ) =−2
3

∆p
∆r

∣∣∣∣
w

∆r +
4
3

p(r2,θ)− 1
3

p(r3,θ) (3.71)

and the non-dimensional pressure coefficient was

Cp =
p|w

1
2ρU2

∞

(3.72)

3.4 Numerical solution to Poisson equation

The pressure was solved using the Gauss-Seidel method. For the next discussion, the

matrix is symbolized as

Ax = b (3.73)

In the Gauss-Seidel method, the matrix A is split into A1 and A2,

A = A1−A2 (3.74)
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where

A1 = D−L (3.75)

A2 = U (3.76)

and D is the matrix consisting of the diagonal elements of A, L is the matrix consisting

of the negative of the lower triangular elements of the matrix A, and U is the matrix

consisting of the negative of the upper triangular element of the matrix A. The unknown

variable x is solved by

xk+1 = A−1
1 A2xk +A−1

1 b (3.77)

where k is the iteration number.

The iteration was stopped when the convergence criteria has been achieved. The

convergence criteria was defined according to the rate of the absolute value of the resid-

ual. The residual was defined as

Axk = b+Rk (3.78)

Rk = Axk−b (3.79)

where Rk is the residual of the kth iteration, and the convergence is normalized with R of

the third iteration.

ε = ∑‖Rk−Rk−1‖
R3 (3.80)

(3.81)

The convergence criteria was ε≤ 1×10−3 for both global mesh and local mesh.

3.5 Numerical results

The velocity distribution around a circular distribution was defined using Eqs. (3.21)–

(3.23). The flow parameters to create this distribution were U∞ = 3000, R = 0.7284.

The size of the global mesh was−4≤ x≤ 4 and−4≤ y≤ 4, where ∆x = ∆y = 0.2. The

size of the local mesh was R≤ r ≤ R+16∆r, where ∆R = 0.25 and 0 < θ≤ 2π, where

∆θ = π/50.
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Figure 3.14: The estimated pressure field.

The result of the numerical evaluation of the overlapping mesh method using the

potential flow over a circular cylinder is given in Fig. 3.14. The contour depicts the

coefficient of pressure and the circular cylinder is depicted as a black circle. In this

figure, the pressure distributions of the global and local meshes are plotted together

giving smooth pressure distribution on the surface of the cylinder as resolved in the

local mesh and no apparent discontinuity between the global and local meshes. The

estimated pressure distribution shows two stagnation pressure points on the leading and

trailing edge of the cylinder and two low pressure regions on the top and bottom surface

of the cylinder.

The absolute error of the pressure distribution is given in Fig. 3.15 where the error

is the difference of the absolute values of the estimated pressure field with that of the
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Figure 3.15: The absolute error between Fig. 3.14 and the analytical pressure distribu-

tion.

analytical. The maximum error of the estimation is ∆Cp ≈ 0.07.

The estimated pressure distribution on the surface of the cylinder is shown in Fig. 3.16

from the trailing edge, counter-clockwise. This distribution is compared with the ana-

lytical pressure distribution and they show good agreement with each other.

The pressure profile Fig. 3.17 is the pressure distribution along x at y = 0. There

is continuous pressure distribution from the global mesh to the local mesh. Compari-

son of the estimated pressure distribution of both meshes with the analytical pressure

distribution shows good agreement with each other. The pressure profile in Fig. 3.18 is

the pressure distribution along y at x = 0, which similar to the last figure shows good

agreement with the analytical pressure distribution.
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Figure 3.16: Pressure distribution on the surface of the cylinder.

3.6 Concluding remarks

The procedure to solve the Poisson equation with overlapping meshes was evaluated

using a circular cylinder in a potential flow. Using potential flow the analytical veloc-

ity and pressure distribution were known. To emulate the condition of measurement,

the velocity vectors were distributed in a grid system as if they were measured with

PIV. Continuous pressure distribution was achieved between the global and local mesh.

Comparison of the estimated pressure distribution and the analytical one shows good

agreement on the surface of the plate and on all parts of the flow.
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Figure 3.17: Pressure distribution along x

at y = 0.
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at x = 0.
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Chapter 4

Experimental Setup

The facility is explained in §4.1, which include the tank where the measurement took

place, the flapping wing model and its kinematics. Followed by, §4.2 discussing the

basic theory of PIV and stereo PIV measurement setup, and finally §4.3 explaining

about the strain gauge measurement setup.

4.1 Facility

The hovering condition was recreated by conducting experiments inside an all around

transparent tank. The volume of the tank was 310× 310× 270mm3 volume and was

filled with tap water. The wing was modeled as a rectangular transparent plate with

span length, b, of 40mm, chord length, c, of 20 mm, and thickness of 2 mm. The plate

was fully immersed in water and it maintained its rigidity during all flapping cycle. The

sinusoidal motion of the wing was defined as

θ = Θsin(2π f t) (4.1)

x = r cos(θ) (4.2)

y = r sin(θ) (4.3)

where θ is the instantaneous flapping angle of the plate, Θ is defined as the amplitude

of the flapping angle, f is the flapping frequency, and t is the time variable. The instan-

taneous position of the plate in Cartesian coordinate is represented by x and y, which

49
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Figure 4.1: The geometry of the flapping plate and definition of the flapping kinematics.

corresponds to θ, where the coordinate orientation is defined in Fig. 4.1, and r is in the

spanwise direction of the plate, where 0 ≤ r ≤ b, r = 0 is the hub of the flapping plate

and r = b is the tip of the plate.

The velocity of the plate in the normal direction of the plate is

uplate = θ̇r

= 2π f Θr cos(2π f t)
(4.4)

Of particular interest is the maximum velocity of the tip, where r = b and θ = 0. Which

gives uplate,tip = 2π f (bΘ). Here, bΘ is the amplitude of the flapping wing. This velocity
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is used as the reference velocity, U = uplate,tip, for the definition of the Reynolds number,

Re =
cU
ν

(4.5)

where ν is the kinematic viscosity of water. The plate was immersed in water 80 mm

below the free surface. TiO2 powder was used for tracer particles.

The motion of the plate was actuated by a 5-phase stepping motor series, RK566BA,

from Oriental Motor Co.,Ltd (2002). The motion was synchronized with PIV measure-

ment using National Instruments’ PCI 7332 motion control board and motion control

software, NI–motion (2006). Due to indirect compatibility of the motor and the motion

controller, the input from the motion controller was relayed through National Instru-

ments’ Universal Motion Interface, UMI-7664 (2010).

For the purpose of this study, a sinusoidal motion of the plate was required by using

the circular arc motion in NI–motion. The circular arc interpolates a circular motion

when used with two motors that are at 90◦ out of phase with each other. In this case,

only one of the two motion axis was used, which created a sinusoidal motion for the

flapping wing. The key settings of the circular arc motion are,

1. circular arc

2. travel angle

3. starting position

4. start angle

5. arc radius

6. ending position

The arc radius sets how far the motor of each axis have to travel. The start angle is the

starting angle of the arc. The travel angle is the angle to be traversed, which ranges

from −4096 to 4095 revolutions. Positive travel angle is defined as counter-clockwise

rotation in the xy plane.

The circular motion can be defined as follows,

for axis 1: x1 = Rsin(ωt) (4.6)

for axis 2: x2 = Rcos(ωt) (4.7)
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where R is the arc radius. For this study, only one axis was needed to generate the

flapping motion. The maximum flapping deflection, Θ can be adjusted by adjusting the

arc radius,

Θ =
360◦(R)

2(Resolution)
(4.8)

Where R is in steps and Resolution is the number of steps to complete one revolution.

To ensure smoothness, a resolution of 125,000 steps per revolution was used, which

gives fine motion of 0.00288◦/step.

The motion control system and PIV measurement system were synchronized using

the Real Time System Integration (RTSI) cable connecting the motion controller, NI-

7332, with digital timing board, NI PCI-6602 (2009; 1999).

4.2 Particle Image Velocimetry

In qualitative flow visualization, flow markers, usually injected into the flow upstream

of a body or injected from the surface a body, are used to highlight certain regions of

interest when the flow passes over the body. These markers, such as dye or smoke, high-

light certain structures in the flow that contribute to the flow physics. Some examples

of the use of this technique are: visualization of mixing layers, wake behind cylinder, or

transient flow over an airfoil.

For future use of the knowledge of flow structures, the visualizations are recorded

by film photography or by moving images. Long exposure recordings of the markers

will produce streaklines. Because of that, streaklines do not indicate the instantaneous

structure of the flow. The long exposure creates flow structures that are produced on

the surface of the body because of shearing forces. Shear stress causes the markers

to deform and creates unique shapes that we recognize as vortices. The vortices are

convected downstream and they retain their shape in weak shear stress or no shear at all.

A short exposure of the flow markers can estimate the flow streamlines. Streamlines

are better indicators of flows because it temporally localizes the flow structure where

it is produced and shows the spatial evolution of the flow from upstream to the down-

stream of the body. Because of the short exposure, streamlines are visualized using a

homogeneously distributed particles in the flow.
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Figure 4.2: Principles of PIV measurement.

Particle image velocimetry (PIV) quantifies flow visualization by measuring the dis-

placement of tracers that are in the form of discrete particles. Physically, velocity is

defined as

u =
∂x
∂t

(4.9)

and its discrete version is

v =
x(t)− x(t +∆t)

∆t
(4.10)

with limit theory, ∆t→ 0,

v≈ u (4.11)

PIV records the flow in two short exposures consecutively. The exposures are separated

within a short time span, ∆t, for good approximation of the flow velocity. Since Willert

and Gharib (1991), digital PIV has been in use for flow research. Each exposure is stored

as a digital grayscale images and the velocity field is approximated by two consecutive

digital images. Figure 4.2 shows how PIV works.

A digital image is a discrete representation of an analog image. Intensity of light

is represented by integer values from 0 to 255. For a digital grayscale image, the color

black is represented by the value 0, the color white is represented by the value 255, and
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x
(a) The character “x”. (b) Digital image

representation.

(c) Discrete values of intensity

Figure 4.3: The character “x” and its representation as a digital image. A digital image

can be represented by colors or by numbers. The latter is enlarged to visualize pixels

and the intensity.

there are 254 gray tones between them. Constant intensity is contained within a discrete

unit called pixel as shown in Fig. 4.3

The velocity is approximated by correlating a localized area of the image, called

interrogation window. In Eq. (4.12), the interrogation window of the first image is rep-

resented with I1 and for the second image with I2. The result of the correlation function

of Eq. (4.12) is the correlation map, C(δi,δ j), as shown in Fig. 4.4

C(δi,δ j) =
∑

M
ı=1 ∑

N
=1 I1(i, j)∗ I2(i+δi, j +δ j)√

∑
M
i=1(I1(i, j))2

√
∑

N
i=1(I2(i, j))2

(4.12)

where i, j are the indices for row and column matrix of a digital image, respectively
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Figure 4.4: Cross-correlation map that corresponds with−32≤ δi≤ 32 and−32≤ δ j≤
32, produced from two successive particle images.

and the size of the interrogation window is M×N pixels and M > 1 pixel and N > 1

pixel. The correlation map was calculated by displacing the second image by δi,δ j

pixel ranging from −M to M pixel and −N to N pixel, respectively. When the particles

completely overlap, Eq. (4.12) will produce good correlation, ie. C(δi,δ j) = 1, and for

no correlation, ie. C(δi,δ j) = 0. Average displacement of particles from I1 to I2, is

indicated by index of the maximum correlation, (δ′i,δ
′
j). The average displacement is

the nominator of Eq. (4.10) and ∆t is the denominator.

The size of the interrogation window is a disadvantage in PIV. A rule of thumb

exist where the size of the interrogation window should be at least be 4 times of the

displacement. However, this is no longer a concern since research-grade digital cameras

can capture two images within 2ms, which would give a very short displacement. With

such cameras, the main concern is the amount particles within the interrogation window.

An interrogation window is required to contain a few particles in order to produce good

correlation map and each window will be represented by one velocity vector in the
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vector field. Thereby, the velocity vector is an average of the individual velocity of a

few particles in an interrogation window. An interrogation window of 32× 32pixel2 is

commonly used.

The discrete unit of pixel causes low spatial resolution of the velocity that is over-

came by using a Gaussian weighted interpolation,

x0 = i+
ln(C(i−1, j))− ln(C(i+1, j)

2lnC(i−1, j)−4lnC(i, j)+2lnC(i+1, j)
(4.13)

y0 = j +
ln(C(i, j−1))− ln(C(i, j +1)

2lnC(i, j−1)−4lnC(i, j)+2lnC(i, j +1)
(4.14)

The resolution is improved up to 0.01 pixel with Gaussian weighted interpolation.

Because the correlation map was calculated by shifting the second image one pixel

at a time for both vertical and horizontal directions of the image, the areas near the edge

of the image experience a lost of signal quality. In order to maintain any form of quality,

the size of I2 is usually made twice larger than I1. One can make the size of I2 as large as

possible, however this may give false positive correlations. This means good correlation

maybe found far from the first interrogation area giving large velocity vector, which is

due to the random nature of particle patterns obtained in the flow recording.

Improvements to correlation can be achieved by moving the interrogation window

of the second image by the amount of corresponding displacement (Westerweel et al,

1997). This method requires at least two correlations. First, as a rough measure of

displacement and the interrogation window of the second image is shifted using this

information. The second correlation will give a correlation map closer to a Gaussian

profile. Thereby, giving better interpolation result.

In using Eq. (4.12), the mathematical operation is performed 4MN times. To im-

prove the speed of the operation, the correlation can be performed using Fourier trans-

form. In digital imaging, the two dimensional discrete Fourier transform is used,

F(u,v) =
1

MN

M

∑
i=1

N

∑
j=1

f (i, j)e−
√
−12π(ui/M+v j/N) (4.15)

and the inverse transform is

f (i, j) =
M

∑
u=1

N

∑
v=1

F(u,v)e
√
−12π(ui/M+v j/N) (4.16)
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The transformation is symbolized by F and the inverse transformation is F −1.

Commonly fast Fourier transform is used for PIV. The correlation is formulated as

R = F −1(F (I1)∗F ∗(I2)) (4.17)

and the normalized correlation map is

C =
R√

∑i=1 M(I1(i, j))2
√

∑i=1 N(I2(i, j))2
(4.18)

where F ∗ is the complex conjugate of F .

In three-dimensional flow, the velocity component normal to the measurement plane

is as important as the other components. To measure the normal component (Willert,

1997) configured PIV for stereoscopic use; this configuration is called stereo PIV.

In stereo PIV, two cameras are pointed to a point on the laser sheet illuminating the

flow. The projection of the flow in the object plane onto the image plane of each camera

provides two views of the flow which can be reconstructed using stereo projection. In

optical terms, the object plane is the location of the real object perpendicular to the

optical axis and the image plane is the surface of the sensor where the real object is

projected in the optical system. The cameras are commonly in an angular configuration

known as the Scheimpflug configuration, which improves the focus of an image by

setting the lens plane at an angle respective to the image plane (Zang and Prasad, 1997).

The Scheimpflug configuration specifies that object, lens, and image planes intersect

with each other as shown in Fig. 4.5.

For each camera two-dimensional images are recorded and two-dimensional dis-

placement vectors are obtained by using the image analysis explained in §4.2. Three-

dimensional velocity vectors can be obtained by reconstructing from two sets of two-

dimensional velocity vector field that are acquired simultaneously from two viewing

angles. The reconstruction method is related to the position of the cameras with respect

to the object plane. In Soloff et al (1997), the reconstruction method is related to the

camera calibration by approximating the projective function from images obtained from
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Figure 4.5: The Scheimpflug configuration for stereo PIV.

the calibration process.

F(x) =a0 +a1x1 +a2x2 +a3x3 +a4x2
1

+a5x1x2 +a6x2
2 +a7x1x3 +a8x2x3

+a9x2
3 +a10x3

1 +a11x2
1x2 +a12x1x2

2

+a13x3
2 +a14x2

1x3 +a15x1x2x3 +a16x2
2x3

+a17x1x2
3 +a18x2x2

3

(4.19)

where ai are vector valued coefficients that are obtained from the calibration and xi

are the coordinates in the objects plane, (x1,x2,x3). The projective function relates the

object plane with the image plane.

X = F(x) (4.20)

where X is a four element vector representing the coordinates of the image plane,

X = (X1
1 ,X1

2 ,X2
1 ,X2

2 ), where the superscript (1),(2) is the notation for camera 1 and

2, respectively. From the calibration plane, x is known and from the calibration images,

X is known. The coefficients, ai from Eq. (4.19), can be calculated using the least square

approach.

The particle image displacement is

∆X = F(x+∆x)−F(X) (4.21)

∆X≈ ∇F(x)∆x (4.22)
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in tensor form, ∇F, is formulated as

∇F = (∇F)i j =
∂Fi

∂x j
= Fi, j (4.23)

with i = 1,2 and j = 1,2,3. In index notation,
∆X (1)

1

∆X (1)
2

∆X (2)
1

∆X (2)
2

=


F(1)

1,1 F(1)
1,2 F(1)

1,3

F(1)
2,1 F(1)

2,2 F(1)
2,3

F(2)
1,1 F(2)

1,2 F(2)
1,3

F(2)
2,1 F(2)

2,2 F(2)
2,3




∆x1

∆x2

∆x3

 (4.24)

The equation solves for the three dimensional particle displacement. With an overes-

timated system such as Eq. (4.24), the displacement is calculated by the least square

method.

∆x =
(
∇FT

∇F
)−1

∇FT
∆X (4.25)

The out-of-plane displacement, ∆x3, is given by recording the calibration plate at several

out-of-plane positions. The advantage of the calibration method is that the aberration

of the image caused by the lens will be included in the projection function giving high

accuracy in the velocity reconstruction.

The stereo PIV configuration allows the measurement of three velocity compo-

nents on a plane. It depicts a slice of three-dimensional flow. The investigation of

three-dimensional flow also requires the measurement of the velocity gradient normal

to the measurement plane. This gradient can be measured by investigating the three-

dimensional flow on several measurement planes offset along the normal direction.

A home built stereo PIV was used in the measurement of flow velocity. Two Red-

lake Megaplus ES 1.0 digital cameras were used in Scheimpflug configuration to obtain

images with good focus for every points in the measurement plane (Zang and Prasad,

1997; Prasad, 2000). The Scheimpflug condition was fulfilled with Nikkor 85mm spe-

cial perspective lenses attached to each camera (Foo, 2001). Each camera was focused

on an area close to the tip of the wing. The size of the viewing plane for each camera

was 1,017×1,008 pixels (Redlake MASD, Inc, 2001). Each camera was connected to

a frame grabber National Instruments PCI-1422 which has an 8-bit image depth (Na-

tional Instruments Co., 2001). Illumination was provided by a 5mm thick Nd:YaG laser
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Figure 4.6: Setup of PIV measurement system.

pulsed through a biconcave lens to produce a light sheet (New Wave Research, 2003),

TiO2 tracer particles, which has particle diameter of 20-200 µm and specific density of

0.01-0.04, were used and produced images of particles of approximately 3-4 pixel di-

ameter (Ishihara Sangyo Kaisha, 2006). The particles were homogeneously distributed

at a concentration of approximately 0.018%. After approximately 1000 flapping cycles,

a thin layer of particles appeared on the floor of the tank. However sufficient particles

remain suspended in the water. From this layer, we assume no large-scale circulation of

flow occurred within the tank. The measurement configuration is illustrated in Fig. 4.6.

To measure the velocity gradients in all three directions of space. Measurements

were conducted on several measurement planes separated a few millimeters in the nor-

mal direction of the measurement area. For accurate displacement of the measurement

plane and in order not to repeat the calibration process for every displacement, the laser

sheet position relative to the tank was fixed and the actuating mechanism, motor and

flapping axis, were set on a single axis traversing stage with 0.05mm traverse accuracy.

To ensure that the position of the flapping plate was fixed during the measurement, the

traversing stage was equipped with a clamp and the frame that housed the rotation axis

was clamped as well.

An inertial damper was attached on one end of the motor and a coupling were at-
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tached on the other end, where the rotation of the motor’s axis was transferred to the

flapping axis by a polyurethane timing belt to minimize the effect of vibration from the

motor.

One flapping cycle, 0≤ φ < 2π, was discretized into 20 phase angles with the phase

angle step ∆φ = 0.05 f . Each measurement collected a large number of image pairs.

The recording of an image pair was separated by ∆t = 2ms for each exposure. The

normalized phase angle was φ̂ = 0,0.05, · · · ,0.95 to represent one flapping cycle, 0 ≤
φ̂ < 1.

Particle images were processed with a two-step algorithm (Westerweel et al, 1997)

with 32×32pixel2 interrogation window and the calibration method (Soloff et al, 1997)

was used to reconstruct the 3D velocity field with five calibration planes, z = (−2.5,−1,

0,1,2.5)mm, to approximate a fourth order projection polynomial. Phase averaging was

used to minimize the random error and a new term appeared in the governing equation

because of that. In turbulence, this term is called the Reynolds stress, which is a product

of the fluctuative velocity. The velocity fluctuation, is the difference of the instantaneous

velocity with the phase-averaged velocity.

The calibration plate was made from water resistant paper and the calibration image

was printed on it. The calibration image consisted of white dots to mark the position of

the calibration points as shown in Fig. 4.8. These markers were 1.5mm in diameter and

were set 3mm apart. The markers were circular and had constant intensity value of 255.

The marker at the center of the calibration plate was shaped as a square to indicate the

center of the recorded images. The calibration paper was attached to an aluminum plate

with double sided adhesive tape. Additional thickness of the paper and the adhesive

tape was taken into account by carefully positioning the calibration image at the middle

of the laser sheet. The calibration plate was positioned by attaching it to a two-axis

traversing stage which has traversing accuracy of 0.05mm.
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Figure 4.7: Timing chart of to synchronize PIV with flapping motion.
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Figure 4.8: Calibration image. The center marker of the plate was set to square to

indicate the center of the recorded image.

Figure 4.9: Markers indicate calibration position to estimate the projective function of

stereo PIV.
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4.3 Strain gauge measurement

To validate the method, the torque of the flapping axis was calculated from PIV infor-

mation and compared with load measurement. Load was measured with micro strain

measuring gauges, KSP-2-120-E3, with the approximate gage factor of 120 (Kyowa

Electronic Instruments Co., Ltd., 2010b). The gauges were wired to the Wheatstone

bridge to record the shearing moment on the axis of rotation because of the forces act-

ing normal to the surface of the wing (Kyowa Electronic Instruments Co., Ltd., 2010a).

Strain gauges were applied at opposite sides of the rotational axis at approximately 10

mm off the edge of the plate. Measurement sampling rate was 30 Hz and sampling time

of 100 cycles was used. PIV measurements and strain gauge measurements were con-

ducted simultaneously. The Wheatstone bridge was connected to the strain amplifier,

DPM-700B (Kyowa Electronic Instruments Co., Ltd., 2004), where the voltage signal

was stored on a PC by using a data acquisition system (National Instruments Co., 2000).

The motion of the flapping was measured by using a linear displacement laser sensor

from Keyence Corporation (2006). The laser was targeted not on the flapping plate but

onto a plate that was attached to the vibration absorbing damper that was installed on

the rotating part of the motor. The rotation of the target plate was off the axis of rotation,

therefore the directly measured displacement was not symmetrical. With the motor off,

the laser hit the position of the target at 25.38 mm radial distance and 1.2 mm above the

rotational axis as shown in Fig. 4.10. The analytical displacement in mm, ∆, is

∆ =−
(
−1.2tan(π+θ)+

25.38
cos(π+θ)

)
(4.26)

The direct measurement was compared by analyzing the off-axis displacement, as shown

in Fig. 4.11.

The strain gauge measurement setup is given in Fig. 4.12. The strain gauges were

set 10mm behind the flapping plate. The load of the rotational axis was calculated by

the configuration showed in Fig. 4.13. The bending moment caused tensile extension on

one and compression on the other. The torsional moment caused the tensile extension

of both of the strain gauges. The combined resistance of the strain gauges is

Rserial = RA +RB

= 2R
(4.27)
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Figure 4.10: Setup for the measurement of flapping plate phase angle using linear dis-

placement sensor.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

φ̂

∆

 

 

measured position
analytical position

Figure 4.11: Comparison of the measured displacement and analytical displacement

based on the position where the laser was targeted, Eq. (4.26).

and the change of the strain gauge because of strain is

Rserial +∆Rserial = RA +∆Rbending +∆Rtorsion +RB−∆Rbending +∆Rtorsion

= 2R+2∆Rtorsion

(4.28)



66 CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.12: Setup for strain gauge measurement.

and the measured voltage when there is no strain is

VG =
(

Rserial

Rserial +R
− R

R+ R/2

)
VS

=
(

2R
3R
− R

3/2R

)
VS

= 0

(4.29)

and when there is strain,

VG ≈
(

Rserial +∆Rserial

Rserial +R
− R

R+ R/2

)
VS

≈
(

2R+2∆Rtorsion

3R
− R

3/2R

)
VS

≈
(

2∆Rtorsion

3R

)
VS

(4.30)
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Figure 4.13: Electrical setup for the measurement of torque.
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Figure 4.14: Calculation of torsion.
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Figure 4.15: Calculation of bending.

To ensure that enough strain was exerted on the flapping axis. The flapping axis was

made of Polyacetal, which has an elastic modulus of 2.76GPa. The value of the elastic

modulus is 4% than that of an aluminum alloy 2017, 72.4GPa.
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Chapter 5

Control volume analysis

This chapter presents the qualitative and quantitative visualization and analysis by con-

trol volume analysis of the flow generated by a flapping rigid plate. The measurement

setup is explained in §5.1 and the accuracy and measurement uncertainty is discussed

in §5.2. Qualitative visualization with dye ink is presented in §5.3. The result of stereo

PIV is processed to visualize the flow structures quantitatively in §5.4. The dynamics of

the vortex flow is investigated in §5.5 and final remarks are given in §5.6.

5.1 Measurement setup

Stereo PIV measurements were done parallel to the xy-planes to produce the three di-

mensional planar field around the mid-chord section and leading edge section. The

aeronautical terms leading edge and wing tip are borrowed to indicate the edge of the

wing and its tip.

For the control volume analysis, the flow along three xy-planes were measured at

z = (0,5,10)mm to analyze the three dimensional effect of the half-size of the plate as

shown in Fig. 5.1. In this case, the measurement planes were set apart because there

is no need to calculate the components of velocity derivative for the control volume

analysis.

69
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Figure 5.1: Position of measurement planes parallel to xy-plane measured for control

volume analysis. The plate is illustrated in dark gray.

5.2 Accuracy and measurement uncertainty

Several factors affect the accuracy of the measurements. Misalignment was measured

using the method described in Coudert and Schon (2001) with a set of 50 images taken

by the left and right cameras of one phase angle. The average misalignment was found

to be 0.14mm (5% of the interrogation area) in the horizontal direction of the image and

0.18mm(6.4% of the interrogation area) in the vertical direction leading to uncertainties

of the velocity measurement as high as 0.15% in 〈u〉, 0.12 % in 〈v〉, and 0.12% in 〈w〉
relative to U . Another factor that affects the accuracy of our measurement is the wing

tip reflection that was observed at high phase angles. Reflection of the laser light at the

wing tip was detected by using a median intensity filter and the intensity of the reflection

was substituted with background intensity.

Measurement uncertainty was determined by the measurement of fifteen groups of
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Figure 5.2: Velocity distribution at X = 0 and Y = 0.5.

velocity at one phase angle (Coleman and Steele, 1995). Each group recorded 1000

cycles of data and the velocity data was treated as described in the previous section.

With a 95% confidence level, measurement uncertainties of phase-averaged velocities

relative to U of an area randomly selected at x/c = 0, y/c = 0.5 are 3% for 〈u〉, 2% for

〈v〉 and 2% for 〈w〉. The temperature of the water tank was measured before and after the

stereo PIV measurement and shows that the temperature fluctuation was 0.1◦C at most

during the whole run of the stereo PIV measurement. The probability density function

of the velocity is shown in Fig. 5.2. Gaussian distribution of this data was confirmed

using the Jarque-Bera test as formulated in Eq. (5.1).

JB =
n
6

(
S2 +

(K−3)2

4

)
(5.1)

S =
µ̂3

(σ̂2)3/2
(5.2)

K =
µ̂4

(σ̂2)2
(5.3)

where n is the number of observation, S and K represent the sample’s skewness and

kurtosis, respectively. µ̂3 and µ̂4 are the estimates of the third and fourth central moments

and σ̂2 is the estimate of the variance. Values of JB closer to zero indicates better

resemblance to the Gaussian distribution.

After treatment, the sample closely approximates the Gaussian distribution as shown
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Table 5.1: calculation of Skewness (S), Kurtosis (K), and the Jarque-

Bera test (JB). For Gaussian distribution, S = 0, K = 3, and JB = 0.

before treatment after treatment

S K JB S K JB

u 0.36 3.90 55.01 0.14 3.14 3.80

v -0.39 2.94 26.14 -0.10 2.83 1.26

w -0.39 3.32 30.04 -0.26 2.98 11.59

in Table 5.1. This approximate agreement indicates that the variables measured can be

considered to be random. Thus, the measurement of one phase angle for every cycle

is considered to be, within reason, free of other organized structures, such as reflected

vortices.

5.3 Qualitative visualization

Qualitative flow visualization was achieved by injecting blue pen ink next to the rota-

tional axis. The ink was injected at approximately 2mm below the rotational axis from

a pipette, which has an inner diameter of 1.5mm, as shown in Fig. 5.3. The flow was

recorded separately, from the front and from the top of the plate, with a 30fps digital

camera.

The evolution of the flow phenomena around the flapping plate is shown in Fig. 5.3(b)

–(c) at φ̂≈ 0.25, when the plate is at the end of its flapping motion, and Fig. 5.3(d)–(e)

at φ̂ ≈ 0.45, when the plate starts its return stroke. Streaklines were visualized using

blue dye and, in the snapshots, the plate is highlighted by a yellow frame and the tip of

the plate by a red line. The combination of views suggest a helical vortex structure on

the edge of the plate. Figure 5.3(b) and (d) shows the front view and Fig. 5.3(c) and (e)

shows the slanted top view. These viewpoints are depicted in Fig. 5.3(a) as well as the

point of dye injection.
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(a) Illustration of the vortex structure generated

by the flapping plate.

(b) Front view, φ̂ ≈
0.25.

(c) Top view, φ̂≈ 0.25.

(d) Front view, φ̂ ≈
0.45.

(e) Top view, φ̂≈ 0.45.

Figure 5.3: Snapshots of visualization of the flow around the wing with blue dye. The

wing is marked with yellow highlight and the wingtip with red.

The dye was injected while the plate was moving and was quickly diffused toward

the tip of the plate along its edge. The dye produced streaklines as shown in Fig. 5.3(b)–

(e). The streaklines at φ̂≈ 0.25 behave as a steady stream flowing along the edge of the

plate, Fig. 5.3(b) and as a rotating structure in the clockwise direction, Fig. 5.3(c). The

dye was diffused near the tip of the plate. In the return stroke, the dye was convected

around the edge of the plate as shown in Fig. 5.3(d)–(e).

Based on dye visualization, a possible flow structure is sketched in Fig. 5.3(a). The

“legs” extend along the edges of the plate with opposite rotation and are connected with
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the “neck” and “head”.

5.4 Quantitative visualization

5.4.1 Discretization of the quantitative visualization

The second invariance denotes the dominance between the strength of the rotation com-

pared with that of the strain as indicated in Eq. (2.21) and rewritten in this section as

Eq. (5.4).

Q = (‖Ω‖2−‖S‖2)

=
∥∥∥∥1

2

(
∂ui

∂x j
− ∂u j

∂xi

)∥∥∥∥2

−
∥∥∥∥1

2

(
∂ui

∂x j
+

∂u j

∂xi

)∥∥∥∥2

=−∂ui

∂x j

∂u j

∂xi

(5.4)

For the phase-averaged velocity field, Eq. (5.4) was decomposed into

〈Q〉=−∂〈ui〉
∂x j

∂〈u j〉
∂xi
−
〈

∂u′i
∂x j

∂u′j
∂xi

〉
(5.5)

Equation (5.5) was discretized as

〈Q〉 ≈ −∆〈ui〉
∆x j

∆〈u j〉
∆xi

−
〈

∆u′i
∆x j

∆u′j
∆xi

〉
(5.6)

where

∂ f
∂x
≈ ∆ f

∆x
=

f (x+∆x,y,z)− f (x−∆x,y,z)
2∆x

(5.7)

∂ f
∂y
≈ ∆ f

∆y
=

f (x,y+∆y,z)− f (x,y−∆y,z)
2∆y

(5.8)

∂ f
∂z
≈ ∆ f

∆z
=

f (x,y,z+∆z)− f (x,y,z−∆z)
2∆z

(5.9)
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and next to the boundary, the one-sided formulation was used,

∂ f
∂x
≈ ∆ f

∆x
=
−3 f (x,y,z)+4 f (x+∆x,y,z)− f (x+2∆x,y,z)

2∆x
(5.10)

∂ f
∂y
≈ ∆ f

∆y
=
−3 f (x,y,z)+4 f (x,y+∆y,z)− f (x,y+2∆y,z)

2∆y
(5.11)

∂ f
∂z
≈ ∆ f

∆z
=
−3 f (x,y,z)+4 f (x,y,z+∆z)− f (x,y,z+2∆z)

2∆z
(5.12)

where ∆z = ∆z or ∆z =−∆z according to the orientation of the boundary.

5.4.2 Result of visualization

Figure 5.4 shows a snapshot of the velocity field around the flapping plate at φ̂ = 0.55.

In this figure, a part of the flapping plate is represented by the gray square. The arrows

indicate the in-plane components of velocity, 〈u〉/U and 〈v〉/U , and the color indicate the

out-of-plane component of velocity, 〈w〉/U . Three measurement planes are presented

from the bottom plane in Fig. 5.4 to the top: the mid-chord plane z/c = 0, the one-

quarter chord plane z/c = 0.25, and the leading-edge plane z/c = 0.5. Several terms

related to the flapping plate are leading-edge and tip for the spanwise edge of the plate

and the chordwise edge of the plate, respectively. The surface of the plate moving

towards the fluid will be called the front-surface and the opposite surface will be called

the rear-surface. Figure 5.4 shows three-dimensional velocity distribution around the

plate. Most notable features are the rotational structure around the leading-edge of the

plate indicated by the distribution of 〈w〉, the spanwise flow towards the tip of the plate,

chordwise velocity distribution near the tip of the plate, and the rotational structure

around the tip of the plate.

The rotational flow structures were visualized by the second invariance, Eq. (2.21),

and by streamlines, Eq. (2.22), in Fig. 5.5 for the downstroke sequence on the measure-

ment plane at z/c = 0.5. The downstroke of the flapping plate is defined for 0.25≤ φ̂ <

0.75.

The contour in Fig. 5.5 represents the magnitudes of 〈Q〉 given in the legend. Two

dimensional streamlines are represented by red lines depicting the flow motion along

the x and y directions. In the figure, the plate is represented by the gray patch. Regions
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〈w〉/U

Figure 5.4: Three dimensional velocity distribution at φ̂ = 0.55. 〈u〉/U , 〈v〉/U are repre-

sented by vectors and 〈w〉/U by the colors represented in the legend.

where 〈Q〉< 0 are the location of the vortical structures. Additional structures are visu-

alized by the streamlines that forms rotational lines. These curves are symbolized with

TV with “+” and “−” signs to indicate the counter-clockwise and clockwise rotation.

The region around the plate in Fig. 5.5 has 〈Q〉< 0 caused by shear flow which de-

velops into a vortex. This vortex disappears for a while at 0.35≤ φ̂≤ 0.45 and reappears

afterwards on the rear-surface of the plate. At φ̂ = 0.35, the streamlines changed direc-

tion moving towards the rear-surface of the plate and a rotational structure begins to

develop as depicted by both streamlines and 〈Q〉 as shown by TV2+ in Fig. 5.5(f). The

vortex at 0.55≤ φ̂≤ 0.65 follows the motion of the plate and bifurcates away from the
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(a) φ̂ = 0.25 (b) φ̂ = 0.35 (c) φ̂ = 0.45

(d) φ̂ = 0.55 (e) φ̂ = 0.65 (f) φ̂ = 0.75

〈Q〉 (bΘ)2

U2

Figure 5.5: Vortex identification at z/c = 0.5 by 〈Q〉 presented as a contour. Streamlines

are depicted in the field as red lines that do not relate to the contour legend. Legend

depicts the magnitude of 〈Q〉 (bΘ)2
/U2.
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plate close to the tip. At φ̂ = 0.75, when the downstroke ends, the vortex moves closer

to the plate from its downward momentum as observed by the streamlines in the region

where 〈Q〉 < 0. Rotational streamlines are observed above the top of the vortices in

counter-clockwise direction (TV2+) as shown in Fig. 5.5(c)–5.5(e). At 0.65≤ φ̂≤ 0.75

a second counter-clockwise rotating streamlines appear near the tip, TV1+. In the re-

gion where 〈Q〉< 0 where the vortex has “fully-developed”, the streamlines are grouped

together showing a relatively fast flow in that region moving toward the tip. From this

region several streamlines diverge, moving toward the surface as a result of the vortex

moving with the plate.

In Fig. 5.6, observations of the streamlines at z/c = 0 show less rotational elements

in the streamlines and the flow moves toward the rear-surface of the plate and away from

the front-surface of the plate. The vortex is observed around the tip and is weaker than

the one on z/c = 0.5.

The flow structure of Figs. 5.5–5.6 are sketched in Fig. 5.7 for all the measured phase

angle. The plate is represented as the red line, the vortex at z/c = 0.5 is represented by

the blue line, which will be called the leading-edge vortex and symbolized with LEV,

and the vortex at z/c = 0 is represented by the dashed-blue line, which will be called the

mid-chord vortex and symbolized with TV.

Observations of 〈Q〉 in Fig. 5.7 shows that the evolution of the vortex system can be

broken down into several phases relative to the motion of the plate:

1. accelerating phase, 0.25≤ φ̂ < 0.50 and 0.75≤ φ̂ < 0

2. decelerating phase, 0≤ φ̂ < 0.25 and 0.5≤ φ̂ < 0.75

3. resting phase, when U = 0, φ̂ = 0.25 and φ̂ = 0.75

Figure. 5.7 shows two vortices on the leading edge of the plate at φ̂ = 0.05 to φ̂ =

0.15. One large leading-edge vortex and a smaller one are rotating in the same direction.

These vortices are indicated as LEV+. The larger of the two is extended to z/c = 0

(TV−) and grows up to 150% of the flapping wing amplitude as the plate approaches

the resting phase. The smaller one does not show any extension. It is most likely that

only one large structure on the rear-surface of the plate exists. This description of the

leading-edge vortex is due to the measurement configuration giving the cross-section of

the leading-edge vortex on the measurement plane. At φ̂ = 0.20, a vortex attached to the
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(a) φ̂ = 0.25 (b) φ̂ = 0.35 (c) φ̂ = 0.45

(d) φ̂ = 0.55 (e) φ̂ = 0.65 (f) φ̂ = 0.75

〈Q〉 (bΘ)2

U2

Figure 5.6: Vortex identification at z/c = 0 by 〈Q〉 presented as a contour. Streamlines

are depicted in the field as red lines that do not relate to the contour legend. Legend

depicts the magnitude of 〈Q〉 (bΘ)2
/U2.
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edge of the plate (LEV−) appears in the opposite direction of the leading-edge vortex.

This opposite vortex is extended to the mid-chord plane (TV−).

At φ̂ = 0.30, the leading-edge vortex develops into a separated counter-clockwise

rotating vortex. From qualitative visualization, it was known that the leading edge vortex

is diffused around the edge of the plate and dissipates. The mid-chord vortex grows

weaker and is stretched up to 200% of the flapping amplitude. At φ̂ = 0.35 and φ̂ = 0.40,

the mid-chord vortex reverses its rotational direction and moves to the rear-surface of

the plate. Throughout the accelerating phase, a leading edge vortex is observed on the

front-surface of the plate.

The decelerating phase of 0.5 ≤ φ̂ < 0.75 shows the opposite vortical structures as

0 ≤ φ̂ < 0.25. The leading-edge vortex on the front-surface of the plate during the

accelerating plate is diffused to the rear-surface of the plate and the mid-chord vortex

strengthen then weakens at φ̂ = 0.70.

The accelerating phase of 0.75≤ φ̂ < 0 also shows the opposite vortical structure as

the other accelerating phase at 0.25≤ φ̂ < 0.50. Weak mid-chord vortices are observed

and the leading-edge vortex appears on the front-surface of the plate before being dif-

fused to the rear-surface at φ̂ = 0.95.
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Figure 5.7: Sketch of vortex structure from φ̂ = 0 – 0.95. The sequence should be

read from top to down and from left to right. Vortices at z/c = 0.5 are represented by

continuous blue lines, leading-edge vortex (LEV), and at z/c = 0 by blue dashed lines,

mid-chord vortex (TV). The plate is represented by a red line. Arrows indicate the

rotational direction. For the leading-edge vortex, the rotational axis is in the spanwise

direction.
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5.5 Control volume analysis

5.5.1 Discretized control volume analysis

Force can be calculated within a specific part of the flow by defining a control volume

as shown in Eq. (2.5). The force is defined by the integral of the momentum within a

control volume, which is rewritten here as Eq. (5.13),

Fi = ρ

Z
V

∂〈ui〉
∂t

dV +ρ

Z
S
〈ui〉〈u j〉n̂ j dS (5.13)

After decomposing the momentum equation to the phase averaged component and fluc-

tuating component,

〈F〉i = ρ
∂φ

∂t

Z
V

∂〈ui〉
∂φ

dV +ρ

Z
S
〈ui〉〈u j〉n̂ j dS +ρ

Z
S
〈u′iu′j〉n̂ j dS (5.14)

The first term on the left hand side of Eq. (5.14) is the average unsteady term, the second

term is the average convection term, and the last term is the average of the variation of

the convection from the product of the fluctuating velocity component.

The integration was done with finite volume method, where the unsteady term is

formulated as Z
V

∂〈ui〉
∂φ

dV =
N

∑
i=1

∆〈ui〉
∆φ

∆V (5.15)

where i indicates the node number and N = V/∆V is the number of nodes. Expanding

the discrete form of the unsteady term to its components, 〈ui〉= 〈u〉c,〈v〉c,〈w〉,

Funsteady,x =
N

∑
i=1

∆〈u〉c
∆φ

∆V (5.16)

Funsteady,y =
N

∑
i=1

∆〈v〉c
∆φ

∆V (5.17)

Funsteady,z =
N

∑
i=1

∆〈w〉c
∆φ

∆V (5.18)

The convection term is discretized asZ
S
〈ui〉〈u j〉n̂ j dS =

3

∑
k=1

1

∑
l=0

N

∑
i=1

(−1)l〈ui〉〈u j〉n̂ j∆S (5.19)
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z

x, y, z x, y+Δy, z

x, y, z+Δz
xc, yc, z

x+Δx, y, z

Figure 5.8: Control volume definition and the orientation of x, y, and z

(a) Definition of S1 and S3. (b) Definition of S2 and S4. (c) Definition of S5 and S6.

Figure 5.9: Definition of the control surface for each faces of control volume, V .

where k is the direction of the convection force, l is the surface orientation. Equa-

tion 5.19 is better explained when it is expanded to its vector form in Eqs. (5.20)–(5.22),

where the orientation of (x,y,z) and S1 to S6 are shown in Figs. 5.8 and 5.9.
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Fconvection,x =
Z

S

(
〈u〉〈u〉nx + 〈u〉〈v〉ny + 〈u〉〈w〉nz

)
dS

=
Z

S2

〈u〉〈u〉(−1)dS +
Z

S4

〈u〉〈u〉(+1)dS

+
Z

S1

〈u〉〈v〉(+1)dS +
Z

S3

〈u〉〈v〉(−1)dS

+
Z

S5

〈u〉〈w〉(+1)dS +
Z

S6

〈u〉〈w〉(−1)dS

=
N

∑
i=1

∆y∆z
2

[
〈u〉〈u〉(x+∆x,y+∆y,z)+ 〈u〉〈u〉(x+∆x,y,z)

]
−

N

∑
i=1

∆y∆z
2

[
〈u〉〈u〉(x,y+∆y,z)+ 〈u〉〈u〉(x,y,z)

]
+

N

∑
i=1

∆x∆z
2

[
〈u〉〈v〉(x,y+∆y,z)+ 〈u〉〈v〉(x+∆x,y+∆y,z)

]
−

N

∑
i=1

∆x∆z
2

[
〈u〉〈v〉(x,y,z)+ 〈u〉〈v〉(x+∆x,y,z)

]
+

N

∑
i=1

∆x∆y
[
〈u〉〈w〉(xc,yc,z+∆z)−〈u〉〈w〉(xc,yc,z)

]

(5.20)
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Fconvection,y =
Z

S

(
〈v〉〈u〉nx + 〈v〉〈v〉ny + 〈v〉〈w〉nz

)
dS

=
Z

S2

〈v〉〈u〉(−1)dS +
Z

S4

〈v〉〈u〉(+1)dS

+
Z

S1

〈v〉〈v〉(+1)dS +
Z

S3

〈v〉〈v〉(−1)dS

+
Z

S5

〈v〉〈w〉(+1)dS +
Z

S6

〈v〉〈w〉(−1)dS

=
N

∑
i=1

∆y∆z
2

[
〈v〉〈u〉(x+∆x,y+∆y,z)+ 〈v〉〈u〉(x+∆x,y,z)

]
−

N

∑
i=1

∆y∆z
2

[
〈v〉〈u〉(x,y+∆y,z)+ 〈v〉〈u〉(x,y,z)

]
+

N

∑
i=1

∆x∆z
2

[
〈v〉〈v〉(x,y+∆y,z)+ 〈v〉〈v〉(x+∆x,y+∆y,z)

]
−

N

∑
i=1

∆x∆z
2

[
〈v〉〈v〉(x,y,z)+ 〈v〉〈v〉(x+∆x,y,z)

]
+

N

∑
i=1

∆x∆y
[
〈v〉〈w〉(xc,yc,z+∆z)−〈v〉〈w〉(xc,yc,z)

]

(5.21)
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Fconvection,z =
Z

S

(
〈w〉〈u〉nx + 〈w〉〈v〉ny + 〈w〉〈w〉nz

)
dS

=
Z

S2

〈w〉〈u〉(−1)dS +
Z

S4

〈w〉〈u〉(+1)dS

+
Z

S1

〈w〉〈v〉(+1)dS +
Z

S3

〈w〉〈v〉(−1)dS

+
Z

S5

〈w〉〈w〉(+1)dS +
Z

S6

〈w〉〈w〉(−1)dS

=
N

∑
i=1

∆y∆z
2

[
〈w〉〈u〉(x+∆x,y+∆y,z)+ 〈w〉〈u〉(x+∆x,y,z)

]
−

N

∑
i=1

∆y∆z
2

[
〈w〉〈u〉(x,y+∆y,z)+ 〈w〉〈u〉(x,y,z)

]
+

N

∑
i=1

∆x∆z
2

[
〈w〉〈v〉(x,y+∆y,z)+ 〈w〉〈v〉(x+∆x,y+∆y,z)

]
−

N

∑
i=1

∆x∆z
2

[
〈w〉〈v〉(x,y,z)+ 〈w〉〈v〉(x+∆x,y,z)

]
+

N

∑
i=1

∆x∆y
[
〈w〉〈w〉(xc,yc,z+∆z)−〈w〉〈w〉(xc,yc,z)

]

(5.22)

The differentiation of the last term of Eq. (5.14) follows similarly with the convec-

tion term.
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Fvariation,x =
Z

S

(
〈u′u′〉nx + 〈u′v′〉ny + 〈u′w′〉nz

)
dS

=
Z

S2

〈u′u′〉(−1)dS +
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S4

〈u′u′〉(+1)dS

+
Z

S1

〈u′v′〉(+1)dS +
Z

S3

〈u′v′〉(−1)dS

+
Z

S5

〈u′w′〉(+1)dS +
Z

S6

〈u′w′〉(−1)dS

=
N

∑
i=1

∆y∆z
2

[
〈u′u′〉(x+∆x,y+∆y,z)+ 〈u′u′〉(x+∆x,y,z)

]
−

N

∑
i=1

∆y∆z
2

[
〈u′u′〉(x,y+∆y,z)+ 〈u′u′〉(x,y,z)

]
+

N

∑
i=1

∆x∆z
2

[
〈u′v′〉(x,y+∆y,z)+ 〈u′v′〉(x+∆x,y+∆y,z)

]
−

N

∑
i=1

∆x∆z
2

[
〈u′v′〉(x,y,z)+ 〈u′v′〉(x+∆x,y,z)

]
+

N

∑
i=1

∆x∆y
[
〈u′w′〉(xc,yc,z+∆z)−〈u′w′〉(xc,yc,z)

]

(5.23)
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Fvariation,y =
Z

S

(
〈v′u′〉nx + 〈v′v′〉ny + 〈v′w′〉nz

)
dS

=
Z

S2

〈v′u′〉(−1)dS +
Z

S4

〈v′u′〉(+1)dS

+
Z

S1

〈v′v′〉(+1)dS +
Z

S3

〈v′v′〉(−1)dS

+
Z

S5

〈v′w′〉(+1)dS +
Z

S6

〈v′w′〉(−1)dS

=
N

∑
i=1

∆y∆z
2

[
〈v′u′〉(x+∆x,y+∆y,z)+ 〈v′u′〉(x+∆x,y,z)

]
−

N

∑
i=1

∆y∆z
2

[
〈v′u′〉(x,y+∆y,z)+ 〈v′u′〉(x,y,z)

]
+

N

∑
i=1

∆x∆z
2

[
〈v′v′〉(x,y+∆y,z)+ 〈v′v′〉(x+∆x,y+∆y,z)

]
−

N

∑
i=1

∆x∆z
2

[
〈v′v′〉(x,y,z)+ 〈v′v′〉(x+∆x,y,z)

]
+

N

∑
i=1

∆x∆y
[
〈v′w′〉(xc,yc,z+∆z)−〈v′w′〉(xc,yc,z)

]

(5.24)
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Fvariation,z =
Z

S

(
〈w′u′〉nx + 〈w′v′〉ny + 〈w′w′〉nz

)
dS

=
Z

S2

〈w′u′〉(−1)dS +
Z

S4

〈w′u′〉(+1)dS

+
Z

S1

〈w′v′〉(+1)dS +
Z

S3

〈w′v′〉(−1)dS

+
Z

S5

〈w′w′〉(+1)dS +
Z

S6

〈w′w′〉(−1)dS

=
N

∑
i=1

∆y∆z
2

[
〈w′u′〉(x+∆x,y+∆y,z)+ 〈w′u′〉(x+∆x,y,z)

]
−

N

∑
i=1

∆y∆z
2

[
〈w′u′〉(x,y+∆y,z)+ 〈w′u′〉(x,y,z)

]
+

N

∑
i=1

∆x∆z
2

[
〈w′v′〉(x,y+∆y,z)+ 〈w′v′〉(x+∆x,y+∆y,z)

]
−

N

∑
i=1

∆x∆z
2

[
〈w′v′〉(x,y,z)+ 〈w′v′〉(x+∆x,y,z)

]
+

N

∑
i=1

∆x∆y
[
〈w′w′〉(xc,yc,z+∆z)−〈w′w′〉(xc,yc,z)

]

(5.25)

The total force is

〈Fi〉= ρ

[
∆φ

∆t
〈Fi〉unsteady + 〈Fi〉convection + 〈Fi〉variation

]
(5.26)

and the normalized force is

C̃〈Fi〉 =
〈Fi〉

1/2ρU2bc

=
ρ

1/2ρU2bc

(
2π f ∆t

∆t
〈Fi〉unsteady + 〈Fi〉convection + 〈Fi〉variation

)
=

4π f
U2bc

〈Fi〉unsteady +
2

U2bc

(
〈Fi〉convection + 〈Fi〉variation

) (5.27)

Equation (5.27) is expanded to its bases x, y, and z,
C̃x(φ̂i)

C̃y(φ̂i)

C̃z(φ̂i)

=


C̃u,t

x (φ̂i)

C̃u,t
y (φ̂i)

C̃u,t
z (φ̂1)

+


C̃uu

x (φ̂i)

C̃uu
y (φ̂i)

C̃uu
z (φ̂1)

+


C̃u′u′

x (φ̂i)

C̃u′u′
y (φ̂i)

C̃u′u′
z (φ̂i)

 (5.28)
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where the superscript “u, t” is the rate of change of momentum, “uu” is the momentum

flux, and “u′u′” is the product of the fluctuating velocity. The force coefficient C̃〈Fi〉 is

shortened as C̃xi .

A three-point moving average smoothing function was applied to the force coeffi-

cients,

Cxi(φ̂k) =
C̃xi(φ̂k−∆φ̂k)+2C̃xi(φ̂k)+C̃xi(φ̂k +∆φ̂k)

4
(5.29)

where φ̂k is the discrete phase angle. The analysis follows the arbitrary choice of control

volume size and location in the PIV velocity field to analyze the physics of the flow

generated by flapping motion as shown in the next section.

5.5.2 Result of control volume analysis

The out-of-plane velocity distribution provides a way to assess the flow three-dimension-

ally. The size of the control volume was defined to partially include the plate in order to

evaluate the physics of the flow and the effect of the plate’s inertia on the flow inside the

control volume. Equation (5.27) was used to calculate the force acting on the control

volume, which included the pressure and viscous terms acting on the control surface.

As a consequence, the calculation is dependent on the size of the control volume. This

dependence is exploited for the evaluation of flow physics. Equation (5.27) calculates

the force due to the flow within a control volume fixed in space, not the force acting on

the plate. Thus, in this study the added mass was not compensated.

As explained, Eq. (5.27) is dependent on the control volume used for the analysis.

The control volume analysis on each z positions of the measurement planes are defined

as

−1.84≤ x≤ 1.84, −1.12≤ y≤ 1.12 (5.30)

as shown in Fig. 5.10. Figures 5.11–5.13 are the results given by the conditions above.

The evolution of Cx and Cy are presented in Fig. 5.11. At z/c = 0 and z/c = 0.25, Cx

has a sinusoidal form and is equal in magnitude and phase for both Reynolds numbers

and Cy is smaller than Cx. The streamlines show that the flow is diffused along the x-

direction more prominently than in the y-direction. Comparison of Cx for both Reynolds

numbers at z/c = 0.5 shows that the magnitude of Cx depends on the Reynolds number
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〈Q〉 (bΘ)2
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Figure 5.10: The control volume defined in Eq. 5.30.

at 0.25 < φ̂ < 0.45 and 0.75 < φ̂ < 0.95 while, at other phases, it is equal in magnitude

to that of Cy.

Force coefficients at z/c = 0.5 are presented in Fig. 5.12, which compares Cx of both

Reynolds numbers with the path of the wing tip. In this figure, the phase lag between

maximum force and maximum acceleration of the wing is observed to be approximately

∆φ̂ = 0.1.

In Fig. 5.13, the results of Fig. 5.12 are decomposed into its individual terms as

pointed out in Eq. (5.27). Here, Cu,t
x represents the unsteady term, Cuu

x represents the

average momentum flux, and Cu′u′
x represents the turbulent momentum flux. Figure 5.13
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Figure 5.11: Force coefficients for z/c = 0 (mid-chord), z/c = 0.25 (1/4 chord), and

z/c = 0.5 (leading edge). Results are after the moving average.

shows local increases for Cu,t
x at 0.3 ≤ φ̂ ≤ 0.45 and 0.8 ≤ φ̂ ≤ 0.95. These increases

can be observed in Fig. 5.6 where the leading edge vortex at φ̂ = 0.25 disappear due to

outward diffusion as also shown by the dye visualization in Fig. 5.3(d)–(e).

In Fig. 5.13, Cuu
x shows no distinguishable flow phenomena throughout the flapping

phase. To describe the mechanism of momentum transfer, we now select a smaller

control volume so that the momentum flux is explicitly evaluated. Forces in Fig. 5.15

were evaluated using a smaller control volume,

−0.64≤ x≤ 0.64,−1.12≤ y≤ 1.12 (5.31)

This control volume is defined in Fig. 5.14

Figure 5.15 shows large magnitudes of Cuu
x around φ̂ = 0.4 and φ̂ = 0.8, as compared

to Fig. 5.13, due to the flux of average momentum passing across the control surface.

Cuu
x is delayed further than Cu,t

x reaching values as high as ∆φ̂ = 0.05. The relation of the

magnitude of Cuu
x to the phase angle is related to the size of the selected control volume.



5.5. CONTROL VOLUME ANALYSIS 93

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

C
F
(z

/
c

=
0.

5)

φ̂

 

 

C
x
, Re=1580 Re=3160 C

y
, Re=1580 Re=3160

Figure 5.12: Force coefficients for z/c = 0.5 (leading edge). Results are after the moving

average.

The selection of a smaller control volume will detect the momentum flux more strongly

due to the diffusion of the vortex to the surrounding fluid at rest.

To evaluate the flow structures around the edge and near the tip, Eq. (5.31) was

divided into two control volumes,

−0.64≤ x≤ 0.64, −1.12≤ y <−0.4 (5.32)

−0.64≤ x≤ 0.64, −0.4≤ y≤ 1.12 (5.33)

These control volumes are defined in Fig. 5.16 where the volume defined by Eq. (5.31)

will be called V , by Eq. (5.32) will be called Ve, and by Eq. (5.33) will be called Vt .

Thus, V = Ve +Vt , where Ve is the volume covering the edge of the plate and Vt is the

volume covering the tip and the region beyond the tip.

In Figs. 5.17–5.20, three rows represent force evaluation in V , Ve, and Vt from top

to bottom. Figure 5.17 shows that the unsteady term, Cu,t
x , at z/c = 0.5, is higher at

the region encompassed by Ve than that by Vt . Therefore, the vortex around the edge
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Figure 5.13: Force coefficients for z/c = 0.5 decomposed into: unsteady term Cu,t
x ,

average momentum flux Cuu
x , and turbulent momentum flux Cu′u′

x . Calculated under the

condition in Eq. (5.30).

of the plate is the main source of the unsteady term because it experiences massive

changes more than the flow in Vt . The unsteady term of Vt shows that at 0.5≤ φ̂≤ 0.75

and 0 ≤ φ̂ ≤ 0.25 the unsteady term is minimum, which depicts a “developed” vortex

structure behind the plate, as sketched in Fig. 5.7. In Fig. 5.17 the “developed” state is

reached more quickly for the low Reynolds number.

Cz at z/c = 0.5 is plotted in Fig. 5.18 where by calculating Eq. (5.27) in V , a positive

force at 0.3≤ φ̂≤ 0.45 and a negative force 0.8≤ φ̂≤ 0.95 are observed. Decomposing

V to Ve and Vt , negative force is observed at Ve and positive force is observed at Vt

for the aforementioned phase angles. Figure 5.7 shows that the flow encompassed by

Vt at 0 ≤ φ̂ ≤ 0.25 and 0.5 ≤ φ̂ ≤ 0.75 includes a vortex structure that appears to be

an extension of the leading edge vortex moving outward (positive z-direction). The

sketch also shows that in the region of Ve, the leading edge vortex is not observed

because it was diffused outward and, as a consequence, Cz(Ve) of Fig. 5.18 is negative
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〈Q〉 (bΘ)2
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Figure 5.14: The control volume defined by Eq. (5.31).

due to the existence of the new vortex formed around the edge of the plate. However,

the dynamics of the leading edge vortex are still distinguishable from the evaluation of

Vt . This dynamic is also observable in Fig. 5.3(b)–(e). The dye is behind the plate in

Fig. 5.3(b)–(c) and is diffused around the edge of the plate in Fig. 5.3(d)–(e) indicating

the existence of a vortex attached to the edge of the plate with opposite rotation to that

of the leading edge vortex.

Forces in y-direction are of particular interest since the velocity profile at this direc-

tion has been studied by Jones et al (1998) and Lai and Platzer (1999), among others,

as part of the study of flow caused by fluttering. They clarified the existence of the



96 CHAPTER 5. CONTROL VOLUME ANALYSIS

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5
C

u
,t

x

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

C
u

u
x

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

C
u

′ u
′

x

φ̂

 

 

Re=1580 Re=3160

Figure 5.15: Force coefficients for z/c = 0.5 decomposed into: unsteady term Cu,t
x ,

average momentum flux Cuu
x , and turbulent momentum flux Cu′u′

x . Calculated under the

condition in Eq. (5.31).

Knoller-Betz effect, which is a thrust producing effect for a plunging or oscillating air-

foil. To see the same effect, the phase-averaged momentum flux, Cuu
y , on z/c = 0.5 is

presented in Fig. 5.19 with the same volume decomposition explained by Eqs. (5.32)

and (5.33). Cuu
y at V shows different graphs between low and high Reynolds numbers.

Cuu
y calculated with Ve of low and high Reynolds numbers fits well. Cuu

y of Ve produces

drag at 0.25 ≤ φ̂ ≤ 0.55 and 0.75 ≤ φ̂ ≤ 0.05. The existence of drag at these phase an-

gles is related to the appearance of vortex attached on the windward surface of the plate.

Although Cuu
y of Vt shows discrepancies between the Reynolds number, it still produces

jet flow. This discrepancy is associated with the change of the flapping frequency of the

plate.

Cuu
y on z/c = 0 is shown in Fig. 5.20. In one cycle, Cuu

y on V has greater magnitude

from 0 ≤ φ̂ ≤ 0.4 compared to 0.6 ≤ φ̂ ≤ 1 and is negative at 0.45 ≤ φ̂ ≤ 0.55 for high

Reynolds number. At low Reynolds number a different graph is observed. Similar to
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Figure 5.16: The control volume defined by Eqs. (5.32)–(5.33).

Fig. 5.19, the differences can be observed by performing an evaluation on Ve and Vt . In

Ve, Cuu
y of low and high Reynolds numbers fit nicely. However, in Vt , Cuu

y for low and

high Reynolds numbers produce different curves, indicating a difference between the

two flow regimes similar to that depicted in Fig. 5.20. However, the effect of momentum

flux on y-direction over time is the same, which produces a force directed along the

positive y-axis, regardless of Reynolds number or position, as shown in Table 5.2. Thrust

producing flow is depicted by the direction of the streamlines in Fig. 5.5–5.6. Here,

source elements are observed around the edge of the plate for the duration of flapping.

Table 5.3 shows the time averaged force resulting from Cx for both Reynolds num-
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Figure 5.17: Cu,t
x at z/c = 0.25 calculated with V and decomposed into Ve and Vt .

Table 5.2: Time-averaged Cuu
y at z/c = 0 and z/c = 0.5

z/c = 0 z/c = 0.5

Re=1580 0.02 0.02

Re=3160 0.02 0.04

bers on the edge of the plate. The values of Cx in Table 5.3 highlight the slight asym-

metry of the vortex shedding, which was also reported by Lai and Platzer (2000) for a

plunging symmetric airfoil at zero free-stream velocity. By decomposition of V , the

value of Cx is seen to be negative for Ve and positive for Vt . For Ve, the value of Cx is

higher in magnitude at higher Reynolds number. Conversely, for Vt , it is higher at lower

Reynolds numbers. This depicts the nature of the leading edge vortex where the flow

follows the motion of the plate and, around the tip, the flow is moving in the opposite

direction of the plate.
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Figure 5.18: Cz at z/c = 0.5 calculated with V and decomposed into Ve and Vt .

Table 5.3: Time-averaged Cx at z/c = 0.5 calculated with V , Ve and Vt .

V Ve Vt

Re=1580 0.0062 -0.0232 0.0281

Re=3160 -0.0164 -0.0348 0.0163
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Figure 5.19: Cuu
y at z/c = 0.5 calculated with V and decomposed into Ve and Vt .
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Figure 5.20: Cuu
y at z/c = 0.5 calculated with V and decomposed into Ve and Vt .
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5.6 Concluding remarks

Quantitative flow visualization and the evaluation of force of a control volume were

applied to the phase-averaged velocity field and time-averaged velocity generated by

the periodic motion of a rigid plate. Velocity field were measured with stereo PIV in the

region surrounding the tip of the plate.

The calculation of the second invariance of the deformation tensor, 〈Q〉, depicts the

three-dimensional structure of the vortex around the plate but does not visualize the

dynamics of the structure. Additional information was visualized with streamlines for

the regions with 〈Q〉< 0.

The selection of control volume size for the force analysis enables the investigation

of selected parts of the phase-averaged velocity field, which provides better understand-

ing of the vortex structures that influence force generation. By properly selecting the

size of the control volume, acceleration, and convection of the flow can be explained

using their respective terms in the integral equation of fluid motion.

Force calculated by control volume analysis of the phase-averaged velocity field

shows that the vortex attached to the surface of the plate plays a dominant role in the

generation of force. Delays in reaching the maxima of the force magnitude are caused

by the existence of the vortex structure of the previous stroke obstructing the motion of

the plate. Increases in the extremes of the force due to the Reynolds number only appear

in the unsteady term near the edge of the plate.

This study demonstrates the flexibility of the proposed control volume analysis in

analyzing features of the flow around a flapping plate. The lack of spatial resolution

in the z-direction results in an underdetermined vortex size. However, comparison with

qualitative visualization shows reasonable similarities and enables the study of vortex

structures produced by the motion.



Chapter 6

The pressure field around the flapping
plate

The estimation of the pressure field of the flow generated by a flapping rigid plate is

given in this chapter. The facility setup is given in Chapter 4. Measurements were

done with two measurement plane configurations as explained in §6.1. The validation

of measurement data and the measurement uncertainty were quantified in §6.2. The

numerical methods to solve the Poisson equation in the xy planes and xz planes are

explained in §6.3 and §6.4, respectively. The pressure field as the result of integrating

the Poisson equation is presented in §6.5 and final remarks are given in §6.6.

6.1 Measurement setup

For the surface pressure integration, at least three planes were required to solve the

three dimensional Poisson equation of each slice of the flow for each phase angle and

each Reynolds number. Two positions of the plate were investigated: at the mid-chord

section, three planes were measured at z = (−2,0,2)mm, and at the leading-edge sec-

tion, three planes were measured at z = (8,10,12)mm, as shown in Fig. 6.1. A sim-

ilar setup was used to record the leading edge vortices along the spanwise with mea-

surement planes parallel to the xz planes; the flow on three planes were measured at

y = (−12,−10,−8)mm and at y = (−2,0,2)mm as shown in Fig. 6.2.

103
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Figure 6.1: Position of measurement planes parallel to xy-plane used for the integration

of surface pressure. The plate is illustrated in dark gray.
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Figure 6.2: Position of measurement planes parallel to xz-plane used for the integration

of surface pressure. The plate is illustrated in dark gray.
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6.2 Data validation and measurement uncertainty

Classification of the cause of the velocity fluctuation of a measured field needs careful

treatment because it will affect the estimation of flow properties. The fluctuation may

be caused by measurement uncertainty, which has random behavior and the other cause

of fluctuation is small-scale turbulence structures. The first source is inherent in any

measurement and the second one, if it exist at all, will be superposed with the first. In

this study, PIV was used to measure the flow near a flapping wing and a complex flow

is expected due to three dimensionality. Therefore, the fitness of sample was evaluated

for the entire sampling points. Statistics test for normality can be applied, because the

first source produces a normal distribution of the probability distribution function of the

instantaneous velocity and the second one causes a departure from normality. For PIV,

the result of the statistics test can be presented using a boolean map of the flow field.

In this paper, Shapiro-Wilk test was used to validate the uncertainty. Shapiro-Wilk

test examines the null hypothesis that a sample comes from a normally distributed pop-

ulation (Shapiro and Wilk, 1965). The Shapiro-Wilk test was chosen because it is suited

to process a large number of sample. The result of the test is an acceptance of the null

hypothesis. The rejection will come when small scale turbulent structures are stronger

than the inherent measurement uncertainty.

The Shapiro-Wilk test is formulated as

W =
(∑n

i=1 aix(i))2

∑
n
i=1(xi− x̄)

(6.1)

where ai is

(a1, · · · ,an) =
mTV−1

(mTV−1V−1m)1/2 (6.2)

and mT = m1, · · · ,mn are the expected values of the order statistics of independent and

identically-distributed random variables sampled from the standard normal distribution,

and V is the covariance matrix of those order statistics.

The criteria to reject the null hypothesis can be found from the W–p value table

(Shapiro and Wilk, 1965). if p(α) < W , the null hypothesis is rejected. α is called the

level of significance. In the above explanation of statistics test, the result may have type
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I errors at a rate of α. Namely, there is an α chance that the result is accepted when it

should be rejected (type I error is also known as, false positive).

A normally distributed sample has zero skewness and kurtosis. Skewness represents

the asymmetry of the probability of density function of a real valued random variable

from the mean value. Positive skewness shows that the tail of the right side of the

probability density function is longer than the left side. The skewness is formulated as

g1 =
m3

m3/2
2

=
1
n ∑

n
i=1(xi− x̄)3

(1
n ∑

n
i=1(xi− x̄)2)3/2

(6.3)

Kurtosis represents the flatness of the probability distribution function of a real-valued

random sample. A sample with positive kurtosis will have a more acute peak around the

mean. The kurtosis is formulated as

g2 =
m4

m2
2
−3 =

1
n ∑

n
i=1(xi− x̄)4

(1
n ∑

n
i=1(xi− x̄)2)2

−3 (6.4)

Departure of normality will show a departure of zero skewness and kurtosis.

In the evaluation of the periodic velocity field measured by PIV, the sample xi is the

cycle-to-cycle velocity distribution of each flapping phase. Therefore, xi = ui(x,y,z, φ̂)

for all measured cycles.

The Boolean map in Fig. 6.3(a) shows the points where the sample departs from nor-

mality as evaluated by the Shapiro-Wilk test. The Boolean map shows the acceptance

(red) or rejection (blue) of the null hypothesis that the sample comes from a normal

distribution. The points that departed from normality was observed to be correlated

with the excess of kurtosis and skewness, as shown in Fig. 6.3(c) and (b). The depar-

ture from normality shows that the sample consists of fluctuations by flow structures

instead of only by measurement uncertainties. This non-normality is taken into account

by introducing the Reynolds decomposition of the governing equations. The mea-

surement uncertainties were calculated as described in Coleman and Steele (1995) and

their spatial average are σ〈u〉,σ〈v〉,σ〈w〉 = (3%,3%,5%) of the maximum tip velocity of

the plate. The repeatability of the flow is evident from Fig. 6.4. In this figure, the ve-

locity profile along the x-axis at z = 0 and y = −c/2 from measurements taken on the

xy-plane and xz-plane are plotted together. The vertical bars in these figures indicate

the measurement uncertainties. These figures show that the velocity profiles of different
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(a) Shapiro-Wilk test, φ̂ = 0.35,

z = 0

(b) Skewness, Eq. (6.3) (c) Kurtosis, Eq. (6.4)

Figure 6.3: Statistical evaluation of the velocity field by (a) the Shapiro-Wilk test, (b)

Skewness, and (c) Kurtosis for the flow at φ̂ = 0.35. For (a), red indicates normally

distributed sample and blue indicates a sample that deviated the normal distribution.

measurement plane orientation are within the measurement uncertainties. Especially for

〈w〉, its profile varies around zero.

The symmetry of the flow can be seen in Fig. 6.5 for both low and high reynolds

number. The magnitude of the circulation of z < 0 and z > 0 are compared with each

other. The circulation was calculated from the velocity distribution on the xz-plane at

y = −c/2. The vertical bars are the ambiguity of the circulation due to measurement

uncertainty. This figure shows that the circulation around the two parts of the flow are

within the margin of uncertainty and the flow can be assumed to be symmetric along the

xy-plane.
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−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x/c

〈w
〉/

U

 

 

measured on xy−plane
measured on xz−plane

(c) 〈w〉
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Figure 6.4: Repeatability of velocity measurements as shown by the velocity profiles at

z = 0 and y =−c/2 of 〈u〉, 〈v〉, 〈w〉 normalized by the maximum velocity of the tip, U ,

for (a)–(c) Re=1580 and (d)–(f) Re=3160. The red line represents the velocity measure-

ments on xz-plane orientation, Fig. 6.1, and the blue line represents the measurement on

xz-plane orientation, Fig. 6.2.
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(b) |Γ(Re = 3160)|

Figure 6.5: Symmetricity of the circulation (Γ(UbΘ) =
R

A ω · dA) profile at Y = −c/2

along the Z-axis for (a) Re= 1580 and (b) Re= 3160.
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6.3 Numerical method for solving the Poisson equation

in the xy planes

The method to estimate the pressure field around a flapping plate was derived in Chapter

3. The global mesh was applied on the measured velocity field and the local mesh was

applied attached to the flapping plate. Because the plate is moving, the velocity field of

the local mesh was relative to the non-inertial reference frame.

6.3.1 In the global mesh

The pressure equation in global mesh is formulated as

∂2〈p〉
∂x2

i
=

∂〈ui〉
∂x j

∂〈u j〉
∂xi

+
∂2

∂xi∂x j
〈u′iu′j〉 (6.5)

and the global mesh is shown in Fig. 6.6.

Expanding the tensorial indices, where xi =(x,y,z) and 〈ui〉=(〈u〉,〈v〉,〈w〉), Eq. (6.5)

becomes

∂2〈p〉
∂x2 +

∂2〈p〉
∂y2 +

∂2〈p〉
∂z2 =

−ρ

[(
∂〈u〉
∂x

)2

+
(

∂〈v〉
∂y

)2

+
(

∂〈w〉
∂z

)2

+2
(

∂〈u〉
∂y

∂〈v〉
∂x

+
∂〈u〉
∂z

∂〈w〉
∂x

+
∂〈v〉
∂z

∂〈w〉
∂y

)
+
(

∂2〈u′u′〉
∂x2 +

∂2〈v′v′〉
∂y2 +

∂2〈w′w′〉
∂z2

)
+ 2

(
∂2〈u′v′〉

∂y∂x
+

∂2〈u′w′〉
∂z∂x

+
∂2〈v′w′〉

∂z∂y

)]
(6.6)

The derivation of Eq. (6.6) to the finite difference expression is discussed next in two

section: the right hand side, which will be denoted by a short-hand, ψ, and the left hand

side, ∇2 p.

Finite differentiation of ψ

The PIV velocity field is located on the corner faces of the numerical mesh. We want to

solve the pressure on the center node. The coordinates of the corners are given as (x,y,z)
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Figure 6.6: The definition of global mesh. The phase-averaged velocity field is on the

blue grid and the pressure was estimated on the red dots. The black line represents the

plate.

and the center nodes as (xc,yc,z). The velocity field on the center nodes are obtained by

interpolating the PIV velocity field, linearly, and are given as (〈u〉c,〈v〉c,〈w〉c).
The coordinates of the center nodes are given as

xc =
(x)+(x+∆x)

2
(6.7)

yc =
(y)+(y+∆y)

2
(6.8)

as shown in Fig. 6.7 and the velocity ui(xc,yc,z) is given as
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z
z–Δz

z+Δz

xz

y

x ,y, z c c

Figure 6.7: Definition of the position of the center nodes: xc,yc.

〈u〉c = 〈u〉(xc,yc,z)

=
1
4

(
u(x,y,z)+u(x+∆x,y,z)+u(x,y+∆y,z)+u(x+∆x,y+∆y,z)

) (6.9)

〈v〉c = 〈v〉(xc,yc,z)

=
1
4

(
v(x,y,z)+ v(x+∆x,y,z)+ v(x,y+∆y,z)+ v(x+∆x,y+∆y,z)

) (6.10)

〈w〉c = 〈w〉(xc,yc,z)

=
1
4

(
w(x,y,z)+w(x+∆x,y,z)+w(x,y+∆y,z)+w(x+∆x,y+∆y,z)

) (6.11)

The spatial derivatives are evaluated for the center nodes as shown in the finite dif-

ferentiation scheme,
∂ f
∂x
≈ ∆ f

∆x

≈ f (x+∆x,y+∆y,z)+ f (x+∆x,y,z)− f (x,y+∆y,z)− f (x,y,z)
2∆x

(6.12)

∂ f
∂y
≈ ∆ f

∆y

≈ f (x+∆x,y+∆y,z)+ f (x,y+∆y,z)− f (x+∆x,y,z)− f (x,y,z)
2∆y

(6.13)
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special treatment is required for the derivatives with respect to z because of the length

of data available in that direction and the need to evaluate the derivative on the measure-

ment plane.

∂ f
∂z
≈ ∆ f

∆z

≈ 1
2∆z

[
1
4

(
f (x+∆x,y+∆y,z+∆z)+ f (x+∆x,y,z+∆z)

+ f (x,y+∆y,z+∆z)+ f (x,y,z+∆z)
)

− 1
4

(
f (x+∆x,y+∆y,z−∆z)+ f (x+∆x,y,z−∆z)

+ f (x,y+∆y,z−∆z)+ f (x,y,z−∆z)
)]

(6.14)

at the ends of the length of data, the one-sided finite difference formula for the derivative

with respect to z was used,

∂ f
∂z

=
1

2∆z
1
4

[
−3
(

f (x+∆x,y+∆y,z)+ f (x+∆x,y,z)+ f (x,y+∆y,z)+ f (x,y,z)
)

+4
(

f (x+∆x,y+∆y,z+∆z)+ f (x+∆x,y,z+∆z)

+ f (x,y+∆y,z+∆z)+ f (x,y,z+∆z)
)

−
(

f (x+∆x,y+∆y,z+2∆z)+ f (x+∆x,y,z+2∆z)

+ f (x,y+∆y,z+2∆z)+ f (x,y,z+2∆z)
)]

(6.15)

where ∆z = ∆z or ∆z =−∆z depending on the orientation of the boundary.

The second order derivatives were approximated as

∂2 f
∂x2 ≈

∆2 f
∆x2 =

f (xc +∆x,yc,z)+2 f (xc,yc,z)− f (xc−∆x,yc,z)
∆x2 (6.16)

∂2 f
∂y2 ≈

∆2 f
∆y2 =

f (xc,yc +∆y,z)+2 f (xc,yc,z)− f (xc,yc−∆y,z)
∆x2 (6.17)

∂2 f
∂z2 ≈

∆2 f
∆z2 =

f (xc,yc,z+∆z)+2 f (xc,yc,z)− f (xc,yc,z−∆z)
∆z2 (6.18)

where one-sided finite difference formula was used at the ends of the data. For z = z0,

∂2 f
∂z2 0

≈ ∆2 f
∆z2 0

=
f (xc,yc,z0)+2 f (xc,yc,z0 +∆z)− f (xc,yc,z0 +2∆z)

∆z2 (6.19)
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and for z = zM,

∂2 f
∂z2 M

≈ ∆2 f
∆z2 M

=
f (xc,yc,zM)+2 f (xc,yc,zM−∆z)− f (xc,yc,zM−2∆z)

∆z2 (6.20)

And the mixed derivatives are approximated as

∂2 f
∂x∂y

≈ ∆2 f
∆x∆y

≈ 1
∆x∆y

[
f (x+∆x,y+∆y,z)+ f (x,y,z)

− f (x,y+∆y,z)− f (x+∆x,y,z)
] (6.21)

∂2 f
∂x∂z

≈ ∆2 f
∆x∆z

≈ 1
4∆x∆y

[
f (x+∆x,y,z+∆z)+ f (x+∆x,y+∆y,z+∆z)

− f (x,y,z+∆z)− f (x,y+∆y,z+∆z)

− f (x+∆x,y,z−∆z)− f (x+∆x,y+∆y,z−∆z)

+ f (x,y,z−∆z)+ f (x,y+∆y,z−∆z)
]

(6.22)

∂2 f
∂y∂z

≈ ∆2 f
∆y∆z

≈ 1
4∆y∆z

[
f (x+∆x,y+∆y,z+∆z)+ f (x,y+∆y,z+∆z)

− f (x+∆x,y,z+∆z)− f (x,y,z+∆z)

− f (x+∆x,y+∆y,z−∆z)− f (x,y+∆y,z−∆z)

+ f (x+∆x,y,z−∆z)+ f (x,y,z−∆z)
]

(6.23)
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The acceleration is formulated as
∂ f
∂t
≈ ∆ f

∆t

≈ 1
∆t

1
4

[(
f (x+∆x,y+∆y,z, t +∆t)+ f (x+∆x,y,z, t +∆t)

+ f (x,y+∆y,z, t +∆t)+ f (x,y,z, t +∆t)
)

(
f (x+∆x,y+∆y,z, t)+ f (x+∆x,y,z, t)

+ f (x,y+∆y,z, t)+ f (x,y,z, t)
)]

(6.24)

Finite differentiation of ∇2〈p〉

The right hand side was approximated by the finite difference formulation explained

above and will be represented as ψ for the rest of the discussion. The Poisson equation

in the global mesh is
∂2〈p〉
∂x2 +

∂2〈p〉
∂y2 +

∂2〈p〉
∂z2 = ψ (6.25)

and it was discretized as
〈p〉(xc−∆xc,yc,z)−2〈p〉(xc,yc,z)+ 〈p〉(xc +∆xc,yc,z)

∆x2

+
〈p〉(xc,yc−∆yc,z)−2〈p〉(xc,yc,z)+ 〈p〉(xc,yc +∆yc,z)

∆y2

+
〈p〉(xc,yc,z−∆z)−2〈p〉(xc,yc,z)+ 〈p〉(xc,yc,z+∆z)

∆z2 = ψ

(6.26)

in vector form,

[ 1
∆z2 ··· 1

∆y2 ··· 1
∆x2

−2
∆x2− 2

∆y2− 2
∆z2

1
∆x2 ··· 1

∆y2 ··· 1
∆z2

]


p(xc,yc,z−∆z)
···

p(xc,yc−∆y,z)
···

p(xc−∆x,yc,z)
p(xc,yc,z)

p(xc+∆x,yc,z)
···

p(xc,yc+∆y,z)
···

p(xc,yc,z+∆z)


= ψ (6.27)

The boundary condition was given as

∆〈p〉
∆x

=−ρ

(
∆u
∆t

+ 〈u〉c ∆u
∆x

+ 〈v〉c ∆u
∆y

+ 〈w〉c ∆u
∆z

+
∆

∆x
〈u′u′〉+ ∆

∆y
〈u′v′〉+ ∆

∆z
〈u′w′〉

) (6.28)
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∆〈p〉
∆y

=−ρ

(
∆v
∆t

+ 〈u〉c ∆v
∆x

+ 〈v〉c ∆v
∆y

+ 〈w〉c ∆v
∆z

+
∆

∆x
〈u′v′〉+ ∆

∆y
〈v′v′〉+ ∆

∆z
〈v′w′〉

) (6.29)

∆〈p〉
∆z

=−ρ

(
∆w
∆t

+ 〈u〉c ∆w
∆x

+ 〈v〉c ∆w
∆y

+ 〈w〉c ∆w
∆z

+
∆

∆x
〈u′w′〉+ ∆

∆y
〈v′w′〉+ ∆

∆z
〈w′w′〉

) (6.30)

The discrete governing equation, Eq. 6.26, near the boundary was treated to include

the boundary condition, Eqs. 6.28–6.30. The forward finite differentiation scheme was

applied to the boundary of global mesh as shown in Fig. 6.8 at xc = xc
2 and xc = xc

l+1,

marked by blue dots. The finite difference formulation in Eq. (6.31) is given for xc = xc
2,

1
∆x2

(
−2

3
〈p〉(xc

2,y
c,z)+

2
3
〈p〉(xc

3,y
c,z)
)

+
1

∆y2

(
〈p〉(xc

2,y
c +∆y,z)−2〈p〉(xc

2,y
c,z)+ 〈p〉(xc

2,y
c−∆y,z)

)
+

1
∆z2

(
〈p〉(xc

2,y
c,z+∆z)−2〈p〉(xc

2,y
c,z)+ 〈p〉(xc

2,y
c,z−∆z)

)
= ψ(xc

2,y
c,z)+

2
3∆x

∆〈p〉
∆x

∣∣∣∣
1

(6.31)

and along the other axis, the forward scheme was applied at yc = yc
2 and yc = yc

k+1 as

shown in Fig. 6.9. The finite differentiation on this boundary is formulated in Eq. (6.32),

1
∆x2

(
〈p〉(xc +∆x,yc

2,z)−2〈p〉(xc,yc
2,z)+ 〈p〉(xc−∆x,yc

2,z)
)

+
1

∆y2

(
− 2

3
〈p〉(xc,yc

2,z)+
2
3
〈p〉(xc,yc

3,z)
)

+
1

∆z2

(
〈p〉(xc,yc

2,z+∆z)−2〈p〉(xc,yc
2,z)+ 〈p〉(xc,yc

2,z−∆z)
)

= ψ(xc,yc
2,z)+

2
3∆yc

∆〈p〉
∆y

∣∣∣∣
1

(6.32)
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Figure 6.8: Application of the forward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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Figure 6.9: Application of the forward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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Figure 6.10: Application of the backward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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For the other side of the boundary of the global mesh, the backward finite differen-

tiation was applied at positions as shown in Fig. 6.10 at xc = xc
M−1 and xc = xc

k−1. The

finite difference formulation is shown for xc = xc
M−1,

1
∆x2

(
2
3
〈p〉(xc

M−2,y
c,z)− 2

3
〈p〉(xc

M−1,y
c,z)
)

+
1

∆y2

(
〈p〉(xc

M−1,y
c +∆y,z)−2〈p〉(xc

M−1,y
c,z)+ 〈p〉(xc

M−1,y
c−∆y,z)

)
+

1
∆z2

(
〈p〉(xc

M−1,y
c,z+∆z)−2〈p〉(xc

M−1,y
c,z)+ 〈p〉(xc

M−1,y
c,z−∆z)

)
= ψ(xc

M−1,y
c,z)− 2

3∆x
∆〈p〉
∆x

∣∣∣∣
M

(6.33)

and similary the backward finite differentiation scheme was applied at positions as

shown in Fig. 6.11 at yc = yc
N−1,

1
∆x2

(
〈p〉(xc +∆x,yc

N−1,z)−2〈p〉(xc,yc
N−1,z)+ 〈p〉(xc−∆x,yc

N−1,z)
)

+
1

∆y2

(
2
3
〈p〉(xc,yc

N−2,z)−
2
3
〈p〉(xc,yc

N−1,z)
)

+
1

∆z2

(
〈p〉(xc,yc

N−1,z+∆z)−2〈p〉(xc,yc
N−1,z)+ 〈p〉(xc,yc

N−1,z−∆z)
)

= ψ(xc,yc
N−1,z)−

2
3∆y

∆〈p〉
∆y

∣∣∣∣
N

(6.34)

The pressure equation along the z-axis was treated with the forward difference scheme

on z = z1, where the location of z1 is indicated in Fig. 6.12,

1
∆x2

(
〈p〉(xc +∆x,yc,z1)−2〈p〉(xc,yc,z1)+ 〈p〉(xc−∆x,yc,z1)

)
+

1
∆y2

(
〈p〉(xc,yc +∆y,z1)−2〈p〉(xc,yc,z1)+ 〈p〉(xc,yc−∆y,z1)

)
+

1
∆z2

(
−2〈p〉(xc,yc,z1)+2〈p〉(xc,yc,z2)

)
= ψ(xc,yc,z1)+

2
∆z

∆〈p〉
∆z

∣∣∣∣
1

(6.35)
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Figure 6.11: Application of the backward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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z z
z

x

z y
x ,y, z c c

3
2

1

Figure 6.12: The numerical meshes along the z-axis: z1 and z3 are the numerical bound-

aries along the z-axis.

and the treatment of the pressure equation from the boundary condition on z = z3 was

1
∆x2

(
〈p〉(xc +∆x,yc,z3)−2〈p〉(xc,yc,z3)+ 〈p〉(xc−∆x,yc,z3)

)
+

1
∆y2

(
〈p〉(xc,yc +∆y,z3)−2〈p〉(xc,yc,z3)+ 〈p〉(xc,yc−∆y,z3)

)
+

1
∆z2

(
2〈p〉(xc,yc,z2)−2〈p〉(xc,yc,z3)

)
= ψ(xc,yc,z3)−

2
∆z

∆〈p〉
∆z 3

(6.36)

6.3.2 In the local mesh

The pressure equation in the local mesh is

∂2〈p〉
∂ξ2

i
=

∂〈υi〉
∂ξ j

∂〈υ j〉
∂ξi

+
∂2

∂ξi∂ξ j
〈υ′iυ′j〉+2

∂

∂ξk
(Ωiυ jεi jk) (6.37)

where the local mesh is illustrated in Fig. 6.13. Expanding Eq. (6.37) with υi = (uξ,uη,

uζ) and ξi = (ξ,η,ζ),
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Figure 6.13: The definition of local mesh. The phase-averaged velocity field is on the

blue grid and the pressure was estimated on the red dots. The black line represents the

plate.
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∂2〈p〉
∂ξ2 +

∂2〈p〉
∂η2 +

∂2〈p〉
∂ζ2 ≈

∆2〈p〉
∆ξ2 +

∆2〈p〉
∆η2 +

∆2〈p〉
∆ζ2

≈−ρ

[(
∆〈uξ〉

∆ξ

)2

+
(

∆〈uη〉
∆η

)2

+
(

∆〈uζ〉
∆ζ

)2

+2
(

∆〈uξ〉
∆η

∆〈uη〉
∆ξ

+
∆〈uη〉

∆ζ

∆〈uζ〉
∆ξ

+
∆〈uζ〉

∆ζ

∆〈uζ〉
∆η

)
+

(
∆2〈u′

ξ
u′

ξ
〉

∆ξ2 +
∆2〈u′ηu′η〉

∆η2 +
∆2〈u′

ζ
u′

ζ
〉

∆ζ2

)

+2

(
∆2〈u′

ξ
u′η〉

∆ξ∆η
+

∆2〈u′
ξ
u′

ζ
〉

∆ξ∆ζ
+

∆2〈u′ηu′
ζ
〉

∆η∆ζ

)

+2Ωζ

(
∆uξ

∆η
− ∆uη

∆ξ

)]

(6.38)

The finite differentiation of Eq. (6.38) is discussed in the next two section: the right

hand side, ψlocal , and the left hand side ∇2 p.

Finite differentiation of ψlocal

The spatial derivatives for the local mesh (ξ,η,ζ) are

∂ f
∂ξi

=
(

∂ f
∂ξ

,
∂ f
∂η

,
∂ f
∂ζ

)
(6.39)

∂2 f
∂ξ2

i
=
(

∂2 f
∂ξ2 ,

∂2 f
∂η2 ,

∂2 f
∂ζ2

)
(6.40)

∂2 f
∂ξi∂xi j

=
(

∂2 f
∂ξ∂η

,
∂2 f
∂ξ∂ζ

,
∂2 f

∂η∂ζ

)
(6.41)

where
∂ f
∂ξ
≈ ∆ f

∆ξ

≈ f (ξ+∆ξ,η+∆η,ζ)+ f (ξ+∆ξ,η,ζ)− f (ξ,η+∆η,ζ)+ f (ξ,η,ζ)
2∆ξ

(6.42)

∂ f
∂η

=
∆ f
∆η

=
f (ξ+∆ξ,η+∆η,ζ)+ f (ξ,η+∆η,ζ)− f (ξ+∆ξ,η,ζ)+ f (ξ,η,ζ)

2∆η

(6.43)
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where the ζ-derivative was approximated as

∂ f
∂ζ
≈∆ f

∆ζ

≈1
4

1
2∆ζ

[(
f (ξ+∆ξ,η+∆η,ζ+∆ζ)+ f (ξ+∆ξ,η,ζ+∆ζ)

+ f (ξ,η+∆η,ζ+∆ζ)+ f (ξ,η,ζ+∆ζ)
)

−
(

f (ξ+∆ξ,η+∆η,ζ−∆ζ)+ f (ξ+∆ξ,η,ζ−∆ζ)

+ f (ξ,η+∆η,ζ−∆ζ)+ f (ξ,η,ζ−∆ζ)
)]

(6.44)

At the ends of the length of data, the one-sided finite difference formula for the derivative

with respect to ζ was used,

∂ f
∂ζ
≈∆ f

∆ζ

≈ 1
2∆ζ

1
4

[
−3
(

f (ξ+∆ξ,η+∆η,ζ)+ f (ξ+∆ξ,η,ζ)+ f (ξ,η+∆η,ζ)+ f (ξ,η,ζ)
)

+4
(

f (ξ+∆ξ,η+∆η,ζ+∆ζ)+ f (ξ+∆ξ,η,ζ+∆ζ)

+ f (ξ,η+∆η,ζ+∆ζ)+ f (ξ,η,ζ+∆ζ)
)

−
(

f (ξ+∆ξ,η+∆η,ζ+2∆ζ)+ f (ξ+∆ξ,η,ζ+2∆ζ)

+ f (ξ,η+∆η,ζ+2∆ζ)+ f (ξ,η,ζ+2∆ζ)
)]

(6.45)

where ∆ζ = ∆ζ or ∆ζ =−∆ζ depending on which end of the data.

The center nodes are defined as ξc,ηc, where the space between nodes remain the

same (∆ξ,∆η). The second derivatives were approximated as

∂2 f
∂ξ2 ≈

∆2 f
∆ξ2 =

f (ξc +∆ξ,ηc,ζ)+2 f (ξc,ηc,ζ)− f (ξc−∆ξ,ηc,ζ)
∆ξ2 (6.46)

∂2 f
∂η2 ≈

∆2 f
∆η2 =

f (ξc,ηc +∆η,ζ)+2 f (ξc,ηc,ζ)− f (ξc,ηc−∆η,ζ)
∆η2 (6.47)

∂2 f
∂ζ2 ≈

∆2 f
∆ζ2 =

f (ξc,ηc,ζ+∆ζ)+2 f (ξc,ηc,ζ)− f (ξc,ηc,ζ−∆ζ)
∆ζ2 (6.48)
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where the one-sided finite difference formula was used along the boundary. For ζ = ζ0,

∂2 f
∂z2 0

≈ ∆2 f
∆ζ2 =

f (ξc,ηc,ζ0)+2 f (ξc,ηc,ζ0 +∆ζ)− f (ξc,ηc,ζ0 +2∆ζ)
∆ζ2 (6.49)

and for ζ = ζM,

∂2 f
∂z2 M

≈ ∆2 f
∆ζ2 =

f (ξc,ηc,ζM)+2 f (ξc,ηc,ζM−∆ζ)− f (ξc,ηc,ζM−2∆ζ)
∆ζ2 (6.50)

And the mixed derivatives were approximated as

∂2 f
∂ξ∂η

≈ ∆2 f
∆ξ∆η

≈ 1
∆ξ∆η

[ f (ξ+∆ξ,η+∆η,ζ)+ f (ξ,η,ζ)− f (ξ,η+∆η,ζ)− f (ξ+∆ξ,η,ζ)]

(6.51)

∂2 f
∂ξ∂ζ

≈ ∆2 f
∆ξ∆ζ

≈ 1
4∆ξ∆ζ

[(
f (ξ+∆ξ,η,ζ+∆ζ)+ f (ξ+∆ξ,η+∆η,ζ+∆ζ)

− f (ξ,η,ζ+∆ζ)− f (ξ,η+∆η,ζ+∆ζ)
)

−
(

+ f (ξ+∆ξ,η,ζ−∆ζ)+ f (ξ+∆ξ,η+∆η,ζ−∆ζ)

− f (ξ,η,ζ−∆ζ)− f (ξ,η+∆η,ζ−∆ζ)
)]

(6.52)

∂2 f
∂η∂ζ

≈ ∆2 f
∆η∆ζ

≈ 1
4∆η∆ζ

[(
f (ξ+∆ξ,η+∆η,ζ+∆ζ)+ f (ξ,η+∆η,ζ+∆ζ)

− f (ξ+∆ξ,η,ζ+∆ζ)− f (ξ,η,ζ+∆ζ)
)

−
(

f (ξ+∆ξ,η+∆η,ζ−∆ζ)+ f (ξ,η+∆η,ζ−∆ζ)

− f (ξ+∆ξ,η,ζ−∆ζ)− f (ξ,η,ζ−∆ζ)
)]

(6.53)
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The one sided formulations with respect to ζ were given as

∂2 f
∂ξ∂ζ

≈ ∆2 f
∆ξ∆ζ

≈ 1
4∆ξ∆ζ

1
2

[
−3
(

f (ξ+∆ξ,η,ζ)+ f (ξ+∆ξ,η+∆η,ζ)

− f (ξ,η,ζ)− f (ξ,η+∆η,ζ)
)

+4
(

+ f (ξ+∆ξ,η,ζ+∆ζ)+ f (ξ+∆ξ,η+∆η,ζ+∆ζ)

− f (ξ,η,ζ+∆ζ)− f (ξ,η+∆η,ζ+∆ζ)
)]

−
(

+ f (ξ+∆ξ,η,ζ+2∆ζ)+ f (ξ+∆ξ,η+∆η,ζ+2∆ζ)

− f (ξ,η,ζ+2∆ζ)− f (ξ,η+∆η,ζ+2∆ζ)
)]

(6.54)

∂2 f
∂η∂ζ

≈ ∆2 f
∆η∆ζ

≈ 1
4∆η∆ζ

1
2

[
−3
(

f (ξ+∆ξ,η+∆η,ζ)+ f (ξ,η+∆η,ζ)

− f (ξ+∆ξ,η,ζ)− f (ξ,η,ζ)
)

+4
(

f (ξ+∆ξ,η+∆η,ζ+∆ζ)+ f (ξ,η+∆η,ζ+∆ζ)

− f (ξ+∆ξ,η,ζ+∆ζ)− f (ξ,η,ζ+∆ζ)
)]

−
(

f (ξ+∆ξ,η+∆η,ζ+2∆ζ)+ f (ξ,η+∆η,ζ+2∆ζ)

− f (ξ+∆ξ,η,ζ+2∆ζ)− f (ξ,η,ζ+2∆ζ)
)]

(6.55)

The one sided formulation of ∆2 f/∆η∆ζ was not required because Eq. (6.38) was not

solved along the boundaries as Eq. (6.38) was treated for the boundary condition.

Finite differentiation of ∇2 p

The finite difference approximation of the left hand side of Eq. (6.38) is expanded as

∆2〈p〉
∆ξ2 +

∆2〈p〉
∆η2 +

∆2〈p〉
∆ζ2 = ψlocal (6.56)
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and is discretized as

〈p〉(ξc−∆ξ,ηc,ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc +∆ξ,ηc,ζ)
∆ξ2

+
〈p〉(ξc,ηc−∆η,ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc,ηc +∆η,ζ)

∆η2

+
〈p〉(ξc,ηc,ζ−∆ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc,ηc,ζ+∆ζ)

∆ζ2 = ψlocal

(6.57)

In the local mesh (cf. Fig. 6.13), the Dirichlet boundary condition, 〈p〉, was applied

on the numerical boundary, ab, bc, and cd. The Dirichlet boundary condition, 〈p〉, was

obtained by interpolating the pressure field from the global mesh to the local mesh,

〈p〉(ξc,ηc,ζ)≈〈p〉(x
c,yc,z)

∆x∆y
(xc +∆x− xl)(yc +∆y− ylocal)

+
〈p〉(xc +∆x,yc,z)

∆x∆y
(xlocal− xc)(yc +∆y− ylocal)

+
〈p〉(xc,yc +∆y,z)

∆x∆y
(xc +∆x− xlocal)(ylocal− yc)

+
〈p〉(xc +∆x,yc +∆y,z)

∆x∆y
(xlocal− xc)(ylocal− yc)

(6.58)

where the coordinates of the local mesh on the cartesian coordinate was given as
xlocal

ylocal

zlocal

=


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


−1

ξc

ηc

ζ

 (6.59)

The Neumann boundary condition was applied on aa′ and dd′,

∂〈p〉
∂η
≈ ∆〈p〉

∆η
=−ρ

(
∆〈uη〉

∆t
+ 〈uξ〉

∆〈uη〉
∆ξ

+ 〈uη〉
∆〈uη〉

∆η
+ 〈uζ〉

∆〈uη〉
∆ζ

+
∆

∆ξ
〈u′ηu′

ξ
〉+ ∆

∆η
〈u′ηu′η〉+

∆

∆ζ
〈u′ηu′

ζ
〉

+(θ̈ζξ)+(−θ̇
2
ζ
η)+2(θ̇ζ〈uξ〉)

)
(6.60)

On the surface of the plate, a′b′c′d′, the Neumann boundary condition was also

applied. The boundary condition on the surface of the plate, a′b′ and c′d′, was

∂〈p〉
∂ξ

= ρ(θ̈η+ θ̇
2
ξ) (6.61)
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and on b′c′, the following boundary condition was applied,

∂p
∂η

= ρ(−θ̈ξ+ θ̇
2
η) (6.62)

The pressure on the surface was extrapolated using the Lagrangian extrapolation.

For the upper surface of the plate,

〈p〉sur f ace =
15
8
〈p〉(ξk,η,ζ)− 10

8
〈p〉(ξk−1,η,ζ)+

3
8
〈p〉(ξk−2,η,ζ) (6.63)

and for the lower surface of the plate,

〈p〉sur f ace =
15
8
〈p〉(ξl,η,ζ)− 10

8
〈p〉(ξl+1,η,ζ)+

3
8
〈p〉(ξl+2,η,ζ) (6.64)

The one-sided finite difference formulation of the Poisson equation of the local mesh

at the boundaries are,

1. The forward finite differentiation scheme was applied next to the boundaries as

shown in Fig. 6.14 at ξc = ξc
2 and ξc = ξc

l+1, where the boundaries are marked by

red dots. The Dirichlet boundary condition was applied at ξc = ξc
2 and the finite

differentiation formulation is shown as Eq. (6.65) and the Neumann boundary

condition was applied at ξc = ξc
l+1 and the finite differentiation formulation is

shown as Eq. (6.66)

−2〈p〉(ξc
2,η

c,ζ)+ 〈p〉(ξc
3,η

c,ζ)
∆ξ2

+
〈p〉(ξc

2,η
c−∆η,ζ)−2〈p〉(ξc

2,η
c,ζ)+ 〈p〉(ξc

2,η
c +∆η,ζ)

∆η2

+
〈p〉(ξc

2,η
c,ζ−∆ζ)−2〈p〉(ξc

2,η
c,ζ)+ 〈p〉(ξc

2,η
c,ζ+∆ζ)

∆ζ2

= ψlocal−〈p〉(ξc
1,η

c,ζ) (6.65)
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Figure 6.14: Application of the forward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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and

− 〈p〉(ξ
c
l ,η

c,ζ)−〈p〉(ξc
l+1,η

c,ζ)
∆ξ2

+
〈p〉(ξc

l+1,η
c−∆η,ζ)2〈p〉(ξc

l+1,η
c,ζ)+ 〈p〉(ξc

l+1,η
c +∆η,ζ)

∆η2

+
〈p〉(ξc

l+1,η
c,ζ−∆ζ)−2〈p〉(ξc

l+1,η
c,ζ)+ 〈p〉(ξc

l+1,η
c,ζ+∆ζ)

∆ζ2

= ψlocal−
1

∆ξ

∆〈p〉
∆ξ

∣∣∣∣
l−1/2

(6.66)

2. The backward finite differentiation scheme was applied on the other side of the

boundary as shown in Fig. 6.15 at ξc = ξc
M−1 and ξc = ξc

k−1. The Dirichlet bound-

ary condition was applied to solve the pressure equation at ξc = ξc
M−1; it is for-

mulated Eq. (6.67). The Neumann boundary condition was applied to solve the

pressure equation at ξc = ξc
k−1; the formulation of the pressure equation is shown

in Eq. (6.68).

〈p〉(ξc
M−2,η

c,ζ)−2〈p〉(ξc
M−1,η

c,ζ)
∆ξ2

+
〈p〉(ξc

M−1,η
c−∆η,ζ)−2〈p〉(ξc

M−1,η
c,ζ)+ 〈p〉(ξc

M−1,η
c +∆η,ζ)

∆η2

+
〈p〉(ξc

M−1,η
c,ζ−∆ζ)−2〈p〉(ξc

M−1,η
c,ζ)+ 〈p〉(ξc

M−1,η
c,ζ+∆ζ)

∆ζ2

= ψlocal−〈p〉(ξc
M,ηc,ζ)

(6.67)

and

〈p〉(ξc
k−1,η

c,ζ)−〈p〉(ξc
k,η

c,ζ)
∆ξ2

+
〈p〉(ξc

k−1,η
c−∆η,ζ)2〈p〉(ξc

k−1,η
c,ζ)+ 〈p〉(ξc

k−1,η
c +∆η,ζ)

∆η2

+
〈p〉(ξc

k−1,η
c,ζ−∆ζ)−2〈p〉(ξc

k−1,η
c,ζ)+ 〈p〉(ξc

k−1,η
c,ζ+∆ζ)

∆ζ2

= ψlocal +
1

∆ξ

∆〈p〉
∆ξ

∣∣∣∣
k+1/2

(6.68)
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Figure 6.15: Application of the backward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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3. Similarly to the treatment of boundaries along ξ, the forward difference scheme

was applied to the pressure equation at ηc = ηc
2 and ηc = ηc

k+1 as shown in

Fig. 6.16. At ηc = ηc
2, the Dirichlet boundary condition was applied to the pres-

sure equation and at ηc = ηc
k+1, the Neumann boundary condition was applied.

〈p〉(ξc−∆ξ,ηc
2,ζ)−2〈p〉(ξc,ηc

2,ζ)+ 〈p〉(ξc +∆ξ,ηc
2,ζ)

∆ξ2

+
−2〈p〉(ξc,ηc

2,ζ)+ 〈p〉(ξc,ηc
3,ζ)

∆η2

+
〈p〉(ξc,ηc

2,ζ−∆ζ)−2〈p〉(ξc,ηc
2,ζ)+ 〈p〉(ξc,ηc

2,ζ+∆ζ)
∆ζ2

= ψlocal−〈p〉(ξc,ηc−∆η,ζ)

(6.69)

and

〈p〉(ξc−∆ξ,ηc
l+1,ζ)−2〈p〉(ξc,ηc

l+1,ζ)+ 〈p〉(ξc +∆ξ,ηc
l+1,ζ)

∆ξ2

− 〈p〉(ξ
c,ηc

l ,ζ)−〈p〉(ξc,ηc
l+1,ζ)

∆η2

+
〈p〉(ξc,ηc

l+1,ζ−∆ζ)−2〈p〉(ξc,ηc
l+1,ζ)+ 〈p〉(ξc,ηc

l+1,ζ+∆ζ)
∆ζ2

= ψlocal−
1

∆η

∆〈p〉
∆η

∣∣∣∣
l−1/2

(6.70)

4. The backward difference scheme was applied to the pressure equation at ηc =

ηc
N−1 as shown in Fig. 6.17. The Dirichlet boundary condition was applied at

ηc = ηc
N−1.

〈p〉(ξc−∆ξ,ηc
N−1,ζ)−2〈p〉(ξc,ηc

N−1,ζ)+ 〈p〉(ξc +∆ξ,ηc
N−1,ζ)

∆ξ2

+
〈p〉(ξc,ηc

N−2,ζ)−2〈p〉(ξc,ηc
N−1,ζ)

∆η2

+
〈p〉(ξc,ηc

N−1,ζ−∆ζ)−2〈p〉(ξc,ηc
N−1,ζ)+ 〈p〉(ξc,ηc

N−1,ζ+∆ζ)
∆ζ2

= ψlocal−〈p〉(ξc,ηc
N ,ζ) (6.71)
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Figure 6.16: Application of the forward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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Figure 6.17: Application of the backward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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ηζ

ξ

ζ3 ζ2
ζ1

Figure 6.18: The numerical meshes along the ζ-axis: ζ1 and ζ3 are the numerical bound-

aries along the ζ-axis.

5. For boundary at ζ = ζ1

〈p〉(ξc−∆ξ,ηc,ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc +∆ξ,ηc,ζ)
∆ξ2

+
〈p〉(ξc,ηc−∆η,ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc,ηc +∆η,ζ)

∆η2

+
−2〈p〉(ξc,ηc,ζ1)+2〈p〉(ξc,ηc,ζ2)

∆ζ2 = ψlocal +
2

∆ζ

∆〈p〉
∆ζ

∣∣∣∣
ζ1

(6.72)

6. For boundary at ζ = ζ3

〈p〉(ξc−∆ξ,ηc,ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc +∆ξ,ηc,ζ)
∆ξ2

+
〈p〉(ξc,ηc−∆η,ζ)−2〈p〉(ξc,ηc,ζ)+ 〈p〉(ξc,ηc +∆η,ζ)

∆η2

+
2〈p〉(ξc,ηc,ζ2)−2〈p〉(ξc,ηc,ζ3)

∆ζ2 = ψlocal−
2

∆ζ

∆〈p〉
∆ζ

∣∣∣∣
ζ3

(6.73)

where ζ1 and ζ3 are indicated by the illustration of the numerical mesh in Fig. 6.18.
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6.4 Numerical method for solving the Poisson equation

in the xz planes

The poisson equation for pressure was solved on the grids parallel to the xz plane. In

total 3 grids are needed to solve the three-dimensional Poisson equation on the plane

at y = −c/2 and another 3 grids to solve the same equation at y = 0. The pressure

solution here is given for the cartesian coordinate system in the global mesh. Because of

the orientation of the measurement plane relative to the flapping plate, at phase angles

φ̂ 6= 0 and φ̂ 6= 0.5 the surface of the flapping plate is not orthogonal to the measurement

plane making it impossible to set the boundary condition on the surface. Therefore, the

calculation was not extended for the local mesh.

The frame of reference for the numerical mesh parallel to the xz planes is given in

Fig. 6.19 and the finite difference Poisson equation to be solved within that domain is

∂2〈p〉
∂x2 +

∂2〈p〉
∂y2 +

∂2〈p〉
∂z2 =

−ρ

[(
∂u
∂x

)2

+
(

∂v
∂y

)2

+
(

∂w
∂z

)2

+2
(

∂u
∂y

∂v
∂x

+
∂u
∂z

∂w
∂x

+
∂v
∂z

∂w
∂y

)
+
(

∂2〈u′u′〉
∂x2 +

∂2〈v′v′〉
∂y2 +

∂2〈w′w′〉
∂z2

)
+ 2

(
∂2〈u′v′〉

∂y∂x
+

∂2〈u′w′〉
∂z∂x

+
∂2〈v′w′〉

∂z∂y

)]
(6.74)

The boundary conditions are given as the pressure gradient normal to the respective

boundaries. Because the global mesh is in x, y, and z directions, the boundary conditions

are,

∆〈p〉
∆x

=−ρ

[
∆〈u〉
∆t

+ 〈u〉∆〈u〉
∆x

+ 〈v〉∆〈u〉
∆y

+ 〈w〉∆〈u〉
∆z

+
∆〈u′u′〉

∆x
+

∆〈u′v′〉
∆y

+
∆〈u′w′〉

∆z

]
(6.75)

for the boundaries orthogonal to the x-direction,

∆〈p〉
∆y

=−ρ

[
∆〈v〉
∆t

+ 〈u〉∆〈v〉
∆x

+ 〈v〉∆〈v〉
∆y

+ 〈w〉∆〈v〉
∆z

+
∆〈u′v′〉

∆x
+

∆〈v′v′〉
∆y

+
∆〈v′w′〉

∆z

]
(6.76)
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x

yz

Figure 6.19: Definition of reference frame for the numerical mesh parallel to the xz

plane. Pressure is solved on the red nodes at the center of each surface mesh.

for the boundaries orthogonal to the y-direction, and

∆〈p〉
∆z

=−ρ

[
∆〈w〉

∆t
+ 〈u〉∆〈w〉

∆x
+ 〈v〉∆〈w〉

∆y
+ 〈w〉∆〈w〉

∆z
+

∆〈u′w′〉
∆x

+
∆〈v′w′〉

∆y
+

∆〈w′w′〉
∆z

]
(6.77)

for the boundaries orthogonal to the z-direction

Adjacent to the numerical boundary, Eq. (6.74) was treated to include the given

Neumann boundary condition. The forward finite difference scheme in x-direction was

applied adjacent to the boundaries given in Fig. 6.20. Substituting Eq. (6.74) with the
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Figure 6.20: Forward finite difference scheme in x-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

necessary boundary condition,
1

∆x2

(
−2

3
〈p〉(xc

2,y
c,z)+

2
3
〈p〉(xc

3,y
c,z)
)

+
1

∆y2

(
〈p〉(xc

2,y
c +∆y,z)−2〈p〉(xc

2,y
c,z)+ 〈p〉(xc

2,y
c−∆y,z)

)
+

1
∆z2

(
〈p〉(xc

2,y
c,z+∆z)−2〈p〉(xc

2,y
c,z)+ 〈p〉(xc

2,y
c,z−∆z)

)
= ψ(xc

2,y
c,z)+

2
3∆x

∆〈p〉
∆x

∣∣∣∣
1

(6.78)
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Figure 6.21: Backward finite difference scheme in x-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

The backward finite difference in x-direction was applied adjacent to the boundaries

given in Fig. 6.21 Substituting Eq. (6.74) with the necessary boundary condition,
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Figure 6.22: Forward finite difference scheme in z-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

1
∆x2

(
2
3
〈p〉(xc

M−2,y
c,z)− 2

3
〈p〉(xc

M−1,y
c,z)
)

+
1

∆y2

(
〈p〉(xc

M−1,y
c +∆y,z)−2〈p〉(xc

M−1,y
c,z)+ 〈p〉(xc

M−1,y
c−∆y,z)

)
+

1
∆z2

(
〈p〉(xc

M−1,y
c,z+∆z)−2〈p〉(xc

M−1,y
c,z)+ 〈p〉(xc

M−1,y
c,z−∆z)

)
= ψ(xc

M−1,y
c,z)− 2

3∆x
∆〈p〉
∆x

∣∣∣∣
M

(6.79)

The forward finite difference in z-direction was applied adjacent to the boundaries

given in Fig. 6.22 Substituting Eq. (6.74) with the necessary boundary condition,

1
∆x2

(
〈p〉(xc +∆x,yc,z2)−2〈p〉(xc,yc,z2)+ 〈p〉(xc−∆x,yc,z2)

)
+

1
∆y2

(
〈p〉(xc,yc−∆y,z2)−2〈p〉(xc,yc,z2)+ 〈p〉(xc,yc−∆y,z2)

)
+

1
∆z2

(
− 2

3
〈p〉(xc,yc,z2)+

2
3
〈p〉(xc,yc,z3)

)
= ψ(xc,yc,z2)+

2
3∆z

∆〈p〉
∆z

∣∣∣∣
1

(6.80)
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Figure 6.23: Backward finite difference scheme in z-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

The backward finite difference scheme in z-direction was applied adjacent to the

boundaries given in Fig. 6.23 Substituting Eq. (6.74) with the necessary boundary con-

dition,

1
∆x2

(
〈p〉(xc +∆x,yc,zN−1)−2〈p〉(xc,yc,zN−1)+ 〈p〉(xc−∆x,yc,zN−1)

)
+

1
∆y2

(
〈p〉(xc,yc +∆y,zN−1)−2〈p〉(xc,yc,zN−1)+ 〈p〉(xc,yc−∆z,zN−1)

)
+

1
∆z2

(
2
3
〈p〉(xc,yc,zN−2)−

2
3
〈p〉(xc,yc,zN−1)

)
= ψ(xc,yc,zN−1)−

2
3∆z

∆〈p〉
∆z

∣∣∣∣
N

(6.81)

The numerical mesh along the y-direction is depicted in Fig. 6.24 for the mesh

around y = y2. Substituting Eq. (6.82) with the necessary boundary condition. The
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Figure 6.24: Illustration of the numerical mesh along the y-direction. Two adjacent

mesh is shown around y = y0 to solve the three-dimensional Poisson equation on y = y0.

.

forward finite difference scheme along the y-direction is

1
∆x2

(
〈p〉(xc +∆x,y1,zc)−2〈p〉(xc,y1,zc)+ 〈p〉(xc−∆x,y,zc)

)
+

1
∆y2

(
−2〈p〉(xc,y1,zc)+2〈p〉(xc,y2,zc)

)
+

1
∆z2

(
〈p〉(xc,y1,zc−∆z)−2〈p〉(xc,y1,zc)+ 〈p〉(xc,y1,zc−∆z)

)
= ψ(xc,y1,zc)+

2
∆y

∆〈p〉
∆y

∣∣∣∣
1

(6.82)
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y

x

(a) ∇2〈u〉
y

x

(b) ∂〈p〉/∂x

Figure 6.25: Comparison of (a) µ∇2〈u〉 and (b) ∂〈p〉/∂x at φ̂ = 0.6. The former is consid-

ered negligible in the governing equation.

and the backward finite difference scheme along the y-direction is

1
∆x2

(
〈p〉(xc +∆x,y3,zc)−2〈p〉(xc,y3,zc)+ 〈p〉(xc−∆x,y3,zc)

)
+

1
∆y2

(
2〈p〉(xc,y2,zc)−2〈p〉(xc,y3,zc)

)
+

1
∆z2

(
〈p〉(xc,y3,zc +∆z)−2〈p〉(xc,y3,zc)+ 〈p〉(xc,y3,zc−∆z)

)
= ψ(xc,y3,zc)− 2

∆y
∆〈p〉
∆y 3

(6.83)

6.5 The estimated pressure field

The governing equations and boundary conditions were derived from the assumption

that the flow is inviscid. The viscous term calculated from the phase-averaged veloc-

ity field as shown in Fig. 6.25, shows that the viscous term µ∇2〈u〉 has negligible effect
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compared to
∂〈p〉/∂x, which is a direct consequence of the similarities of the velocity profile in Fig. 6.4.

This substantiate the inviscid flow assumption.

6.5.1 Pressure field on the xy-planes

The estimated pressure fields, as evaluated using Eq. (6.6), are shown in Fig. 6.26 at

the mid-chord, z = 0, and at the leading-edge, z = c/2, for (a)–(b) φ̂ = 0.25 and (c)–(d)

φ̂ = 0.45. The pressure field is presented as the non-dimensional pressure coefficient

Cp = 〈p〉/(1/2ρU2).

The Poisson equation consists of only spatial derivatives and by using the Neumann

boundary condition, the pressure fields in Fig. 6.26 are independent from each other and

not to be mistaken as a representation of the time evolution of the pressure. However,

it should be noted that the pressure difference on the surface of the plate can represent

the time evolution of the force acting on that surface. Strong discontinuities of the

pressure field between the global and the local mesh can be observed in Fig. 6.26(d).

This discontinuity is caused by the mixed Dirichlet-Neumann boundary condition that

was used for the local mesh. The Neumann boundary condition was applied on the

boundary immediate to the surface of the plate.

The proposed method estimated the pressure field reasonably well on the mid-chord

and poorly on the leading edge as shown in Figs. 6.26(a)–(b). This may be because

around the leading edge, the Neumann boundary condition on the surface of the plate

was insufficient to properly solve the Poisson equation because the measurement plane

is located around the bend of the edge of the plate. The spatial resolution of the out-

of-plane velocity component was evaluated by comparing the finite derivative of that

component,

∂〈w〉
∂z

=
〈w〉
∣∣
(z+∆z)−〈w〉

∣∣
(z−∆z)

2∆z
− 1

6
(∆z)2 ∂3〈w〉

∂z3 (ε) (6.84)
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(a) φ̂ = 0.25, z = 0 (b) φ̂ = 0.25, z = c/2

(c) φ̂ = 0.45, z = 0 (d) φ̂ = 0.45, z = c/2

Cp

Figure 6.26: Pressure distribution on the xy-planes. Contour indicates Cp.
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with the one calculated with the assumption that the continuity condition is fulfillled,

∂〈u〉
∂x

+
∂〈v〉
∂y

+
∂〈w〉

∂z
= 0

∂〈w〉
∂z

=−
(

∂〈u〉
∂x

+
∂〈v〉
∂y

)
∂〈w〉

∂z
=−

(
∆〈u〉
∆x

+
∆〈v〉
∆y

)
+
(

1
6
(∆x)2 ∂3〈u〉

∂x
(ε)+

1
6
(∆y)2 ∂3〈v〉

∂y
(ε)
)

(6.85)

In this study, the velocity gradients were calculated with a second order finite differ-

ence scheme. The comparison is shown in Fig. 6.27, where it shows an underestimation

of the out-of-plane velocity gradient on the leading-edge.

The comparison of the out-of-plane velocity gradient on the mid-chord is shown in

Fig. 6.28. On the mid-chord of the plate, the out-of-plane gradient was also underes-

timated. However, the gradients in Fig. 6.28 is qualitatively more agreeable with each

other than the ones in Fig. 6.27. Therefore, the flow around the leading edge, which is

highly three-dimensional, requires a proper volumetric PIV measurement to resolve the

boundary condition and the spatial resolution. The result of the pressure estimation in

Fig. 6.26 suggests that with the current measurement configuration it is safe to estimate

the pressure field along −c/2 < z < c/2.

6.5.2 Pressure field on the xz-planes

The estimated pressure fields on the xz-planes were evaluated using Eq. (6.74) with the

boundary conditions of Eqs. (6.78)–(6.83). A sample of this pressure field is shown in

Fig. 6.29 for y =−c/2 and y = 0 at φ̂ = 0.25.

The pressure fields in Fig. 6.29 show the cross-section of the flapping plate with the

measurement plane. for the plane at y = −c/2, the cross-section is represented by the

black square and at y = 0, a projection of the flapping plate on the measurement plane

is represented by the empty square as an indicator of the location of the flapping plate

relative to the flow.

The calculation of these pressure fields are more straightforward because they were

done only on the global mesh. This is due to the configuration that was used to measure
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(a) ∆〈w〉
∆z , Eq. (6.84) (b) −

(
∆〈u〉
∆x + ∆〈v〉

∆y

)
, Eq. (6.85)

Figure 6.27: Comparison of the out-of-plane gradient on the leading-edge, z = c/2, at

φ̂ = 0.35.

the velocity on xz-planes. At φ̂ 6= 0 and φ̂ 6= 0.5, the measurement plane is not orthogonal

to the surface of the plate. Because the local mesh is a subset of the measurement plane,

it is impossible to assign the pressure gradient normal to the surface of the plate as the

boundary condition in the current configuration.
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(a) ∆〈w〉
∆z , Eq. (6.84) (b) −

(
∆〈u〉
∆x + ∆〈v〉

∆y

)
, Eq. (6.85)

Figure 6.28: Comparison of the out-of-plane gradient on the mid-chord, z = 0, at φ̂ =

0.35.
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(a) y =−c/2, φ̂ = 0.25 (b) y = 0, φ̂ = 0.25

Cp

Figure 6.29: Pressure distribution on the xz-planes. Contour indicates Cp.
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6.6 Concluding remarks

This chapter demonstrates the visualization of pressure generated during flapping mo-

tion down to the surface of the flapping plate. The pressure field was obtained by solving

the Poisson equation for pressure, where the Laplacian of pressure was approximated

by the velocity field as obtained using stereo PIV.

An overlapping mesh system was proposed to estimate the pressure on the surface

of the plate. In this study, two meshes were used: global mesh, in the inertial frame

of reference, and local mesh, constrained to the motion of the flapping plate. Large

discontinuity in the leading edge section of the plate, z = c/2, is caused by improper

boundary condition and low spatial resolution of the measured plane. Because of its

location on the edge of the plate, the pressure gradient boundary condition normal to the

surface of the plate was not enough to obtain continuous pressure distribution because

the measurement plane was at the edge of the plate and it included the bend of the plate’s

surface.

The pressure estimation on xz-planes was done for only the global mesh due to

the measurement configuration where the measurement plane was not orthogonal to

the surface of plate except for φ̂ = 0 and φ̂ = 0.5. Because of this configuration, the

assignment of the pressure gradient normal to the surface of the body was impossible to

be done.



Chapter 7

The estimation of flapping torque

This chapter presents the estimation of the flapping torque from the integration of the

surface pressure distribution. The flapping torque is the product of the force of the wing.

So, the estimation assesses the force acting on the wing as well. The flapping torque is

compared with the strain gauge measurement. The integral equation and the result is

presented in §7.1 and final remarks are given in §7.2.

7.1 Pressure integration

The estimation of torque was calculated by integrating the pressure along a set of lines,

which are the intersections of the local meshes with the surface of the plate. The integra-

tion was evaluated with the control surface, pqrs, as illustrated in Fig. 7.1. The torque

is presented as the non-dimensional torque coefficient,

CT =
T

1/2ρ(2π f bΘ)2b(bc)
(7.1)

The torque acting on the axis of the flapping motion is shown in Fig. 7.2 which is

153
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p

q r

s

ζ

η

p'

q' r'

s'

flapping
axis

Figure 7.1: Definition of the control surface for the integration of pressure on the plate.

the integration of the estimated pressure as evaluated by

T =2
[Z q

p

Z q′

p

(
η〈p〉n̂ξ +ξ〈p〉n̂η

)
dζdη (7.2)Z q′

p′

Z s′

p′

(
η〈p〉n̂ξ +ξ〈p〉n̂η

)
dζdη (7.3)Z r′

s′

Z s

s′

(
η〈p〉n̂ξ +ξ〈p〉n̂η

)
dζdη

]
(7.4)

Where on the right hand side, the first and third term were evaluated directly and the

second term was interpolated on p′q′ from that on pq and on s′r′ from that on sr.

In Fig. 7.2 the estimated torque is compared with the torque directly measured by

strain gauges. With the information available from the pressure field for estimating the

torque, reasonable qualitative agreement is observed for the amplitudes of both torque

curves. However, the similarity ends there because a phase difference is observed be-

tween them.

As discussed in the previous chapter, the pressure estimation on rs is inaccurate

because of the lack of spatial resolution and improper boundary condition because of
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Figure 7.2: Comparison of torque coefficients estimated (“est”) by pressure and torque

directly measured by strain gauges for flapping rigid plate at Re=3160.

the complicated surface. The integrations of surface pressure along pq and rs are given

in Fig. 7.3.

In Fig. 7.3 the infinitesimal surface of the plate is discretized as (qq′)(dη), where

qq′ = rr′ = h is the distance between two laser sheet and the pressure distribution along

this length is assumed to be constant. Because of this, the magnitude in Fig. 7.3 is one

order less than in Fig. 7.2. The torque around pq is

T (z) =
Z p+h/2

p−h/2

Z q

p

(
η〈p〉n̂ξ +ξ〈p〉n̂η

)
dηdζ (7.5)

and the torque around the leading-edge is

T (z) =
Z s

s−h/2

Z r

s

(
η〈p〉n̂ξ +ξ〈p〉n̂η

)
dηdζ (7.6)

With the current measurement configuration, a sinusoidal form of the torque curves

at z = 0 and z = c/2 are observed in Fig. 7.3. An increase in torque is observed from
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Figure 7.3: Comparison of torque coefficients estimated by pressure integrated on the

mid-chord plane and on the leading-edge plane for flapping rigid plate at Re=3160.

φ̂ = 0.25 at z = 0 despite the plate is moving at low velocity. The torque at φ̂ = 0.30 is

caused by the high pressure region on the forward facing surface of the plate as shown

in Fig. 7.4(a). The pressure difference between the forward and rear facing surface of

the plate decreases at φ̂ = 0.50 as shown in Fig. 7.5(a). Proportionally, the torque at

φ̂ = 0.50 is smaller than that at φ̂ = 0.3. During the next flapping stroke, ie. at φ̂ = 0.85,

the pressure difference increases because of the high pressure region on the front facing

surface of the plate (cf. Fig. 7.6(a)) similar to that described in Fig. 7.4(a).

In Fig. 7.3 the torque curves at z = c/2 shows a phase difference compared with the

torque curves at z = 0 and the torque curves measured by strain gauges. The increase of

the torque curve at z = c/2 starts φ̂ = 0.9 and positive torque observed until φ̂ = 0.4. The

pressure field distribution at z = c/2 and φ̂ = 0.30 in Fig. 7.4(b) shows large pressure

difference between the front and rear facing surface of the plate similar to the pressure

distribution at z = 0 of the same phase angle. At φ̂ = 0.50 (cf. Fig. 7.5(b)) high pressure

region is on the rear surface of the plate, which is the opposite of the pressure field
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(a) z = 0 

(b) z = c/2 

Z

φ̂

θ
θ̇

Cp

Figure 7.4: Estimated pressure distribution on xy-planes at φ̂ = 0.30.

at z = 0, Fig. 7.4(b). The high pressure region is caused by the leading edge vortex

moving towards the rear facing surface of the plate. The flow behind this surface acts

like stagnated flow. In Fig. 7.6(b), the pressure distribution at φ̂ = 0.85 around the

surfaces of the plate shows discontinuity especially on the left edge of the local mesh.

This result in a sharp drop of torque in Fig. 7.3.

Figure 7.3 shows that the qualitative comparison of the torque estimated by pressure

on the mid-chord agrees well with the directly measured one and the shift in the flapping

phase angle is due to the estimation of the surface pressure on the leading-edge. With

these regards, the flow at −c/2 < z < c/2 can be used to estimate the pressure field and

its derived products.
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(a) z = 0 

(b) z = c/2 

Z

φ̂

θ
θ̇

Cp

Figure 7.5: Estimated pressure distribution on xy-planes at φ̂ = 0.50.

The mechanics of the increased torque is explained by the production of the vortex

flow behind the flapping plate. Slices of the pressure and vorticity distribution on the

xz-planes are shown in Figs. 7.7 – 7.12 and the pressure difference is compared with the

torque curve measured by strain gauges in Fig. 7.2.

The start of the flapping down stroke, φ̂ = 0.25, is shown in Fig. 7.7, where the

flapping velocity is at minimum. In Fig. 7.7(a), the leading edge vortices produced in

the up stroke is shown on the rear surface of the plate. The diameter of each of the

leading edge vortex is about half of the plate’s chord length. These vortices interact

with the rear surface of the plate and produce secondary vortices on the surface of the

plate. Two counter rotating vortices induce the fluid to flow towards the rear surface of
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Figure 7.6: Estimated pressure distribution on xy-planes at φ̂ = 0.85.

the plate called inter-vortex stream. The interaction of the inter-vortex stream with the

plate stagnates the flow and creates a region of high pressure. At minimum velocity, the

pressure distribution on the front surface of the plate is equal to the surrounding fluid.

The outer span of the plate is shown in Fig. 7.7(b). The leading edge vortices are

smaller, positioned away from the plate, and are asymmetrical. The asymmetry of the

leading edge vortex suggests a break down of the tip vortex as indicated by the control

volume analysis in Chapter. 5. These vortices still show flow stagnation near the plate’s

tip as marked by the high pressure region on the bottom surface of the plate. The pres-

sure difference on both sections of the plate at φ̂ = 0.25 produces an increase of torque

even though the plate is at minimum velocity. However the maximum torque is reached
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(a) y =−c/2

(b) y = 0

Figure 7.7: Vorticity (ωy (bΘ)/U) and pressure (Cp) distribution at φ̂ =

0.25.

Cp

at φ̂ = 0.35.

At φ̂ = 0.35, the plate is accelerating and the leading edge vortices are convected

around the edge of the plate as shown in Fig. 7.8(a). The vortex from the up stroke
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Figure 7.8: Vorticity (ωy (bΘ)/U) and pressure (Cp) distribution at φ̂ =

0.35.

Cp

is diffused and the secondary vortex is expanding rearward. At this phase angle, high

pressure is distributed on the front facing surface of the plate for the full chord length of

the plate. Because the vortices are being diffused the pressure distribution on the front
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facing surface is largely due to flow stagnation because of the plate’s motion. On the

rear surface there is no difference with the ambient pressure due to weak vortices and

how far apart they are positioned. These conditions create a large pressure difference

between the surfaces of the plate, which increase the flapping torque.

Similar distribution of the vorticity with Fig. 7.8(a) at the outer span of the plate is

produced as shown in Fig. 7.8(b). The leading edge vortices from the up stroke still exist

on this section because they were located farther from the plate. The interaction of the

vortices and the plate produces, on the front surface of the plate, pressure distribution

that is smaller than the one in the inner span. The pressure difference on the surface of

the plate at φ̂ = 0.35 produces the maximum torque at the same phase angle in Fig. 7.2.

The vorticity distribution in Fig. 7.9(a) shows the growth of the leading edge vortices

toward the rear of the plate. These vortices produce a pressure drop inside the core and

two stagnation pressure points appear on the inside of the plate. A high pressure region

on the front surface of the plate is also observed. The outer span of the plate in Fig. 7.9(b)

shows the leading edge vortices growing simultaneously with the inner span of the plate.

The pressure distribution also shows the pressure drop in the vortex core, two stagnation

points, and large stagnation region on the front surface of the plate.

The high pressure region on the front facing surface of the plate is caused by flow

stagnation related to the flapping motion as the plate’s velocity increases. The two

pressure stagnation points on the rear surface of the plate show how the surrounding

fluid is induced by the vortices but, has not produced a single stream. The strength of the

vortices and their position about one chord length apart produce two stagnation points

on the surface of the plate. Because of the increase of pressure on the rear facing surface

of the plate, the pressure difference on the plate’s surfaces decreases and is depicted by

the decrease of torque at φ̂ = 0.40 in Fig. 7.2.

At the mid-point of the down stroke, φ̂ = 0.5, where the acceleration is minimum and

the plate is at maximum velocity, the leading edge vortices in Fig. 7.10(a) are stretched

to the rear of the plate. These vortices are stronger and closer together than in Fig. 7.9(a).

These conditions cause the stagnation point to converge about the center of the rear sur-

face of the plate. The pressure distribution on the front surface of the plate remains

unchanged. In Fig. 7.10(b), the vorticity distribution of the leading edge vortices con-
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Figure 7.9: Vorticity (ωy (bΘ)/U) and pressure (Cp) distribution at φ̂ =

0.40.

Cp

verges at the center of the plate. These vortices are stretched rearward and show an

approximately symmetrical structure. This vorticity distribution depicts the extension

of the leading edge vortices to the tip vortex. The pressure distribution of this section
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Figure 7.10: Vorticity (ωy (bΘ)/U) and pressure (Cp) distribution at φ̂ =

0.50.

Cp

is approximately similar to the inner section of the plate. The decrease of the pressure

difference of the surface of the plate further decreases the torque at φ̂ = 0.50 in Fig. 7.2.

The vorticity distribution during the deceleration of the plate in Fig. 7.11(a) shows
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Figure 7.11: Vorticity (ωy (bΘ)/U) and pressure (Cp) distribution at φ̂ =

0.60.

Cp

an increase of the size of the leading edge vortices. These vortices are also located closer

together. The pressure distribution still shows the stagnation on the front surface of the

plate and a stagnation pressure region above the rear surface of the plate. Two regions
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of lower pressure in the vortex cores are also observed on that surface.

At the outer span of the plate, the vorticity distribution in Fig. 7.11(b) shows the

leading edge vortices develop into an asymmetric structure. The pressure distribution

on this section shows a considerably small pressure difference between the front and

rear surfaces. The stagnation pressure above the top surface also appears similar on the

inner section. The conditions of the two sections of the flow at this phase angle shows

a decrease in the pressure difference between the plate’s surfaces. This translates into

further decrease of the torque of the flapping axis at φ̂ = 0.60 in Fig. 7.2.

The end of the down stroke in Fig. 7.12(a), φ̂ = 0.75, the leading edge vortices

separate from the plate. These vortices are about half a chord length in diameter. The

interaction of the separated vortices with the plate induces the production of new vortices

on the rear surface of the plate. The pressure distribution at this phase angle shows a

stagnation region at the center of the rear surface of the plate and does not cover the full

chord length of the plate. The pressure distribution on the front surface of the plate is

equal to the surrounding fluid.

The outer span of the plate in Fig. 7.12(b) shows an asymmetric vortical structure

and above the rear surface of the plate and the high pressure distribution is on the rear

surface of the plate. The conditions on both sections are similar to the start of the

downstroke shown in Fig. 7.12(a). Indeed Fig. 7.12 approximately mirrors Fig. 7.7.



7.1. PRESSURE INTEGRATION 167

ωy
(bΘ)

U

(a) y =−c/2

(b) y = 0

Figure 7.12: Vorticity (ωy (bΘ)/U) and pressure (Cp) distribution at φ̂ =

0.75.

Cp
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7.2 Concluding remarks

Comparison of the estimation of torque by surface pressure integration and the torque

measured by strain gauges show reasonable qualitative agreement with each other. The

comparison shows similar amplitude but different phase between the two curves. The

cause of the phase difference is the inaccuracy of the pressure distribution on the leading-

edge of the plate due to the pressure estimation on the plane intersecting the leading-

edge. This inaccuracy is due to the large discontinuity of the pressure field between the

global and local mesh because of the improper boundary condition and spatial resolution

to resolve the vortex flow. However, the torque calculated from the estimated pressure on

the mid-chord plane shows no phase difference with the measured torque. This suggests

that the torque can be estimated well by measuring the entire surface of the plate without

intersecting the edge of the plate and with special attention taken to resolve the spatial

resolution near the leading-edge.

The relation of the torque of the flapping axis with vorticity was investigated through

several slices of the vorticity distribution and pressure distribution. It was found that

the leading-edge vortices induce the surrounding fluid called the inter-vortex stream,

which in this study produces flow moving towards the plate. The presence of rigid plate

stagnates the inter-vortex stream and creates a region of high pressure on one side of the

plate’s surface. This condition dominates when the plate is at low velocity notably at the

start of every new stroke.

After the initial start of the stroke flow stagnation appears on the front facing surface

of the plate. The flow stagnates because of the plate moving through a quiescent fluid.

The aerodynamic efficiency may be improved by setting the flapping wing at an acute

angle of attack. In that configuration, the leading-edge vortex is diffused to middle of the

rear facing surface of the plate limiting the stagnation pressure on that surface. Thereby,

giving the pressure difference that benefits to the vertical component of the aerodynamic

force.



Chapter 8

Conclusions

8.1 Concluding Remarks

The study investigates the relation of vorticity and pressure distribution in the case of

flapping wing and the method to investigate the force of an actual micro-air vehicle.

The flapping wing was simplified as a flapping plate with a sinusoidal motion with the

flapping axis in the chordwise direction. Measurements were done using stereo PIV with

multiple measurement planes offset along the out-of-plane direction of the measurement

planes. Phase averaging of the velocity field of each discrete phase angles was used to

present the evolution of the flow in one flapping cycle, one downstroke and one upstroke.

The governing equations were decomposed into the averaged component and fluctuating

component.

The flow was visualized by calculating the second invariance of the deformation ten-

sor, 〈Q〉, which depicts the three dimensional structure of the vortex around the plate but

does not visualize the dynamics of that structure. Additional information were visual-

ized with streamlines for the regions where 〈Q〉< 0.

The control volume analysis provides the investigation tool to study the dynamics

of vortex and structure interaction. The selection of control volume size for the force

analysis enables the investigation of selected parts of the phase-averaged velocity field,

which provides better understanding of the vortex structures that influences force gener-

ation. By properly selecting the size of the control volume, acceleration and convection

169
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of the flow can be explained using their respective terms in the integral equation of fluid

motion.

Force calculated by control volume analysis of the phase-averaged velocity field

shows that the vortex attached to the surface of the plate plays a dominant role in the

generation of the force. Delays reaching the maxima of the force magnitude are caused

by the existence of the vortex structure of the previous stroke obstructing the motion of

the plate. Increases in the extremes of the force due to the Reynolds number only appear

in the unsteady term of the leading edge of the plate.

To estimate the pressure distribution on the surface of the plate, the Poisson equation

was integrated in an overlapping mesh system. For the flapping plate, two meshes were

used: global mesh in the inertial frame and local mesh constrained to the motion of the

flapping plate. In the mid-chord of the plate, continuous pressure distribution with the

global mesh was achieved along the boundaries of the local mesh. However on the edge

of the plate, discontinuity of the pressure distribution is observed which may arise from

the lack of spatial resolution in the out-of-plane distribution and the improper boundary

condition because of the bend on the edge of the surface of the plate.

The pressure field on the xz-plane shows the spanwise sections of the flow generated

by a flapping plate. The pressure field was solved only for the global mesh because the

measurement planes are not orthogonal to the surface of the plate for all phase angles

except for φ̂ = 0 and φ̂ = 0.5.

Comparison of the estimation of the torque by surface pressure integration and the

torque measured by strain gauges shows reasonable qualitative agreement of each other.

The two torques have similar amplitudes but different phases. The phase difference is

due to the pressure distribution on the leading edge of the plate, which is inaccurate

due to improper boundary condition and lack of spatial resolution in the measurement

of the vortex flow. However, the torque calculated from the estimated pressure on the

mid-chord plane shows no phase difference with the measured torque. This suggest that

the torque can be estimated well by measuring the entire surface of the plate without

intersecting the edge of the plate and by improving the spatial accuracy along the out-

of-plane direction.

The relation of the torque of the flapping axis with vorticity was investigated through
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several slices of the vorticity distribution and pressure distribution. It was found that the

leading edge vortices induce the surrounding fluid which produces a part of the flow

moving between the vortices called inter-vortex stream. In this study the inter-vortex

stream moves toward the plate. The presence of rigid plate stagnates the inter-vortex

stream and creates a region of high pressure on one side of the plate’s surface. This

condition dominates when the plate is at low velocity notably at the start of every new

stroke.

8.2 Recommendations

Measurements were done by manually traversing the measurement plane along the out-

of-plane direction of the measurement plane or the chordwise direction of the plate. For

control volume analysis, the high spatial resolution of the plate is not important because

the integral equation is not a function of the velocity spatial gradient. In the estimation

of pressure field, the spatial resolution must be resolved adequately. The estimation of

pressure field can benefit from the volumetric measurement using more advanced PIV

measurement methods such as tomographic or holographic PIV.

Qualitative agreement between the torque curves as estimated by surface pressure

integration and strain gauge measurements shows that the pressure estimation method

can be used to estimate the forces of a small mechanical device such as an MAV. In this

study, further improvements of the estimation of the force of the flapping plate can be

done by measuring for the full surface of the plate without intersecting the edge of the

plate.

After the initial start of the stroke flow stagnation appears on the front surface of

the plate. The flow stagnates because of the plate moving through a quiescent fluid.

Aerodynamic efficiency may be improved by setting the flapping wing at an acute angle

of attack. In that configuration, the leading-edge vortex is diffused to the middle of the

rear surface of the plate limiting the stagnation pressure on that surface.

The author recognizes that certain aspects of this study are not perfect but hopes that

the results can help the understanding of the dynamics of flow generated by a flapping

wing.



172 CHAPTER 8. CONCLUSIONS



Bibliography

Ansari SA, Phillips N, Stabler G, Wilkins PC, Zbikowski R, Knowles K (2009) Exper-

imental investigation of some aspects of insect-like flapping flight aerodynamics for

application to micro air vehicles. Experiments in Fluids 46:777 – 798

Azuma A (1992) The biokinetics of flying and swimming. American Institute of Aero-

nautics and Astronautics, Springer-Verlag New York

Azuma A, Azuma S, Watanabe I, Furuta T (1985) Flight mechanics of a dragonfly.

Journal of Experimental Biology (116):79 – 107

Bandyoypadhyay PR (2009) Swimming and flying in nature – the route toward applica-

tions: the freeman scholar lecture. Journal of Fluids Engineering 131:031,801

Bendat JS, Piersol AG (2000) Random Data: Analysis and Measurement Procedures,

3rd edn. John Wiley & Sons, Inc.

van den Berg C, Ellington C (1997) The vortex wake of a’hovering’model hawk-

moth. Philosophical Transactions of the Royal Society B: Biological Sciences

352(1351):317

Bernard P, Wallace J (2002) Turbulent flow: analysis, measurement, and prediction.

John Wiley & Sons, Inc.

Betz A (1912) Ein Beitrag zur Erklaerung des Segelfluges. Zeitschrift fuer Flugtechnik

und Motorluftschiffahrt 3:269–270

Bevington PR (1969) Data reduction and error analysis for the physical sciences.

McGraw-Hill

173



174 BIBLIOGRAPHY

Birch J, Dickinson M (2001) Spanwise flow and the attachment of the leading-edge

vortex on insect wings. Nature 412(6848):729–733

Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of

the leading edge vortex on flapping wings at high and low reynolds numbers. J Exp

Biol 207(7):1063–1072

Bomphrey R, Lawson N, Harding N, Taylor G, Thomas A (2005) The aerodynamics

of Manduca sexta: digital particle image velocimetry analysis of the leading-edge

vortex. The Journal of experimental biology 208(Pt 6):1079

Coleman H, Steele W (1995) Engineering application of experimental uncertainty anal-

ysis. AIAA Journal 33:1888–1896

Cooper Instruments (2007) LQB 630 - Thin film load cell. URL http://cooperinst.

thomasnet.com/Asset/LQB630.pdf

Coudert S, Schon J (2001) Back-projection algorithm with misalignment corrections for

2D3C stereoscopic PIV. Measurement science and technology 12(9):1371–1381

David L, Jardin T, Farcy A (2009) On the non-intrusive evaluation of fluid forces

with the momentum equation approach. Measurement Science and Technology

20:095,401, DOI doi:10.1088/0957-0233/20/9/095401

Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis

of insect flight. Science 284(5422):1954 – 1960

Ellington C (1984) The aerodynamics of hovering insect flight. Philosophical Trans-

action of the Royal Society of London Series B, Biological Sciences 305(1122):1 –

181

Ellington CP, Berg CVD, Willmott AP, Thomas AL (1996) Leading-edge vortices in

insect flight. Nature (384):626 – 630

Foo L (2001) Nikon PC-Micro Nikkor 85mm f/2.8 D Special Perspective Control Close

up application telephoto lens. URL http://www.mir.com.my/rb/photography/

companies/nikon/nikkoresources/PC_Nikkor/index5.htm

http://cooperinst.thomasnet.com/Asset/LQB630.pdf
http://cooperinst.thomasnet.com/Asset/LQB630.pdf
http://www.mir.com.my/rb/photography/companies/nikon/nikkoresources/PC_Nikkor/index5.htm
http://www.mir.com.my/rb/photography/companies/nikon/nikkoresources/PC_Nikkor/index5.htm


BIBLIOGRAPHY 175

Fujisawa N, Tanahashi S, Srivinas K (2005) Evaluation of pressure field and fluid forces

on a circular cylinder with and without rotational oscillation using velocity data from

PIV measurement. Measurement Science and Technology (16):989–996

Guglielmini L, Blondeaux P (2004) Propulsive efficiency of oscillating foils. European

Journal of Mechanics-B/Fluids 23(2):255–278

Haddab Y, Chen Q, Lutz P (2009) Improvement of strain gauges micro-forces measure-

ment using Kalman optimal filtering. Mechatronics 19(4):457–462

Heathcote S, Gursul I (2007) Jet switching phenomenon for a periodically plunging

airfoil. Physics of Fluids 19:027,104

Heathcote S, Martin D, Gursul I (2004) Flexible flapping airfoil propulsion at zero

freestream velocity. AIAA journal 42(11)

Heathcote S, Wang Z, Gursul I (2008) Effect of spanwise flexibility on flapping wing

propulsion. Journal of Fluids and Structures 24(2):183–199

Ho S, Nassef H, Pornsinsirirak N, Tai Y, Ho C (2003) Unsteady aerodynamics and flow

control for flapping wing flyers. Progress in Aerospace Sciences 39(8):635–681

Ishihara Sangyo Kaisha (2006) Titanium dioxide hollow microspheres, nst-b1. URL

www.iskweb.co.jp/eng/research/pdf/nst-b1_tf-4.pdf

Jardin T, David L, Farcy A (2009) Characterization of vortical structures and loads based

on time-resolved PIV for asymmetric hovering flapping flight. Experiments in Fluids

46(5):847 – 857, DOI 10.1007/s00348-009-0632-7

Jones K, Platzer M (1997) Numerical computation of flapping-wing propulsion and

power extraction. AIAA paper pp 97–0826

Jones K, Dohring C, Platzer M (1998) Experimental and computational investigation of

the knoller-betz effect. AIAA Journal 36(7):1240–1246

Jones KD, Platzer MF (2009) Design and development considerations for biologically

inspired flapping-wing micro air vehicles. Experiments in Fluids 46:799 – 810

www.iskweb.co.jp/eng/research/pdf/nst-b1_tf-4.pdf


176 BIBLIOGRAPHY

Jones KD, Duggan SJ, Platzer MF (2001) Flapping-wing propulsion for a micro air

vehicle. AIAA Paper 126

de Kat R, Oudheusden BWV, Scarano F (2008) Instantaneous planar pressure field de-

termination around a square-section cylinder based on time-resolved stereo-piv. In:

14th Int. Symp. on Application of Laser Techniques to Fluid Mechanics, pp 6–11

Keyence Corporation (2006) High-speed, high-accuracy CCD Laser Displacement Sen-

sor LK-G Series User’s Manual. Keyence Corporation, 1-3-14, Higashi-Nakajima,

Higashi-Yodogawa-ku, Osaka, 533-8555, Japan.

Knoller R (1909) Die gesetze des luftwiderstandes. Flug-und Motortechnik (Wien)

3(21):1–7

Kyowa Electronic Instruments Co, Ltd (2004) DPM-700B series user manual. Kyowa

Electronic Instruments Co., Ltd., 3-5-1, Chofugaoka, Chofu, Tokyo 182-8520, Japan

Kyowa Electronic Instruments Co, Ltd (2010a) How to form strain-gage bridges.

http://www.kyowa-ei.co.jp/english/products/gages/index.htm, 3-5-1, Chofugaoka,

Chofu, Tokyo 182-8520, Japan

Kyowa Electronic Instruments Co, Ltd (2010b) micro-strain measuring gages.

http://www.kyowa-ei.co.jp/english/products/gages/mmg.htm, 3-5-1, Chofugaoka,

Chofu, Tokyo 182-8520, Japan

Lai JC, Platzer MF (1999) Jet characteristics of a plunging airfoil. AIAA Journal

37(12):1529–1537

Lai JC, Platzer MF (2000) Characteristics of a plunging airfoil at zero freestream veloc-

ity. American Institute of Aeronautics and Astronautics 39(3):531–534

Lehmann F, Sane S, Dickinson M (2005) The aerodynamic effect of wing-wing interac-

tion in flapping insect wings. Journal of Experimental Biology 208(16):3075

Mao S, Xin Y (2003) Flows around two airfoils performing fling and subsequent trans-

lation and translation and subsequent clap. Acta Mechanica Sinica 19(2):103–117



BIBLIOGRAPHY 177

Masuda S (2006) Lecture notes in physical model of turbulence

McMichael JM, Francis MS (1997) Micro Air Vehicles – Toward A New Dimension

In Flight. URL http://www.fas.org/irp/program/collect/docs/mav_auvsi.

htm

Miller LA, Peskin CS (2005) A computational fluid dynamics of ’clap and fling’ in the

smallest insects. J Exp Biol 208(2):195–212, DOI 10.1242/jeb.01376

Mu-lin C, Wen-bo M, Chang-sheng Z (2006) Numerical simulation of insect flight. Ap-

plied Mathematics and Mechanics 27(5):601 – 606

National Instruments Co (1999) DAQ:6601/6602 User Manual. National Instruments

Co., 11500 North Mopac ExpresswayAustin, Texas 78759-3504

National Instruments Co (2000) Data Acquisition Basics Manual. National Instruments

Co., 11500 North Mopac ExpresswayAustin, Texas 78759-3504

National Instruments Co (2001) IMAQ PCI/PXI 1422 User Manual. National Instru-

ments Co., 11500 North Mopac Expressway Austin, Texas 78759-3504

National Instruments Co (2006) Motion Control. National Instruments Co., 11500 North

Mopac Expressway. Austin, Texas. 78759-3504. USA

National Instruments Co (2009) What is rtsi and how is it configured? URL http:

//digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27

National Instruments Co (2010) Universal Motion Interface (UMI)-7664. National In-

struments Co., 11500 North Mopac Expressway Austin, Texas 78759-3504

New Wave Research (2003) Solo PIV Nd:YAG Laser System Operator’s Manual. New

Wave Research, 48660 Kato Road Freemont California 94538

Obi S, Tokai N (2006) The pressure–velocity correlation in oscillatory turbulent flow be-

tween a pair of bluff bodies. International Journal of Heat and Fluid Flow 27(5):768–

776

http://www.fas.org/irp/program/collect/docs/mav_auvsi.htm
http://www.fas.org/irp/program/collect/docs/mav_auvsi.htm
http://digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27
http://digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27


178 BIBLIOGRAPHY

Oriental Motor Co, Ltd (2002) RK Series Operating Manual. Oriental Motor Co., Ltd,

6-16-17 Ueno, Taito-ku, Tokyo, Japan

van Oudheusden B, Scarano F, Roosenboom E, Casimiri E, Souverein L (2007) Eval-

uation of integral forces and pressure fields from planer velocimetry data for incom-

pressible and compressible flow. Experiments in Fluids 43(2):153–162

Platzer MF, Jones KD, Young J, Lai JC (2008) Flapping-wing aerodynamics: progress

and challenges. AIAA Journal 46(9):2136–2159

Poelma C, Dickson W, Dickinson M (2006) Time-resolved reconstruction of the full

velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225

Pope S (2000) Turbulent flows. Cambridge Univ Pr

Prasad AK (2000) Stereoscopic particle image velocimetry. Experiments in Fluids

29(2):103 – 116

Redlake MASD, Inc (2001) The Megaplus Model ES 1.0 Series Cameras User’s Man-

ual. Redlake MASD, Inc, Redlake MASD, Inc. 11633 Sorrento Valley Road San

Diego, California 92121-1097

Ringuette M, Milano M, Gharib M (2007) Role of the tip vortex in the force generation

of low-aspect-ratio normal flat plates. Journal of Fluid Mechanics 581:453–468

Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and

drag production. J Exp Biol 204:2607 – 2626

Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised

quasi-steady model of flapping flight. Journal of Experimental Biology 205(8):1087–

1096

Sane SP, Jacobson NP (2006) Induced airflow in flying insects ii. measurement of in-

duced flow. J Exp Biol 209(Pt 1):43–56, DOI 10.1242/jeb.01958

Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples).

Biometrika Trust 52(3 - 4):591 – 611



BIBLIOGRAPHY 179

Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and

micro air vehicles. Progress in Aerospace Sciences 35(5):455–505

Soloff S, Adrian R, Liu Z (1997) Distortion compensation for generalized stereoscopic

particle image velocimetry. Measurement science and technology 8(12):1441 – 1454

Spedding GR, Hedenström A (2009) PIV-based investigations of animal flight. Experi-

ments in Fluids 46(5):749–763, DOI 10.1007/s00348-008-0597-y

Srygley R, Thomas A (2002) Unconventional lift-generating mechanisms in free-flying

butterflies. Nature 420(6916):660–664

Steltz E, Wood R, Avadhanula S, Fearing R (2006) Characterization of the microme-

chanical flying insect by optical position sensing. In: Robotics and Automation, 2005.

ICRA 2005. Proceedings of the 2005 IEEE International Conference on, IEEE, pp

1252–1257

Sudhakar Y, Vengadesan S (2010) The Functional Significance of Delayed Stall in Insect

Flight. Numerical Heat Transfer, Part A: Applications 58(1):65–83

Sun M, Lan SL (2004) A computational study of the aerodynamic forces and power

requirement of dragonfly (aeschna juncea) hovering. J Exp Biol 207(11):1887 – 1901

Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing

in flapping motion. Journal of experimental biology 205(1):55–70

Sunada S, Hatayama Y, Tokutake H (2010) Pitch, Roll, and Yaw Damping of a Flapping

Wing. AIAA Journal 48(6):1261–1265

Tobalske BW (2009) Symmetry in turns. Science 324:190 – 191

Tsai B, Fu Y (2009) Design and aerodynamic analysis of a flapping-wing micro aerial

vehicle. Aerospace Science and Technology 13(7):383–392

Unal M, Lin J, Rockwell D (1997) Force prediction by PIV imaging: a momentum-

based approach. Journal of Fluids and Structures 11(8):965–971



180 BIBLIOGRAPHY

Van Den Berg C, Ellington C (1997) The three-dimensional leading-edge vortex of

a’hovering’model hawkmoth. Philosophical Transactions of the Royal Society B: Bi-

ological Sciences 352(1351):329

Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech

410:323–341

Wang ZJ (2001) Computation of insect hovering. Mathematical Methods In The Applied

Sciences 24(17-18):1515–1521

Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(Pt 23):4147–4155,

DOI 10.1242/jeb.01239

Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the

accuracy of cross-correlation analysis of digital PIV recording. Experiments in Fluids

23(1):20–28

Willert C (1997) Stereoscopic digital particle image velocimetry for application in wind

tunnels. Measurement Science and Technology 8(12):1465 – 1479

Willert C, Gharib M (1991) Digital particle image velocimetry. Experiments in fluids

10(4):181–193

Willmott A, Ellington C, Thomas A (1997) Flow visualization and unsteady aerody-

namics in the flight of the hawkmoth, Manduca sexta. Philosophical Transactions of

the Royal Society B: Biological Sciences 352(1351):303

Wood R, Fearing R (2001) Flight force measurements for a micromechanical flying

insect. In: Proceeding of the 2001 IEEE/RSJ, International Conference on Intelligent

Robots and Systems

Wu JH, Sun M (2004) unsteady aerodynamics forces of a flapping wing. J Exp Biol

207(7):1137 – 1150

Zang W, Prasad A (1997) Performance evaluation of a Scheimpflug stereocamera for

particle image velocimetry. Applied optics 36(33):8738–8744



Appendix A

Visualization Results

181



182 APPENDIX A. VISUALIZATION RESULTS

(a) φ̂ = 0

(b) φ̂ = 0.05

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(c) φ̂ = 0.1

(d) φ̂ = 0.15

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(e) φ̂ = 0.2

(f) φ̂ = 0.25

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(g) φ̂ = 0.3

(h) φ̂ = 0.35

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(i) φ̂ = 0.4

(j) φ̂ = 0.45

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(k) φ̂ = 0.5

(l) φ̂ = 0.55

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(m) φ̂ = 0.6

(n) φ̂ = 0.65

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(o) φ̂ = 0.7

(p) φ̂ = 0.75

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(q) φ̂ = 0.8

(r) φ̂ = 0.85

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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(s) φ̂ = 0.9

(t) φ̂ = 0.95

〈w〉/U

Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580.
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(a) φ̂ = 0

(b) φ̂ = 0.05

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)



193

(c) φ̂ = 0.1

(d) φ̂ = 0.15

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(e) φ̂ = 0.2

(f) φ̂ = 0.25

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(g) φ̂ = 0.3

(h) φ̂ = 0.35

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(i) φ̂ = 0.4

(j) φ̂ = 0.45

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(k) φ̂ = 0.5

(l) φ̂ = 0.55

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(m) φ̂ = 0.6

(n) φ̂ = 0.65

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(o) φ̂ = 0.7

(p) φ̂ = 0.75

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(q) φ̂ = 0.8

(r) φ̂ = 0.85

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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(s) φ̂ = 0.9

(t) φ̂ = 0.95

〈w〉/U

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

Cp

Figure A.3: Pressure distribution of Re=3160, z = 0. (Continued)



203

(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

Cp

Figure A.3: Pressure distribution of Re=3160, z = 0. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

Cp

Figure A.3: Pressure distribution of Re=3160, z = 0. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

Cp

Figure A.3: Pressure distribution of Re=3160, z = 0. (Continued)



206 APPENDIX A. VISUALIZATION RESULTS

(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

Cp

Figure A.3: Pressure distribution of Re=3160, z = 0.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

Cp

Figure A.4: Pressure distribution of Re=3160, z = c/2. (Continued)



208 APPENDIX A. VISUALIZATION RESULTS

(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

Cp

Figure A.4: Pressure distribution of Re=3160, z = c/2. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

Cp

Figure A.4: Pressure distribution of Re=3160, z = c/2. (Continued)



210 APPENDIX A. VISUALIZATION RESULTS

(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

Cp

Figure A.4: Pressure distribution of Re=3160, z = c/2. (Continued)
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(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

Cp

Figure A.4: Pressure distribution of Re=3160, z = c/2.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

〈v〉/U

Figure A.5: Velocity distribution of Re=1580, y =−c/2. (Continued)
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(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

〈v〉/U

Figure A.5: Velocity distribution of Re=1580, y =−c/2. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

〈v〉/U

Figure A.5: Velocity distribution of Re=1580, y =−c/2. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

〈v〉/U

Figure A.5: Velocity distribution of Re=1580, y =−c/2. (Continued)
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(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

〈v〉/U

Figure A.5: Velocity distribution of Re=1580, y =−c/2.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

〈v〉/U

Figure A.6: Velocity distribution of Re=1580, y = 0. (Continued)



218 APPENDIX A. VISUALIZATION RESULTS

(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

〈v〉/U

Figure A.6: Velocity distribution of Re=1580, y = 0. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

〈v〉/U

Figure A.6: Velocity distribution of Re=1580, y = 0. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

〈v〉/U

Figure A.6: Velocity distribution of Re=1580, y = 0. (Continued)
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(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

〈v〉/U

Figure A.6: Velocity distribution of Re=1580, y = 0.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

〈v〉/U

Figure A.7: Velocity distribution of Re=3160, y =−c/2. (Continued)
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(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

〈v〉/U

Figure A.7: Velocity distribution of Re=3160, y =−c/2. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

〈v〉/U

Figure A.7: Velocity distribution of Re=3160, y =−c/2. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

〈v〉/U

Figure A.7: Velocity distribution of Re=3160, y =−c/2. (Continued)



226 APPENDIX A. VISUALIZATION RESULTS

(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

〈v〉/U

Figure A.7: Velocity distribution of Re=3160, y =−c/2.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

〈v〉/U

Figure A.8: Velocity distribution of Re=3160, y = 0. (Continued)
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(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

〈v〉/U

Figure A.8: Velocity distribution of Re=3160, y = 0. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

〈v〉/U

Figure A.8: Velocity distribution of Re=3160, y = 0. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

〈v〉/U

Figure A.8: Velocity distribution of Re=3160, y = 0. (Continued)
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(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

〈v〉/U

Figure A.8: Velocity distribution of Re=3160, y = 0.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

Cp

Figure A.9: Pressure distribution of Re=3160, y =−c/2. (Continued)
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(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

Cp

Figure A.9: Pressure distribution of Re=3160, y =−c/2. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

Cp

Figure A.9: Pressure distribution of Re=3160, y =−c/2. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

Cp

Figure A.9: Pressure distribution of Re=3160, y =−c/2. (Continued)
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(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

Cp

Figure A.9: Pressure distribution of Re=3160, y =−c/2.
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(a) φ̂ = 0 (b) φ̂ = 0.05

(c) φ̂ = 0.1 (d) φ̂ = 0.15

Cp

Figure A.10: Pressure distribution of Re=3160, y = 0. (Continued)
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(e) φ̂ = 0.2 (f) φ̂ = 0.25

(g) φ̂ = 0.3 (h) φ̂ = 0.35

Cp

Figure A.10: Pressure distribution of Re=3160, y = 0. (Continued)
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(i) φ̂ = 0.4 (j) φ̂ = 0.45

(k) φ̂ = 0.5 (l) φ̂ = 0.55

Cp

Figure A.10: Pressure distribution of Re=3160, y = 0. (Continued)
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(m) φ̂ = 0.6 (n) φ̂ = 0.65

(o) φ̂ = 0.7 (p) φ̂ = 0.75

Cp

Figure A.10: Pressure distribution of Re=3160, y = 0. (Continued)
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(q) φ̂ = 0.8 (r) φ̂ = 0.85

(s) φ̂ = 0.9 (t) φ̂ = 0.95

Cp

Figure A.10: Pressure distribution of Re=3160, y = 0.
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Appendix B

Poisson solver for circular cylinder in
potential flow

1 c l e a r ;
2 c l f ;
3
4 eps = 1e−12;
5
6 %% f l o w domain
7 dx = 0 . 2 ; dy = 0 . 2 ;
8 [ x , y ] = meshgrid (−4: dx : 4 , −4:dy : 4 ) ;
9 i n i t V a r P r e s s u r e 2 D ( x )

10 u f r e e = 3000 ;
11 rho = 1 . 2 2 5 ;
12 r e l e a s e V e r = ’ 4 . 2 ’ ; % Gauss−S e i d e l Method
13
14 %% l o c a l mesh g r i d s e t u p , a t nodes
15 nmesh = 1 6 ;
16 d r = 0 . 0 6 2 5 ;
17 d t h e t a = pi / 5 0 ;
18 Rb = s q r t ( 1 0 0 0 0 / 2 / pi / u f r e e ) ;
19 xb = Rb ∗ cos ( 0 : d t h e t a : 2∗ pi ) ;
20 yb = Rb ∗ s i n ( 0 : d t h e t a : 2∗ pi ) ;
21 meshb = Rb : d r : Rb+( nmesh∗ dr ) ;
22 xmeshb = z e r o s ( s i z e ( l e n g t h ( meshb ) ) , l e n g t h ( 0 : d t h e t a : 2∗ pi ) ) ;
23 ymeshb = xmeshb ;
24 f o r i = 1 : l e n g t h ( meshb )
25 xmeshb ( i , : ) = meshb ( i ) ∗ cos ( 0 : d t h e t a : 2∗ pi ) ;
26 ymeshb ( i , : ) = meshb ( i ) ∗ s i n ( 0 : d t h e t a : 2∗ pi ) ;
27 end
28 rb = s q r t ( xmeshb . ˆ 2 + ymeshb . ˆ 2 ) ;
29 t h e t a b = 0 : pi / 5 0 : 2∗ pi ;

243



244 APPENDIX B. POISSON SOLVER FOR CIRCULAR CYLINDER

30 f o r i =1 : s i z e ( rb , 1 ) ; t h e t a b ( i , : ) = t h e t a b ( 1 , : ) ; end
31
32 %% g l o b a l mesh g r i d s e t u p s i m u l a t e s PIV v e l o c i t y data ,
33 %% ( V i n t h e body = 0) @ nodes
34 t h e t a = g e t a n g l e ( x , y ) ;
35 r = s q r t ( x . ˆ 2 + y . ˆ 2 ) ;
36
37 u t h e t a = −(1+Rb ˆ 2 . / r . ˆ 2 ) ∗ u f r e e . ∗ s i n ( t h e t a ) ;
38 u r = (1−Rb ˆ 2 . / r . ˆ 2 ) ∗ u f r e e . ∗ cos ( t h e t a ) ; % v e l o c i t i e s i n p o l a r

c o o r d i n a t e s
39 [ n a n i , n a n j ] = f i n d ( i snan ( u t h e t a ) )
40 f o r i = 1 : l e n g t h ( n a n i )
41 u t h e t a ( n a n i ( i ) , n a n j ( i ) ) = 0 ;
42 end
43
44 [ n a n i , n a n j ] = f i n d ( i snan ( u r ) )
45 f o r i = 1 : l e n g t h ( n a n i )
46 u r ( n a n i ( i ) , n a n j ( i ) ) = 0 ;
47 end
48
49 u = ur . ∗ cos ( t h e t a ) − u t h e t a .∗ s i n ( t h e t a ) ;
50 v = ur . ∗ s i n ( t h e t a ) + u t h e t a .∗ cos ( t h e t a ) ;
51 % v e l o c i t i e s i n c a r t e s i a n c o o r d i n a t e s
52
53 f o r i = 1 : s i z e ( x , 1 ) % v e l o c i t y d i s t r i b u t i o n i n t h e body
54 f o r j = 1 : s i z e ( x , 2 )
55 i f r ( i , j ) <= Rb
56 u ( i , j ) = 0 ;
57 v ( i , j ) = 0 ;
58 end
59 end
60 end
61
62 urb = i n t e r p 2 ( x , y , ur , xmeshb , ymeshb , ’ c u b i c ’ ) ;
63 u t h e t a b = i n t e r p 2 ( x , y , u t h e t a , xmeshb , ymeshb , ’ c u b i c ’ ) ;
64
65 rb = [ rb ( : , end−1) rb ( : , : ) ] ;
66 u t h e t a b = [ u t h e t a b ( : , end−1) u t h e t a b ( : , : ) ] ;
67 urb = [ urb ( : , end−1) urb ( : , : ) ] ;
68
69 % % % l o c a l mesh , s e t up boundary c o n d i t i o n and s o u r c e term
70 % % % i n t e r p o l a t e v e l o c i t y
71 [ erw , e t h e t a w ] = s e t p o l a r c o m p o n e n t ( urb , u t h e t a b , rb , dr , d t h e t a ) ;
72 [bAw] = s e t b o d y C i r c s o u r c e ( rb , rho , erw , e the t aw , dr , d t h e t a ) ;
73 [ bprw ] = s e t b o d y C i r c p r e s s u r e B o u n d a r y ( rho , erw ) ;
74
75 edge . g l o b a l . u = u ;
76 edge . g l o b a l . v = v ;
77 edge . g l o b a l . u t h e t a = u t h e t a ;
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78 edge . g l o b a l . u r = u r ;
79 edge . g l o b a l . x = x ;
80 edge . g l o b a l . y = y ;
81 edge . l o c a l . xmeshb=xmeshb ;
82 edge . l o c a l . ymeshb=ymeshb ;
83 edge . l o c a l . u t h e t a b = u t h e t a b ;
84 edge . l o c a l . u rb = urb ;
85
86 %% f i n i t e volume c o o r d i n a t e s and v e l o c i t i e s . @ c e n t e r p o i n t s
87 [ m i d g l o b a l . x , m i d g l o b a l . y ] = meshgrid (−4+dx / 2 : dx :4−dx / 2 , −4+dy / 2 : dy :4−

dy / 2 ) ;
88 m i d g l o b a l . u = i n t e r p 2 ( x , y , u , m i d g l o b a l . x , m i d g l o b a l . y , ’ c u b i c ’ ) ;
89 m i d g l o b a l . v = i n t e r p 2 ( x , y , v , m i d g l o b a l . x , m i d g l o b a l . y , ’ c u b i c ’ ) ;
90 m i d g l o b a l . r = s q r t ( m i d g l o b a l . x . ˆ 2 + m i d g l o b a l . y . ˆ 2 ) ;
91 m i d g l o b a l . t h e t a = g e t a n g l e ( m i d g l o b a l . x , m i d g l o b a l . y ) ;
92 f o r i = 1 : s i z e ( m i d g l o b a l . x , 1 )
93 f o r j = 1 : s i z e ( m i d g l o b a l . x , 2 )
94 i f m i d g l o b a l . r ( i , j ) <= Rb
95 m i d g l o b a l . u ( i , j ) = 0 ;
96 m i d g l o b a l . v ( i , j ) = 0 ;
97 end
98 end
99 end

100
101 meshbmid = Rb+ dr / 2 : d r : Rb+( nmesh∗ dr ) + dr / 2 ;
102 f o r i = 1 : l e n g t h ( meshbmid )
103 m i d l o c a l . xmeshb ( i , : ) = meshbmid ( i ) ∗ cos ( d t h e t a / 2 : d t h e t a : 2∗ pi + d t h e t a

/ 2 ) ;
104 m i d l o c a l . ymeshb ( i , : ) = meshbmid ( i ) ∗ s i n ( d t h e t a / 2 : d t h e t a : 2∗ pi + d t h e t a

/ 2 ) ;
105 end
106 m i d l o c a l . ub = i n t e r p 2 ( x , y , u , m i d l o c a l . xmeshb , m i d l o c a l . ymeshb , ’ c u b i c ’ ) ;
107 m i d l o c a l . vb = i n t e r p 2 ( x , y , v , m i d l o c a l . xmeshb , m i d l o c a l . ymeshb , ’ c u b i c ’ ) ;
108 m i d l o c a l . u t h e t a b = i n t e r p 2 ( x , y , u t h e t a , m i d l o c a l . xmeshb , m i d l o c a l . ymeshb

, ’ c u b i c ’ ) ;
109 m i d l o c a l . u rb = i n t e r p 2 ( x , y , ur , m i d l o c a l . xmeshb , m i d l o c a l . ymeshb , ’ c u b i c ’

) ;
110 m i d l o c a l . r b = s q r t ( m i d l o c a l . xmeshb . ˆ 2 + m i d l o c a l . ymeshb . ˆ 2 ) ;
111 f o r i =1 : l e n g t h ( meshbmid )
112 m i d l o c a l . t h e t a b ( i , : ) = d t h e t a / 2 : d t h e t a : 2∗ pi + d t h e t a / 2 ;
113 end
114
115 c l e a r x y u v u t h e t a u r xmeshb ymeshb ub vb u t h e t a b urb r rb t h e t a

t h e t a b
116
117 x = m i d g l o b a l . x ;
118 y = m i d g l o b a l . y ;
119 u = m i d g l o b a l . u ;
120 v = m i d g l o b a l . v ;
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121 r = m i d g l o b a l . r ;
122 t h e t a = m i d g l o b a l . t h e t a ;
123
124 xmeshb = m i d l o c a l . xmeshb ;
125 ymeshb = m i d l o c a l . ymeshb ;
126 ub = m i d l o c a l . ub ;
127 vb = m i d l o c a l . vb ;
128 u t h e t a b = m i d l o c a l . u t h e t a b ;
129 urb = m i d l o c a l . u rb ;
130 rb = m i d l o c a l . r b ;
131 t h e t a b = m i d l o c a l . t h e t a b ;
132
133 xmeshb = [ xmeshb ( : , end−1) xmeshb ( : , : ) ] ;
134 ymeshb = [ ymeshb ( : , end−1) ymeshb ( : , : ) ] ;
135 rb = [ rb ( : , end−1) rb ( : , : ) ] ;
136 t h e t a b = [ t h e t a b ( : , end−1) t h e t a b ( : , : ) ] ;
137 u t h e t a b = [ u t h e t a b ( : , end−1) u t h e t a b ( : , : ) ] ;
138 urb = [ urb ( : , end−1) urb ( : , : ) ] ;
139
140
141 %% n u m e r i c a l mask
142 uu = z e r o s ( s i z e ( u ) ) ;
143 vv = z e r o s ( s i z e ( v ) ) ;
144 maskof f = [2 2 2 2 ] ;
145 masktemp = ( u ˜= 0) ;
146 maskflow = z e r o s ( s i z e ( u ) ) ;
147 maskbody = z e r o s ( s i z e ( u ) ) ; % ”u” i s t h e v a l u e s a t c e n t e r p o i n t s
148
149 maskflow (1+ maskof f ( 1 ) : end−maskof f ( 2 ) , . . .
150 1+ maskof f ( 3 ) : end−maskof f ( 4 ) ) = 1 ;
151 [ mxb , myb ] = g r a d i e n t ( maskflow , 1 , 1 ) ;
152 mxb = mxb . ∗ maskflow ;
153 myb = myb . ∗ maskflow ;
154
155 maskbody (1+ maskof f ( 1 ) : end−maskof f ( 2 ) , . . .
156 1+ maskof f ( 3 ) : end−maskof f ( 4 ) ) = . . .
157 masktemp (1+ maskof f ( 1 ) : end−maskof f ( 2 ) , . . .
158 1+ maskof f ( 3 ) : end−maskof f ( 4 ) ) ;
159 [mx , my] = g r a d i e n t ( maskbody , 1 , 1 ) ;
160 mx = mx. ∗maskbody ;
161 my = my. ∗maskbody ;
162
163 maskbody = maskbody − round ( abs (mx) ) − round ( abs (my) ) ;
164 [ imask , jmask ] = f i n d ( maskbody == −1) ;
165 f o r i = 1 : l e n g t h ( imask ) ; maskbody ( imask ( i ) , jmask ( i ) ) = 0 ; end ;
166
167 %% p e r i m e t e r o f mesh i n t e r f a c e ( o u t e r boundary o f l o c a l mesh )
168 c o u n t = 0 ;
169 f o r i = 1 : s i z e ( x , 1 )
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170 f o r j = 1 : s i z e ( x , 2 )
171 i f (mx( i , j )−mxb ( i , j ) ) | | (my( i , j )−myb ( i , j ) )
172 c o u n t = c o u n t + 1 ;
173 x2 ( c o u n t ) = x ( i , j ) ;
174 y2 ( c o u n t ) = y ( i , j ) ;
175 end
176 end
177 end
178
179 %% g l o b a l mesh , v e l o c i t y d e r i v a t i v e s
180 [ ux , uy , vx , vy , uxvy , uyvx ] = s e t F l o w r e c t v e l o c i t y G r a d i e n t . . .
181 ( x , y , u , v , dx , dy , mx , my , mxb , myb , maskbody ) ;
182
183 % % s o u r c e term and boundary c o n d i t i o n i n g l o b a l domain
184 [ px , py ] = s e t f l o w R e c t p r e s s u r e G r a d i e n t ( x , y , u , v , ux , uy , vx , vy , rho ) ;
185 [A] = s e t f l o w R e c t s o u r c e ( x , y , uxvy , uyvx , rho ) ;
186
187 %% l o c a l mesh , s e t up boundary c o n d i t i o n and s o u r c e term
188 %% i n t e r p o l a t e v e l o c i t y
189 di sp ( ’ a d v e c t i o n components , body domain ’ )
190 di sp ( ’ p r e s s u r e g r a d i e n t components , body domain ’ )
191 [ er , e t h e t a ] = s e t p o l a r c o m p o n e n t ( urb , u t h e t a b , rb , dr , d t h e t a ) ;
192
193 di sp ( ’ s o u r c e te rm and boundary c o n d i t i o n , body domain ’ )
194 [ bA ] = s e t b o d y C i r c s o u r c e ( rb , rho , er , e t h e t a , dr , d t h e t a ) ;
195 [ bpr ] = s e t b o d y C i r c p r e s s u r e B o u n d a r y ( rho , e r ) ;
196 %\\\\\\\\\\\\\\\\\\\\\\\\\\
197
198 %% s e t u p c o e f f i c i e n t m a t r i x f o r t h e s o l v e r
199 [ Acar t , ax , ay , A l i s t 1 , f l a g x , f l a g y , f lagxw , f lagyw , XX2] = . . .
200 PDMAneumann ( dx ˆ 2 , dy ˆ 2 , mxb , myb , maskbody ) ;
201 l i s t x = f l a g x . ∗ A l i s t 1 ; l i s t y = f l a g y . ∗ A l i s t 1 ;
202 l i s t x w = f lagxw . ∗ A l i s t 1 ; l i s t y w = f lagyw . ∗ A l i s t 1 ;
203
204 % % s e t u p c o e f f i c i e n t m a t r i x w i t h D i r i c h l e t boundary c o n d i t i o n near

t h e body
205 [ Aca r t d , ax d , ay d , A l i s t 1 d , f l a g x d , f l a g y d , f l agxw d , f l agyw d , XX2 d ]

= . . .
206 PDMAdir ich le t ( dx ˆ 2 , dy ˆ 2 , mxb , myb , maskbody ) ;
207 l i s t x d = f l a g x d .∗ A l i s t 1 d ;
208 l i s t y d = f l a g y d .∗ A l i s t 1 d ;
209 l i s t x w d = f l a g x w d . ∗ A l i s t 1 d ;
210 l i s t y w d = f l a g y w d . ∗ A l i s t 1 d ;
211
212 % % s e t u p c o e f f i c i e n t m a t r i x w i t h D i r i c h l e t boundary on t h e f a r t h e s t
213 % p o i n t f o r c i r c u l a r c o o r d i n a t e
214 r l o w e r = 2 ; r u p p e r = s i z e ( rb , 1 ) −1;
215 [ Apolar , XX, A l i s t , f r a d , f t h t ] = PDMApolar ( dr , d t h e t a , rb , r l o w e r ,

r u p p e r ) ;
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216
217 %% I t e r a t i o n
218 di sp ( ’ i t e r a t i o n ’ )
219 % / / / / / / / / / / / / / / / / / / / / / / decompose c o e f f i c i e n t m a t r i c e s
220 A1D = diag ( diag ( A c a r t ) ) ;
221 A1L = t r i l (−Acar t ,−1) ;
222 A1U = t r i u (−Acar t , 1 ) ;
223 A1OD = A1L + A1U;
224
225 A2D = diag ( diag ( A c a r t d ) ) ;
226 A2L = t r i l (−Acar t d ,−1) ;
227 A2U = t r i u (−Acar t d , 1 ) ;
228 A2OD = A2L + A2U;
229
230 A3D = diag ( diag ( Apo la r ) ) ;
231 A3L = t r i l (−Apolar ,−1) ;
232 A3U = t r i u (−Apolar , 1 ) ;
233 A3OD = A3L + A3U;
234
235 r h o c a r t = max ( abs ( e i g (A1D\A1OD) ) ) ;
236 r h o c a r t d = max ( abs ( e i g (A2D\A2OD) ) ) ;
237 r h o l o c a l = max ( abs ( e i g (A3D\A3OD) ) ) ;
238 di sp ( [ num2str ( r h o c a r t ) ’ ’ num2str ( r h o c a r t d ) ’ ’ num2str (

r h o l o c a l ) ] )
239 CONV1 = 1e−5;
240 CONV = 1e−5;
241 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
242
243 f o r w = 1 : 1
244 P = z e r o s ( s i z e ( x ) ) ;
245 Pb = z e r o s ( s i z e ( xmeshb , 1 ) , s i z e ( xmeshb , 2 ) ) ;
246
247 %% / / ( f l o w domain ) ∗ p r e s s u r e c a l c u l a t i o n on g l o b a l mesh
248 di sp ( ’ P r e s s u r e c a l c u l a t i o n 1 on g l o b a l mesh ’ )
249 [ pxn , pyn ] = set flowTDMA NumericalRHS ( mxb , myb , l i s t x , l i s t y , px , py ) ;
250 [ pxw , pyw ] = set flowTDMA wallRHS ( ax , ay , l i s t x w , l i s t y w , px , py ) ;
251 S = A( A l i s t 1 ) − 2 /3∗ pxn / dx − 2 /3∗ pyn / dy − 2 /3∗pxw / dx − 2 /3∗pyw / dy ;
252
253 c ou n t 2 = 1 ;
254 r e s c a r t ( c ou n t 2 ) = 100 ;
255 gconv1 ( cou n t 2 ) = 100 ;
256 Ptemp = P ( A l i s t 1 ’ ) ;
257 Tw1 = (A1D−w∗A1L) \((1−w) ∗A1D+w∗A1U) ;
258 cw1 = w∗ ( ( A1D−w∗A1L) \S ’ ) ;
259 whi le gconv1 ( co un t2 ) > CONV1
260 i f ˜ mod ( count2 , 1 0 0 )
261 di sp ( [ num2str ( co un t2 ) ’ ’ num2str ( gconv1 ( co un t2 ) ) ] )
262 end
263 c ou n t 2 = cou n t 2 + 1 ;
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264
265 Ptemp = Tw1∗Ptemp + cw1 ;
266 r e s c a r t ( c ou n t 2 ) = sum ( abs ( A c a r t ∗Ptemp − S ’ ) ) ;
267 gconv1 ( cou n t 2 ) = abs ( r e s c a r t ( c ou n t 2 ) − r e s c a r t ( count2 −1) ) ;
268 end
269 P = r e o r d e r f l o w ( mxb , myb , maskbody , A l i s t 1 , Ptemp , P ) ;
270 P1 = P ;
271 %\\\\\\\\\\\\\\\\\\\\\\\\\\
272
273
274 %% / / / / / / / / / / / / / / / / / / / / p r e s s u r e c a l c u l a t i o n on l o c a l mesh
275 %% ∗ i n t e r p o l a t e p r e s s u r e from g l o b a l mesh t o l o c a l mesh
276 %% a t o u t e r m o s t c i r c l e
277 di sp ( ’ P r e s s u r e c a l c u l a t i o n 2 on l o c a l mesh ’ )
278 Pb ( end , 2 : end−1) = i n t e r p 2 ( x , y , P , xmeshb ( end , 2 : end−1) , ymeshb ( end , 2 :

end−1) , . . .
279 ’ c u b i c ’ ) ;
280 Pb = [ Pb ( : , end−1) Pb ( : , 2 : end−1) Pb ( : , 2 ) ] ;
281
282 % % ( body domain ) ∗PDMA on c i r c u l a r mesh
283 [ bp1 , bp2 ] = set bodyTDMA NumericalRHS ( Pb , bpr , rb , dr , f r a d , r l o w e r ,

r u p p e r ) ;
284 Sb = bA ( A l i s t ) + bp1 + bp2 ;
285
286 c ou n t 2 = 1 ;
287 r e s c i r c 2 ( co un t2 ) = 100 ;
288 gconv2 ( cou n t 2 ) = 100 ;
289 Pbtemp = Pb ( A l i s t ’ ) ;
290 Tw3 = (A3D−w∗A3L) \((1−w) ∗A3D+w∗A3U) ;
291 cw3 = w∗ ( ( A3D−w∗A3L) \Sb ’ ) ;
292 whi le gconv2 ( co un t2 ) > CONV
293 i f ˜ mod ( count2 , 1 0 0 )
294 di sp ( [ ’∗ ’ num2str ( co un t2 ) ’ ’ num2str ( gconv2 ( co un t2 ) ) ] )
295 end
296 cou n t 2 = cou n t 2 + 1 ;
297
298 Pbtemp = Tw3∗Pbtemp + cw3 ;
299 r e s c i r c 2 ( co un t2 ) = sum ( abs ( Apo la r ∗Pbtemp − Sb ’ ) ) ;
300 gconv2 ( cou n t 2 ) = abs ( r e s c i r c 2 ( co un t2 ) − r e s c i r c 2 ( count2 −1) ) ;
301 end
302 Pb = r e o r d e r b o d y ( A l i s t , rb , Pbtemp , Pb ) ;
303 Pb ( 1 , : ) = −2/3∗ bpr ( 1 , : ) ∗ dr +4/3∗Pb ( 2 , : ) −1/3∗Pb ( 3 , : ) ;
304 Pbw = −2/3∗bprw ( 1 , : ) ∗ dr + 4 / 3∗ ( Pb ( 2 , : ) +Pb ( 1 , : ) ) / 2 − 1 / 2∗ ( Pb ( 3 , : ) +Pb

( 2 , : ) ) / 2 ;
305 Pb1 = Pb ;
306 c ou n t 5 = 1 ;
307
308 %% / / / / / ∗ i n t e r p o l a t e p r e s s u r e from l o c a l mesh t o g l o b a l mesh
309 f o r xklm = 1 : 6 % i t e r a t i v e method
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310 % % % d i s p ( ’ . . . . back i n t e r p o l a t i o n : f l o w <− body ’ )
311 % % % a t p o i n t s c l o s e s t t o t h e i n n e r most c i r c l e
312 % % % o v e r l a p p o s i t i o n −0.75<=x <=0.75 , −0.75<=y <=0.75
313 R2 = max ( rb ( : ) ) ;
314 [ xlow , ylow ] = f i n d ( x<−R2 & x>−(R2+dx ) & y<−R2 & y>−(R2+dy ) ) ;
315 [ xup , yup ] = f i n d ( x>R2 & x<R2+dx & y>R2 & y<R2+dy ) ;
316 [ x c i r c r e c t , y c i r c r e c t ] = meshgrid ( . . .
317 x ( xlow , ylow )−eps : dx : x ( xup , yup ) +eps , . . .
318 y ( xlow , ylow )−eps : dy : y ( xup , yup ) +eps ) ;
319 Pb2 = p o l a r 2 c a r t i n t e r p ( rb , t h e t a b , x c i r c r e c t , y c i r c r e c t , Rb , dr ,

d t h e t a , Pb ) ;
320 f o r i = 1 : l e n g t h ( x2 )
321 [ ix , i y ] = f i n d ( x == x2 ( i ) & y == y2 ( i ) ) ;
322 [ ix2 , i y 2 ] = f i n d ( x c i r c r e c t > x2 ( i )−2∗eps & . . .
323 x c i r c r e c t < x2 ( i ) +2∗ eps & . . .
324 y c i r c r e c t > y2 ( i )−2∗eps & . . .
325 y c i r c r e c t < y2 ( i ) +2∗ eps ) ;
326 P ( ix , i y ) = Pb2 ( ix2 , i y 2 ) ;
327 end
328 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
329
330 %% / / / / / / ( f l o w domain ) p r e s s u r e c a l c u l a t i o n on g l o b a l mesh
331 di sp ( ’ p r e s s u r e c a l c u l a t i o n 3 on g l o b a l mesh ’ )
332 [ pxn d , pyn d ] = set flowTDMA NumericalRHS ( mxb , myb , l i s t x d , l i s t y d

, px , py ) ;
333 [ pxw d , pyw d ] = se t f lowTDMA di r i ch le tRHS ( ax d , ay d , l i s t x w d ,

l i s t y w d , P ) ;
334 S d = A( A l i s t 1 )− 2 /3∗ pxn d / dx−2/3∗ pyn d / dy−pxw d / dx / dx−pyw d / dy /

dy ;
335
336 c ou n t 3 = 1 ;
337 r e s c a r t 3 ( co un t3 ) = 100 ;
338 gconv3 ( cou n t 3 ) = 100 ;
339 Ptemp = P ( A l i s t 1 d ’ ) ;
340 Tw2 = (A2D−w∗A2L) \((1−w) ∗A2D+w∗A2U) ;
341 cw2 = w∗ ( ( A2D−w∗A2L) \S d ’ ) ;
342 whi le gconv3 ( co un t 3 ) > CONV
343 i f ˜ mod ( count3 , 1 0 0 )
344 di sp ( [ ’ ∗∗ ’ num2str ( co un t3 ) ’ ’ num2str ( gconv3 ( co un t3 ) ) ] )
345 end
346 cou n t 3 = cou n t 3 + 1 ;
347
348 Ptemp = Tw2∗Ptemp + cw2 ;
349
350 r e s c a r t 3 ( co un t3 ) = sum ( abs ( A c a r t d ∗Ptemp − S d ’ ) ) ;
351 gconv3 ( cou n t 3 ) = abs ( r e s c a r t 3 ( co un t3 ) − r e s c a r t 3 ( count3 −1) ) ;
352 end
353 P = r e o r d e r f l o w ( mxb , myb , maskbody , A l i s t 1 d , Ptemp , P ) ;
354 P2 = P ;
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355
356 %% second i t e r a t i o n on l o c a l mesh
357 %% ∗ i n t e r p o l a t e p r e s s u r e from f l o w domain t o body domain
358 %% ∗ a t o u t e r m o s t c i r c l e
359 di sp ( ’ P r e s s u r e c a l c u l a t i o n 4 on l o c a l mesh ’ )
360 Pb ( end , 2 : end−1)= i n t e r p 2 ( x , y , P , . . .
361 xmeshb ( end , 2 : end−1) , ymeshb ( end , 2 : end−1) , ’ c u b i c ’ ) ;
362 Pb = [ Pb ( : , end−1) Pb ( : , 2 : end−1) Pb ( : , 2 ) ] ;
363
364 %% ( body domain ) ∗PDMA on c i r c u l a r mesh
365 [ bp1 , bp2 ] = set bodyTDMA NumericalRHS ( Pb , bpr , rb , dr , f r a d , r l o w e r ,

r u p p e r ) ;
366 Sb = bA ( A l i s t ) + bp1 + bp2 ;
367
368 Tw4 = Tw3 ;
369 cw4 = w∗ ( ( A3D−w∗A3L) \Sb ’ ) ;
370 cou n t 4 = 1 ;
371 r e s c i r c 4 ( co un t4 ) = 100 ;
372 gconv4 ( cou n t 4 ) = 100 ;
373 Pbtemp = Pb ( A l i s t ’ ) ;
374 whi le gconv4 ( co un t 4 ) > CONV
375 i f ˜ mod ( count4 , 1 0 0 )
376 di sp ( [ ’ ∗∗∗ ’ num2str ( co un t4 ) ’ ’ num2str ( gconv4 ( co un t4 ) ) ] )
377 end
378 cou n t 4 = cou n t 4 + 1 ;
379
380 Pbtemp = Tw4∗Pbtemp + cw4 ;
381
382 r e s c i r c 4 ( co un t4 ) = sum ( abs ( Apo la r ∗Pbtemp − Sb ’ ) ) ;
383 gconv4 ( cou n t 4 ) = abs ( r e s c i r c 4 ( co un t4 ) − r e s c i r c 4 ( count4 −1) ) ;
384 end
385 Pb = r e o r d e r b o d y ( A l i s t , rb , Pbtemp , Pb ) ;
386 Pb ( 1 , : ) = −2/3∗ bpr ( 1 , : ) ∗ dr + 4 /3∗ Pb ( 2 , : ) − 1 /3∗ Pb ( 3 , : ) ;
387 Pbw = 15 /8 ∗ Pb ( 1 , : ) + (−5/4) ∗Pb ( 2 , : ) + 3 / 8 ∗ Pb ( 3 , : ) ;
388 Pb2 = P ;
389
390 save ( [ ’ c i r c l e p o i s s o n ’ r e l e a s e V e r num2str (w) num2str ( co un t5 ) ’ .

mat ’ ] ) ;
391 cou n t 5 = cou n t 5 + 1 ;
392 end
393 end
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Appendix C

Poisson solver for flapping wing

1 f u n c t i o n f n f w p o i s s o n 3 d 6 1 m i d ( nconv1 , nconv2 , f r e q , n sec )
2 % naming c o n v e n t i o n
3 % f n = f u n c t i o n
4 % fw = f l a p p i n g wing
5 % p o i s s o n 3 d = s o l v e s 3d P o i s s o n e q u a t i o n
6 % 6 1 = program v e r s i o n
7 %
8 % nconv1 = 100000;
9 % nconv2 = 100000;

10 % f r e q = 1;
11 % nsec = 1 : 3 ;
12
13 %% p r e s s u r e around f l a p p i n g wing
14 % MU, MV (mm/ s ) ;
15 % Mxp , Myp (mm) ;
16 % a , b (mm) ; THETA ( rad ) ;
17 % t h 2 ( t h i c k n e s s / 2 , mm) ;
18 % rho ( g .mmˆ(−3) )
19 load ( ’ . . / s t a t i s t i c s c o v a r i a n c e a n d a v e r a g e . mat ’ , . . .
20 ’mu ’ , ’mv ’ , ’mw’ , ’ uu ’ , ’ uv ’ , ’uw ’ , ’ vv ’ , ’vw ’ , ’ww’ ) ;
21 load ( ’ . . / s t a t i s t i c s m e a s u r e m e n t u n c e r t a i n t y . mat ’ , . . .
22 ’ s igma pu2 ’ , ’ s igma pv2 ’ , ’ sigma pw2 ’ ) ;
23 [YP , XP] = meshgrid ( −2 0 : 1 . 2 5 : 2 0 , −3 0 : 1 . 5 : 3 0 ) ;
24
25 i f nsec ( 1 ) == 1
26 r e l e a s e V e r = [ ’ 6 . 1 . ’ num2str ( f r e q ) ’ . mid ’ ] ;
27 e l s e i f nsec ( 1 ) == 4
28 r e l e a s e V e r = [ ’ 6 . 1 . ’ num2str ( f r e q ) ’ . edge ’ ] ;
29 end
30 end
31 %=============================
32 a = 1 2 . 5 6 ;
33 b = 4 0 ;
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34 THETA = 0 . 1∗ pi ;
35 t h 2 = 1 ; % t h i c k n e s s
36 rho = 0 . 0 0 1 ;
37 v i s c = 8 . 9 e−4;
38 baseCONV = [1 e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 . . .
39 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 ] ;
40 gCONV = 5 e2∗ baseCONV ;
41 lCONV = 1 e0∗ baseCONV ;
42 St ime = 1 ; Ntime = 2 0 ;
43
44 %% g l o b a l mesh s p a t i a l l e n g t h s
45 dx = 1 . 5 ; %(mm)
46 dy = 1 . 2 5 ; %(mm)
47 dz = 2 ; %(mm)
48 d t = 1 / f r e q / 2 0 ; di sp ( d t ) %s
49
50 %% l o c a l mesh s p a t i a l l e n g t h s
51 dxmesh = 1 ;
52 dymesh = 1 ;
53 dzmesh = dz ;
54
55 %% Data p r e p a r a t i o n f o r n u m e r i c a l p r o c e d u r e
56 MU = c e l l ( 1 , 2 0 ) ; MV=MU; MW=MU;
57 Muu=MU; Mvv=MU;Mww=MU; Muv=MU;Muw=MU;Mvw=MU; eu=MU; ev=MU; ew=MU;
58 Mxp= z e r o s ( [ s i z e (XP) , 3 ] ) ; Myp=Mxp ; Mzp=Mxp ; f s e c = z e r o s ( 1 , 3 ) ;
59
60 c s e c = [−2 0 2 8 10 1 2 ] ;
61 c ou n t 0 = 0 ;
62 f o r s e c = nsec
63 cou n t 0 = cou n t 0 + 1 ;
64 f o r phase = 1 :20
65 MU{ phase } ( : , : , c ou n t0 ) = reshape (mu{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
66 MV{ phase } ( : , : , c ou n t0 ) = reshape (mv{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
67 MW{ phase } ( : , : , c ou n t0 ) = reshape (mw{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
68 Muu{ phase } ( : , : , c ou n t0 ) = reshape ( uu{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
69 Muv{ phase } ( : , : , c ou n t0 ) = reshape ( uv{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
70 Muw{ phase } ( : , : , c ou n t0 ) = reshape ( uw{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
71 Mvv{ phase } ( : , : , c ou n t0 ) = reshape ( vv{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
72 Mvw{ phase } ( : , : , c ou n t0 ) = reshape ( vw{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
73 Mww{ phase } ( : , : , c ou n t0 ) = reshape (ww{ f r e q }{ sec , phase } , 3 3 , 4 1 ) ’ ;
74 eu{ phase } ( : , : , c ou n t0 ) = reshape ( s igma pu2 { f r e q }{ sec , phase } , 3 3 , 4 1 )

’ ;
75 ev{ phase } ( : , : , c ou n t0 ) = reshape ( s igma pv2 { f r e q }{ sec , phase } , 3 3 , 4 1 )

’ ;
76 ew{ phase } ( : , : , c ou n t0 ) = reshape ( sigma pw2{ f r e q }{ sec , phase } , 3 3 , 4 1 )

’ ;
77 end
78 Mxp ( : , : , cou n t 0 ) = XP ;
79 Myp ( : , : , cou n t 0 ) = YP ;



255

80 Mzp ( : , : , c ou n t 0 ) = c s e c ( s e c ) ∗ ones ( s i z e (XP) ) ;
81 f s e c ( c ou n t 0 ) = c s e c ( s e c ) ;
82 end
83 %% s e t up l o c a l mesh , which i s moving w i t h t h e p l a t e . The p l a t e ’ s
84 %% k i n e m a t i c s i s r e p r e s e n t e d by an a n a l y t i c a l e q u a t i o n
85 xmesh = −10: dxmesh : 1 0 ;
86 ymesh = −40: dymesh : 5 ;
87 [YMESH,XMESH]= meshgrid ( ymesh , xmesh ) ;
88
89 f o r i =1:20
90 di sp ( [ ’ t ime ’ num2str ( i ) ] ) ;
91 % s e t p l a t e k i n e m a t i c s : t ( c h a r a c t e r i s t i c t i m e ) and t h e t a
92 % ( p l a t e ’ s d e f l e c t i o n a n g l e )
93 t ( i ) = ( i −1) / 2 0 ; % c h a r a c t e r i s t i c s t i m e i n d e x
94 t h e t a ( i ) = −THETA∗ s i n (2∗ pi ∗ t ( i ) ) ; % phase a n g l e
95 c u t o f f l = 2 8 ; % c u t s t h e p l a t e t o d e f i n e t h e p a r t o f t h e p l a t e
96 % o v e r l a p p i n g w i t h t h e measurement p l a n e
97 f o r kk = 1 : 3
98 YMESHT1{ i } ( : , : , kk ) = (YMESH+40) ∗ cos (− t h e t a ( i ) ) +XMESH∗ s i n (− t h e t a (

i ) ) −40;
99 XMESHT1{ i } ( : , : , kk ) = −(YMESH+40) ∗ s i n (− t h e t a ( i ) ) +XMESH∗ cos (− t h e t a (

i ) ) ;
100 YMESHT{ i } ( : , : , kk ) = YMESHT1{ i } ( : , c u t o f f l : end , 1 ) ;
101 XMESHT{ i } ( : , : , kk ) = XMESHT1{ i } ( : , c u t o f f l : end , 1 ) ;
102 end
103 % s u r f a c e c o o r d i n a t e o f l o c a l mesh from hub t o t i p f o r p l a n e 1 edge
104 % nodes coord . o f l o c a l mesh i n t h e c o m p u t a t i o n a l domain f o r p l a n e

1−3
105
106
107 % CREATE MASKS TO INDICATE COMPUTATIONAL AND WALL BOUNDARIES
108 %! t e m p l a t e
109 MASK = ones ( s i z e (XMESHT{ 1 } ( : , : , 1 ) ) ) ;
110 % t e m p l a t e o f edge node MASK from l o c a l mesh
111 PLATE1 = MASK; FLOW = MASK;
112 % PLATE1= mask f o r t h e l o c a l mesh
113 % PLATEX , PLATEY , PLATEZ= mask f o r t h e edges o f t h e l o c a l mesh
114 l x = ( l e n g t h ( xmesh )−1) / 2 ; % l o c a t i o n ( i n d e x ) o f t h e s u r f a c e o f t h e

p l a t e
115 PLATE1 ( l x : l x +2 , 1:1+41− c u t o f f l ) = 0 ;
116 PLATE1 ( 1 , : ) = 0 ;
117 PLATE1 ( : , 1 ) = 0 ;
118 PLATE1 ( end , : ) = 0 ;
119 PLATE1 ( : , end ) = 0 ;
120 % % % MASKING FOR THE EDGE NODES, INCLUDES WALL BOUNDARY
121 % % % AND COMPUTATIONAL DOMAIN BOUNDARY
122 [PLATEY1 , PLATEX1] = g r a d i e n t ( PLATE1 ) ;
123 PLATEY1 = PLATEY1 . ∗ PLATE1 ;
124 PLATEX1 = PLATEX1 . ∗ PLATE1 ;
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125 PLATEX1(2 , 2 : end−1) = PLATEX1(2 , 2 : end−1) ∗4 ;
126 PLATEX1( end−1 ,2: end−1) = PLATEX1( end−1 ,2: end−1) ∗4 ;
127 PLATEY1 ( 2 : end−1 ,2 ) = PLATEY1 ( 2 : end−1 ,2 ) ∗4 ;
128 PLATEY1 ( 2 : end−1,end−1) = PLATEY1 ( 2 : end−1,end−1) ∗4 ;
129 f o r kk = 1 : 3
130 PLATEX ( : , : , kk ) = PLATEX1 ;
131 PLATEY ( : , : , kk ) = PLATEY1 ;
132 PLATE ( : , : , kk ) = PLATE1 ;
133 end
134 PLATEZ = z e r o s ( [ s i z e ( PLATE1 ) 3 ] ) ;
135 PLATEZ ( : , : , 1 ) = PLATE1 ;
136 PLATEZ ( : , : , 3 ) = −PLATE1 ;
137 c l e a r PLATE1 PLATEX1 PLATEY1
138
139 % % % CREATE MASK TO INDICATE THE WALL BOUNDARY .
140 FLOW( l x +1 ,1:1+41− c u t o f f l ) = 0 ;
141 FLOW( : , : , 2 ) = FLOW( : , : , 1 ) ;
142 FLOW( : , : , 3 ) = FLOW( : , : , 1 ) ;
143 MASK = ones ( s i z e (XMESHT1{ 1 } ( : , : , 1 ) ) ) ;
144 PLATE2 = MASK;
145 PLATE2 ( l x : l x + 2 , 1 : 1 +4 1 ) = 0 ;
146 [XY2, XX2] = g r a d i e n t ( PLATE2 ) ;
147 XY2 = XY2 . ∗ PLATE2 ;
148 XX2 = XX2 . ∗ PLATE2 ;
149 PLATEX2 = XX2;
150 PLATEY2 = XY2;
151 PLATE2 ( : , : , 2 ) = PLATE2 ( : , : , 1 ) ;
152 PLATE2 ( : , : , 3 ) = PLATE2 ( : , : , 1 ) ;
153 % % % MASKING FOR THE EDGE NODES, ONLY FOR THE WALL BOUNDARY
154
155 %% CREATE COORDINATES , DATA , AND MASKS FOR THE CENTER NODES IN
156 %% THE mid VARIABLE [ f o r g l o b a l mesh and l o c a l mesh ]
157 [ mid . Myp , mid . Mxp] = meshgrid (−20+dy / 2 : dy :20−dy /2 ,−30+ dx / 2 : dx :30−dx

/ 2 ) ;
158 f o r kk = 1 : 3
159 mid . Myp ( : , : , kk ) = mid . Myp ( : , : , 1 ) ;
160 mid . Mxp ( : , : , kk ) = mid . Mxp ( : , : , 1 ) ;
161 mid . Mzp ( : , : , kk ) = f s e c ( kk ) ∗ ones ( s i z e ( mid . Myp ( : , : , 1 ) ) ) ;
162 mid .MU{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,MU{ i } ( : , : , kk ) ,

. . .
163 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
164 mid .MV{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,MV{ i } ( : , : , kk ) ,

. . .
165 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
166 mid .MW{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,MW{ i } ( : , : , kk ) ,

. . .
167 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
168 mid . Muu{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) Muu{ i } ( : , : , kk )

, . . .
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169 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
170 mid . Muv{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,Muv{ i } ( : , : , kk )

, . . .
171 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
172 mid .Muw{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,Muw{ i } ( : , : , kk )

, . . .
173 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
174 mid . Mvv{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,Mvv{ i } ( : , : , kk )

, . . .
175 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
176 mid .Mvw{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,Mvw{ i } ( : , : , kk )

, . . .
177 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
178 mid .Mww{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,Mww{ i } ( : , : , kk )

, . . .
179 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
180 mid . eu{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) , eu{ i } ( : , : , kk ) ,

. . .
181 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
182 mid . ev{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) , ev{ i } ( : , : , kk ) ,

. . .
183 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
184 mid . ew{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) , ew{ i } ( : , : , kk ) ,

. . .
185 mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
186 end
187 % c e n t e r p o i n t c o o r d i n a t e s f o r ( X , Y ) and c e n t e r−f a c e coord f o r Z ,
188 % and t h e v a l u e s a s s o c i a t e d t o them i n g l o b a l mesh .
189
190
191 % % c o o r d i n a t e f o r t h e l o c a l mesh
192 % % % c o o r d i n a t e s a s s o c i a t e d w i t h t h e f u l l −l e n g t h o f t h e p l a t e .
193 mid . ymesh0{ i } = YMESHT1{ i } ( 1 : end−1 ,1: end−1 , : ) +dymesh / 2 ;
194 mid . xmesh0{ i } = XMESHT1{ i } ( 1 : end−1 ,1: end−1 , : ) +dxmesh / 2 ;
195 % % % c o o r d i n a t e s a s s o c i a t e d w i t h t h e o v e r l a p p i n g l e n g t h o f t h e p l a t e

.
196 mid . ymesh{ i } = YMESHT{ i } ( 1 : end−1 ,1: end−1 , : ) . . .
197 + dymesh / 2∗ cos (− t h e t a ( i ) ) + dxmesh / 2∗ s i n (− t h e t a ( i ) ) ;
198 mid . xmesh{ i } = XMESHT{ i } ( 1 : end−1 ,1: end−1 , : ) . . .
199 − dymesh / 2∗ s i n (− t h e t a ( i ) ) + dxmesh / 2∗ cos (− t h e t a ( i ) ) ;
200 xmesh wal l = s i z e ( mid . xmesh{ i } , 1 ) / 2 ;
201 % % MASKING OF THE CENTER NODES ENCOMPASSING THE FULL LENGTH OF THE

PLATE
202 mid . f low0 { i } = ones ( s i z e ( mid . xmesh0{ i } ) ) ;
203 mid . f low0 { i } ( xmesh wal l : xmesh wal l +1 , 1 : 4 0 , : ) = 0 ;
204 mid . mask{ i } = ones ( s i z e ( mid . xmesh{ i } ) ) ;
205 mid . mask{ i } ( xmesh wal l : xmesh wal l +1 ,1:41− c u t o f f l , : ) = 0 ;
206 mid . f low { i } = mid . mask{ i } ;
207 % % MASKING OF CENTER NODES ENCOMPASSING THE LENGTH OF THE PLATE
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208 % % INSIDE THE COMPUTATIONAL DOMAIN
209 mid . mask{ i } (1 , : , : ) = 0 ; mid . mask{ i } ( : ,1 , : ) = 0 ;
210 mid . mask{ i } ( end , : , : ) = 0 ; mid . mask{ i } ( : , end , : ) = 0 ;
211 [ mid . ymask{ i } , mid . xmask{ i } ] = g r a d i e n t ( mid . mask{ i } ) ;
212 mid . xmask{ i } = mid . mask{ i } .∗mid . xmask{ i } ;
213 mid . xmask{ i } (2 , : , : ) = mid . xmask{ i } (2 , : , : ) ∗ 4 ;
214 mid . xmask{ i } ( end−1 , : , : ) = mid . xmask{ i } ( end−1 , : , : ) ∗ 4 ;
215 mid . ymask{ i } = mid . mask{ i } .∗mid . ymask{ i } ;
216 mid . ymask{ i } ( : ,2 , : ) = mid . ymask{ i } ( : ,2 , : ) ∗ 4 ;
217 mid . ymask{ i } ( : , end−1 , : ) = mid . ymask{ i } ( : , end−1 , : ) ∗ 4 ;
218 mid . zmask{ i } ( : , : , 1 ) = mid . mask{ i } ( : , : , 1 ) ;
219 mid . zmask{ i } ( : , : , 3 ) = −mid . mask{ i } ( : , : , 1 ) ;
220
221 % % ANGULAR VELOCITY AND ACCELERATION OF THE PLATE [ l o c a l mesh ]
222 %% p l a t e k i n e m a t i c s
223 t h e t a ( i ) = −1 ∗ THETA ∗ s i n (2∗ pi ∗ t ( i ) ) ; % phase a n g l e
224 OMEGA( i ) = −(2∗ pi ∗ f r e q ) ∗ THETA ∗ cos (2∗ pi ∗ t ( i ) ) ;
225 ALPHA( i ) = (2∗ pi ∗ f r e q ) ˆ2 ∗ THETA ∗ s i n (2∗ pi ∗ t ( i ) ) ;
226 f o r kk = 1 : 3
227 % % %(ON THE FACE)
228 umesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , MU{ i } ( : , : , kk

) , . . .
229 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
230 vmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , MV{ i } ( : , : , kk

) , . . .
231 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
232 wmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , MW{ i } ( : , : , kk

) , . . .
233 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
234 uumesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , Muu{ i } ( : , : ,

kk ) , . . .
235 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
236 uvmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , Muv{ i } ( : , : ,

kk ) , . . .
237 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
238 uwmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , Muw{ i } ( : , : ,

kk ) , . . .
239 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
240 vvmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , Mvv{ i } ( : , : ,

kk ) , . . .
241 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
242 vwmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , Mvw{ i } ( : , : ,

kk ) , . . .
243 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
244 wwmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) , Mxp ( : , : , kk ) , Mww{ i } ( : , : ,

kk ) , . . .
245 YMESHT{ i } ( : , : , kk ) , XMESHT{ i } ( : , : , kk ) ) ;
246
247 umesh n tz { i } ( : , : , kk ) = umesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) . . .
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248 − vmesh{ i } ( : , : , kk ) ∗ s i n ( t h e t a ( i ) ) − OMEGA( i ) ∗ (40+YMESHT
{ 1 } ( : , : , kk ) ) ;

249 vmesh n tz { i } ( : , : , kk ) = umesh{ i } ( : , : , kk ) ∗ s i n ( t h e t a ( i ) ) . . .
250 + vmesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) ;
251 wmesh ntz{ i } ( : , : , kk ) = wmesh{ i } ( : , : , kk ) ;
252 cua = uumesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) ˆ 2 ;
253 cub = vvmesh{ i } ( : , : , kk ) ∗ s i n ( t h e t a ( i ) ) ˆ 2 ;
254 cuc = uvmesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) ∗ s i n ( t h e t a ( i ) ) ;
255 cud = uwmesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) ;
256 cue = vwmesh{ i } ( : , : , kk ) ∗ s i n ( t h e t a ( i ) ) ;
257 c u f = wwmesh{ i } ( : , : , kk ) ;
258
259 u u n t z { i } ( : , : , kk ) = cua + cub − 2∗ cuc ;
260 u v n t z { i } ( : , : , kk ) = cua − cub ;
261 uw ntz { i } ( : , : , kk ) = cud − cue ;
262 vw ntz { i } ( : , : , kk ) = cud + cue ;
263 v v n t z { i } ( : , : , kk ) = cua + cub + 2∗ cuc ;
264 ww ntz{ i } ( : , : , kk ) = c u f ;
265
266 % % % (ON THE NODE)
267 mid . umesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,MU{ i } ( : , : , kk

) , . . .
268 mid . ymesh{ i } ( : , : , kk ) , mid . xmesh{ i } ( : , : , kk ) ) ;
269 mid . vmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,MV{ i } ( : , : , kk

) , . . .
270 mid . ymesh{ i } ( : , : , kk ) , mid . xmesh{ i } ( : , : , kk ) ) ;
271 mid . wmesh{ i } ( : , : , kk ) = i n t e r p 2 (Myp ( : , : , kk ) ,Mxp ( : , : , kk ) ,MW{ i } ( : , : , kk

) , . . .
272 mid . ymesh{ i } ( : , : , kk ) , mid . xmesh{ i } ( : , : , kk ) ) ;
273 mid . umesh n tz { i } ( : , : , kk ) =mid . umesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) . . .
274 − mid . vmesh{ i } ( : , : , kk ) ∗ s i n ( t h e t a ( i ) ) − OMEGA( i ) ∗ (40+ mid . ymesh

{ 1 } ( : , : , 1 ) ) ;
275 mid . vmesh n tz { i } ( : , : , kk ) =mid . umesh{ i } ( : , : , kk ) ∗ s i n ( t h e t a ( i ) ) . . .
276 + mid . vmesh{ i } ( : , : , kk ) ∗ cos ( t h e t a ( i ) ) ;
277 mid . wmesh ntz{ i } ( : , : , kk ) =mid . wmesh{ i } ( : , : , kk ) ;
278 mid . umesh n tz { i } ( : , : , kk ) =mid . umesh n tz { i } ( : , : , kk ) .∗ mid . f low { i

} ( : , : , kk ) ;
279 mid . vmesh n tz { i } ( : , : , kk ) =mid . vmesh n tz { i } ( : , : , kk ) .∗ mid . f low { i

} ( : , : , kk ) ;
280 mid . wmesh ntz{ i } ( : , : , kk ) =mid . wmesh ntz{ i } ( : , : , kk ) .∗ mid . f low { i

} ( : , : , kk ) ;
281 end
282 MASK2 = z e r o s ( s i z e ( mid . xmesh { 1 } ( : , : , 1 ) ) ) ;
283 MASK2( 1 , : ) = 1 ; MASK2( : , 1 ) = 1 ; MASK2( end , : ) = 1 ; MASK2( : , end ) =

1 ;
284 end
285 c l e a r MASK umesh1 vmesh1 wmesh1
286



260 APPENDIX C. POISSON SOLVER FOR FLAPPING WING

287 % % c a l c u l a t e a c c e l e r a t i o n o f f l o w on NODES w i t h forward marching
scheme

288 [ utmesh , vtmesh , wtmesh ] = g e t A c c e l e r a t i o n ( mid . umesh ntz , . . .
289 mid . vmesh ntz , mid . wmesh ntz , d t ) ;
290 [MUt , MVt ,MWt] = g e t A c c e l e r a t i o n ( mid .MU, mid .MV, mid .MW, d t ) ;
291 [ eu t , ev t , ewt ] = g e t A c c e l e r a t i o n ( mid . eu , mid . ev , mid . ew , d t ) ;
292
293
294 % >> phase averaged s o l u t i o n s s t a r t s he re <<
295 % ==========================================
296 f o r t ime = St ime : Ntime
297 di sp ( [ ’ Convergence l i m i t 1 : ’ num2str (gCONV( t ime ) ) ] )
298 di sp ( [ ’ Convergence l i m i t 2 : ’ num2str ( lCONV( t ime ) ) ] )
299 %% ( l o c a l mesh ) s o u r c e term and p r e s s u r e g r a d i e n t s
300 ux = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
301 uy = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
302 uz = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
303 vx = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
304 vy = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
305 vz = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
306 wx = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
307 wy = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
308 wz = z e r o s ( s i z e ( mid . xmesh {1} ) ) ;
309 [ ux , uy , uz , vx , vy , vz , wx , wy , wz ] = g e t l o c a l v e l o c i t y G r a d i e n t ( . . .
310 umesh n tz { t ime } , vmesh n tz { t ime } , wmesh ntz{ t ime } , . . .
311 mid . f low {1} , dxmesh , dymesh , dzmesh , ux , uy , uz , vx , vy , vz , wx , wy , wz ) ;
312
313 [ v v n t z y 2 , u u n t z x 2 , ww ntz z2 , u v n t z x y , vw ntz yz , u w n t z x z ] = . . .
314 g e t R e S e c o n d D e r i v a t i v e s ( . . .
315 v v n t z { t ime } , u u n t z { t ime } , ww ntz{ t ime } , . . .
316 u v n t z { t ime } , vw ntz { t ime } , uw ntz { t ime } , dy , dx , dz ) ;
317
318 bA1 = ux . ˆ 2 + vy . ˆ 2 + wz . ˆ 2 + 2∗uy . ∗ vx + 2∗ uz .∗wx + 2∗ vz .∗wy ;
319 bA2 = u u n t z x 2 + v v n t z y 2 + ww ntz z2 + . . .
320 2∗ u v n t z x y + 2∗ v w n t z y z + 2∗ u w n t z x z ;
321 bA = −rho ∗ ( bA1 + bA2 − 2∗OMEGA( t ime ) . ˆ 2 + 2∗OMEGA( t ime ) ∗ ( uy−vx )

) ;
322
323 [ u v n t z y , u u n t z x , u w n t z z ] = g e t R e F i r s t D e r i v a t i v e s ( . . .
324 u v n t z { t ime } , u u n t z { t ime } , uw ntz { t ime } , dy , dx , dz ) ;
325 [ v v n t z y , v u n t z x , v w n t z z ] = g e t R e F i r s t D e r i v a t i v e s ( . . .
326 v v n t z { t ime } , u v n t z { t ime } , vw ntz { t ime } , dy , dx , dz ) ;
327 [ wv ntz y , wu ntz x , ww ntz z ] = g e t R e F i r s t D e r i v a t i v e s ( . . .
328 vw ntz { t ime } , uw ntz { t ime } , ww ntz{ t ime } , dy , dx , dz ) ;
329 pxmesh = −rho ∗ ( utmesh { t ime } . . .
330 + mid . umesh n tz { t ime } .∗ ux . . .
331 + mid . vmesh n tz { t ime } .∗ uy . . .
332 + mid . wmesh ntz{ t ime } .∗ uz . . .
333 + u v n t z y + u u n t z x + u w n t z z + . . .
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334 − ALPHA( t ime ) . ∗ ( 4 0 + mid . ymesh {1} ) . . .
335 − OMEGA( t ime ) ˆ 2 . ∗mid . xmesh{1} . . .
336 − 2∗OMEGA( t ime ) ∗mid . vmesh n tz { t ime } ) ;
337 pymesh = −rho ∗ ( vtmesh { t ime } . . .
338 + mid . umesh n tz { t ime } .∗ vx . . .
339 + mid . vmesh n tz { t ime } .∗ vy . . .
340 + mid . wmesh ntz{ t ime } .∗ vz . . .
341 + v v n t z y + v u n t z x + v w n t z z + . . .
342 + ALPHA( t ime ) . ∗mid . xmesh{1} . . .
343 − OMEGA( t ime ) ˆ 2 . ∗ ( 4 0 + mid . ymesh {1} ) . . .
344 + 2∗OMEGA( t ime ) ∗mid . umesh n tz { t ime } ) ;
345 pzmesh = −rho ∗ ( wtmesh{ t ime } . . .
346 + mid . umesh n tz { t ime } .∗wx . . .
347 + mid . vmesh n tz { t ime } .∗wy . . .
348 + mid . wmesh ntz{ t ime } .∗wz . . .
349 + w v n t z y + w u n t z x + ww ntz z ) ;
350 % % % p r e s s u r e g r a d i e n t and RHS o f P o i s s o n e q u a t i o n , l o c a l mesh
351 pxmesh0 = z e r o s ( s i z e ( pxmesh ) ) ; pymesh0 = z e r o s ( s i z e ( pymesh ) ) ;
352 f o r kk = 1 : 3
353 pxmesh0 ( xmesh wal l ,1:41− c u t o f f l , kk ) = −rho ∗ ( . . .
354 ALPHA( t ime ) . ∗ ( 4 0 + ( −12 .5 :1 : −0 .5 ) ) + OMEGA( t ime ) ˆ 2 .∗ ( −0 . 5 ) ) ;
355 pxmesh0 ( xmesh wal l +1 ,1:41− c u t o f f l , kk ) = −rho ∗ ( . . .
356 ALPHA( t ime ) . ∗ ( 4 0 + ( −12 .5 :1 : −0 .5 ) ) + OMEGA( t ime ) ˆ 2 . ∗ ( 0 . 5 ) ) ;
357 pymesh0 ( xmesh wal l ,1:41− c u t o f f l , kk ) = −rho ∗ ( . . .
358 −ALPHA( t ime ) .∗ ( −0 . 5 ) + OMEGA( t ime ) ˆ 2 . ∗ ( 4 0 + ( −12 .5 :1 : −0 .5 ) ) ) ;
359 pymesh0 ( xmesh wal l +1 ,1:41− c u t o f f l , kk ) = −rho ∗ ( . . .
360 −ALPHA( t ime ) . ∗ ( 0 . 5 ) + OMEGA( t ime ) ˆ 2 . ∗ ( 4 0 + ( −12 .5 :1 : −0 .5 ) ) ) ;
361 end % s e t boundary c o n d i t i o n on t h e w a l l
362
363 %% ( g l o b a l mesh ) s o u r c e term and p r e s s u r e g r a d i e n t s
364 [ mid . gmask , mid . gx , mid . gy , mid . gz ] = s e t f l o w R e c t m a s k ( . . .
365 mid . Mxp , mid . Myp , mid . xmesh0{ t ime } , mid . ymesh0{ t ime } , mid . f low0 {

t ime } ) ;
366 % s e t f l o w area f o r g l o b a l mesh a t c e n t e r nodes
367 msize = s i z e ( mid . Mxp) ;
368
369 gux = z e r o s ( msize ) ; gvx = z e r o s ( msize ) ; gwx = z e r o s ( msize

) ;
370 guy = z e r o s ( msize ) ; gvy = z e r o s ( msize ) ; gwy = z e r o s ( msize

) ;
371 guz = z e r o s ( msize ) ; gvz = z e r o s ( msize ) ; gwz = z e r o s ( msize

) ;
372 [ gux , guy , guz , gvx , gvy , gvz , gwx , gwy , gwz ] =

g e t g l o b a l v e l o c i t y G r a d i e n t s ( . . .
373 MU{ t ime } ,MV{ t ime } ,MW{ t ime } , dx , dy , dz , ( mid . gmask ==0) , mid . gx , mid

. gy , . . .
374 gux , guy , guz , gvx , gvy , gvz , gwx , gwy , gwz ) ; %= v e l o c i t y g r a d i e n t s
375 [ vv y2 , uu x2 , ww z2 , uv xy , vw yz , uw xz ] = g e t R e S e c o n d D e r i v a t i v e s ( . . .
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376 Mvv{ t ime } ,Muu{ t ime } ,Mww{ t ime } ,Muv{ t ime } ,Mvw{ t ime } ,Muw{ t ime } , dy ,
dx , dz ) ;

377 A1 = gux . ˆ 2 + gvy . ˆ 2 + gwz . ˆ 2 + 2∗guy . ∗ gvx + 2∗ guz .∗ gwx + 2∗ gvz . ∗
gwy ;

378 A2 = uu x2 + vv y2 + ww z2 + 2∗ uv xy + 2∗uw xz + 2∗vw yz ;
379 A = −rho ∗ ( A1 + A2 ) ;
380
381 [ uv y , uu x , uw z ]= g e t R e F i r s t D e r i v a t i v e s (Muv{ t ime } ,Muu{ t ime } ,Muw{ t ime

} , . . .
382 dy , dx , dz ) ;
383 [ vv y , vu x , vw z ]= g e t R e F i r s t D e r i v a t i v e s (Mvv{ t ime } ,Muv{ t ime } ,Mvw{ t ime

} , . . .
384 dy , dx , dz ) ;
385 [ wv y , wu x , ww z ]= g e t R e F i r s t D e r i v a t i v e s (Mvw{ t ime } ,Muw{ t ime } ,Mww{ t ime

} , . . .
386 dy , dx , dz ) ;
387 px= −rho ∗ (MUt{ t ime } + mid .MU{ t ime } .∗ gux + mid .MV{ t ime } .∗ guy . . .
388 + mid .MW{ t ime } .∗ guz + uu x + uv y + uw z ) ;
389 py= −rho ∗ (MVt{ t ime } + mid .MU{ t ime } .∗ gvx + mid .MV{ t ime } .∗ gvy . . .
390 + mid .MW{ t ime } .∗ gvz + vu x + vv y + vw z ) ;
391 pz= −rho ∗ (MWt{ t ime } + mid .MU{ t ime } .∗ gwx + mid .MV{ t ime } .∗ gwy . . .
392 + mid .MW{ t ime } .∗ gwz + wu x + wv y + ww z ) ;
393
394
395 %% a m b i g u i t y
396 eux = z e r o s ( msize ) ; evx = z e r o s ( msize ) ; ewx = z e r o s ( msize

) ;
397 euy = z e r o s ( msize ) ; evy = z e r o s ( msize ) ; ewy = z e r o s ( msize

) ;
398 euz = z e r o s ( msize ) ; evz = z e r o s ( msize ) ; ewz = z e r o s ( msize

) ;
399 [ eux , euy , euz , evx , evy , evz , ewx , ewy , ewz ] =

g e t g l o b a l v e l o c i t y G r a d i e n t s ( . . .
400 eu{ t ime } , ev{ t ime } , ew{ t ime } , dx , dy , dz , . . .
401 ( mid . gmask ==0) , mid . gx , mid . gy , eux , euy , euz , evx , evy , evz , ewx , ewy

, ewz ) ;
402 %= v e l o c i t y g r a d i e n t s
403 epx = −rho ∗ ( e u t { t ime } + mid . eu{ t ime } .∗ gux + mid .MU{ t ime } .∗ eux . . .
404 + mid . ev{ t ime } .∗ guy + mid .MV{ t ime } .∗ euy . . .
405 + mid . ew{ t ime } .∗ guz + mid .MW{ t ime } .∗ euz ) ;
406 epy = −rho ∗ ( e v t { t ime } + mid . eu{ t ime } .∗ gvx + mid .MU{ t ime } .∗ evx . . .
407 + mid . ev{ t ime } .∗ gvy + mid .MV{ t ime } .∗ evy . . .
408 + mid . ew{ t ime } .∗ gvz + mid .MW{ t ime } .∗ evz ) ;
409 epz = −rho ∗ ( ewt{ t ime } + mid . eu{ t ime } .∗ gwx + mid .MU{ t ime } .∗ ewx . . .
410 + mid . ev{ t ime } .∗ gwy + mid .MV{ t ime } .∗ ewy . . .
411 + mid . ew{ t ime } .∗ gwz + mid .MW{ t ime } .∗ ewz ) ;
412 s igma p = s q r t ( ( ( px . / gux ) . ˆ 2 + ( gux .∗ epx ) . ˆ 2 + ( px . ∗ eux ) . ˆ 2 ) . ∗mid . eu{ t ime

} . ˆ 2 . . .
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413 + ( ( py . / gvy ) . ˆ 2 + ( gvy . ∗ epy ) . ˆ 2 + ( py . ∗ evy ) . ˆ 2 ) . ∗mid . ev{ t ime
} . ˆ 2 . . .

414 + ( ( px . / gwz ) . ˆ 2 + ( gwz . ∗ epz ) . ˆ 2 + ( pz . ∗ ewz ) . ˆ 2 ) .∗mid . ew{ t ime
} . ˆ 2 ) ;

415
416 % % % a n o t h e r p r o c e d u r e t o c r e a t e mask
417 p l a t e o n r e c t = g r i d da t a ( mid . ymesh0{ t ime } ( : , : , kk ) , mid . xmesh0{ t ime

} ( : , : , kk ) , . . .
418 ˜ mid . f low0 { t ime } ( : , : , kk ) , mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) ) ;
419 f o r i =1 : s i z e ( p l a t e o n r e c t , 1 )
420 f o r j =1 : s i z e ( p l a t e o n r e c t , 2 ) ;
421 i f i snan ( p l a t e o n r e c t ( i , j ) ) ; p l a t e o n r e c t ( i , j ) = 0 ; end
422 i f p l a t e o n r e c t ( i , j ) ˜ = 0 ; p l a t e o n r e c t ( i , j ) = 1 ; end
423 end
424 end
425 [ mask y2 , mask x2 ] = g r a d i e n t ( p l a t e o n r e c t ) ;
426 mask x2= mask x2 . ∗ ˜ p l a t e o n r e c t ;
427 mask y2= mask y2 . ∗ ˜ p l a t e o n r e c t ;
428 temp2 = round ( abs ( mask x2 ) +abs ( mask y2 ) ) ;
429 mask x3 = temp2 . ∗mid . Mxp ( : , : , 1 ) ;
430 mask y3 = temp2 . ∗mid . Myp ( : , : , 1 ) ;
431 gmask2 = p l a t e o n r e c t + temp2 ;
432 gmask2 ( : , 1 : 2 ) = 1 ; gmask2 ( 1 : 2 , : ) =

1 ;
433 gmask2 ( end−1:end , : ) = 1 ; gmask2 ( : , end−1:end ) =

1 ;
434 gmask2 ( : , : , 2 ) = gmask2 ( : , : , 1 ) ; gmask2 ( : , : , 3 ) = gmask2 ( : , : , 1 ) ;
435 [ gy2 , gx2 ] = g r a d i e n t ( gmask2 ( : , : , 1 ) , 1 , 1 ) ;
436 gx2 = gx2 . ∗ ( gmask2 ( : , : , 1 ) ==0) ;
437 gy2 = gy2 . ∗ ( gmask2 ( : , : , 1 ) ==0) ;
438 gx2 ( 3 , 3 : end−2) = gx2 ( 3 , 3 : end−2) ∗4 ;
439 gx2 ( end−2 ,3: end−2) = gx2 ( end−2 ,3: end−2) ∗4 ;
440 gy2 ( : , 3 ) = gy2 ( : , 3 ) ∗4 ;
441 gy2 ( : , end−2) = gy2 ( : , end−2) ∗4 ;
442 gx2 ( : , : , 2 ) = gx2 ( : , : , 1 ) ;
443 gx2 ( : , : , 3 ) = gx2 ( : , : , 1 ) ;
444 gy2 ( : , : , 2 ) = gy2 ( : , : , 1 ) ;
445 gy2 ( : , : , 3 ) = gy2 ( : , : , 1 ) ;
446 gz2 = z e r o s ( s i z e ( gmask2 ) ) ;
447 gz2 ( : , : , 1 ) = ( gmask2 ( : , : , 1 ) ==0) ;
448 gz2 ( : , : , 3 ) = −do ub l e ( gmask2 ( : , : , 3 ) ==0) ;
449 s igma p = s igma p . ∗ ( gmask2 ==0) ;
450
451 %% >>>>> CALCULATING MATRICES
452 di sp ( ’ c a l c u t i n g m a t r i c e s ’ ) ;
453 P = z e r o s ( s i z e ( mid . Mxp) ) ;
454 Pb = z e r o s ( s i z e ( mid . xmesh{ t ime } ) ) ;
455
456 c l e a r P2 mask x4 mask y4
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457 Pbx = z e r o s ( s i z e ( mid . xmask ) ) ;
458 Pby = z e r o s ( s i z e ( mid . xmask ) ) ;
459 Pbz = z e r o s ( s i z e ( mid . xmask ) ) ;
460
461 % p r o c e d u r e 1 : a p p l y D i r i c h l e t boundary c o n d i t i o n on t h e n u m e r i c a l

boundary
462 % p r o c e d u r e 2 : a p p l y mixed boundary i n t h e l o c a l mesh
463 %% >>>>> PROCEDURE #1 , CALCULATE PRESSURE ON GLOBAL MESH
464 di sp ( ’ p r o c e d u r e 1 : Agloba l1 ’ ) ;
465 [ Aglobal1 , A l i s t 1 , f l a g y 1 , f l a g x 1 , f l a g z 1 , f lagyw1 , f lagxw1 , Xgloba l1 ] =

. . .
466 PDMAglobal neumann neumann ( dy , dx , dz ,−gy2 ,−gx2 , gz2 , ˜ gmask2 ) ;
467 Agloba l1 = s i n g l e ( Agloba l1 ) ;
468 A1D = diag ( diag ( Ag loba l1 ) ) ;
469 A1U = t r i u (−Aglobal1 , 1 ) ;
470 A1L = t r i l (−Aglobal1 ,−1) ;
471 [ p1o , p2o , p3o ] = se t g loba l NeumannBC (−gx2 ,−gy2 , gz2 , . . .
472 f l a g x 1 , f l a g y 1 , f l a g z 1 , px , py , pz , A l i s t 1 ) ;
473 %=boundary c o n d i t i o n on n u m e r i c a l boundary
474 [ p 1 i , p 2 i , ˜ ] = se t g loba l NeumannBC (−gx2 ,−gy2 , gz2 , . . .
475 f lagxw1 , f lagyw1 , f l a g z 1 , px , py , pz , A l i s t 1 ) ;
476 %=boundary c o n d i t i o n on w a l l
477 [ ˜ , ˜ ] = s e t g l o b a l d i r i c h l e t B C (−gx2 ,−gy2 , f lagxw1 , f lagyw1 , P , A l i s t 1 ) ;
478
479 S1 = A( A l i s t 1 ) + 2 /3∗ p1o / dx +2/3∗ p2o / dy +2∗p3o / dz + 2 /3∗ p 1 i / dx +2/3∗

p 2 i / dy ;
480 w1 = 1 ;
481 c ou n t 1 = 1 ;
482 gconv1 ( cou n t 1 ) = 100 ;
483 r e s 0 = 0 ;
484 Ptemp = P ( A l i s t 1 ’ ) ;
485 Ta1 = (A1D−w1∗A1L ) \((1−w1 ) ∗A1D+w1∗A1U) ;
486 ca1 = w1 ∗ ( ( A1D−w1∗A1L) \S1 ’ ) ;
487
488 whi le gconv1 ( co un t1 ) > gCONV( t ime ) && co un t1 < nconv1
489 i f ˜ mod ( count1 , 1 0 0 )
490 di sp ( [ num2str ( co un t1 ) ’ ’ num2str ( gconv1 ( co un t1 ) ) ] )
491 end
492 Ptemp = Ta1 ∗ Ptemp + ca1 ;
493 c ou n t 1 = cou n t 1 + 1 ;
494 r e s = sum ( abs ( Ag loba l1 ∗Ptemp − S1 ’ ) ) ;
495 gconv1 ( cou n t 1 ) = abs ( r e s − r e s 0 ) ;
496 r e s 0 = r e s ;
497
498 i f co un t1 ==3
499 gCONV( t ime ) = gCONV( t ime ) . ∗ gconv1 ( 3 ) ;
500 end
501 end %= s o l u t i o n o f p r e s s u r e
502 P = f l o w R e c t r e o r d e r ( gmask2 , A l i s t 1 , Ptemp , P ) ; Pg temp1 = P ;
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503 % CHECK RESULT #1
504 P = g e t p r e s s u r e g l o b a l (−gy2 ,−gx2 , py , px , dy , dx , P ) ; Pg temp2 = P ;
505 % CHECK RESULT #2 % p r e s s u r e AT INNER boundary
506
507
508 %% >>>>> I n t e r p o l a t e and s p e c i f y P l o c a l ( @outer BOUNDARY) from

P Globa l
509 f o r kk = 1 : 3
510 x6 = 0 ; y6 = 0 ; c l e a r a i ;
511 a i = f i n d (MASK2 == 1) ;
512 xtemp = mid . xmesh{ t ime } ( : , : , 1 ) ;
513 ytemp = mid . ymesh{ t ime } ( : , : , 1 ) ;
514 x6 ( 1 : l e n g t h ( a i ) ) = xtemp ( a i ( 1 : l e n g t h ( a i ) ) ) ;
515 y6 ( 1 : l e n g t h ( a i ) ) = ytemp ( a i ( 1 : l e n g t h ( a i ) ) ) ;
516 Pb1 = g r i d d at a ( mid . Myp ( : , : , kk ) , mid . Mxp ( : , : , kk ) , P ( : , : , kk ) , y6 , x6

) ;
517 f o r i =1 : l e n g t h ( a i )
518 [ bi , b j ] = f i n d ( . . .
519 mid . xmesh{ t ime } ( : , : , kk ) == x6 ( i ) . . .
520 & mid . ymesh{ t ime } ( : , : , kk ) == y6 ( i ) ) ;
521 Pb2 ( bi , b j , kk ) = Pb1 ( i ) ;
522 end
523 end
524 Pb3 ( : , : , 1 ) = ( pzmesh ( : , : , 1 ) ∗2∗ dz + Pb ( : , : , 2 ) ) .∗mid . mask{ t ime

} ( : , : , 1 ) ;
525 Pb3 ( : , : , 3 ) = (−pzmesh ( : , : , 1 ) ∗2∗ dz + Pb ( : , : , 2 ) ) .∗mid . mask{ t ime

} ( : , : , 3 ) ;
526
527
528 %% >>>>> PROCEDURE#2 , CALCULATE PRESSURE ON LOCAL MESH
529 di sp ( ’ decompose A l o c a l 2 ’ ) ;
530 [ A l o c a l 2 , A l i s t 2 , f l a g y 2 , f l a g x 2 , f l a g z 2 , f lagyw2 , f lagxw2 , X l o c a l 2 ] =

. . .
531 P D M A l o c a l n e u m a n n d i r i c h l e t ( dymesh , dxmesh , dzmesh , . . .
532 mid . ymask{ t ime } , mid . xmask{ t ime } , mid . zmask{ t ime } , mid . mask{ t ime } ) ;
533 A l o c a l 2 = s i n g l e ( A l o c a l 2 ) ;
534 A2D = diag ( diag ( A l o c a l 2 ) ) ;
535 A2U = t r i u (−Aloca l2 , 1 ) ;
536 A2L = t r i l (−Aloca l2 ,−1) ;
537
538 [ pbxd , pbyd , pbzd ] = s e t l o c a l d i r i c h l e t B C ( f l a g x 2 , f l a g y 2 , f l a g z 2 , . . .
539 mid . xmask{ t ime } , mid . ymask{ t ime } , mid . zmask{ t ime } , Pb2 , Pb2 , pzmesh ,

A l i s t 2 ) ;
540 pbyn2 = s e t l o c a l n e u m a n n B C 2 ( f l a g y 2 , mid . ymask{ t ime } , pymesh ,

A l i s t 2 ) ;
541 [ pbxn , pbyn , pbzn ] = s e t l o c a l n e u m a n n B C ( flagxw2 , f lagyw2 , f l a g z 2 , . . .
542 mid . xmask{ t ime } , mid . ymask{ t ime } , mid . zmask{ t ime } , . . .
543 pxmesh0 , pymesh0 , pzmesh , A l i s t 2 ) ;
544
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545
546 %% >>>>> TEST t h e boundary c o n d i t i o n
547 % i n d e x ( c o n v e r t column v e c t o r t o m a t r i x )
548 % >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
549 l i s t x 2 = f l a g x 2 . ∗ A l i s t 2 ;
550 l i s t y 2 = f l a g y 2 . ∗ A l i s t 2 ;
551 l i s t z 2 = f l a g z 2 . ∗ A l i s t 2 ;
552 l i s t x w 2 = f lagxw2 . ∗ A l i s t 2 ;
553 l i s t y w 2 = f lagyw2 . ∗ A l i s t 2 ;
554 [mm1,mm2,mm3] = s i z e ( mid . mask {1} ) ;
555
556 [mm1,mm2,mm3] = s i z e ( mid . xmesh {1} ) ;
557 p1xn = z e r o s (mm1,mm2,mm3) ;
558 p2xn = z e r o s (mm1,mm2,mm3) ;
559 p3xn = z e r o s (mm1,mm2,mm3) ;
560 p1xd = z e r o s (mm1,mm2,mm3) ;
561 p2xd = z e r o s (mm1,mm2,mm3) ;
562 p3xd = z e r o s (mm1,mm2,mm3) ;
563 p4xn = z e r o s (mm1,mm2,mm3) ;
564
565 f o r mmi=1:mm1
566 f o r mmj=1:mm2
567 f o r mmk=1:mm3
568 i d x = (mmk−1) ∗ (mm1∗mm2) + ( mmj−1)∗mm1 + mmi ;
569 idx1 = f i n d ( l i s t x w 2 == i d x ) ;
570 i f ˜ i sempty ( i dx1 ) ; p1xn ( mmi , mmj ,mmk) = pbxn ( idx1 ) ; end
571 idx2 = f i n d ( l i s t y w 2 == i d x ) ;
572 i f ˜ i sempty ( i dx2 ) ; p2xn ( mmi , mmj ,mmk) = pbyn ( idx2 ) ; end
573 idx3 = f i n d ( l i s t z 2 == i d x ) ;
574 i f ˜ i sempty ( i dx3 ) ; p3xn ( mmi , mmj ,mmk) = pbzn ( idx3 ) ; end
575 idx4 = f i n d ( l i s t x 2 == i d x ) ;
576 i f ˜ i sempty ( i dx4 ) ; p1xd ( mmi , mmj ,mmk) = pbxd ( idx4 ) ; end
577 idx5 = f i n d ( l i s t y 2 == i d x ) ;
578 i f ˜ i sempty ( i dx5 ) ; p2xd ( mmi , mmj ,mmk) = pbyd ( idx5 ) ; end
579 idx6 = f i n d ( l i s t z 2 == i d x ) ;
580 i f ˜ i sempty ( i dx6 ) ; p3xd ( mmi , mmj ,mmk) = pbzd ( idx6 ) ; end
581 idx7 = f i n d ( l i s t y 2 == i d x ) ;
582 i f ˜ i sempty ( i dx7 ) ; p4xn ( mmi , mmj ,mmk) = pbyn2 ( idx7 ) ; end
583 end
584 end
585 end
586 p1xn1 = p1xn ( : , : , 1 ) ; %pbxn &
587 p2xn1 = p2xn ( : , : , 1 ) ; %pbyn &
588 p3xn1 = p3xn ( : , : , 1 ) ; %pbzn &
589
590 p1xd1 = p1xd ( : , : , 1 ) ; %pbxd &
591 p2xd1 = p2xd ( : , : , 1 ) ; %pbyd &
592 p3xd1 = p3xd ( : , : , 1 ) ; %pbzd
593
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594 p4xn1 = p4xn ( : , : , 1 ) ; %pbyn2 &
595
596 c ou n t 2 = 1 ; gconv2 ( co un t 2 ) = 100 ; r e s 0 = 0 ;
597 w2 = 1 ; Pbtemp = Pb ( A l i s t 2 ’ ) ;
598 S2 = bA ( A l i s t 2 ) . . .
599 + pbxd / dxmesh / dxmesh
600 + pbyd / dymesh / dymesh
601 + 2 /3∗ pbyn2 / dymesh . . . %=g r a d i e n t s on n u m e r i c a l boundary
602 + pbxn / dxmesh
603 + pbyn / dymesh
604 + 2∗ pbzn / dzmesh ; %=g r a d i e n t s on t h e w a l l
605 % % pbzd i s i g n o r e d because forward and backward d i f f e r e n c e

scheme was
606 % % s e t on t h e c o e f f i c i e n t m a t r i x A l o c a l 2 .
607 Ta2 = (A2D−w2∗A2L ) \((1−w2 ) ∗A2D+w2∗A2U) ;
608 ca2 = w2 ∗ ( ( A2D−w2∗A2L) \S2 ’ ) ;
609
610 whi le gconv2 ( co un t2 )>lCONV( t ime ) && c oun t2 < nconv2
611 i f ˜ mod ( count2 , 1 0 0 )
612 di sp ( [ num2str ( co un t2 ) ’ ’ num2str ( gconv2 ( co un t2 ) ) ] )
613 end
614 Pbtemp = Ta2∗Pbtemp + ca2 ;
615 cou n t 2 = cou n t 2 + 1 ;
616 r e s = sum ( abs ( A l o c a l 2 ∗Pbtemp − S2 ’ ) ) ;
617 gconv2 ( cou n t 2 ) = abs ( r e s 0 − r e s ) ;
618 r e s 0 = r e s ;
619 i f co un t2 ==3
620 lCONV( t ime ) = lCONV( t ime ) . ∗ gconv2 ( 3 ) ;
621 end
622 end
623
624 Pb = b o d y R e c t r e o r d e r ( mid . mask{ t ime } , Pbtemp , A l i s t 2 , Pb2 , Pb2 , Pb ,

c u t o f f l ) ;
625 P l t emp1 = Pb ;
626 P l t emp2 = Pb ;
627 Pb = g e t p r e s s u r e L o c a l o u t e r ( mid . xmask{ t ime } , mid . ymask{ t ime } , . . .
628 dxmesh , dymesh , pxmesh , pymesh , Pb ) ;
629 P l t emp3 = Pb ;
630
631 % f o r c e component normal t o wing ’ s s u r f a c e AND t o r q u e
632 % i n t h e d i r e c t i o n o f t h e r o t a t i o n
633 P n p l u s =15/8∗Pb ( 9 , 1 : 1 3 , 1 : 3 ) +(−5/4) ∗Pb ( 8 , 1 : 1 3 , 1 : 3 ) + ( 3 / 8 ) ∗Pb

( 7 , 1 : 1 3 , 1 : 3 ) ;
634 Pn minus =15/8∗Pb ( 1 2 , 1 : 1 3 , 1 : 3 ) +(−5/4) ∗Pb ( 1 3 , 1 : 1 3 , 1 : 3 ) + ( 3 / 8 ) ∗Pb

( 1 4 , 1 : 1 3 , 1 : 3 ) ;
635 dP = P n p l u s − Pn minus ;
636 f o r kk =1:3
637 Fn . v a l ( kk ) = sum ( dP ( : , : , kk ) .∗ dymesh∗dzmesh ) ;
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638 Tz . v a l ( kk ) = sum ( dP ( : , : , kk ) . ∗ ( 4 0 + [ −1 2 . 5 : 1 : −0 . 5 ] ) ∗dymesh∗dzmesh
) ;

639 end
640 Fn . n o t e = ’ n o t n o r m a l i z e d ’ ;
641 Tz . n o t e = ’ n o t n o r m a l i z e d ’ ;
642
643 save ( [ ’ p r e s s u r e f l a p p i n g 3 d ’ r e l e a s e V e r ’ t ’ num2str (2000+ t ime ) ’ .

mat ’ ] )
644 c l e a r Pb1 mask∗ temp p l a t e o n r e c t Ag loba l1 A l o c a l 2 Agloba l3
645 c l e a r A1D A1L A1U A1LU A2D A2L A2U A2LU A3D A3L A3U A3LU
646 c l e a r gconv∗
647 end
648
649 beep
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