The Phase-Averaged Velocity Measurement
and the Estimation of Pressure Force of a
Periodically Moving Body

August 2011

Alexandre Suryadi






A Thesis for the Degree of Ph.D. in Engineering

The Phase-Averaged Velocity Measurement
and the Estimation of Pressure Force of a
Periodically Moving Body

August 2011

Graduate School of Science and Technology

Keio University

Alexandre Suryadi






DISSERTATION

Submitted to the School of Science for Open and Environmental Systems, Keio
University, in partial fulfillment of the requirements for the degree of Doctor of
Philosophy






Acknowledgment

This research has been financially supported by the Japanese government (Monbuka-
gakusho) scholarship and by the Keio Leading-Edge Laboratory of Science and Tech-
nology, Research Grant.

I am truly grateful to my supervisor Professor Shinnosuke Obi for allowing me to
take on this project and supporting me throughout my graduate studies with his ad-
vice and encouragement. His support has been very important to the completion of the
present thesis. I would also like to express my gratitude to Professor Toshihisa Ueda,
Professor Koji Fukagata, and Professor Kenjiro Takemura for their constructive com-
ments.

I would like to thank the members of Masuda-Obi Laboratory and Obi-Fukagata
Laboratory for making life in Japan more enjoyable. In particular, I would like to thank
Dr. Yoshitsugu Naka who helped me in troubleshooting the experiment device problems
and to Ms. Hui Jing for discussion of any topics.

I would also like to thank my friends, who came to this university from overseas, for
sharing their experience in living in Japan.

Finally, I would like to thank my family who have supported me all the time.






Abstract

Motivated to engineer micro-air vehicles, the relationship of the vorticity distribution
with force generated by a flapping rigid plate was investigated with stereo particle im-
age velocimetry. Measurements were conducted under the hovering condition with a
flapping rigid plate for the wing model and a sinusoidal function as the flapping motion.
The full deformation tensor was obtained by measuring the velocity vectors at three
measurement planes offset in the out-of-plane direction. The unsteady state of the flow
was resolved by phase averaging. Thus, the governing equations were decomposed into
the average and fluctuation terms.

Vortex structures were identified using the second invariant of the deformation tensor
and two-dimensional streamlines. Control volume analysis shows the interaction of the
vortex structures with the flapping plate as represented by the force acting on the control
volume. There is a phase difference between the generated force and flapping motion
for all the measured sections of the plate. Maximum force is generated when the plate
is at the start of either upstroke or downstroke, ie. the flapping motion is at low velocity.
On the leading edge, the unsteady term of the force increases with increasing Reynolds
number

The pressure field distribution around the flapping plate was visualized from the
velocity field by integrating the Poisson equation using two overlapping meshes. For
comparison, the torque of the flapping axis was calculated using the pressure estimation
and strain gauge measurement. In this study, qualitative agreement of the two meth-
ods is shown for the mid-chord section of the plate. The visualization of the pressure
field shows that the vortex flow increases the force generation at low flapping velocity
by creating a stagnation pressure from the flow induced by the vortices or inter-vortex
stream. This mechanism is responsible for the phase difference between the force and
the flapping motion. After the initial motion, there are pressure stagnations on the front
and rear surface of the plate. Front stagnation is produced by flow stagnation because of

the motion of the plate and rear stagnation is generated by the inter-vortex stream.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Micro-air vehicles and animal flight principles

A micro-air vehicle (MAV) is defined as an autonomous flying vehicle with dimensions
of less than 15 cm in length, width, and height (McMichael and Francis, [1997). It
functions as a platform for observations in close proximity or over an obstructed field
of view by at most two operators. Due to its size, MAV flies in low Reynolds number
regime similar to the flight of small birds and large insects. Animal flight is considered
for propulsion and lift as an alternative to conventional aerodynamics in designing an
MAV.

There is a fundamental difference between animal flight and the flight of fixed-wing
aircrafts. By definition, a fixed-wing aircraft does not flex its wing for generating lift and
a separate propulsion system is required for generating thrust. In animal flight, animals
use the motion of their wings to generate lift and to propel their body forward. There
are many variations in animal flight kinematics. Variations occur between species and
small variations within a species (Ellington, 1984; Azuma, 1992). Bird flight imposes an
active flexibility to the wing but insect flight has relatively simpler kinematics. Because
of this, much attention has been placed toward insect flight. A flapping stroke plane is

defined as the plane parallel with the path of the flapping stroke. Each flapping stroke

1



2 CHAPTER 1. INTRODUCTION

consists of an upstroke and a downstroke. Based on the orientation of the flapping stroke
plane relative to an inertial plane, three flapping strokes have been defined: horizontal,

vertical, and inclined stroke.

An example of flapping on the horizontal stroke plane can be seen in hummingbirds,
Chlorostilbon aureoventris, which hover with an eight-figure stroke path (Ellington,
1984). Detailed studies of flapping flight have been conducted for normal hovering by
Dickinson et al| (1999)); Birch and Dickinson! (2001)); Sane and Dickinson| (2001}, [2002]);
Birch et al| (2004); Poelma et al (2006) for the flight of Drosophila melanogaster or
fruitflies and by Ellington et al| (1996));lvan den Berg and Ellington|(1997);|Van Den Berg
and Ellington (1997); Willmott et al (1997)); | Bomphrey et al (2005);|Sane and Jacobson
(2006) for the flight of Manduca sexta or hawkmoths.

An example of flapping on the vertical stroke plane have been observed in butterflies
(Ellington,|1984;|Srygley and Thomas, [2002; Mao and Xin, [2003)), which show a vertical
stroke plane during the downward motion. In a vertical stroke plane, the wing motion is
perpendicular to the chord. At the start of the motion, the wings are clapped together and
then flung open and at the end of the downstroke the wings are almost clapped together
again. This motion produces a vortex ring. This flight mechanism is called clap-fling
and although initially observed to be utilized by butterflies, it is not restricted to vertical
stroke planes. Clap-fling mechanism at normal hovering was studied by Lehmann et al
(2005); Miller and Peskin! (2005). This mechanism is used optimally for low Reynolds
number flight. At Re=32, the leading edge vortex forms and remains attached to the
wing compared for the flight at Re=64, where the leading edge vortex is shed during

each wing stroke, reducing the aerodynamic forces on the wing.

Studies of flapping wing mechanics of a dragon fly have shown an asymmetric wing
kinematics during the upstroke and downstroke in an inclined stroke plane (Azuma et al,
1985; Wang, [2004)). This asymmetry produces different mean force for each stroke. The
vertical component of the force in inclined hovering is greater than the one generated
in normal hovering, which explains why dragonflies are among the best hoverers in the

insect world.

Animals fly by actively changing the shape of their wings by bending and twisting
to get the optimum thrust or lift (Shyy et al, |1999). Birds and bats change the shape of
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their wings with muscle tissue to deal with rapid changes of the flight environment. Bats
control their wing surface by changing the degree of surface tension of their wing mem-
brane, thereby changing the wing profile’s curvature by passive aeroelastic response of
the wing to aerodynamics loading. Flow control of MAV has been proposed using adap-
tive feedback control and actuators to change the shape of the wing (Ho et al, 2003]). It
was found that the level of stiffness of the wing profile is essential in producing thrust for
an oscillating wing (Ho et al, |2003; Heathcote et al, [2004; Heathcote and Gursul, 2007)
and careful control of the spanwise flexibility of the wing with respect to the wing mo-
tion kinematics can enhance propulsive efficiency (Bandyoypadhyay, [2009; [Heathcote
et al,|2008). Other ways to produce thrust are pitching rigid airfoils and purely plunging
airfoils (La1 and Platzer, 1999, 2000). Pitching airfoils have the prospect of producing
both lift and thrust at the same time when paired with the vertical oscillation motion of

the wing (Guglielmini and Blondeaux, 2004).

A variety of flight modes have also been observed depending on the behavior of
the insect: hovering flight, forward flight, and maneuver flight have been observed.
Hovering flight in flight vehicle is defined as flight with zero forward velocity as a result
of balancing the lift force and weight of the vehicle. Hovering in animal flight is defined
more loosely, where velocity and acceleration vectors of the body is low. In forward
steady flight the thrust balances the body drag of the insect. The ratio of the forward
velocity to the mean flapping velocity of the wing is called advance ratio. Hovering
flight can be defined when the advance ratio is almost zero. The mechanism of maneuver
flight has been investigated by Tobalske|(2009). A yaw is defined as rotation of the body
on the vertical axis, which may happen due to gust or wind or by an asymmetric force
produced by the wings. A torque in the counter direction, called flapping counter torque,
is required to stop the yaw motion. Because of the rotation of the body, symmetric
motion of the wing relative to the body produces higher velocity on one of the wings,
which produces greater aerodynamic force compared to the other wing, which is moving
at lower velocity. The result is a torque of the body in the direction opposite of the yaw
motion, effectively stopping the yaw motion. The prediction of yaw damping as well
as pitch and roll damping have been formulated by Sunada et al| (2010) experimentally

using a mechanical dragonfly and analytically using blade element theory.
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Two designs of micro air vehicle based on flapping wing are prevalent. The first is
the hybrid design using a plunging airfoil to generate thrust and a body in the shape of
a wing to generate lift while the vehicle is in forward motion. Lift and thrust genera-
tion from a plunging airfoil was studied by |[Knoller (1909) and Betz (1912) separately
and is called the Knoller-Betz effect (Jones et al, |[1998). The flow has been reproduced
experimentally by Jones et al (1998)); Lai and Platzer (1999). The flow downstream of
the airfoil was visualized by dye flow visualization and was quantified by laser doppler
measurements. A jet flow, instead of a wake, is produced from the shedding of vortices
from the trailing edges of a plunging airfoil above a critical flapping frequency. Thereby,
generating thrust instead of drag (La1 and Platzer, [1999). This jet flow is slanted pro-
viding a normal force component or lift on the wing at higher flapping frequency. The
profile of the wing is an important factor in the generation of thrust in hovering condi-
tion. [Lai and Platzer (2000) had measured the velocity profile in front of the leading
edge and behind the trailing edge of a symmetrical airfoil and a circular cylinder. The
former produces thrust and the latter does not. The difference is that the circular cylin-
der has a symmetrical profile. The MAV design based on the Knoller-Betz phenomena
was discussed in|Jones and Platzer| (1997); Jones et al (2001)); Jones and Platzer (2009)).
Because forward motion is necessary to generate lift, this design lacks the maneuvering
capabilities that an insect or a bird has. These capabilities are potentially achievable by
the second design.

The second design mimics the kinematics of small birds or insects by solely using the
flapping wing to generate lift and thrust. This design mimics the flight characteristics
of insects and small birds. The design of a biologically inspired flapping wing was
discussed by Bandyoypadhyay (2009). The maneuvering capabilities of flapping birds
or insects can help the operation of MAV in tight and narrow spaces. The aerodynamic
study of MAV design has also given more information for zoologist because of the

similarities with animal flight.

1.1.2 Measurement history

Flapping wing research have mostly been done by zoologist in search of the mechanics

of insect and bird flight. The flight of insects has been studied at the Reynolds number of



1.1. INTRODUCTION 5

1000-10000 using qualitative visualizations of a tethered hawkmoth and a mechanical
scaled-up wing modeled after the same insect shows a conical vortex bubble stabilized
by a spanwise flow formed closely behind the leading edge of the wing and associated
with lift enhancement while the wing has a high angle of attack (Ellington et al, |1996;
van den Berg and Ellington, [1997; Van Den Berg and Ellington, [1997; Willmott et al,
1997; Bomphrey et al, 2005; Sane and Jacobson, [2006). The spanwise flow direction
from the base of the flapping wing to the tip limits the growth of the leading-edge vortex
by removing the energy from the vortex core. This mechanism is generated during the
translational phase of the wing. The spanwise flow decelerates indicating a breakdown

of the vortex bubble near the tip of the plate.

The flapping kinematics of a fruit fly is similar to that of a hawkmoth. In observa-
tions of mechanical wing of a fruit fly at Re=136, additional lift generating mechanisms
called wing rotation increases the flow circulation and wake capture interacts with the
separated vortex at the start of a stroke (Dickinson et al, [1999; Birch and Dickinson,
2001} Sane and Dickinson, 2001}, 2002; Birch et al, [2004; [Poelma et al, [2006). This
theory is taken as a generalized theory of insect flight with variations of the start of the
wing rotation to compensate for variations of species. The timing of the wing rotation
with the end of the stroke influences the increase of lift. Delaying the start of the wing
rotation produces 70% less lift than advancing the wing rotation and 65% less lift when
the wing rotates in conjunction with the end of the stroke. The position of the axis of
rotation of the wing also influences the induced circulation. Rotating the wing on the
leading edge have been shown to induce the highest added circulation and rotating the
wing on its trailing edge actually produces negative added circulation. Wake capture
enhances the lift of the flapping wing at the start of each stroke because of the induced
flow of the surrounding fluid from the shed vortices of the previous stroke. The flow
induced by these vortices is called inter-vortex stream. The effect of wake capture to
the force generation is a distinct force peak that develops immediately after the wing
changes the direction of motion. At Re=136, the axial flow of the vortex bubble is not
clearly distinguishable due to the prominence of viscosity whereas, at Re=1400, the
axial flow phenomena is prevalent during the translational phase of the flapping stroke

(Birch et al, 2004). At Re=1400, the spanwise flow from the base of the flapping wing
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to the tip limits the growth of the leading edge vortex by removing the energy of the
vortex core. While at Re=136 the spanwise flow is not clearly observed and the stability
of the leading edge vortex is postulated due to the downwash of the tip vortex, which
reduces the effective angle of attack of the wing.

Hovering motion in an inclined stroke plane shows relatively higher lift and aerody-
namic efficiency. Two-dimensional numerical simulations of wing kinematics, modeled
after a dragonfly at Re=1350, have shown that the increase in lift is explained by the con-
tribution of drag to the vertical component of force (Sun and Lan, 2004; [Wang, 2004)).

The inclined stroke plane improves the performance of insects at hovering condi-
tions. The flow generated by an accelerating vertical stroke plane was visualized by
Ringuette et al (2007) with the effect of tip vortex put under scrutiny. The tip vortex is
responsible for the increase of drag and suppression of the tip vortex reduces the drag
component. It shows that the tip vortex improves the stability of the attached leading
edge vortex and the three-dimensional effect may increase the vertical force.

Studies by |Dickinson et al (1999); [Ellington et all (1996)); Wang (2004) were done
using qualitative visualization, force measurements using load cells, and numerical in-
vestigation. Flapping wing inspired MAV designs and analysis have been studied (Tsai
and Fu, [2009; |Ansari et al, 2009; Ho et al, 2003). Aerodynamic experiments to obtain
the flow field generated by a two-dimensional profile of flapping wings have been done
by Poelma et al| (2006)), which visualizes the time-resolved and three-dimensional vortex
structure generated by flapping wing, and by [van Oudheusden et al| (2007); David et al
(2009); [Spedding and Hedenstrom! (2009)); Jardin et al (2009) using particle image ve-
locimetry and momentum integration approach. The experiments have also focused on
quantifying the uncertainty of the available data. The momentum integration approach,

— ap—ua’V—/pu(u~n)a,’S+/(—pn—k‘bn)dS (1.1)
Vv ot S S

utilized by [Unal et al| (1997); [van Oudheusden et al (2007)), uses the available velocity

F(t) =

data from planar measurements and spatially integrates the pressure gradient,
0
—Vp:pa—l;—l—pu(u-n)—,uvzu (1.2)

to obtain the pressure on the control surface, S, where the control volume and control

surface is given in Fig.[I.1]
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/
4

Figure 1.1: The definition of control volume and control surface for Eq. lb

A finite wing will produce a three-dimensional flow, which in the qualitative visual-
ization of Ellington et al (1996), shows an increase of vortex size along the spanwise of
the wing and vortex separation closer to the wing tip. Only a few three-dimensional mea-
surements have been conducted. Experimentation remains a challenge in the progress
for an efficient design of MAV (Platzer et al, 2008). One of the challenges in the mea-
surement of the performance of an MAV is the investigation of its aerodynamic char-
acteristics. Recent measurements of forces have used a scaled-up model of the wing of
a certain species of birds or insects, where force balance can be applied. Customized
force sensing have been developed for the measurement and use in feedback control of
MAV up to 25mm in wingspan (Wood and Fearing, 2001; [Steltz et al, [2006; Haddab
et al, [2009). However, commercial intrusive sensors cannot be used for the actual MAV
because not only they are not sensitive enough, but also their dimension and wirings will
disturb the flow. For an MAV with a semi wing-span of 7.5cm (McMichael and Francis,
1997)), the lift force of 0.39mN was estimated (Wang, 2001)). This is about 0.4% of the
smallest range of a thin film micro load cell (Cooper Instruments,, [2007); therefore, low

signal to noise ratio can be expected.

Flow visualization methods provide the dissemination of flow structures non-intru-
sively, thereby experiments can be conducted without worry of the sensor disturbing the
flow. Some methods, such as dye or ink injection, provide qualitative information for
the investigation of flow behavior. Quantitative methods, such as PIV, provide visual

information as well as estimations of the flow properties such as stress tensor, vorticity
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Figure 1.2: Summary of measurement techniques in flapping wing research.

vector, circulation, and force. Three-dimensional flow analysis and the estimation of
force can provide information on the interaction of vortex and rigid structure, which is
helpful in the engineering of an MAV. This interaction is one of the foundations of flap-
ping flight. In this case, rigid structure can be the wing or body of an MAV. Visualization
and force estimation can provide ingenious ways to increase the aerodynamic efficiency
of MAV.

The measurement history of flapping wing research is summarized in Fig.[1.2] Early
measurements had used qualitative visualization tools, which enabled the study of the
evolution of flow structures. Better measurement tools, such as laser doppler velocime-
try (LDV) and PIV, were available afterwards and quantitative visualization has been
conducted ever since. The measurement of force utilizes load balance and only recently
utilizes the control volume analysis of the measured velocity.

Two-dimensional computational studies of flapping flight have been conducted by
solving the vorticity and stream function equation on an elliptical coordinate system
(Wang|, 2000, 2001)), using the immersed boundary method (Miller and Peskin, [2005;
'Sudhakar and Vengadesan, 2010), overset grid method (Mao and Xin|, 2003). Three-
dimensional solutions of the Navier-Stokes equations have been solved using overset
grid method (Sun and Lan|, 2004) and using the Navier-Stokes equations on a non-




1.2. OBJECTIVES 9

inertial frame of reference and body conformed grid (Sun and Tang} 2002; [Wu and Sun,
2004} Mu-lin et all, [2006)).

1.2 Objectives

The objectives of this study are two folds. First, to establish a quantitative method for
flow observation and force evaluation of a periodically flapping plate. Past studies have
focused on the measurement of force and the visualization of the vorticity distribution
around the flapping plate. However, the relation of vortices to the generation of force
has never been fully detailed. To answer this problem, the effect of vortices to force will
be studied by (1) Control volume analysis of the near field of a flapping plate, (2) by
estimating the surface pressure of the wing, and (3) temporally resolved measurements
of the flow field using particle image velocimetry.

In this study, the integration of the flow field and the arbitrary selection of the size
of the control volume within the flow field is explored to quantify the dynamics of the
flow generated by a flapping plate. The result of the control volume analysis is the force
acting on a control volume.

The mechanism to generate aerodynamic force is the pressure difference on the sur-
face of the body and the viscous force. The viscous force can be investigated directly
from a spatially accurate velocity field and is negligible except for very small Reynolds
numbers. The investigation of force from the pressure difference requires the calcula-
tion of the pressure that is expressed in the Poisson equation (Fujisawa et al, 2005; Obi
and Tokai, [2006; |de Kat et al, | 2008). The proposed method was designed to estimate the
pressure field of a flapping wing modeled as a rigid plate from a set of velocity measure-
ments to estimate the aerodynamic forces. The pressure field was estimated by solving
the three-dimensional Poisson equation evaluated on the phase-averaged velocity field.
The pressure field represents the pressure distribution on a planar field around the flap-
ping plate. The combination of two numerical meshes, one was at a fixed position and
the other was moving with the flapping plate, were required to solve the Poisson equa-
tion on a moving boundary. The performance of the pressure integration was compared

with measurement using strain gauges.
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The flow was measured with stereo PIV due to its capability of measuring three-
velocity components at multiple points instantaneously on a planar field. To measure
the full deformation tensor, including the velocity derivatives with respect to the out-of-
plane direction, measurements were conducted on a set of measurement planes offset
along the out-of-plane direction.

The second objective is to estimate the force acting on the flapping wing using in-
formation acquired using velocity measurements. This is considered because the en-
gineering of MAV requires the measurement of an actual size MAV to optimize the
aerodynamic, structure, and flight control. The technical difficulties of applying load
sensors to measure the force on an actual MAV are intrusiveness of the sensor and the

sensitivity of the sensor.

1.3 Methodology

A simplified wing in the shape of a rigid flat plate and a simplified wing kinematics
was visualized both qualitatively and quantitatively. Dye was injected manually from a
pipette near the spanwise of the plate to visualize the nearby vortex structure. Indepen-
dently, seeded flow was recorded using stereo particle image velocimetry. Phase-locked
measurements were applied to the recording, referring to the velocity measurement of
the individual phase angle associated with the flapping plate. As explained in the
flow around a finite flapping plate is fully three-dimensional. A volumetric measure-
ment was approximated by measuring the flow in slices as the measurement plane or
laser sheet was positioned along the direction chordwise to the plate. The slices are
required in order to estimate the velocity gradients in the out-of-plane direction and to
integrate the three-dimensional Poisson equation. At the same time with stereo PIV
measurement, the torque produced by the flapping wing was measured by two strain
gauges attached on the rotational axis of the flapping wing.

The velocity field was treated with statistical tools. The average of the cycle-to-cycle
velocity field of each phase angle will be referred as the phase-averaged velocity field
and the process to obtain it is called phase-averaging. The phase-averaged velocity field

is a function of the spatial location and the phase angle of the plate. Hence, the phase-
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averaged velocity field of a group of planar measurements represents the evolution of
velocity distribution of the flow around a flapping plate. Due to phase-averaging, the
cycle-to-cycle velocity field can be decomposed as an average value and fluctuating
value. Hence, the governing equations are decomposed into terms including the phase-
averaged terms and fluctuation terms.

In flow measurements, the fluctuation of the velocity components can be of two
kinds:

1. Random velocity fluctuation, which is distributed according to the normal distri-
bution.
2. Non-random velocity fluctuation, which has a probability density with embedded

structures that deviates the normal distribution.

The first type can be neglected in the governing equations and in the process of analysis
is represented as measurement uncertainty (Bevington,|1969;|Coleman and Steelel|1995;
Bendat and Piersol, 2000). The second kind, which could indicate vortical wake or
turbulent structure, is relevant to the understanding of flow dynamics and can not be
neglected (Pope, 2000; |Bernard and Wallace, [2002).

Probability density functions are commonly used to indicate the normality of a sam-
ple, e.g. the time history of a velocity component. Several requirements for this state-
ment are that the flow was measured in steady state and at a defined spatial position of
the flow. In PIV, the flow was measured at multiple spatial positions and particular to
this study, low Reynolds number flow was measured close to the solid boundary that
it would be unwise to randomly pick the spatial locations to analyze the distribution of
the velocity components. A statistical test was applied to identify normal distributions
of every spatial location on the flow field of each phase angle. The statistical test is the
Shapiro—Wilk test and calculation of kurtosis and skewness (Shapiro and Wilkl, 1965}
Masuda, 2006)).

Quantitative flow visualization was presented by:

1. The second invariance of the deformation tensor, (Q), which is also the laplacian
of the pressure.
2. The vorticity in y-direction, ®y, to visualize the evolution of the leading edge

vortex.
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3. Two-dimensional streamlines.

4. Pressure field.

The pressure field was visualized numerically by integrating the three-dimensional Pois-
son equation for pressure. Overlapping mesh was proposed to obtain the pressure on the
surface of the plate, where the pressure obtained away from the surface was used to
resolve the pressure within the mesh close to the surface. The non-slip condition was
applied for the boundary condition of the surface of the plate. The pressure field was
validated by comparing the torque from the integration of the estimated surface pressure

distribution with the torque measured by strain gauges.

1.4 Thesis outline

Chapter 2 will discuss the governing flow equations that were used for control volume
analysis, surface pressure integration, and vortex visualization from a measured velocity
field distribution. The unsteady state was resolved by phase-averaging the velocity field.
Therefore, the governing equations were decomposed into the average and fluctuation
terms. The estimation of pressure field that was introduced in the previous chapter will
be further discussed in Chapter 3. The Poisson equation for pressure is formulated to
estimate the pressure around a circular cylinder. The flow around a flapping wing was
measured using stereo PIV. Simultaneously, the torque of the flapping axis was measured
with strain gauges. These experimental setups are discussed in Chapter 4. In Chapter 5,
the velocity field was analyzed using qualitative and quantitative visualization methods
and using the control volume analysis. In Chapter 6, the estimation of the pressure field
of the flow generated by a flapping rigid plate is formulated. Samples of the flapping
wing at certain flapping phase is presented. The discussion of the torque calculated by
the integration of the surface pressure is given in Chapter 7. Finally, conclusions and

recommendations derived from this study is given in Chapter 8.



Chapter 2
Theory

This chapter discusses the governing equations for control volume analysis, pressure
field visualization, and vortex visualization in §2.1] To represent one cycle of the flap-
ping motion, a large number of flapping cycles were recorded and the result was aver-
aged for each phase angle. This is discussed in

2.1 Governing flow equations

Micro-air vehicles operate in 1000 < Re < 10000, which is within the flight operation of
small birds and insects. In the hovering mode, birds and insects generate aerodynamic
forces solely due to flapping wing. Hence, it is suggested that the unsteady term will
play a major role in the governing flow equation. The viscous effect of the flow caused
by a flapping wing is negligible for Re > 136. So, incompressible and inviscid flow can

be assumed at all instants. The governing flow equations are the continuity equation,

E)u,-
— =0 2.1
o 2.1
and the momentum conservation equation,
ou; ou; 0
- i P 2.2)

1
Par TP, T Ty
where u; is the instantaneous velocity component, ¢ is the temporal variable, x; is the

spatial variable, p is the density of the fluid, and u is the kinematic viscosity of the fluid.

13
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Equations (2.1) and (2.2) are governing flow equations in the inertial frame of ref-
erence. With a stationary observer, the flow is measured relative to an inertial frame of
reference. However, in an unsteady motion such as a flapping wing, one is interested
in understanding the forces that the wing is experiencing. In this case, an observer has
to move with the wing. In other words, flow information is in the non-inertial frame
of reference. Direct measurements following the motion of the wing is practically dif-
ficult. Therefore, in this study the information in the non-inertial frame of reference is
constructed using measurements from the inertial frame of reference. The governing

flow equations in the non-inertial frame of reference are the continuity condition,

ou!,

— =0 23

oY (2.3)
and the momentum conservation equation,
u, ,ou,  dp 9% 0°R;

po+ pujg,j =0 +,u$;2 —Pl3z %”jeijk +2Que; ji 4 Q1 (Qir € ji ) Etiom

(2.4)
where the subscript u} indicates the velocity in the non-inertial frame of reference. The
acceleration and rotation of the non-inertial frame of reference, O'x'y'7, are azRi/aIZ and
Q;, respectively. The non-inertial frame of reference and its parameters are shown in

Fig. [2.1] where the inertial frame of reference is Oxyz.

2.1.1 Control volume analysis

In the analysis of flows, it is sometimes necessary to integrate Eq. or Eq.
within a control volume to investigate the forces acting on the flow. A control volume
is a defined volume in space that may move or deform independently from the flow
field. Mass, momentum, or energy may flow across the boundary of the control volume,
called the control surface. Through mathematical manipulations, the force acting on the
surface of the body inside a control volume or the force acting on the control volume
can be known. Control volume analysis provide a simple way to study aerodynamics.

To study the effect of a periodically moving body, force was calculated with control
volume analysis of a fixed control volume, cf. Fig.

du;
F = - i 2.
p/v o dV+p/Suu]n]dS (2.5)
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Figure 2.1: Non-inertial frame of reference

Figure 2.2: Control volume surrounding an unsteady moving body such as flapping
wing. V is the control volume of the field and S is its control surface. V,(¢) is the
volume of the body as a function of time and Sy (¢) is its control surface. The body is

moving at up(t).
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Table 2.1: scaling parameters to non-dimensionalize Egs. l) and 1j

Scaling parame- Description Primary dimen-
ter sions

L Characteristic length {L}

1% Characteristic speed {Lt 1}

f Characteristic frequency {1}

PO — Do Reference pressure difference {mL~'t"2}

where V is the control volume of the flow field and S is its control surface. The non-
dimensional form of Eq. (2.5)) is

N = WV T [ S 26
LhpU2bc  1pU%bc Jv ot T 1hU2be S”z”J”J (2.6)

The right hand side of the non-dimensional terms of Eq. (2.6) can be interpreted

by transforming Eq. (2.2) into its non-dimensional form. For completeness the viscous

effect is taken into account. Introducing the non-dimensional variables

* * X * u * P — P J J
tr=fr xX'=2 u= = ; =L 2.
X A TR PO— Do OX! ox; @.7)
where the scaling parameters are summarized in Table[2.1]
Rearranging Eq. (2.7) in terms of the dimensional variables,
t* o 19
t=—; x=L"; u=Uu"; p=rpe —p=)P 5o =75 2.
7 ¥ u=Uu P = Peot(P0— Peo)p % Lax (2.8)
Substitute Eq. (2.8) to Eq. (2.1)) to obtain
10
T Uu=0 2.9
Lox; " 29)
U ou?
— =0 2.10
L ox} 2.10)
Ju
=0 2.11
ox} @10
and to Eq. (2.2) to obtain
dul  pU? d D0 — Do Op*  uU 0%u
Uf—i + 7= (" S D st SR e & 2.12
PUI S T 7L <”J ax;%)”‘ L o I o (212)
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Table 2.2: Non-dimensional numbers in Eq. (2.13

Non-dimensional Description

number

St= %L Strouhal number (ratio of vortex
oscillation to mean speed)

Eu= 2 %Ulz’“ Euler number (ratio of pressure
drop to dynamic pressure)

Re= pz—L Reynolds number (ratio of flow in-

ertia to fluid viscosity)

multiplying every term by Z/py?2 and after some rearrangement,
fL au;‘+maﬁ:_ D0 — P | OP* u 0%u;
o~/ ox3 pU? | dx; | pUL] 0x;ox;
The products of the characteristic parameters are defined in Table [2.2] Equation [2.13]is

(2.13)

rearranged into,

* * * 2%
[S] iy 2 = — [Ey] I {é} o (2.14)

or* J ax}k. ox} axjfz

Only the left hand side of Eq. is represented by Eq. (2.6). The first term on
the right hand side of Eq. (2.6)) is the unsteady term and the non-dimensional parameter
that represents this term is the Strouhal number. The second term is the diffusion term

and is expected to be unaffected with increasing flow frequency.

2.1.2 Integration of the surface pressure

The force acting on the surface of the flapping wing can be evaluated using control
volume analysis, as shown in Fig. The control volume, V, is differentiated as control
volume of the body, V}, and the control volume of the flow, V —Vj,. The control surface,

Sp is the surface of the control volume V},. Thus, the force acting on the body, F;, is

E——p/aa—dV p/ulujnde /pn,dS

(2.15)
—p/ 1)ujii;jdS
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where u; is the velocity in the inertial frame of reference, the shape and size of the
control volume and surface is a function of time, and the control volume is moving at
up(t). The last term on the right hand side reflects the transfer of momentum on the
surface of the body, which is due to suction and/or blowing. In the absence of both, the
last term can be omitted.

The equivalent form of Eq. is

F, = —/ —piidS (2.16)
Sp(t)

In the calculation of Eq. (2.16), the surface of the body and the pressure field down to the
surface of the body have to be defined. The study by Obi and Tokai (2006) calculated the
pressure field from a set of measured velocity field by integrating the Poisson equation

for the pressure, which is derived by taking the divergence of Eq. (2.2)),

O (9p\__ 9 (du\_ O ( oui
i \ox )~ om\or ) am \ My

0 [ du; ou; du;

=— E/éij — 8_x,8_x] 2.17)

p_ du o

axl.z ox; 0x;
where the omitted term is due to the continuity condition, a”i/ax,- = 0. Solving the Pois-
son equation on the surface of an unsteady body is practically difficult because the nu-
merical solver needs to be created for every phase angle and the velocity distribution
close to the wall must be resolved. In this study, to evaluate the pressure force and the
surface pressure distribution, the pressure field will be defined by solving Eq. us-
ing two overlapping meshes: a rectangular mesh and a mesh that conforms to the surface
of the body and is a subset of the rectangular mesh. The Poisson equation is integrated
from the velocity information that is known on the rectangular mesh. The use of over-
lapping meshes will be discussed in Chapter [3] The advantage of the proposed pressure
estimation method to calculate force is the insight that can be obtained from evaluating

the pressure distribution of the flow field.

2.1.3 Vortex visualization

Flow separation behind a bluff body creates a region of strongly rotational flow. In
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.

A

Figure 2.3: Velocity profile created by the motion of the plate. The discontinuity creates

a strong rotational flow behind the body.

Fig. [2.3] the discontinuity of the velocity profile at the tips creates a strong rotational
flow downstream of the body. The motion of this fluid is described by the curl of the

velocity,

Jd
o, =Vxu= a—XiI/tjekSijk (2.18)

The symbol @y is defined as the vorticity of the flow. Qualitatively, a vortex is defined as
a connected fluid region with high concentration of vorticity compared to its surround-
ing.

A velocity field can be given as the sum of its rotational elements and its irrotational

elements,

u(x,7) =u,(x,1)+ Vy (2.19)

The irrotational element, V, is the potential flow problem. And the rotational element

is defined as

1 't —x/
u = / O X (X X) 4o (2.20)
4m |x — x|

where x — X’ is the distance between the vorticity element, ® to the fluid element induced
by the rotational effect of ®. Equation (2.20) is illustrated in Fig.[2.4] The effect of ro-

tation is inversely proportional to the square of the distance between the vortex element

to a fluid element.
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Figure 2.4: The definition of Eq.

ou/0y
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Figure 2.5: The physical interpretation of Eq. (2.21).

When formed, a vortex plays an important role in organizing the flow. Thus, the

tensor.

identification of a vortex provide an important information to the entire fluid mechanics.
The vortex element is identified by calculating the second invariance of the deformation

0 = (lol”* - [Is*)

VT
N 2 ax]' 8x,~
o 8u,-8uj

an ax,'

2

2 1 au,- au,'
2 ax]' 8x,~

2.21)

where Q is the rotational tensor and S is the strain tensor. The second invariance Q
denotes dominance of the strength of rotation compared with that of the strain as illus-

trated in Fig. [2.5] The identification of the vortex element can also be done by taking
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the divergence of the momentum conservation equation, which will lead to Eq. (2.17).
Thus, the second invariance is equal to the Laplacian of the pressure.

Another useful method of visualization is streamlines. Along a streamline, the in-
stantaneous velocity vector is tangential to that streamline. Streamlines show the direc-
tion of a fluid element. A two-dimensional streamline is defined as,

dx dy
u v

(2.22)

Streamlines depicts the motion of instantaneous fluid motion. For the presentation
of the measurement results, streamlines are used with phase-averaged velocity vectors.
Therefore, giving different streamlines for every flapping phase angle. The phase-

averaging of the velocity vectors is described in the next section.

2.2 Phase-averaging

To improve the certainty of the measurement, ensemble averaging is commonly done
when presenting the result. For periodic flows, the averaging can be done for one phase
angle of every period of the source of disturbance. This is called phase-averaging.
In this study, the source of disturbance is the flapping plate. The phase-averaging of

velocity is
N
(u) (x,0) = Jim " ulx, (n+0)// 223)
TN =1

where (u) denotes the phase-averaged velocity and u is the instantaneous velocity. The
fluctuative velocity is defined as the difference between the two, u’ = u — (u). The phase
angle of the flapping plate is 0 < ¢ < 27. The phase-averaging operation is illustrated in
Fig.[2.6]

Because of phase-averaging, the governing flow equations has to be decomposed
into the averaged value and the fluctuative value. For the momentum conservation equa-

tion,
A{u;) ) d(p)  d{udy)
P TP B = o TP e,

t (2.24)

where the last term on the right hand side appears as the product of the fluctuative
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Figure 2.6: Phase averaging of an instantaneous velocity component, u, the phase-

averaged velocity, (u), and the fluctuating velocity, u'.

velocity components. Thus, the Poisson equation for pressure is also decomposed,

P(p) ) duy) P {uin) (2.25)
ox? dxj Ox; 0x;0x;

And for vortex visualization, the second invariance of the deformation tensor is equal
to the right hand side of Eq. (2.25).

u;) O{u; 02 uiu;
o= Q) dlus) Pl

T axj' ax,- axiaxj' (2.26)




Chapter 3

Estimation of the pressure field by the
integration of the Poisson equation on

two overlapping meshes

The two-meshes method to solve the pressure field on the surface of a body is explained
in The method is evaluated in for a circular cylinder in potential flow with
the discrete form of the governing equation explained in §3.3] The discrete equation set
was solved using numerical method explained in and the results are shown in
Finally remarks are given in

3.1 Pressure Estimation

The pressure field can be estimated from the PIV velocity field by integrating the Poisson
equation of pressure as briefly described in §2.1.1, The Poisson equation is derived by

taking the divergence of the Euler equation, which in this chapter is formulated in the

23
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decomposed form,

V() (V) = ~V(p) V- () G.)

and in its tensorial form,

*p) _ i) duy) 9 (ujuy)
axiz =P an Bx,- —P ax,-axj (32)

The solution is calculated by integrating Eq. (3.2)) with the pressure gradient normal
to the boundary,

1 9(p) ou; ouy ouy dup  Iupup)  Oupus)  O(upuz)

pon - a Yigp %os “or  —am a5 oz O

where 7, §, and Z are in the normal, tangential, and z-direction of the numerical boundary.
The discrete form of Eq. (3.2)) is solvable using an iterative solver, where the con-
vergence of the solution is evaluated by the rate of the absolute value of the residual, R.

The residual is

V3(p) =®+R (3.4)
R=Vp)—® (3.5)

where & is the right hand side of Eq.[3.1} The convergence is

_ IR(k) —R(k— 1)
R(3)

(3.6)

where k is the iteration number and the difference is normalized by R(k = 3). For the
purpose of the estimation of surface pressure integration, the pressure on the surface of
the plate needs to be resolved. The Poisson equation is solved on two connecting nu-
merical meshes. The first mesh, which will be called global mesh, is a rectangular mesh
defined avoiding the surface of the plate and the second mesh, which will be called local

mesh, is attached to the plate and is moving with it. Spatial continuity of the pressure
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between the meshes is preserved by interpolating the pressure solution of the global
mesh to the numerical boundary of the local mesh. The out-of-plane derivatives are
approximated using the two adjacent measurement planes in the out-of-plane direction.

In PIV measurements, the velocity vectors are spatially distributed in a rectangular
mesh. This rectangular mesh is the global mesh that will be used to integrate Eq. (3.2).

Taking the rectangular coordinate system,

(u) = ((u), (v), (W) (3.7)
X = (X,2) (3.8)

for the velocity components and coordinate bases. The governing equation to be solved

in the global mesh is,

i), Flo) Pl _

ox2 dy 072

() (5 (%)

X 'y <

(SR ) e
e

w2+ T %)

Because the boundaries of the global mesh are parallel to either x, y, or z-axis, the

boundary conditions are pressure gradients normal to the x, y, and z-axis.

%:_p [%H >%+< >%t>+<w>%‘>
+a<u/u/> N o(u'v') N a(u/w’)} (3.10)
0x ay dz
aé_lj - [¥+<u>%+<v>%+<w>% (3.11)

awv'y o(WV) o(Vw)
+ ox + dy + 0z
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o(p) d(w) d(w) I(w) I(w)
. - Pl + (u) P +<V>W+(W>a—z a1
+8<u’w’> N o(v'w') N a(w'w') '
ox dy 0z

The local mesh encompasses a small area from to the surface of the body. It is
constrained and conforms to the shape of the body. For the investigation of a periodically
moving body, the local mesh is defined in the non-inertial frame of reference (§;,&5,&3).
The velocity components (V1,07,03) in the local mesh is obtained using the bi-linear
interpolation from the measured values. The velocity interpolation process requires
three steps. First, the coordinates of the local mesh (§;,&;,&3) is transformed to the

coordinates in the global mesh (x',y’,7).

X/

y/ :9"@1,&27&37%}%2) (313)

Z/
Second, the velocity components in the global mesh is interpolated on (x',y’, 7).
v('x/’y/7zl) = g(u’v7w7‘x7y7z7‘x,7yl7‘z/) (3'14)
w(x',y',2)

Finally, the interpolated velocity components are transformed to the local mesh coordi-

nates, (§1,&2,&3).

V1
V2 - T(u(xlay,7zl)7v(xl7ylazl)7W<xlaylazl)7xlaylazla&17&27&3) (315)
V3

The governing equation to be solved in the local mesh is in the non-inertial frame of
reference. Assuming that this frame of reference has an orthogonal basis, the pressure
gradient of inviscid and incompressible flow is,

19(p) o) <D.>8<1),~) ~ ofvju))
pog o og 0k

) (3.16)

0°R;
— £k — Q&+ Q3E; — Tzl —2(&€2v)
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where the variables are given in Fig. 2.1} Taking the divergence of Eq.[3.16]

10 a(p) 9 <_a<u,-> A(v;) (V)

pdg og aa\ o e A -
— gk — QiQE; +Q3E — a2R —2(g 3 Q0 ,-)>
the Poisson equation of the local mesh is
12(p) _ (v afv;)  9*(vjl
p o 8§,~ o&; 8&,-8%; (3.18)
a& (e Q&)) — a& (QQi& — QFE)) —2 a& (£:je0v))

where &; = (§1,&,,E3) is constrained to the shape of the surface. For example, &; =
(r,0,z) for cylindrical coordinate system or & = (§,1,{) for a rectangular coordinate

system. To solve Eq. (3.18)), the pressure gradient normal to the surface of the body is,

op) _

9, — (Q48z — QsEg) — (QaQsEs — QFEs + QaQ:E: — Q3E)

B 9%R;
ot?

The subscript (7,§,Z) are in the normal, tangential, and out-of-plane direction of the

(3.19)
-2 (Q§1)2 — .QQI)SA)

local mesh. Assuming the non-slip condition, v; = 0, V3 = 0, and vV = 0 on the surface
of the body. © and 9Ri/y is the angular and translational velocity of the non-inertial
frame of reference, respectively. The surface pressure is calculated by extrapolating the
resolved pressure on the center node to the surface of the body using the second order
Lagrangian extrapolation.

The procedures of the method is summarized in Fig. (3.I). The Poisson equation,
Eq. (3.2)), is solved using the velocity field measured with stereo PIV in the global mesh
with boundary conditions in Eq. (3.10)-(3.12). The local mesh is defined in the non-
inertial frame of reference, the velocity components in the local mesh are defined from
the global mesh using interpolation and coordinate transformation. For each phase of
one period, the velocity field is transformed from the rectangular grid of the global
mesh to the relative velocity of the local mesh. The Poisson equation of the local mesh,

Eq. (3.18) is solved using the Neumann-Dirichlet boundary condition. The Neumann
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( Start )

Stereo PIV phase-averaged /
velocity field
(<u>(x,yz), <v>(x,yz), <W>(x,yz))/

Y Y

Define boundary condition on

Define global mesh
global mesh. Egs. (3.10) - (3.12)

h 4
Solve the pressure equation |
on global mesh. Eq. (3.9) |

Y

Define local mesh. Fig. 6

\ 4
Transform <u>,<v>,<w> to
local mesh. Eq. (3.13)-(3.15) interpolate pressure from
global mesh to local mesh
\ 4 ‘
Solve the pressure equation|© Define boundary condition
on local mesh. Eq. (3.18) [ analytically on the surface.
Eq. (3.19)
A4
End

Figure 3.1: Flowchart for the general description for the estimation of phase-averaged

pressure based on stereo PIV velocity field.

boundary condition for the local mesh is given by Eq. (3.19) on the surface of the plate.
The Dirichlet boundary condition is the pressure interpolated from the global mesh ap-

plied to the numerical boundary of the local mesh.
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3.2 Cylinder in potential flow

The steady potential flow around a circular cylinder was used to proof the concept of the
overlapping meshes system that was explained in the previous section. The components
of the velocity field of the potential flow over a circular cylinder in polar coordinates

were given as

R2
U, = (1 — —2) U cosB (3.20)
r
RZ
Ug=— <1 + —2) Us sin 0 (3.21)
r

where U, is the radial velocity, Uy is the tangential velocity, R is the cylinder’s radius,

and U, 1s the freestream velocity. The components in Cartesian coordinate was obtained

from Eqs. (320)~@21).
u sin® —cosO| [ U,
— (3.22)
v cosO sinB Uy

and the velocity components inside the cylinder were set to zero,

ulx,y) =0, v(x,y)=0 ;if/x2+y2<R (3.23)

The velocity field defined by Eqgs. (3.22) and (3.23) were used to simulate the velocity
field of PIV as shown in Fig.

The Navier-Stokes equation in cartesian coordinate is

ou; 1dp
L 3.24
" axj' P ax,- ( )
and the Poisson equation is the divergence of Eq. (3.24),
9*p duj du;
— =P 3.25
ox? P 0x; Ox; (3.25)

expanding the tensorial indices i = 1,2 and j = 1,2, where x; = (x1,x2) = (x,y) and

u; = (uy,u2) = (u,v),

2 2
do“p a_p_2 (auav auav) (3.26)

w2 T2 TP\ axay  yor
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Figure 3.2: Numerical velocity used to simulate PIV velocity field.

To solve Eq. (3.26) in the global mesh, the boundary condition is the pressure gradient

normal to the boundary,

(3.27)

on = Pl Tagy T

dp B <8uﬁ ou; 8uﬁ)

with 71 and § are the bases in the normal and tangential direction of the boundary, re-
spectively. The velocity component u; and ug are the component associated with their

respective bases. The boundary conditions of the global mesh are

L (a—“ rud +va—“) (3.28)
ox
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>0
-1
-2
-3
K 2 2 4 = -1 0 1 2
X X
(a) Global mesh. (b) Local mesh.

Figure 3.3: Definition of numerical meshes.

for the boundaries parallel to the y-direction and

p dv  dv  ov
2 (S ) (3.29)

for the boundaries parallel to the x-direction.

In this numerical evaluation, the numerical mesh to solve the pressure equation was
divided into two: the global mesh as shown in Fig. and the local mesh as shown in
Fig. The velocity distribution in the local mesh was interpolated from the global

mesh using
Fr) S sy 1 LERI) (g,
AxAy AxAy (3.30)
22 )+ B2 ) )

and this equation is illustrated in Fig. [3.4 The pressure was solved on the nodes (red
dots) in Fig.[3.3] The pressure in the global mesh is solved only on the visible nodes and
outside the cylinder. The velocity field in the local mesh was given in Fig. [3.5 where

sparser vector density is shown here to easily illustrate the velocity field.
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Figure 3.4: Illustration for bilinear interpolation. Bilinear interpolation uses the infor-

mation of 4 nodes closest to the unknown node.

The Navier-Stokes equations in polar coordinate are given in r and 0 direction as

ap
5, = Plhr+by) (3.31)
0
a’é p(ho -+ bo) (3.32)
where
10 10
h, = —;E(ruru,) - ;%(ueu,) (3.33)
MZ
b= (3.34)
1 0 1 0
hg = ;. ar(mrug) 38 — (ugup) (3.35)
by = — 10 (3.36)

-
The pressure equation is obtained by taking the divergence of the Navier-Stokes

equation,

10 [/ dp 10 [(1dp 10 19
ror (F§)+rae (rae) P ror pRUCEE )]+—%(h9+b9)}
1ordp rd*p 10*p  [lor  oh. 10r  0b, 10hg 10bg
;a—@*;m*ﬁw—*’_;a—rhr*W*mbr*aﬁrae*rae}
lop d*p 10*p  [h+b, Oh+b, 120
o Tar TR TP Ty T +‘%<he+be>}

(3.37)
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Figure 3.5: Velocity field in local mesh, interpolated from the global mesh using

Eq. @

The pressure gradient normal to the boundary of the local mesh is

Jdp
Fr p(hr+b;)
where
10 10
h, = —;—(rurur) = —a—(ueur)
-
oy

because of the slip condition of the potential flow, Eq. (3.38) can be simplified to

dp u

ar Py

(3.38)

(3.39)

(3.40)

(3.41)
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where ug on the wall is
ug = —2U.sin® (3.42)

The boundary condition on the numerical boundary of the local mesh is the pressure
values interpolated from the global mesh.

The analytical coefficient of pressure of the flow field is

U2
Cp=1- Uz (3.43)
and on the surface of the cylinder,
C,=1—4sin’0 (3.44)

The numerical procedure in this section is summarized using the flowchart in Fig.[3.6]
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( Start )

velocity field /
((u) (xy2), {v) (xyz), <w) (x,yz)) /

Fig. 3.2

Y Y

Deﬁng global mesh Define boundary condition on
Fig. 3.3(a) global mesh. Egs. (3.28) - (3.29)

A 4
Solve the pressure equation |
on global mesh. Eq. (3.26)

Y
Define local mesh. Fig. 3.3(b)

h 4
Transform <{u),{v),{w) to
local mesh. Fig. 3.5 interpolate pressure from
global mesh to local mesh
h 4 ‘
Solve the pressure equation € Define boundary condition
on local mesh. Eq. (3.37) [ analytically on the surface.
Eq. (3.41)
A4
End

Figure 3.6: Flowchart for the estimation of the pressure field around a circular cylinder

in potential flow.

3.3 Finite differentiation

The finite differentiation scheme of the governing equation was needed to solve the
partial differential equation using an iterative solver. The Poisson equation was solved

using the Gauss-Seidel method on the center of the grid. The coordinates of the grid are



36 CHAPTER 3. ESTIMATION OF THE PRESSURE FIELD
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Ve Ay

Yy X
X x+Ax
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Figure 3.7: Definition of the node coordinates, x¢, y°.

(x,y) and the coordinates of the grid center are (x€,y°),

¢ () +(xr+Ax)

X = — (3.45)

and illustrated in Fig.
Two iterative solvers are required to solve the finite form of the Poisson equation,

one for each mesh.

3.3.1 Governing equations in global mesh

The Poisson equation of the global mesh is given as

0? 0? oudv Jduad
Ip Pp_, (Judv dudv (3.47)
ox2  0y? dxdy dyox
The right hand side of Eq. (3.47)) will be denoted as Wgopq. Equation (3.47) was dis-
cretized as
p(x¢ = Ax,y%) —2p(x©,y°) 4+ p(x° + Ax, )
Ax? *
p(x,y" —Ay) —2p(x°,y) + p(x°,y" + Ay)
Ay?

Where the spatial derivatives on the right hand side of Eq. were approximated as

ox  Ar 2Ax

=y, Y)glopar  (3.48)

(3.49)
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Figure 3.8: Illustration of Egs. (3.49) and (3.50), respectively.
of Af _ S A Y+ AY) + fxy+Ay) = fx+Ax,y) — f(x,y)

Jy

2Ay

37

(3.50)

Equations (@) and (3.50) is illustrated in Figs. [3.§(a)|and [3.§(b)] respectively. In those
figures, the gradient is proportional to the sum of the 4 neighboring points. Next to the

numerical boundaries, Eq. (3.48)) was treated with the Neumann boundary condition of

the approximated form of the pressure gradient as

ap

Ap

(3.51)

(3.52)

The treatment of Eq. (3.48)) near the boundary depends on the orientation of the respec-

tive boundary. The boundaries treatment were

1. Forward scheme along the x-direction. For x© = x¢;, next to the numerical bound-

ary, and x° = x{_, next to the surface of the cylinder, as shown in Fig.

1

A2

(PO5.3) =2p(5,5) + (5.5

1
A_y2 <P(x§7yc

—Ay) —2p(x5,Y°) + p(x5," +Ay) >

=wy(x5,Y) (3.53)
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(a) next to the numerical boundary. (b) next to the cylinder.

Figure 3.9: Positions in the global mesh where the forward scheme along x was applied.

Substitute p(x{,y°) with the one-sided pressure gradient,

Ap| _ —=3p(x{,y) +4p(x5,5) — p(x§,)°)
Ax 2Ax
L oAcAnl 4 | (3.54)
p
p(f,)") = T3 A, + §p(x§,yc) - gp(XE,yc)
Thus, Eq. (3.53) becomes
L2 a2
E<_ 3P02,Y) + 3035,y ))
1
s (P50 = )= 205.9°) 5.+ )
2 Ap
=yx5,) )+ ———| (3.55)
3Ax Ax |,

and the derivation was similar for the other boundary orientation.

2. Backward scheme in x-direction, where x“ = x“j;_1, next to the boundary, and
X = Xx;_, next to the surface of the cylinder, as shown in Fig.

(2 p(h2y) — 2p(€u1.y°)
A2 \3PWM=2Y") = 3P M1,y

1
+ A2 (P(XCM—l VA 2p(Xp—1,Y) + (X1, — Ay)>
2 Ap
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Figure 3.10: Positions in the global mesh where the backward scheme was applied.
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Figure 3.11: Positions in the global mesh where the forward scheme was applied.

3. Forward scheme in y-direction, where y* = y“;, next to the boundary, and y° =
¥i,1» next to the surface of the cylinder, as shown in Fig.

1

A2 (P(xc +Ax,y)2p(x, ) + p(x — M7y61)>

1 2 2
+ A_y2 (—gp(xcaycﬁ + gp(xcv)’ﬂ +A)’))

2 A
=Y+ e

3.57
3Ay Ay ( )

1
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Figure 3.12: Positions in the global mesh where the backward scheme was applied.

4. Backward scheme in y-direction, y© =y}, ,, next to the boundary, and y“ = y;_,,
next the surface of the cylinder, as shown in Fig.

1
(P(xc + A, Yy 1)2p(X Y 1) + p(XE — Axnyl))

A2
1 /2 2
+ A_yz (gl?(xc»ycM—z) - gp(xcd’CM—l))
2 Ap
_ c .C e
=V | G5)
3.3.2 Governing equations in local mesh
The Poisson equation in the local mesh,
1op *p 1%p h.+b, Oh.+b, 10
it _ = ——(hg+b .
ror or:  r?96? r + or +;’89( 6+ e)} (3.59)
where
10 10
hy = ———(ruu;) — —=— - 3.60
rar(mu) r89<ueu) ( )
g
b, = - (3.61)
10 10
hg = ——=—(ruyug) — —— 3.62
0 rar(m to) rae(ueue) ( )
_urue

by = (3.63)
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Figure 3.13: The notation for the local mesh.

In the following derivation, the right hand side will be symbolized as yj,.,;. Equa-
tion. (3.59) was discretized as

1 p(r+Ar,0) — p(r — Ar,0)

r 2Ar

p(r—i—Ar,G)—2p(r,6)+p(r—Ar,6)
+ 2
Ar
+lp(r,G—AG) —2p(r,0)+ p(r,6+A8)
r? AB?

= \]I(l’, e)local (3.64)

The boundary condition in the r-direction was the surface pressure gradient and in the

0-direction, periodic boundary was applied,

61 =06y +A0 (3.65)
Oy =01 — A0 (3.66)

where the subscript M is the last node along 6. The boundary condition on the numer-
ical boundary, r = ry, was the pressure values interpolated from the global mesh. The

boundary condition next to the surface, r = ry, was

Ahyi 1Ahy  uf
=p(———-—-=—=+-2 3.67
p( Ar  r A® * r (3.67)

dp _Ap
arNArW

The notation of the local mesh is given in Fig.[3.13]
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The Poisson equation was treated for the boundary condition on r = rs,

l‘g‘p(m,e)—%l)(rzy@) N —%P(r2,9)+%17(r3,9)+
r 2Ar Ar?
1 p(r2,0 —A8) —2p(r2,0) + p(r2,0 +AB) 2/(1 1\ Ap
2 AQ? =V O3\ 5,75 ) 5 1
(3.68)
and on the numerical boundary r = ry_p,
_ 1p(rv—2,0 n —2p(rn-1,0) + p(rn—2,0)
r 2Ar Ar?
1 p(ry-1,8) —2p(rn-1,0) + p(rn—1,0 4+ AB)
r? AB?
(v 1.8) — (ot g ) P.8) (3.69)
= Vw1, 2Ar A2 ) PV ’

The pressure on the surface of the cylinder was extrapolated from the pressure solved

on the center nodes,

15 5 3
p‘w:?p(rbe)_Zp(r27e)+§p(r37e) (3.70)
where 5 A A |
14
0)=—=—| Ar+- 0)— - 0 3.71
and the non-dimensional pressure coefficient was
Ply
C,= 3.72
" pU2 G

3.4 Numerical solution to Poisson equation

The pressure was solved using the Gauss-Seidel method. For the next discussion, the
matrix is symbolized as
Ax=Db (3.73)

In the Gauss-Seidel method, the matrix A is split into A; and A,

A=A —-A; (3.74)
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where

Ai=D-L (3.75)
Ay =U (3.76)

and D is the matrix consisting of the diagonal elements of A, L is the matrix consisting
of the negative of the lower triangular elements of the matrix A, and U is the matrix
consisting of the negative of the upper triangular element of the matrix A. The unknown
variable X is solved by

X = AT A AT D (3.77)

where k is the iteration number.
The iteration was stopped when the convergence criteria has been achieved. The
convergence criteria was defined according to the rate of the absolute value of the resid-

ual. The residual was defined as

Ax* = b+ RF (3.78)
RF = AxF — b (3.79)

where R is the residual of the k' iteration, and the convergence is normalized with R of
the third iteration.
Z Rk - Rk*l

(3.81)

The convergence criteria was € < 1 x 1073 for both global mesh and local mesh.

3.5 Numerical results

The velocity distribution around a circular distribution was defined using Eqs. (3.21)-
(3.23). The flow parameters to create this distribution were U., = 3000, R = 0.7284.
The size of the global mesh was —4 < x <4 and —4 <y <4, where Ax = Ay =0.2. The
size of the local mesh was R < r < R+ 16Ar, where AR = 0.25 and 0 < 6 < 2w, where
AB = T/5.
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Figure 3.14: The estimated pressure field.

The result of the numerical evaluation of the overlapping mesh method using the
potential flow over a circular cylinder is given in Fig. [3.14] The contour depicts the
coefficient of pressure and the circular cylinder is depicted as a black circle. In this
figure, the pressure distributions of the global and local meshes are plotted together
giving smooth pressure distribution on the surface of the cylinder as resolved in the
local mesh and no apparent discontinuity between the global and local meshes. The
estimated pressure distribution shows two stagnation pressure points on the leading and
trailing edge of the cylinder and two low pressure regions on the top and bottom surface

of the cylinder.

The absolute error of the pressure distribution is given in Fig. [3.15 where the error

is the difference of the absolute values of the estimated pressure field with that of the
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Figure 3.15: The absolute error between Fig. and the analytical pressure distribu-

tion.

analytical. The maximum error of the estimation is AC), ~ 0.07.

The estimated pressure distribution on the surface of the cylinder is shown in Fig.
from the trailing edge, counter-clockwise. This distribution is compared with the ana-
lytical pressure distribution and they show good agreement with each other.

The pressure profile Fig. is the pressure distribution along x at y = 0. There
is continuous pressure distribution from the global mesh to the local mesh. Compari-
son of the estimated pressure distribution of both meshes with the analytical pressure
distribution shows good agreement with each other. The pressure profile in Fig. [3.18]is
the pressure distribution along y at x = 0, which similar to the last figure shows good

agreement with the analytical pressure distribution.
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Figure 3.16: Pressure distribution on the surface of the cylinder.

3.6 Concluding remarks

The procedure to solve the Poisson equation with overlapping meshes was evaluated
using a circular cylinder in a potential flow. Using potential flow the analytical veloc-
ity and pressure distribution were known. To emulate the condition of measurement,
the velocity vectors were distributed in a grid system as if they were measured with
PIV. Continuous pressure distribution was achieved between the global and local mesh.
Comparison of the estimated pressure distribution and the analytical one shows good

agreement on the surface of the plate and on all parts of the flow.
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Chapter 4
Experimental Setup

The facility is explained in §4.1] which include the tank where the measurement took
place, the flapping wing model and its kinematics. Followed by, discussing the
basic theory of PIV and stereo PIV measurement setup, and finally explaining

about the strain gauge measurement setup.

4.1 Facility

The hovering condition was recreated by conducting experiments inside an all around
transparent tank. The volume of the tank was 310 x 310 x 270mm? volume and was
filled with tap water. The wing was modeled as a rectangular transparent plate with
span length, b, of 40mm, chord length, ¢, of 20 mm, and thickness of 2 mm. The plate
was fully immersed in water and it maintained its rigidity during all flapping cycle. The

sinusoidal motion of the wing was defined as

0 = Osin(2nf1) @.1)
x =rcos(0) 4.2)
y = rsin(0) 4.3)

where 0 is the instantaneous flapping angle of the plate, ® is defined as the amplitude
of the flapping angle, f is the flapping frequency, and ¢ is the time variable. The instan-

taneous position of the plate in Cartesian coordinate is represented by x and y, which

49
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Free

Figure 4.1: The geometry of the flapping plate and definition of the flapping kinematics.

corresponds to 6, where the coordinate orientation is defined in Fig. 4.1} and r is in the
spanwise direction of the plate, where 0 < r < b, r = 0 is the hub of the flapping plate
and r = b is the tip of the plate.

The velocity of the plate in the normal direction of the plate is

Uplate = or

= 2nfOrcos(2mft)

4.4)

Of particular interest is the maximum velocity of the tip, where r = b and 6 = 0. Which

gives tpiare 1ip = 21 f (bO). Here, bO is the amplitude of the flapping wing. This velocity
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is used as the reference velocity, U = upj4re 1ip, for the definition of the Reynolds number,

_cU

Re = 4.5)
v

where V is the kinematic viscosity of water. The plate was immersed in water 80 mm
below the free surface. TiO, powder was used for tracer particles.

The motion of the plate was actuated by a 5-phase stepping motor series, RK566BA,
from Oriental Motor Co.,Ltd (2002)). The motion was synchronized with PIV measure-
ment using National Instruments’ PCI 7332 motion control board and motion control
software, NI-motion (2006). Due to indirect compatibility of the motor and the motion
controller, the input from the motion controller was relayed through National Instru-
ments’ Universal Motion Interface, UMI-7664 (2010).

For the purpose of this study, a sinusoidal motion of the plate was required by using
the circular arc motion in NI-motion. The circular arc interpolates a circular motion
when used with two motors that are at 90° out of phase with each other. In this case,
only one of the two motion axis was used, which created a sinusoidal motion for the

flapping wing. The key settings of the circular arc motion are,

. circular arc
. travel angle
. starting position

1
2
3
4. start angle
5. arc radius
6

. ending position

The arc radius sets how far the motor of each axis have to travel. The start angle is the
starting angle of the arc. The travel angle is the angle to be traversed, which ranges
from —4096 to 4095 revolutions. Positive travel angle is defined as counter-clockwise
rotation in the xy plane.

The circular motion can be defined as follows,

for axis 1: x; = Rsin(wr) (4.6)

for axis 2: x, = Rcos(ot) 4.7)
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where R is the arc radius. For this study, only one axis was needed to generate the
flapping motion. The maximum flapping deflection, ® can be adjusted by adjusting the
arc radius, 360°(R)
0= 2(Resolution) (48)
Where R is in steps and Resolution is the number of steps to complete one revolution.
To ensure smoothness, a resolution of 125,000 steps per revolution was used, which
gives fine motion of 0.00288° /step.
The motion control system and PIV measurement system were synchronized using
the Real Time System Integration (RTSI) cable connecting the motion controller, NI-

7332, with digital timing board, NI PCI-6602 (2009;1999).

4.2 Particle Image Velocimetry

In qualitative flow visualization, flow markers, usually injected into the flow upstream
of a body or injected from the surface a body, are used to highlight certain regions of
interest when the flow passes over the body. These markers, such as dye or smoke, high-
light certain structures in the flow that contribute to the flow physics. Some examples
of the use of this technique are: visualization of mixing layers, wake behind cylinder, or
transient flow over an airfoil.

For future use of the knowledge of flow structures, the visualizations are recorded
by film photography or by moving images. Long exposure recordings of the markers
will produce streaklines. Because of that, streaklines do not indicate the instantaneous
structure of the flow. The long exposure creates flow structures that are produced on
the surface of the body because of shearing forces. Shear stress causes the markers
to deform and creates unique shapes that we recognize as vortices. The vortices are
convected downstream and they retain their shape in weak shear stress or no shear at all.

A short exposure of the flow markers can estimate the flow streamlines. Streamlines
are better indicators of flows because it temporally localizes the flow structure where
it is produced and shows the spatial evolution of the flow from upstream to the down-
stream of the body. Because of the short exposure, streamlines are visualized using a

homogeneously distributed particles in the flow.
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Figure 4.2: Principles of PIV measurement.

Particle image velocimetry (PIV) quantifies flow visualization by measuring the dis-
placement of tracers that are in the form of discrete particles. Physically, velocity is
defined as

ox
= — 4.9
u=- 4.9)
and its discrete version is 0 ( )
x(t) —x(t + At
= 4.10
Y At (4.10)
with limit theory, At — 0,
VU “4.11)

PIV records the flow in two short exposures consecutively. The exposures are separated
within a short time span, At, for good approximation of the flow velocity. Since Willert
and Gharib|(1991), digital PIV has been in use for flow research. Each exposure is stored

as a digital grayscale images and the velocity field is approximated by two consecutive

digital images. Figure .2 shows how PIV works.
A digital image is a discrete representation of an analog image. Intensity of light
is represented by integer values from O to 255. For a digital grayscale image, the color

black is represented by the value 0, the color white is represented by the value 255, and
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X

(a) The character “x”. (b) Digital image

representation.
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255 25522281 35 4 4 4 154 255255255 20222 4 4 23
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255 255 255 255 255 255 255 158 4 186 255 255 255 255 255 255
255 255 255 255 255 255 255 203 4 128 255 255 255 255 255 255
255 255 255 255 255 255 255 891 4 69 255 255 255 255 255 255
255 255 255 255 255 255 201 55 77 12 254 255 255 255 255 255
255 255 255 255 255 255 60 205 138 4 207 255 255 255 255 255
255 255 255 255 255 140 105 255 195 4 150 255 255 241 191 255
255 255 255 255 188 24 241 255 249 4 B0 255 255 77 187 255
158 74 192 236 33 186 255 255 255 62 4 9 235124 96 255 255
26 4 4 13 149 255 255 255 255 1394 4 6 72 249 255 255
120 5 41 158 255 255 255 255 255 242 36 8 110 249 255 255 255
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(c) Discrete values of intensity

Figure 4.3: The character “x” and its representation as a digital image. A digital image
can be represented by colors or by numbers. The latter is enlarged to visualize pixels

and the intensity.

there are 254 gray tones between them. Constant intensity is contained within a discrete
unit called pixel as shown in Fig. 4.3

The velocity is approximated by correlating a localized area of the image, called
interrogation window. In Eq. (#.12), the interrogation window of the first image is rep-
resented with /1 and for the second image with I5. The result of the correlation function

of Eq. (4.12)) is the correlation map, C(8i,8;), as shown in Fig.
M wN .. . .. .
LYY L j)xb(i+06i,j+0
C(61.8)) = Yoot Lao1 11(i ) * Io( j+98)) 4.12)
VEM (1, )2 T (i, )

where i, j are the indices for row and column matrix of a digital image, respectively
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CC(d1, 0 )
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Figure 4.4: Cross-correlation map that corresponds with —32 < &i <32 and —32 < §; <

32, produced from two successive particle images.

and the size of the interrogation window is M x N pixels and M > 1 pixel and N > 1
pixel. The correlation map was calculated by displacing the second image by 6i,dj
pixel ranging from —M to M pixel and —N to N pixel, respectively. When the particles
completely overlap, Eq. will produce good correlation, ie. C(8i,8;) = 1, and for

no correlation, ie. C(8i,8/) = 0. Average displacement of particles from /; to I, is
3,
the nominator of Eq. (4.10) and Ar is the denominator.

indicated by index of the maximum correlation, (8},0".). The average displacement is

The size of the interrogation window is a disadvantage in PIV. A rule of thumb
exist where the size of the interrogation window should be at least be 4 times of the
displacement. However, this is no longer a concern since research-grade digital cameras
can capture two images within 2ms, which would give a very short displacement. With
such cameras, the main concern is the amount particles within the interrogation window.
An interrogation window is required to contain a few particles in order to produce good

correlation map and each window will be represented by one velocity vector in the



56 CHAPTER 4. EXPERIMENTAL SETUP

vector field. Thereby, the velocity vector is an average of the individual velocity of a
few particles in an interrogation window. An interrogation window of 32 x 32pixel? is
commonly used.

The discrete unit of pixel causes low spatial resolution of the velocity that is over-
came by using a Gaussian weighted interpolation,

In(C(i—1,j)) —In(C(i+1,))
2InC(i—1,j)—4InC(i, j)+2InC(i+1, )
In(C(i,j—1)) —In(C(i,j+ 1)
2InC(i,j—1)—4InC(i, j)+2InC(i, j+ 1)

xo =i+ (4.13)

yo=Jj+ (4.14)

The resolution is improved up to 0.01 pixel with Gaussian weighted interpolation.

Because the correlation map was calculated by shifting the second image one pixel
at a time for both vertical and horizontal directions of the image, the areas near the edge
of the image experience a lost of signal quality. In order to maintain any form of quality,
the size of I is usually made twice larger than /1. One can make the size of I, as large as
possible, however this may give false positive correlations. This means good correlation
maybe found far from the first interrogation area giving large velocity vector, which is
due to the random nature of particle patterns obtained in the flow recording.

Improvements to correlation can be achieved by moving the interrogation window
of the second image by the amount of corresponding displacement (Westerweel et al,
1997). This method requires at least two correlations. First, as a rough measure of
displacement and the interrogation window of the second image is shifted using this
information. The second correlation will give a correlation map closer to a Gaussian
profile. Thereby, giving better interpolation result.

In using Eq. (4.12), the mathematical operation is performed 4MN times. To im-
prove the speed of the operation, the correlation can be performed using Fourier trans-

form. In digital imaging, the two dimensional discrete Fourier transform is used,

1 Z Zf i j)e —v/—12n(ui/M~+vj/N) 4.15)

llj]

and the inverse transform is

N
ZF FZTE(W/M-FV]/N) (416)

v=1

ME

u
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The transformation is symbolized by ¥ and the inverse transformation is F -1,

Commonly fast Fourier transform is used for PIV. The correlation is formulated as
R=FYF)*F*(h)) (4.17)

and the normalized correlation map is

R

c— 4.18
VEict M1 (i, )/ Limi N2 (i /))? 19

where 7™ is the complex conjugate of .

In three-dimensional flow, the velocity component normal to the measurement plane
is as important as the other components. To measure the normal component (Willert,

1997) configured PIV for stereoscopic use; this configuration is called stereo PIV.

In stereo PIV, two cameras are pointed to a point on the laser sheet illuminating the
flow. The projection of the flow in the object plane onto the image plane of each camera
provides two views of the flow which can be reconstructed using stereo projection. In
optical terms, the object plane is the location of the real object perpendicular to the
optical axis and the image plane is the surface of the sensor where the real object is
projected in the optical system. The cameras are commonly in an angular configuration
known as the Scheimpflug configuration, which improves the focus of an image by
setting the lens plane at an angle respective to the image plane (Zang and Prasad, |1997).
The Scheimpflug configuration specifies that object, lens, and image planes intersect
with each other as shown in Fig.

For each camera two-dimensional images are recorded and two-dimensional dis-
placement vectors are obtained by using the image analysis explained in Three-
dimensional velocity vectors can be obtained by reconstructing from two sets of two-
dimensional velocity vector field that are acquired simultaneously from two viewing
angles. The reconstruction method is related to the position of the cameras with respect
to the object plane. In Soloff et al (1997), the reconstruction method is related to the

camera calibration by approximating the projective function from images obtained from
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Y

Figure 4.5: The Scheimpflug configuration for stereo PIV.

the calibration process.
F(x) =ag+ajx; +axx; +aszxz + a4x%
+asxixy + a6x% + a7x1x3 + agxrx3
+a9x§ +a10x? —|—a11x%x2 +312x1x% (4.19)
+ a13x% + al4x%x3 +ajsxixox3 + 316X%X3
+ 317X1X% -+ alg)sz%
where a; are vector valued coefficients that are obtained from the calibration and x;

are the coordinates in the objects plane, (x1,x2,x3). The projective function relates the

object plane with the image plane.
X =F(x) (4.20)

where X is a four element vector representing the coordinates of the image plane,
X = (X!, X),X2,X3), where the superscript (1),(2) is the notation for camera 1 and
2, respectively. From the calibration plane, x is known and from the calibration images,
X is known. The coefficients, a; from Eq. (4.19)), can be calculated using the least square
approach.

The particle image displacement is

AX = F(x +Ax) — F(X) 4.21)
AX ~ VF(x)Ax (4.22)
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in tensor form, VF, is formulated as

oF;
VF = (VF),; = o Fij (4.23)
withi=1,2 and j = 1,2,3. In index notation,
(1) M) 1) ()
AX, Fy F, F173
Ax (D 0 g g || A0
= o ] e @24
AXl() Fl(’ ) F1<’2> Fl<’3> Axs
2 2 2 2
AX, EY F, B

The equation solves for the three dimensional particle displacement. With an overes-
timated system such as Eq. (4.24), the displacement is calculated by the least square
method.

Ax = (VFTVF) "' VF” AX (4.25)

The out-of-plane displacement, Axs, is given by recording the calibration plate at several
out-of-plane positions. The advantage of the calibration method is that the aberration
of the image caused by the lens will be included in the projection function giving high
accuracy in the velocity reconstruction.

The stereo PIV configuration allows the measurement of three velocity compo-
nents on a plane. It depicts a slice of three-dimensional flow. The investigation of
three-dimensional flow also requires the measurement of the velocity gradient normal
to the measurement plane. This gradient can be measured by investigating the three-
dimensional flow on several measurement planes offset along the normal direction.

A home built stereo PIV was used in the measurement of flow velocity. Two Red-
lake Megaplus ES 1.0 digital cameras were used in Scheimpflug configuration to obtain
images with good focus for every points in the measurement plane (Zang and Prasad,
1997; |Prasad, 2000). The Scheimpflug condition was fulfilled with Nikkor 85mm spe-
cial perspective lenses attached to each camera (Fool [2001). Each camera was focused
on an area close to the tip of the wing. The size of the viewing plane for each camera
was 1,017 x 1,008 pixels (Redlake MASD, Inc, 2001). Each camera was connected to
a frame grabber National Instruments PCI-1422 which has an 8-bit image depth (Na-

tional Instruments Co., 2001)). Illumination was provided by a Smm thick Nd:YaG laser
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Figure 4.6: Setup of PIV measurement system.

pulsed through a biconcave lens to produce a light sheet (New Wave Research, [2003)),
TiO; tracer particles, which has particle diameter of 20-200 um and specific density of
0.01-0.04, were used and produced images of particles of approximately 3-4 pixel di-
ameter (Ishihara Sangyo Kaishal 2006). The particles were homogeneously distributed
at a concentration of approximately 0.018%. After approximately 1000 flapping cycles,
a thin layer of particles appeared on the floor of the tank. However sufficient particles
remain suspended in the water. From this layer, we assume no large-scale circulation of
flow occurred within the tank. The measurement configuration is illustrated in Fig.
To measure the velocity gradients in all three directions of space. Measurements
were conducted on several measurement planes separated a few millimeters in the nor-
mal direction of the measurement area. For accurate displacement of the measurement
plane and in order not to repeat the calibration process for every displacement, the laser
sheet position relative to the tank was fixed and the actuating mechanism, motor and
flapping axis, were set on a single axis traversing stage with 0.05mm traverse accuracy.
To ensure that the position of the flapping plate was fixed during the measurement, the
traversing stage was equipped with a clamp and the frame that housed the rotation axis

was clamped as well.

An inertial damper was attached on one end of the motor and a coupling were at-
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tached on the other end, where the rotation of the motor’s axis was transferred to the
flapping axis by a polyurethane timing belt to minimize the effect of vibration from the
motor.

One flapping cycle, 0 < ¢ < 2m, was discretized into 20 phase angles with the phase
angle step A¢ = 0.05f. Each measurement collected a large number of image pairs.
The recording of an image pair was separated by Ar = 2ms for each exposure. The
normalized phase angle was ¢ = 0,0.05,---,0.95 to represent one flapping cycle, 0 <
o< 1.

Particle images were processed with a two-step algorithm (Westerweel et al, |1997)
with 32 x 32pixel? interrogation window and the calibration method (Soloff et al,|1997)
was used to reconstruct the 3D velocity field with five calibration planes, z = (—2.5,—1,
0, 1,2.5)mm, to approximate a fourth order projection polynomial. Phase averaging was
used to minimize the random error and a new term appeared in the governing equation
because of that. In turbulence, this term is called the Reynolds stress, which is a product
of the fluctuative velocity. The velocity fluctuation, is the difference of the instantaneous
velocity with the phase-averaged velocity.

The calibration plate was made from water resistant paper and the calibration image
was printed on it. The calibration image consisted of white dots to mark the position of
the calibration points as shown in Fig. These markers were 1.5mm in diameter and
were set 3mm apart. The markers were circular and had constant intensity value of 255.
The marker at the center of the calibration plate was shaped as a square to indicate the
center of the recorded images. The calibration paper was attached to an aluminum plate
with double sided adhesive tape. Additional thickness of the paper and the adhesive
tape was taken into account by carefully positioning the calibration image at the middle
of the laser sheet. The calibration plate was positioned by attaching it to a two-axis

traversing stage which has traversing accuracy of 0.05mm.
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Figure 4.7: Timing chart of to synchronize PIV with flapping motion.
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Figure 4.8: Calibration image. The center marker of the plate was set to square to

indicate the center of the recorded image.

Figure 4.9: Markers indicate calibration position to estimate the projective function of

stereo PIV.
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4.3 Strain gauge measurement

To validate the method, the torque of the flapping axis was calculated from PIV infor-
mation and compared with load measurement. L.oad was measured with micro strain
measuring gauges, KSP-2-120-E3, with the approximate gage factor of 120 (Kyowa
Electronic Instruments Co., Ltd., 2010b). The gauges were wired to the Wheatstone
bridge to record the shearing moment on the axis of rotation because of the forces act-
ing normal to the surface of the wing (Kyowa Electronic Instruments Co., Ltd., 2010a)).
Strain gauges were applied at opposite sides of the rotational axis at approximately 10
mm off the edge of the plate. Measurement sampling rate was 30 Hz and sampling time
of 100 cycles was used. PIV measurements and strain gauge measurements were con-
ducted simultaneously. The Wheatstone bridge was connected to the strain amplifier,
DPM-700B (Kyowa Electronic Instruments Co., Ltd., |2004), where the voltage signal
was stored on a PC by using a data acquisition system (National Instruments Co., 2000).

The motion of the flapping was measured by using a linear displacement laser sensor
from Keyence Corporation (2006). The laser was targeted not on the flapping plate but
onto a plate that was attached to the vibration absorbing damper that was installed on
the rotating part of the motor. The rotation of the target plate was off the axis of rotation,
therefore the directly measured displacement was not symmetrical. With the motor off,
the laser hit the position of the target at 25.38 mm radial distance and 1.2 mm above the

rotational axis as shown in Fig. The analytical displacement in mm, A, is

A=— <—1.2tan(n+9)+%) (4.26)

The direct measurement was compared by analyzing the off-axis displacement, as shown
in Fig. 4.11]

The strain gauge measurement setup is given in Fig. 4.12] The strain gauges were
set 10mm behind the flapping plate. The load of the rotational axis was calculated by
the configuration showed in Fig. The bending moment caused tensile extension on
one and compression on the other. The torsional moment caused the tensile extension

of both of the strain gauges. The combined resistance of the strain gauges is
Rserial = Ra+Rp
=2R

4.27)
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Figure 4.10: Setup for the measurement of flapping plate phase angle using linear dis-
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Figure 4.11: Comparison of the measured displacement and analytical displacement

based on the position where the laser was targeted, Eq. @

and the change of the strain gauge because of strain is

Rserial + ARserial =Rs+ ARbending + ARz‘orsion +Rp— ARbending + ARtorsian
= 2R+ 2ARorsion

(4.28)
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Figure 4.12: Setup for strain gauge measurement.

and the measured voltage when there is no strain is

Rierial R >
Vg = - V.
¢ <Rserial +R R+ R/2 >

2R R\ (4.29)
3R 3HhR) P

0

and when there is strain,

Vi~ (Rserial +ARserial R )
G~ : RS
Rserzal + R R + / 2

~ 2R+2ARt0rsi0n . R Ve
3R 3hR) S

2ARtorsion
~|—— | V.
(255 )

L

(4.30)
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Figure 4.13: Electrical setup for the measurement of torque.
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Figure 4.14: Calculation of torsion.

Figure 4.15: Calculation of bending.

To ensure that enough strain was exerted on the flapping axis. The flapping axis was
made of Polyacetal, which has an elastic modulus of 2.76GPa. The value of the elastic
modulus is 4% than that of an aluminum alloy 2017, 72.4GPa.
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Chapter 5
Control volume analysis

This chapter presents the qualitative and quantitative visualization and analysis by con-
trol volume analysis of the flow generated by a flapping rigid plate. The measurement
setup is explained in and the accuracy and measurement uncertainty is discussed
in §5.2] Qualitative visualization with dye ink is presented in The result of stereo
PIV is processed to visualize the flow structures quantitatively in The dynamics of

the vortex flow is investigated in §5.5|and final remarks are given in §5.6]

5.1 Measurement setup

Stereo PIV measurements were done parallel to the xy-planes to produce the three di-
mensional planar field around the mid-chord section and leading edge section. The
aeronautical terms leading edge and wing tip are borrowed to indicate the edge of the
wing and its tip.

For the control volume analysis, the flow along three xy-planes were measured at
z=(0,5,10)mm to analyze the three dimensional effect of the half-size of the plate as
shown in Fig. In this case, the measurement planes were set apart because there
is no need to calculate the components of velocity derivative for the control volume

analysis.
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_Axis of
rotation

Figure 5.1: Position of measurement planes parallel to xy-plane measured for control

volume analysis. The plate is illustrated in dark gray.

5.2 Accuracy and measurement uncertainty

Several factors affect the accuracy of the measurements. Misalignment was measured
using the method described in |Coudert and Schon/ (2001) with a set of 50 images taken

by the left and right cameras of one phase angle. The average misalignment was found

to be 0.14mm (5% of the interrogation area) in the horizontal direction of the image and
0.18mm(6.4% of the interrogation area) in the vertical direction leading to uncertainties
of the velocity measurement as high as 0.15% in (u), 0.12 % in (v), and 0.12% in (w)
relative to U. Another factor that affects the accuracy of our measurement is the wing
tip reflection that was observed at high phase angles. Reflection of the laser light at the
wing tip was detected by using a median intensity filter and the intensity of the reflection
was substituted with background intensity.

Measurement uncertainty was determined by the measurement of fifteen groups of
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JB =55.0108 JB=3.8155

(a) Before treatment (b) After treatment

Figure 5.2: Velocity distribution at X =0 and Y = 0.5.

velocity at one phase angle (Coleman and Steelel |1995). Each group recorded 1000
cycles of data and the velocity data was treated as described in the previous section.
With a 95% confidence level, measurement uncertainties of phase-averaged velocities
relative to U of an area randomly selected at x/c =0, y/c = 0.5 are 3% for (u), 2% for
(v) and 2% for (w). The temperature of the water tank was measured before and after the
stereo PIV measurement and shows that the temperature fluctuation was 0.1°C at most
during the whole run of the stereo PIV measurement. The probability density function
of the velocity is shown in Fig. [5.2] Gaussian distribution of this data was confirmed

using the Jarque-Bera test as formulated in Eq. (5.1).

22
JB = g(sﬁw) (5.1)
B i3
s = P (5.2)
fa
Kk = _* 53
e (5.3)

where n is the number of observation, S and K represent the sample’s skewness and
kurtosis, respectively. fi3 and fi4 are the estimates of the third and fourth central moments
and 62 is the estimate of the variance. Values of JB closer to zero indicates better
resemblance to the Gaussian distribution.

After treatment, the sample closely approximates the Gaussian distribution as shown
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Table 5.1: calculation of Skewness (S), Kurtosis (K), and the Jarque-
Bera test (/B). For Gaussian distribution, S = 0, K = 3, and JB = 0.

before treatment after treatment
S K JB S K JB
u 0.36 3.90 55.01 0.14 3.14 3.80
y -0.39 2.94 26.14 -0.10 2.83 1.26
w -0.39 3.32 30.04 -0.26 2.98 11.59

in Table This approximate agreement indicates that the variables measured can be
considered to be random. Thus, the measurement of one phase angle for every cycle
is considered to be, within reason, free of other organized structures, such as reflected

vortices.

5.3 Qualitative visualization

Qualitative flow visualization was achieved by injecting blue pen ink next to the rota-
tional axis. The ink was injected at approximately 2mm below the rotational axis from
a pipette, which has an inner diameter of 1.5mm, as shown in Fig.[5.3] The flow was
recorded separately, from the front and from the top of the plate, with a 30fps digital
camera.

The evolution of the flow phenomena around the flapping plate is shown in Fig.
at ¢ ~ 0.25, when the plate is at the end of its flapping motion, and Fig.
at ¢ ~ 0.45, when the plate starts its return stroke. Streaklines were visualized using
blue dye and, in the snapshots, the plate is highlighted by a yellow frame and the tip of
the plate by a red line. The combination of views suggest a helical vortex structure on
the edge of the plate. Figure and [(d)| shows the front view and Fig. and
shows the slanted top view. These viewpoints are depicted in Fig. as well as the

point of dye injection.
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(a) Hlustration of the vortex structure generated (d) Front view, (]) ~ (e) Top view, (1) 0.45.

by the flapping plate. 0.45.

Figure 5.3: Snapshots of visualization of the flow around the wing with blue dye. The

wing is marked with yellow highlight and the wingtip with red.

The dye was injected while the plate was moving and was quickly diffused toward
the tip of the plate along its edge. The dye produced streaklines as shown in Fig.[5.3[b)}-
The streaklines at ¢ ~ 0.25 behave as a steady stream flowing along the edge of the
plate, Fig. and as a rotating structure in the clockwise direction, Fig. The
dye was diffused near the tip of the plate. In the return stroke, the dye was convected
around the edge of the plate as shown in Fig.

Based on dye visualization, a possible flow structure is sketched in Fig. The

“legs” extend along the edges of the plate with opposite rotation and are connected with
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the “neck” and “head”.

5.4 Quantitative visualization

5.4.1 Discretization of the quantitative visualization

The second invariance denotes the dominance between the strength of the rotation com-
pared with that of the strain as indicated in Eq. (2.21) and rewritten in this section as

Eq. (5.4).

0 = ([I2* ~[ISI*)

1w dup\|P |1 (i dui )|
- 2 axj' ax,- 2 axj' ax,- (54)
_ 9 du;
B axJ' ax,'
For the phase-averaged velocity field, Eq. (5.4) was decomposed into
i) Auj) [ ou ouj
<Q> T ax]' ax,- B ax]' Bxl- (55)
Equation (5.5) was discretized as
A Aluy) ) Aug Au
(Q) ~ Ay Au o\ Ay Ay (5.6)
where
a_f%A_f:f(x_FAxvy?Z)_f(x_Ax?y;Z) (5.7)
ox Ax 2Ax ’
of A _ fley+Ayz) — flay—Ay2) 5.8
dy Ay 2Ay )
of Af _ flxyz+Az)— f(xy,z—Az) 5.9

dz Az 2Az
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and next to the boundary, the one-sided formulation was used,

a_f —~ g _ —3f(x,y,z)+4f(x+Ax,y,z) —f(x—l—ZAx,y,z)

dx  Ax 2Ax (5-10)
of Af  =3f(x,y,2) +4f(x,y+Ay,z) — f(x,y+2Ay,7)

9 A _ (5.11)
dy Ay 2Ay

al ~ g _ —3f(X,y,Z)—|—4f(X,y,Z—|—AZ) —f(x,y,z—l-ZAZ) (5.12)
9z Az 2A7 '

where Az = Az or Az = —Az according to the orientation of the boundary.

5.4.2 Result of visualization

Figure shows a snapshot of the velocity field around the flapping plate at ¢ = 0.55.
In this figure, a part of the flapping plate is represented by the gray square. The arrows
indicate the in-plane components of velocity, (u) /u and <V>/U, and the color indicate the
out-of-plane component of velocity, (")/y. Three measurement planes are presented
from the bottom plane in Fig. to the top: the mid-chord plane z/c = 0, the one-
quarter chord plane z/c = 0.25, and the leading-edge plane z/c = 0.5. Several terms
related to the flapping plate are leading-edge and tip for the spanwise edge of the plate
and the chordwise edge of the plate, respectively. The surface of the plate moving
towards the fluid will be called the front-surface and the opposite surface will be called
the rear-surface. Figure [5.4] shows three-dimensional velocity distribution around the
plate. Most notable features are the rotational structure around the leading-edge of the
plate indicated by the distribution of (w), the spanwise flow towards the tip of the plate,
chordwise velocity distribution near the tip of the plate, and the rotational structure
around the tip of the plate.

The rotational flow structures were visualized by the second invariance, Eq. (2.21)),
and by streamlines, Eq. (2.22), in Fig.[5.5|for the downstroke sequence on the measure-
ment plane at z/c = 0.5. The downstroke of the flapping plate is defined for 0.25 < o<
0.75.

The contour in Fig. represents the magnitudes of (Q) given in the legend. Two
dimensional streamlines are represented by red lines depicting the flow motion along

the x and y directions. In the figure, the plate is represented by the gray patch. Regions



76 CHAPTER 5. CONTROL VOLUME ANALYSIS

(w) U

-1 -0.5 0 0.5 1

Figure 5.4: Three dimensional velocity distribution at ¢ = 0.55. )y, ) /y are repre-

sented by vectors and ()/y by the colors represented in the legend.

where (Q) < 0 are the location of the vortical structures. Additional structures are visu-
alized by the streamlines that forms rotational lines. These curves are symbolized with

TV with “+” and “—” signs to indicate the counter-clockwise and clockwise rotation.

The region around the plate in Fig. has (Q) < 0 caused by shear flow which de-
velops into a vortex. This vortex disappears for a while at 0.35 < ¢ < 0.45 and reappears
afterwards on the rear-surface of the plate. At ¢ = 0.35, the streamlines changed direc-
tion moving towards the rear-surface of the plate and a rotational structure begins to
develop as depicted by both streamlines and (Q) as shown by TV2+ in Fig. The
vortex at 0.55 < ¢ < 0.65 follows the motion of the plate and bifurcates away from the
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Figure 5.5: Vortex identification at z/c = 0.5 by (Q) presented as a contour. Streamlines
are depicted in the field as red lines that do not relate to the contour legend. Legend
depicts the magnitude of (Q) (b©)*/;2.
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plate close to the tip. At ¢ = 0.75, when the downstroke ends, the vortex moves closer
to the plate from its downward momentum as observed by the streamlines in the region
where (Q) < 0. Rotational streamlines are observed above the top of the vortices in
counter-clockwise direction (T'V2+) as shown in Fig. At0.65 < $ <0.75
a second counter-clockwise rotating streamlines appear near the tip, TV1+. In the re-
gion where (Q) < 0 where the vortex has “fully-developed”, the streamlines are grouped
together showing a relatively fast flow in that region moving toward the tip. From this
region several streamlines diverge, moving toward the surface as a result of the vortex
moving with the plate.

In Fig. observations of the streamlines at z/c = 0 show less rotational elements
in the streamlines and the flow moves toward the rear-surface of the plate and away from
the front-surface of the plate. The vortex is observed around the tip and is weaker than
the one on z/c =0.5.

The flow structure of Figs.[5.5H5.6]are sketched in Fig.[5.7|for all the measured phase
angle. The plate is represented as the red line, the vortex at z/c = 0.5 is represented by
the blue line, which will be called the leading-edge vortex and symbolized with LEV,
and the vortex at z/c = 0 is represented by the dashed-blue line, which will be called the
mid-chord vortex and symbolized with TV.

Observations of (Q) in Fig. shows that the evolution of the vortex system can be

broken down into several phases relative to the motion of the plate:

1. accelerating phase, 0.25 < ¢ < 0.50 and 0.75 < $ < 0
2. decelerating phase, 0 < ¢ < 0.25 and 0.5 < ¢ < 0.75
3. resting phase, when U = 0, § = 0.25 and ¢ = 0.75

Figure. shows two vortices on the leading edge of the plate at ¢ = 0.05 to ¢ =
0.15. One large leading-edge vortex and a smaller one are rotating in the same direction.
These vortices are indicated as LEV+. The larger of the two is extended to z/c =0
(TV—) and grows up to 150% of the flapping wing amplitude as the plate approaches
the resting phase. The smaller one does not show any extension. It is most likely that
only one large structure on the rear-surface of the plate exists. This description of the
leading-edge vortex is due to the measurement configuration giving the cross-section of

the leading-edge vortex on the measurement plane. At ¢ = 0.20, a vortex attached to the
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edge of the plate (LEV —) appears in the opposite direction of the leading-edge vortex.
This opposite vortex is extended to the mid-chord plane (TV—).

At ¢ = 0.30, the leading-edge vortex develops into a separated counter-clockwise
rotating vortex. From qualitative visualization, it was known that the leading edge vortex
is diffused around the edge of the plate and dissipates. The mid-chord vortex grows
weaker and is stretched up to 200% of the flapping amplitude. At ¢ = 0.35 and ¢ = 0.40,
the mid-chord vortex reverses its rotational direction and moves to the rear-surface of
the plate. Throughout the accelerating phase, a leading edge vortex is observed on the
front-surface of the plate.

The decelerating phase of 0.5 < ¢ < 0.75 shows the opposite vortical structures as
0 < ¢ < 0.25. The leading-edge vortex on the front-surface of the plate during the
accelerating plate is diffused to the rear-surface of the plate and the mid-chord vortex
strengthen then weakens at ¢ = 0.70.

The accelerating phase of 0.75 < ¢ < 0 also shows the opposite vortical structure as
the other accelerating phase at 0.25 < ¢ < 0.50. Weak mid-chord vortices are observed
and the leading-edge vortex appears on the front-surface of the plate before being dif-

fused to the rear-surface at ¢ = 0.95.
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Figure 5.7: Sketch of vortex structure from ¢ = 0 — 0.95.
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The sequence should be

read from fop to down and from left to right. Vortices at z/c = 0.5 are represented by

continuous blue lines, leading-edge vortex (LEV), and at z/c = 0 by blue dashed lines,

mid-chord vortex (TV). The plate is represented by a red line. Arrows indicate the

rotational direction. For the leading-edge vortex, the rotational axis is in the spanwise

direction.
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5.5 Control volume analysis

5.5.1 Discretized control volume analysis

Force can be calculated within a specific part of the flow by defining a control volume
as shown in Eq. (2.5). The force is defined by the integral of the momentum within a

control volume, which is rewritten here as Eq. (5.13)),

Fp/

After decomposing the momentum equation to the phase averaged component and fluc-

) (u; nde (5.13)

tuating component,

3¢

atv

(F)i=

) (u; nde+p/ nde (5.14)

The first term on the left hand side of Eq. (5.14) is the average unsteady term, the second
term is the average convection term, and the last term is the average of the variation of
the convection from the product of the fluctuating velocity component.

The integration was done with finite volume method, where the unsteady term is

formulated as N
o(u;) Au;)
———LdV =) —FLAV 5.15
)% Y (5.15)

where i indicates the node number and N = V/AV is the number of nodes. Expanding

the discrete form of the unsteady term to its components, (#;) = ()¢, (v)¢, (w),

N
Afu)
Funsteady,x = (5.16)
L
N c
A(v
Funsteady,y = Z i > AV (5.17)
= A
N c
A{w
Funsteady,z = Z <A > AV (518)
i=1 (I)
The convection term is discretized as
1 N
/S<u,~><uj>ﬁde: Z Z Z ) (u)ijAS (5.19)

k=11=0i

N
I
—_
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(a) Definition of S| and S3. (b) Definition of S, and S4. (c) Definition of S5 and Sg.

Figure 5.9: Definition of the control surface for each faces of control volume, V.

where k is the direction of the convection force, [/ is the surface orientation. Equa-
tion[5.19)is better explained when it is expanded to its vector form in Egs. (53.20)-(5.22),
where the orientation of (x,y,z) and S; to Se are shown in Figs.[5.8|and[5.9]
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i=1 (5.20)

N

Y Aty [ ) (6,5, 2 A2) — ) (w) (05, )]
i=1
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S> Sy

+ e ass [ ()1
+ [ rnds+ [ o)) (-1)as
N AyAz

=1 (5.21)

N

+ 1 Ay | 9) () (60,2 2) = () ) 0.2
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Feomection = [ (09} (et ) (v + o) () ) dS
= [, ot (-1ds+ [ o)) (+1)ds

1<W>(V)(+1)dS+ S3<W><V>(—1)d5

wyw)(+1)dS+ | (w){w)(—1)dS

s Se

i=1 (5.22)

N

+ Y axy () ) (50,2 80) = ) )02

The differentiation of the last term of Eq. (5.14) follows similarly with the convec-

tion term.
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Fvariatiomx :/S <<ulul>nx + <M/V/>l’ly + (u/w’)nz> ds
— [ W) (~1)ds+ / (Wu)(+1)dS
S2 S4

+ [ @VY(+1)dS+ [ (V) (=1)dS
Sy S3

+ [ WwW)(+1)dS+ [ (W'w)(-1)dS
Ss Se

i=1 (5.23)
() (o Ay.2) + () (5,3,2)|

() (5.3 + A9.2) + () (x+ Ax, y+A9.7)|

() (.3,2) + (V) e+ A, )|

Y Ay [ () (6, 2 A2) — (W) (5, 2)|
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Fariation, Yy =

/ o ny+<v’w’>nz> ds
/ dS+/

+/< V(1S + [ A1) ds
(v'w')
Ss

+ w)(+1)dS+ | (Vw)(—1)dS

Se

N
=) % [<V'u’>(x+Ax,y+Ay7Z) + <V'“'>(X+Ax’y’z)]
~ (5.24)

=z

3 iy )+ )

1

‘ e

N
+)
i=1

Ay
(V) (03 + A 2) + (V) (x4 A,y + Ay, 2)|
Ax

099+ ) e )

|
M=

N

+ Z AxAy [(v’w/> (x°,y%, 24+ Az) — (VW) (xc,yc,z)}
i=1
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Fuariaions = | (/s yrc+ !y - /) i

= [ WuY(=1)dS+ [ (Wu')(+1)dS
S S

—|—/ WYY (+1)dS+ [ WV)(=1)dS
S1 $3

/ Ww)(+1)dS+ [ (ww')(—1)ds
Ss Se

=1 (5.25)

N
Y Ay [ (W) (6,5, 2 A2) = (W) (5, 2)]

The total force is

(B) =P | B oty + (Ebeomeston+ (] 5.26)
and the normalized force is
Ciry = %
=1 h p‘l)ﬂ be (211]2& (Fi)unsteady + (Fi) convection + <Fi>variati0n) (5.27)
_ Anf 2

- Uzbc <Fi>t,msteady + m <<Fi>conveclion + <Fi>variation>

Equation (5.27) is expanded to its bases x, y, and z,

w(07) ' (1) Ce(dy) C (&)
(00 | = |G @) |+ [ Cr(di) | + | CH(6r) (5.28)
(00| [CYG)] |G| [CH(Gn)
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where the superscript “u,t” is the rate of change of momentum, “uu” is the momentum
flux, and “u’u/” is the product of the fluctuating velocity. The force coefficient C(E) is
shortened as Cy,.

A three-point moving average smoothing function was applied to the force coeffi-

cients, o A o o R
Cxi (q)k - Aq)k) + 2Cx,- (q)k) + Cxi (q)k + Aq)k)
4

where @y is the discrete phase angle. The analysis follows the arbitrary choice of control

Cy, (0x) = (5.29)

volume size and location in the PIV velocity field to analyze the physics of the flow

generated by flapping motion as shown in the next section.

5.5.2 Result of control volume analysis

The out-of-plane velocity distribution provides a way to assess the flow three-dimension-
ally. The size of the control volume was defined to partially include the plate in order to
evaluate the physics of the flow and the effect of the plate’s inertia on the flow inside the
control volume. Equation was used to calculate the force acting on the control
volume, which included the pressure and viscous terms acting on the control surface.
As a consequence, the calculation is dependent on the size of the control volume. This
dependence is exploited for the evaluation of flow physics. Equation calculates
the force due to the flow within a control volume fixed in space, not the force acting on
the plate. Thus, in this study the added mass was not compensated.

As explained, Eq. is dependent on the control volume used for the analysis.
The control volume analysis on each z positions of the measurement planes are defined
as

—1.84 <x < 1.84, —1.12<y<1.12 (5.30)

as shown in Fig. Figures are the results given by the conditions above.
The evolution of C, and C,, are presented in Fig. Atz/c=0and z/c =0.25,C,
has a sinusoidal form and is equal in magnitude and phase for both Reynolds numbers
and Cy is smaller than Cy. The streamlines show that the flow is diffused along the x-
direction more prominently than in the y-direction. Comparison of C, for both Reynolds

numbers at z/c = 0.5 shows that the magnitude of C, depends on the Reynolds number
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Figure 5.10: The control volume defined in Eq.[5.30,

at 0.25 < ¢ < 0.45 and 0.75 < ¢ < 0.95 while, at other phases, it is equal in magnitude
to that of Cy.

Force coefficients at z/c = 0.5 are presented in Fig. which compares C, of both
Reynolds numbers with the path of the wing tip. In this figure, the phase lag between
maximum force and maximum acceleration of the wing is observed to be approximately
Ap=0.1.

In Fig. [5.13] the results of Fig. [5.12] are decomposed into its individual terms as
pointed out in Eq. . Here, Cy" represents the unsteady term, Cy" represents the

average momentum flux, and C)’c‘/”l represents the turbulent momentum flux. Figure
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Figure 5.11: Force coefficients for z/¢ = 0 (mid-chord), z/c = 0.25 (1/4 chord), and

z/c = 0.5 (leading edge). Results are after the moving average.

shows local increases for Cx”’t at 0.3 < (T) <0.45 and 0.8 < (f) < 0.95. These increases
can be observed in Fig. where the leading edge vortex at ¢ = 0.25 disappear due to
outward diffusion as also shown by the dye visualization in Fig.

In Fig. CY¥" shows no distinguishable flow phenomena throughout the flapping
phase. To describe the mechanism of momentum transfer, we now select a smaller
control volume so that the momentum flux is explicitly evaluated. Forces in Fig. [5.15]

were evaluated using a smaller control volume,
—0.64<x<0.64,-1.12<y<1.12 (5.31)

This control volume is defined in Fig. [5.14]

Figure shows large magnitudes of Cy* around ¢ =0.4 and § = 0.8, as compared
to Fig. [5.13] due to the flux of average momentum passing across the control surface.
C“ is delayed further than Cy ! reaching values as high as A = 0.05. The relation of the

magnitude of C* to the phase angle is related to the size of the selected control volume.
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Figure 5.12: Force coefficients for z/c = 0.5 (leading edge). Results are after the moving

average.

The selection of a smaller control volume will detect the momentum flux more strongly
due to the diffusion of the vortex to the surrounding fluid at rest.
To evaluate the flow structures around the edge and near the tip, Eq. (5.31) was

divided into two control volumes,

—0.64<x<064, —1.12<y<—0.4 (5.32)
—0.64<x<064, —04<y<I1.12 (5.33)

These control volumes are defined in Fig. [5.16| where the volume defined by Eq. (5.31)
will be called 7/, by Eq. will be called 7}, and by Eq. will be called 7.
Thus, V = V, + ¥V}, where ¥, is the volume covering the edge of the plate and 7/ is the
volume covering the tip and the region beyond the tip.

In Figs. |5.17H5.20, three rows represent force evaluation in ¥, V,, and ¥, from top
to bottom. Figure shows that the unsteady term, C};’t, at z/c = 0.5, is higher at
the region encompassed by 4/, than that by 9. Therefore, the vortex around the edge
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Figure 5.13: Force coefficients for z/c = 0.5 decomposed into: unsteady term C)Lf’t,

average momentum flux C¥*, and turbulent momentum flux C’;/“/. Calculated under the

condition in Eq. .

of the plate is the main source of the unsteady term because it experiences massive
changes more than the flow in %}. The unsteady term of 4, shows that at 0.5 < ¢ < 0.75
and 0 < ¢ < 0.25 the unsteady term is minimum, which depicts a “developed” vortex
structure behind the plate, as sketched in Fig.[5.7] In Fig.[5.17)the “developed” state is
reached more quickly for the low Reynolds number.

C; atz/c = 0.5 is plotted in Fig.|5.18| where by calculating Eq. in V, a positive
force at 0.3 < ¢ < 0.45 and a negative force 0.8 < ¢ < 0.95 are observed. Decomposing
V to V, and 1}, negative force is observed at 7, and positive force is observed at ¥}
for the aforementioned phase angles. Figure [5.7 shows that the flow encompassed by
V,at 0 < (f) <0.25and 0.5 < (T) < 0.75 includes a vortex structure that appears to be
an extension of the leading edge vortex moving outward (positive z-direction). The
sketch also shows that in the region of 7/, the leading edge vortex is not observed

because it was diffused outward and, as a consequence, C;(‘V,) of Fig. is negative
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Figure 5.14: The control volume defined by Eq. (5.31).

due to the existence of the new vortex formed around the edge of the plate. However,
the dynamics of the leading edge vortex are still distinguishable from the evaluation of
v,. This dynamic is also observable in Fig. The dye is behind the plate in

Fig.[5.3(b)H(c) and is diffused around the edge of the plate in Fig. indicating
the existence of a vortex attached to the edge of the plate with opposite rotation to that

of the leading edge vortex.

Forces in y-direction are of particular interest since the velocity profile at this direc-

tion has been studied by Jones et al| (1998) and Lai and Platzer (1999), among others,
as part of the study of flow caused by fluttering. They clarified the existence of the
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Figure 5.15: Force coefficients for z/c = 0.5 decomposed into: unsteady term C)LC'”,

average momentum flux C¥*, and turbulent momentum flux C’;/“/. Calculated under the

condition in Eq. (@)

Knoller-Betz effect, which is a thrust producing effect for a plunging or oscillating air-
foil. To see the same effect, the phase-averaged momentum flux, C)”,‘”, onz/c=0.51s
presented in Fig. [5.19] with the same volume decomposition explained by Eqgs. (5.32)
and . Gy" at V shows different graphs between low and high Reynolds numbers.
Cy" calculated with 7, of low and high Reynolds numbers fits well. Cy* of 7, produces
drag at 0.25 < ¢ <0.55 and 0.75 < ¢ < 0.05. The existence of drag at these phase an-
gles is related to the appearance of vortex attached on the windward surface of the plate.
Although CJ* of 7, shows discrepancies between the Reynolds number, it still produces
jet flow. This discrepancy is associated with the change of the flapping frequency of the
plate.

Cyonz /¢ = 01is shown in Fig. In one cycle, Cy* on v has greater magnitude
from 0 < ¢ < 0.4 compared to 0.6 < ¢ < 1 and is negative at 0.45 < ¢ < 0.55 for high

Reynolds number. At low Reynolds number a different graph is observed. Similar to



5.5. CONTROL VOLUME ANALYSIS 97

Figure 5.16: The control volume defined by Eqgs. (5.32)—(5.33).

Fig. the differences can be observed by performing an evaluation on 7, and . In
Vs, Cy" of low and high Reynolds numbers fit nicely. However, in v, Cy" for low and
high Reynolds numbers produce different curves, indicating a difference between the
two flow regimes similar to that depicted in Fig. However, the effect of momentum
flux on y-direction over time is the same, which produces a force directed along the
positive y-axis, regardless of Reynolds number or position, as shown in Table[5.2] Thrust
producing flow is depicted by the direction of the streamlines in Fig. [5.5H5.6] Here,

source elements are observed around the edge of the plate for the duration of flapping.

Table [5.3] shows the time averaged force resulting from Cy for both Reynolds num-



98 CHAPTER 5. CONTROL VOLUME ANALYSIS

(V)

(Ve)

u,t
T

c

(Vi)

u,t
T

——Re=1580 —— Re=3160
0 0.2 0.4 0.6 0.8 1

¢

Figure 5.17: C¥" at z/c = 0.25 calculated with ¥/ and decomposed into 7V, and ;.

Table 5.2: Time-averaged Cy" at z/c =0 and z/c = 0.5

z/c=0 z/c=0.5
Re=1580 0.02 0.02
Re=3160 0.02 0.04

bers on the edge of the plate. The values of Cy in Table [5.3 highlight the slight asym-
metry of the vortex shedding, which was also reported by [Lai and Platzer (2000) for a

plunging symmetric airfoil at zero free-stream velocity. By decomposition of 9/, the
value of Cy is seen to be negative for 1, and positive for V. For V), the value of Cy is
higher in magnitude at higher Reynolds number. Conversely, for 47, it is higher at lower
Reynolds numbers. This depicts the nature of the leading edge vortex where the flow
follows the motion of the plate and, around the tip, the flow is moving in the opposite

direction of the plate.
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Figure 5.18: C; at z/c = 0.5 calculated with 7’ and decomposed into 4, and ;.

Table 5.3: Time-averaged Cy at z/c = 0.5 calculated with V, ¥, and 1.

v Ve Y

Re=1580 0.0062 -0.0232 0.0281
Re=3160 -0.0164 -0.0348 0.0163

99
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Figure 5.19: G at z/c = 0.5 calculated with 7 and decomposed into 7V, and V.
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Figure 5.20: Cy" at z/c = 0.5 calculated with 7 and decomposed into ¥, and V.
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5.6 Concluding remarks

Quantitative flow visualization and the evaluation of force of a control volume were
applied to the phase-averaged velocity field and time-averaged velocity generated by
the periodic motion of a rigid plate. Velocity field were measured with stereo PIV in the
region surrounding the tip of the plate.

The calculation of the second invariance of the deformation tensor, (Q), depicts the
three-dimensional structure of the vortex around the plate but does not visualize the
dynamics of the structure. Additional information was visualized with streamlines for
the regions with (Q) < 0.

The selection of control volume size for the force analysis enables the investigation
of selected parts of the phase-averaged velocity field, which provides better understand-
ing of the vortex structures that influence force generation. By properly selecting the
size of the control volume, acceleration, and convection of the flow can be explained
using their respective terms in the integral equation of fluid motion.

Force calculated by control volume analysis of the phase-averaged velocity field
shows that the vortex attached to the surface of the plate plays a dominant role in the
generation of force. Delays in reaching the maxima of the force magnitude are caused
by the existence of the vortex structure of the previous stroke obstructing the motion of
the plate. Increases in the extremes of the force due to the Reynolds number only appear
in the unsteady term near the edge of the plate.

This study demonstrates the flexibility of the proposed control volume analysis in
analyzing features of the flow around a flapping plate. The lack of spatial resolution
in the z-direction results in an underdetermined vortex size. However, comparison with
qualitative visualization shows reasonable similarities and enables the study of vortex

structures produced by the motion.



Chapter 6

The pressure field around the flapping
plate

The estimation of the pressure field of the flow generated by a flapping rigid plate is
given in this chapter. The facility setup is given in Chapter 4. Measurements were
done with two measurement plane configurations as explained in §6.1] The validation
of measurement data and the measurement uncertainty were quantified in §6.2l The
numerical methods to solve the Poisson equation in the xy planes and xz planes are
explained in §6.3] and §6.4] respectively. The pressure field as the result of integrating

the Poisson equation is presented in §6.5and final remarks are given in §6.6

6.1 Measurement setup

For the surface pressure integration, at least three planes were required to solve the
three dimensional Poisson equation of each slice of the flow for each phase angle and
each Reynolds number. Two positions of the plate were investigated: at the mid-chord
section, three planes were measured at z = (—2,0,2)mm, and at the leading-edge sec-
tion, three planes were measured at z = (8,10, 12)mm, as shown in Fig. A sim-
ilar setup was used to record the leading edge vortices along the spanwise with mea-
surement planes parallel to the xz planes; the flow on three planes were measured at
y=(—12,—10,—8)mm and at y = (—2,0,2)mm as shown in Fig.

103
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Figure 6.1: Position of measurement planes parallel to xy-plane used for the integration

of surface pressure. The plate is illustrated in dark gray.
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Figure 6.2: Position of measurement planes parallel to xz-plane used for the integration

of surface pressure. The plate is illustrated in dark gray.
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6.2 Data validation and measurement uncertainty

Classification of the cause of the velocity fluctuation of a measured field needs careful
treatment because it will affect the estimation of flow properties. The fluctuation may
be caused by measurement uncertainty, which has random behavior and the other cause
of fluctuation is small-scale turbulence structures. The first source is inherent in any
measurement and the second one, if it exist at all, will be superposed with the first. In
this study, PIV was used to measure the flow near a flapping wing and a complex flow
is expected due to three dimensionality. Therefore, the fitness of sample was evaluated
for the entire sampling points. Statistics test for normality can be applied, because the
first source produces a normal distribution of the probability distribution function of the
instantaneous velocity and the second one causes a departure from normality. For PIV,
the result of the statistics test can be presented using a boolean map of the flow field.

In this paper, Shapiro-Wilk test was used to validate the uncertainty. Shapiro-Wilk
test examines the null hypothesis that a sample comes from a normally distributed pop-
ulation (Shapiro and Wilk, 1965). The Shapiro-Wilk test was chosen because it is suited
to process a large number of sample. The result of the test is an acceptance of the null
hypothesis. The rejection will come when small scale turbulent structures are stronger
than the inherent measurement uncertainty.

The Shapiro-Wilk test is formulated as

naixn)?
W = (%_1—1(1)_) 6.1)
iy (% — X)
where q; is
Ty —1
mV
. = 2
(alﬂ 7an) (mTV71V71m>1/2 (6 )
and m’ = my,--- ,m, are the expected values of the order statistics of independent and

identically-distributed random variables sampled from the standard normal distribution,
and V is the covariance matrix of those order statistics.

The criteria to reject the null hypothesis can be found from the W—p value table
(Shapiro and Wilk, [1965). if p(a) < W, the null hypothesis is rejected. o is called the

level of significance. In the above explanation of statistics test, the result may have type
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I errors at a rate of a. Namely, there is an o chance that the result is accepted when it
should be rejected (type I error is also known as, false positive).

A normally distributed sample has zero skewness and kurtosis. Skewness represents
the asymmetry of the probability of density function of a real valued random variable
from the mean value. Positive skewness shows that the tail of the right side of the
probability density function is longer than the left side. The skewness is formulated as

my X (= %)’

= = 6.3
S S VIR o

n i=1
Kurtosis represents the flatness of the probability distribution function of a real-valued
random sample. A sample with positive kurtosis will have a more acute peak around the

mean. The kurtosis is formulated as

PSP Y S G e M (6.4)
m3 G T (xi = 5)2)?

Departure of normality will show a departure of zero skewness and kurtosis.

In the evaluation of the periodic velocity field measured by PIV, the sample x; is the
cycle-to-cycle velocity distribution of each flapping phase. Therefore, x; = ui(x,y,z,(f))
for all measured cycles.

The Boolean map in Fig. shows the points where the sample departs from nor-
mality as evaluated by the Shapiro-Wilk test. The Boolean map shows the acceptance
(red) or rejection (blue) of the null hypothesis that the sample comes from a normal
distribution. The points that departed from normality was observed to be correlated
with the excess of kurtosis and skewness, as shown in Fig. and The depar-
ture from normality shows that the sample consists of fluctuations by flow structures
instead of only by measurement uncertainties. This non-normality is taken into account
by introducing the Reynolds decomposition of the governing equations.  The mea-
surement uncertainties were calculated as described in |(Coleman and Steele| (1995) and
their spatial average are G,),0,),0,) = (3%,3%,5%) of the maximum tip velocity of
the plate. The repeatability of the flow is evident from Fig. [6.4] In this figure, the ve-
locity profile along the x-axis at z = 0 and y = —c/2 from measurements taken on the
xy-plane and xz-plane are plotted together. The vertical bars in these figures indicate

the measurement uncertainties. These figures show that the velocity profiles of different
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Figure 6.3: Statistical evaluation of the velocity field by |(a)| the Shapiro-Wilk test,
Skewness, and Kurtosis for the flow at $ = 0.35. For red indicates normally

distributed sample and blue indicates a sample that deviated the normal distribution.

measurement plane orientation are within the measurement uncertainties. Especially for
(w), its profile varies around zero.

The symmetry of the flow can be seen in Fig. [6.5] for both low and high reynolds
number. The magnitude of the circulation of z < 0 and z > 0 are compared with each
other. The circulation was calculated from the velocity distribution on the xz-plane at
y = —c/2. The vertical bars are the ambiguity of the circulation due to measurement
uncertainty. This figure shows that the circulation around the two parts of the flow are
within the margin of uncertainty and the flow can be assumed to be symmetric along the

xy-plane.
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Figure 6.4: Repeatability of velocity measurements as shown by the velocity profiles at
z=0andy = —c/2 of (u), (v), (w) normalized by the maximum velocity of the tip, U,
for[(a)H(c)| Re=1580 and [(d)H(F)| Re=3160. The red line represents the velocity measure-

ments on xz-plane orientation, Fig.[6.1] and the blue line represents the measurement on

xz-plane orientation, Fig. @
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Figure 6.5: Symmetricity of the circulation (I'(Ub®) = [, o- dA) profile at Y = —¢/2
along the Z-axis for@Re: 1580 and@Re: 3160.
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6.3 Numerical method for solving the Poisson equation

in the xy planes

The method to estimate the pressure field around a flapping plate was derived in Chapter
The global mesh was applied on the measured velocity field and the local mesh was
applied attached to the flapping plate. Because the plate is moving, the velocity field of

the local mesh was relative to the non-inertial reference frame.

6.3.1 In the global mesh
The pressure equation in global mesh is formulated as

Plp) _du)d) P

/
a2 dx; ox | oxox; (i)

(6.5)

and the global mesh is shown in Fig. [6.6]
Expanding the tensorial indices, where x; = (x,y,z) and (u;) = ((«), (v}, (w)), Eq. (6.5)

becomes

(p)  p)  p) _

IR RO
-o| () (32) + (32) 2 (% 3%, 230

2y  F(WV) P (w'w) 2(uV'y  *(uw')  *(Vw')
+< ox? * dy? * 97> )+2< dyox * 0z0x * 0z0y )1

(6.6)

The derivation of Eq. (6.6) to the finite difference expression is discussed next in two
section: the right hand side, which will be denoted by a short-hand, y, and the left hand
side, V2 p-

Finite differentiation of y

The PIV velocity field is located on the corner faces of the numerical mesh. We want to

solve the pressure on the center node. The coordinates of the corners are given as (x,y,z)
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Figure 6.6: The definition of global mesh. The phase-averaged velocity field is on the
and the center nodes as (x“,y“,z). The velocity field on the center nodes are obtained by

blue grid and the pressure was estimated on the red dots. The black line represents the

interpolating the PIV velocity field, linearly, and are given as ((u)¢, (v)¢, (w)°).

plate.

The coordinates of the center nodes are given as

(6.7)

(x) + (x+ Ax)

(6.8)

as shown in Fig.|6.7|and the velocity u;(x,y*, z) is given as
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Figure 6.7: Definition of the position of the center nodes: x¢, y°.
()¢ = (u)(x,¥",2)
1 (6.9)
=1 (u(x,y,Z) +u(x+Ax,y,z) +u(x,y+Ay,z) +M(X+Ax,y+Ay,Z))
(=W, 2)
1 (6.10)
=1 (V(x,y,Z) +v(x+Ax,y,z) +v(x,y + Ay,z) +V(x+Ax,y+Ay,Z))
(W) = (w) (x,),2)
(6.11)

1
=7 (W(x,y,Z) +w(x+Ax,y,z) +w(x,y+Ay,z) +W(X+Ax,y+Ay,Z))

The spatial derivatives are evaluated for the center nodes as shown in the finite dif-

ferentiation scheme,

df _Af
or ~ Ax (6.12)
SO Ay + Ay 2) + [t Ax,y,2) — fxy+ Ay 2) = flx),2)
2Ax
of _Af
dy Ay

6.13
f(x-l—Ax,y—i—Ay,z)+f(x,y+Ay,z)—f(x—i—Ax,y,z)—f(x,y,z) ( )

2Ay

~
~
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special treatment is required for the derivatives with respect to z because of the length
of data available in that direction and the need to evaluate the derivative on the measure-

ment plane.

of _Af

0z Az

1 |1
~ 2_AZ L—L<f(x—|-AX,y+Ay,z+M)—l—f(X—i-AX,y,z—I-AZ)

4y -+ Ay z+AZ) + f(x,y,erM)) (6.14)
—%<f(x—|—Ax,y+Ay,z—Az)+f(x+Ax,y,z—Az)

—|—f(x,y—|—Ay,z—AZ) +f(x7y7Z_M>)‘|

at the ends of the length of data, the one-sided finite difference formula for the derivative

with respect to z was used,

aa—JZC = ZLAZ;I {—3<f(x+Ax,y+Ay,z)+f(x+Ax,y,z)—|—f(x,y+Ay,z)+f(x,y,z)>
+4<f(x+Ax,y+Ay,z+Az)+f(x+Ax,y,z+Az)
+f(x,y+Ay,z+AZ)+f(x,y,Z+AZ)>
— (e A,y + Ay, 2+ 282) + f(x + Ax,y, 2+ 2A2)

+f(x,y+Ay,z+2AZ)+f(x,y,z+2AZ)>]

(6.15)
where Az = Az or Az = —Az depending on the orientation of the boundary.
The second order derivatives were approximated as

82f N Azf . f(XC +AX,yC,Z) +2f(xcaycaz) _f(xc - Ax,yc,z) (6 16)
ox2 T A2 Ax? '
Pf A [+ Ay D) +2f(x,)2) — f(x ) — Apz) 6.17)
2 A2 Ax2 '
Of (A SN2 AY £ 2F (0 7) - (52— A (6.18)
02 " A Az '

where one-sided finite difference formula was used at the ends of the data. For z = zg,

9*f ~ A’ f _ SO 20) + 2 (6, 20 + A2) — f(5€,¥¢, 20 4+ 242) (6.19)
720 Ao AZ? .
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and for z = zuy,

0*f N A f O FE Y ) 21 (x4, zm — Az) — f(x€, Y 2 — 2Az)

~ = 6.20
02y Ay AZ? (6.20)

And the mixed derivatives are approximated as

If A
oxdy  AxAy

1
~ Axhy [f<x+Ax’y+Ava)+f(x,y,z) (6.21)

—f(x7Y+Ay,Z) —f(X+AX,y,Z)]

P Af
oxdz  AxAz

~o—— Ax Ax.y+Ay.z4+A
4AxAy[f(x+ 24+ A7)+ f(x+Ax,y+ Ay, 2+ Az)

_f(x7y7Z+AZ) —f(x,y+Ay,Z—|-AZ)
— flx+Ax,y,2—Az) — f(x+Ax,y + Ay, z— Az)
+f(x7y7Z_M) +f(x,y+Ay,z—M)

(6.22)

If A
dydz  AyAz

R ———— [f(X+Ax,y+Ay,Z+AZ) + f(x,y+Ay,z+ A7)
4AyAz

_f(x+Ax7y7Z+AZ) _f(x7y7Z+AZ)
—f(X+A.X,y+Ay,Z—AZ) _f(x’y+Ay7Z_AZ)
+f(x+Ax7y7Z_AZ) +f(x7y7Z_AZ)

(6.23)
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The acceleration is formulated as

afNA_f

o A
11
S {(f(x—{—Ax,y—l—Ay,z,H—At) + f(x+Ax,y,z,t + Ar)
+ [,y +Ay,z,t + Ar) +f(x,y,z,t+Af)) (6.24)

(f(x—I—Ax,y+Ay,z,t)—|—f(x+Ax7y72J)

0+ M) + (50|

Finite differentiation of V2 (p)

The right hand side was approximated by the finite difference formulation explained
above and will be represented as  for the rest of the discussion. The Poisson equation

in the global mesh is
?*(p) , 3*(p) , *(p)
ox2 + dy? + 072

=y (6.25)

and it was discretized as
<p>(xc - Axc7yc7z> - 2<p>(xc7yc,z) + <p> (xc +Axcaycaz)

sz
¢ € Ay -2 C ,C ¢ €4 AYS
N (p)(x,y° = Ay“,2) = 2{p) (x°,¥°,2) + (P) (x,)° + A, 2) 6.26)
Ay?
<p> (xcaycaZ_AZ) - 2<p>(xcaycvz) + <p> (xc7ycaz+AZ)
+ > =V
Az
in vector form,
[ p(x€,y¢,2—Az) T
Py =Ayz)
p(x“—Ax,y".z)
(b 32 d a2 | s | =y (6.27)
p(x° +Ax,y¢ 2)
POy +Ay2)
L p(x€,y° 2 4Az) |
The boundary condition was given as
Alp) Au Au Au cAu
B G U RN U e 625
+A<M/M/>+A<M/V/>+A<M/W/> .
Ax Ay Az
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A{p Av AV AV AV
) (W O 0
A A A (629
+E<uv)—l—A—y(vv>+A—Z(vw)>
A(p) Aw AW AW Aw
1) (G e+ R e
A, AL A (©-30)
+E<MW>+A_y<VW>+A_z<WW>)

The discrete governing equation, Eq. near the boundary was treated to include
the boundary condition, Egs. The forward finite differentiation scheme was
applied to the boundary of global mesh as shown in Fig. at x° = x5 and x° = x4,
marked by blue dots. The finite difference formulation in Eq. is given for x° = x5,

( S5 + 508070

( (503 + Ay, 2) — 2<p><xs,y°‘,z>+<p><x5,yc—Ay,z>)
(6.31)

o (P54 80 =200 050,20+ ()60 82) )
2 Alp)

— C ¢ -

and along the other axis, the forward scheme was applied at y* = y5 and y“ =y} | as

shown in Fig.[6.9] The finite differentiation on this boundary is formulated in Eq. (6.32)),

g (P16 40380 =20 005.0) + ()0~ A0

b (- 259+ 2p )

L (<p><xf,ys,z+Az> 2 (p)(x,5,2) + <p><xf,y57z—Az>)

AZ2
2 A()
3Ay¢ Ay

(6.32)

=y(x,y5,2) +

1



118 CHAPTER 6. THE PRESSURE FIELD AROUND THE FLAPPING PLATE
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Figure 6.8: Application of the forward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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Figure 6.9: Application of the forward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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Figure 6.10: Application of the backward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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For the other side of the boundary of the global mesh, the backward finite differen-
tiation was applied at positions as shown in Fig. at x“ =x§,_, and x° = x{_,. The
finite difference formulation is shown for x = xj, |,

i (§<p> (Xpr—2,¥,2) — %(M(%nﬁﬁ))

1
v (P19 802) =200 109.2) + 10— 802

1 . : : , . .
g (Y0 124-82) =200} 0 10,2) (0} 0102 2))
N S\ /]
_\‘II('XM—lhy 7Z) 3Ax Ax ’M

(6.33)

and similary the backward finite differentiation scheme was applied at positions as
shown in Fig. aty’ = yy_»

g (P x40~ 2000 351 + I s 1)

3 (0029 - 20001

Ay2
1 o o o
+E(<p>(X‘7y§v-1,Z+AZ)—2<p>(X‘,y1‘v—1,Z)+(p>(X‘,y?v—1,z—AZ)>
2 Alp)
_ c .C o
—\II(X 7yN—17Z) 3Ay Ay N

(6.34)

The pressure equation along the z-axis was treated with the forward difference scheme
on z = 71, where the location of z; is indicated in Fig.|6.12]

o () A 1) = 20p) (00, 21) () (0~ A2
+ (D 820) 2P 3,20 + (D). — A1)
(6.35)
b (2P )+ 2 2)
=y(x%,y%z21)+ Aiz%? 1
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Figure 6.11: Application of the backward scheme on the boundary of global mesh. The

boundary is marked by blue dots and indices are shown in the insets.
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Figure 6.12: The numerical meshes along the z-axis: zj and z3 are the numerical bound-

aries along the z-axis.

and the treatment of the pressure equation from the boundary condition on z = z3 was

o () A 28) = 20p) (00, 25) () (0~ A 23))
1

(P (3¢ + A23) = 2(p) (63, 23) + (P13 — A 23))
o (207 2) ~ 20p) (., 23))

AZ?
e ey 2Ap)

(6.36)

6.3.2 1In the local mesh

The pressure equation in the local mesh is

2 . . 2

where the local mesh is illustrated in Fig. Expanding Eq. (6.37) with v; = (ug, un,
ug) and & = (€., ),
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Figure 6.13: The definition of local mesh. The phase-averaged velocity field is on the
blue grid and the pressure was estimated on the red dots. The black line represents the

plate.
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o*(p) X p)  *(p) A*p) A*p)  A*p)
ez T2 "o Tag Tap Tac

Aug)\? A\ (A
o (5) () (558
+2<A<“<:> Afuy) +A<“n>A<”§> Aug) A<uz;>>
An  AG AL A& AL M .
Awl) A2 () A () .
+( & e Tap )
+2<A2<u’§u{1> A% (uguy) A2<u§]u’c>>

+

AEAN T TAEAC T ANAC
w20; (-2

The finite differentiation of Eq. (6.38) is discussed in the next two section: the right
hand side, ;,¢4;, and the left hand side V2 p-

Finite differentiation of v, 4

The spatial derivatives for the local mesh (&,n,{) are

of _ (of of of
% (a_é’%’i) (6.39)
*f  [(f f f
o> (8&2’8112’ a§2> (6.40)
Rf [ Pf Rf of
0&0xi; (aéan’agag’ anag) (6.41)
where
of L Af
* (6.42)
_fEFAE N+ M0+ FIE+AEM, Q) — F(EM+AN, Q) + £(E,n.0) :
- 2AE
of _ Af
"R (6.43)

2An
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where the {-derivative was approximated as

of _Af
9 AL
ziﬂlc [(f(§+Aé,n +AMN, 0+ AL) + f(E+ AL, L+ AD)

+FEN+AN,C+AD) + F(ENL+AD)) (6.44)
— (f(E+ A8 m+AN,5—AL) + FE+AE M, L - AY)

#FEN+ OG-80 + FEnL-aD)]

At the ends of the length of data, the one-sided finite difference formula for the derivative

with respect to { was used,

of Af
a AL
“271@% {—3(f(§+A§,n+An,C) +(E+AEM,0) + f(En+An, ) +f(§,n,€;))

+4(f(B+A8M+AN,L+AL) + F(E+AE M, L+A)
+FEN+ANEHAL + fEN,G+AL))
— (£(&+ A8 m+An,5+240) + F(E+AE M, +2A0)
+f(§m+An,C+2AC)+f(§,n7C+2AC)>}
(6.45)

where AL = AL or AL = —AL depending on which end of the data.
The center nodes are defined as £°,m°, where the space between nodes remain the

same (AE,An). The second derivatives were approximated as

azf —~ A2f _ f(§C+A§7nC7C) +2f(§077107© _f<gc —AEMTIC,C)

9 aE 282 o4
azf ~ Azf . f(&canc'f'Anaz;) +2f(§cancaC) —f@c’ﬂc _Anaz;) (6 47)
anQ ~ Anz - Anz .

azf —~ Azf _ f(gcanaC+AC) +2f(§07n67® _f<gc7nc7C_A(:) (648)

o2 ~ AQ2 - AQ2
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where the one-sided finite difference formula was used along the boundary. For { = {,

Pf _Af f(EM o)+ 2/ (€ Qo+ AL) — f(E° ¢, Lo+ 2AL)

7, A = AT (6.49)
and for = (y,
& ~ Azf - f(é;c’nc’CM)_|_2f(§c7nc,CM_A<‘;)_f(&c’nc’z;M_zAC) (6.50)
022 1t ~ ACZ - ACZ :

And the mixed derivatives were approximated as

-
ofan  AEAN
(6.51)
I’f A
JEAL "~ AEAT
~patag | (7800480 4 &+ A5 +an,L+A0)
~ FEMLHAY) ~ FEN+AN,G+AL)) (6.52)
— (+ FE+AENL—AD) + £+ AN +AN.C - AL)
- FEME- A0 - fEn+ ang-aD))|
7f  Af
ot~ AnAg
~paag | (FE+ 850+ NG HAD 4 7(En +an L+ A)

~ FE+AEM,C+AL) - f(EM,L+AL)) (6.53)
- (f(&+A~§,n +AN,{—AQ) + f(§n +An,{ - AL)

- FE+ 85N L= 8D - S(EN.L-8D)|
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The one sided formulations with respect to { were given as

-
08T AEAC
~gatags| - 3(FEH AN + FE -t anQ

- fEN,0)~ FEN+4n,0))
4+ FE+AENL+AD + FEFAEN+ANLHAL)  (654)

~FEN LAY - G+ an L+ aD)|
— (+FE+AEML+280) + F(E+AEN +A0,(+2A0)

—f(é,n,€+2AC)—f(i,n+An,C+2AC)>]

I’f A

oMol AnAg
’“4mlmc% {—3<f(§+A§,n +AN,0) + £(E,n+An, Q)

~ f(E+AEM.0) ~ f(EN.0))
+4(fE+AEN+AN,C+AD) + FEN+ANLHAD)  (655)

-G N L 8D - FEMEHAD)]
— (/(&+A8,n+4n,C+280) + F(E+4n, L+ 240)

- F& 5N L4280 - BG4 20D))]

The one sided formulation of Af /AnAC was not required because Eq. (6.38) was not

solved along the boundaries as Eq. (6.38) was treated for the boundary condition.

Finite differentiation of V?p

The finite difference approximation of the left hand side of Eq. (6.38) is expanded as

A? A? A?
Aé§> AT<'|I;> + AZ<;127> = Viocal

(6.56)
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and is discretized as

(p)(&°— AL, §) —2(p)(&°,M°, ) + (p) (E"+ A, 0", T)
AE?
(p)(&°,n° —An,C) —2(p)(€°,n",§) + (p)(E°,“ + AN, §)
An2

+ <p> (&CJ]C?C_AC.’) —2<P>(§Caﬂ67® + <p> (&Caﬂc7C+AC) -
Acz = VYiocal

+ (6.57)

In the local mesh (cf. Fig. [6.13)), the Dirichlet boundary condition, (p), was applied
on the numerical boundary, ab, bc, and cd. The Dirichlet boundary condition, (p), was

obtained by interpolating the pressure field from the global mesh to the local mesh,

<p>(écan67C) %M(xc +Ax—xl)(yc +Ay_ylocal)

AxAy
xXC+Ax,y,z o e
+ <p>( AxAy a )(xlocal_x )(y +Ay_ylocal)
6.58
(P) (X, +Ay,2) , . . (6.58)
AxAy (x +Ax—xlocal)<ylocal -y )
XC 4 Ax,y  + Ay, z B c
+ <p>( A)CA));) Y ) (xlacal —X )(ylocal -y )
where the coordinates of the local mesh on the cartesian coordinate was given as
Xlocal cos(8) —sin(0) 0| (&
Yiocal | — Sin(e) COS(e) 0 n¢ (6.59)
Zlocal 0 0 1 C

The Neumann boundary condition was applied on aa’ and dd’,

0 u u u u
S_T]? %ﬁ) :_p(A<Atn> +<”§>A<A£]> +<Mn>AiT1]1> +<”C>A<A£>

Q

A A A
+ A—é(u%u@ + E%”@ + A—du%ua

+(6¢8) + <_egn> - 2(ec<u§>)> (6.60)

On the surface of the plate, a’b’c’d’, the Neumann boundary condition was also

applied. The boundary condition on the surface of the plate, a’b’ and ¢’d’, was

aé—? = p(bn +6°¢) (6.61)
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and on b'c’, the following boundary condition was applied,

R
n p(—6E+6°n) (6.62)

The pressure on the surface was extrapolated using the Lagrangian extrapolation.

For the upper surface of the plate,

(Pharsice = AP &0~ LD E O+ S ()Ean ) (663

and for the lower surface of the plate,

10

(Pharsace = 4 PEMD RGN+ 5ENY 664

The one-sided finite difference formulation of the Poisson equation of the local mesh

at the boundaries are,

1. The forward finite differentiation scheme was applied next to the boundaries as
shown in Fig. at & = &S and & = &f |, where the boundaries are marked by
red dots. The Dirichlet boundary condition was applied at £ = &5 and the finite
differentiation formulation is shown as Eq. (6.65) and the Neumann boundary

condition was applied at £ = &f 1 and the finite differentiation formulation is

shown as Eq. (6.66)

—2(p) (&M, ) + (P)(&5,n",C)

AE2
(p)(€5:M° —An,§) —2(p)(E5.n°, §) + (p) (&5, n° +An,§)
+ A
(p)(&5,m°, £ —AL) —2(p)(§5, 1", §) + (p)(E5:M°, E+AL)
+ A2

= VWiocal — <p>( ?71‘167 C) (665)
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Figure 6.14: Application of the forward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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and

(P)(&F <, 8) —(p) (&M, 0)
AE2
(P) (& 1M — AN, 0)2(p) (&, ;M 5) + (p) (&, ,n +An, L)
An?
() (§71 1M € —AL) —2(p) (&}, 8) + () (& 1,M C+AQ)
AL

_I_

(6.66)
_|_

=V z—iﬂ
ocda A& Ag 1_1Q

2. The backward finite differentiation scheme was applied on the other side of the
boundary as shown in Fig. at E¢=¢&j,_, and & =&;_,. The Dirichlet bound-
ary condition was applied to solve the pressure equation at & = &f, ,; it is for-
mulated Eq. (6.67). The Neumann boundary condition was applied to solve the

pressure equation at £ = & | ; the formulation of the pressure equation is shown

in Eq. (6.68).
(P)(E3y_2-m°,8) —2(p)(Ey_1>M¢, C)
AE2
N (P)(Ey_ 1M — AN, &) —2(p) (&} _1,M°,8) + () (&1 ,M° + AN, 0)
An?
(P)(Ehr— 1M, C—AL) —2(p) (&5, 1., ) + () (Ef;_1,M°, C+ AL)
+ ACZ
= Viocal — <p> (5954»116, C)
(6.67)
and
(P)(&;_1;m%8) —(p) (&M<, )
AE2
N (P)(&i_1,m — AN, 5)2(p)(&;_;,Mm",€) + (p)(&;_ ;N +An, L)
An?
(P)E %L~ AL —2(p)(E_ e, )+ (P& me,C+ag) (OO
+ A§2

_ 1 Alp)
_Wlocal—f—Ag Aé . 1/2
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Figure 6.15: Application of the backward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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3. Similarly to the treatment of boundaries along &, the forward difference scheme
was applied to the pressure equation at N° =mj3 and M° = Mg, as shown in
Fig.[6.16] Atn“=nj3, the Dirichlet boundary condition was applied to the pres-

sure equation and at N = mj_;, the Neumann boundary condition was applied.

(P) (& —AE,MS,C) —2(p)(E°,m5,8) + (p) (E 4+ Ag, M, )
AE2
—2(p)(&,M5,5) + (p)(E°, S5, )
An? (6.69)
N (P) (M5, —AL) —2(p)(E°,m3,8) + (p) (&, M5, L+ AL)
AC?

= Viocal — <p> (‘E.\C7nc —An, t-’)

_|_

and

(P) (& —AEM,,,0) —2(p)(E°Mjy 1, ) + (P)(E +AE M, ,,0)
AE?
{p) (€, 8) — (P)(E°Mjy1,0)
An?
<P>(§Canlc+1ac—AC)—2<P>(§Cvnzc+1a@+<P>(§Canf+1=C+A§)
+ AQ

1 Alp)
AN An |i_1,

(6.70)

= VWiocal —

4. The backward difference scheme was applied to the pressure equation at N¢ =

n§_; as shown in Fig. The Dirichlet boundary condition was applied at
n“=ny—1.

(P) (& —AEMy_1,8) —2(p) (E° My, 0) + (P) (& +AE My, C)

AE?
N (P) (& My, 8) —2(p)(& ny_1,0)
An?
(P) (& My_1,§—AL) —2(p)(E°y_,8) + () (E"My_, § + AT)
+ A

= VWiocal — <p> (E,,Can]c;h C) (671)
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Figure 6.16: Application of the forward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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Figure 6.17: Application of the backward scheme on the boundary of local mesh. The

boundary is marked by red dots and indices are shown in the insets.
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Figure 6.18: The numerical meshes along the {-axis: {; and {3 are the numerical bound-

aries along the C-axis.

5. For boundary at { = {;

(p)(E°—A& N, §) —2(p) (&%, §) + (p) (" + AN, §)

AE?
L P (E N — A, §) — 2p) (€5, 0) + (p) (E°m° + AN, §)
An?
_2<P>(§Canca<;1)+2<P>(§c,nc,§2) _ 2 A<p>
+ ACZ = Viocal + A_CA_C, 0 (6.72)
6. For boundary at { = (3
(p) (= A5 N, 5) —2(p)(§°,n°, ) + (p) (" +AE N, )
AE?
<p> (&Cﬂ’lc —ATL (:) — 2<P>(§Caﬂca C) + <P>(§C»Tlc +ATI7 C)
+ AN?
NG WIENL) _y,, 280 o

where {; and (3 are indicated by the illustration of the numerical mesh in Fig.
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6.4 Numerical method for solving the Poisson equation

in the xz planes

The poisson equation for pressure was solved on the grids parallel to the xz plane. In
total 3 grids are needed to solve the three-dimensional Poisson equation on the plane
at y = —c/2 and another 3 grids to solve the same equation at y = 0. The pressure
solution here is given for the cartesian coordinate system in the global mesh. Because of
the orientation of the measurement plane relative to the flapping plate, at phase angles
0 # 0 and § # 0.5 the surface of the flapping plate is not orthogonal to the measurement
plane making it impossible to set the boundary condition on the surface. Therefore, the

calculation was not extended for the local mesh.

The frame of reference for the numerical mesh parallel to the xz planes is given in

Fig. and the finite difference Poisson equation to be solved within that domain is

o*(p)  9*(p)  *(p)

ox? * 0y? * o2

— a_u 2_|_ i 2+ a_w 2_|_2 a_u@+a_ua_w+ia_w
PI\ax dy 0z dydx dzodx dzdy
Py POV P (ww) (V') *uw) (VW)
*( a2 a2 T a2 )“( avar T omx T oz )]
(6.74)

The boundary conditions are given as the pressure gradient normal to the respective

boundaries. Because the global mesh is in x, y, and z directions, the boundary conditions

Alp) Alu) Alu) Alu) Aluy AWy  AWY)  Ald'w)
E__p{ A T T I AT T Az }
(6.75)

Alp) ___[AW)
Ay p[
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Figure 6.19: Definition of reference frame for the numerical mesh parallel to the xz

plane. Pressure is solved on the red nodes at the center of each surface mesh.

for the boundaries orthogonal to the y-direction, and

)

(6.77)

AW  Aw'w
Ay Az

A{u'w')
Ax

for the boundaries orthogonal to the z-direction

Adjacent to the numerical boundary, Eq. (6.74) was treated to include the given

Neumann boundary condition. The forward finite difference scheme in x-direction was

applied adjacent to the boundaries given in Fig. [6.20] Substituting Eq. (6.74) with the
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Figure 6.20: Forward finite difference scheme in x-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

necessary boundary condition,

w3008+ 50006072
1

a2

(<p><xs,yC+Ay,z>—2<p><x5,y2z>+<p><xs,yc—Ay,z>)
) (6.78)

(<p><x5,yc,z+Az> D) (651 2) + () (65" 2 — A2)

N 2 Alp)

1
A2

1
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Figure 6.21: Backward finite difference scheme in x-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

The backward finite difference in x-direction was applied adjacent to the boundaries

given in Fig. [6.21] Substituting Eq. (6.74) with the necessary boundary condition,
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Figure 6.22: Forward finite difference scheme in z-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

s (06209~ 201100

1
+A—y2<<p>(xi4_1,yc+Ay,z)—2<p>(x]cw_1,yc,z)+<p>(x§4_1,yC—Ay,z)>
1
+ o (Y0104 82) =200} ey 10,2) + (0} 00,2 2))
2 Alp
:W(xlcl/l—laycuz) _E%’
M

(6.79)

The forward finite difference in z-direction was applied adjacent to the boundaries
given in Fig.[6.22] Substituting Eq. (6.74) with the necessary boundary condition,

o (0910 Ay 2) <2000 20) ()0 - vy, )

1
o (P00 = 8022) =2 2) + 000~ )
Y (6.80)

+ Aizz ( - §<p> ()%, 22) + §<p>(xc,y",z3))

2 Alp)

=y(x,y ’Z2)+3_Az?

1
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Figure 6.23: Backward finite difference scheme in z-direction. The boundary is marked

by blue nodes and indices are shown in the insets.

The backward finite difference scheme in z-direction was applied adjacent to the
boundaries given in Fig. [6.23] Substituting Eq. with the necessary boundary con-

dition,

o (49160 Atz ) =200 )+ ()~ A

1
+A_yz<<f”><’”’yc+Ay’ZN—1>—2<p><xc,yc,av_1>+<p><xc,yc—Az,z,N_n)
I /2 2
+ s (Gt avs) - 2 o)
¢ e 2 Alp)
:W(X Y 7ZN—1)___
3Az Az |y

(6.81)

The numerical mesh along the y-direction is depicted in Fig. [6.24] for the mesh
around y = y;. Substituting Eq. (6.82) with the necessary boundary condition. The
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32| b%) bE!

Figure 6.24: Illustration of the numerical mesh along the y-direction. Two adjacent

mesh is shown around y = y( to solve the three-dimensional Poisson equation on y = yg.

forward finite difference scheme along the y-direction is

o (D) B, 2) = 200 (0 0, ) () (6 — Ay, )

+ o (22006 ) 20 2. 2))
1 c c c c c c (6'82)
1 (P02 =89 = 20p) (30,2 + () 3. - A2))

2 Alp)

:chaylazc + =
( ) A Ay

1
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Figure 6.25: Comparison of |(a)|uV? (u) and 9(P) /ax at ¢ = 0.6. The former is consid-

ered negligible in the governing equation.

and the backward finite difference scheme along the y-direction is

o () Ay, ) = 20p) (,33,2) + () (6 — Ay, )
1

o (200 (32, 2) = 20PN 33, )

2
—Aly (6.83)
a2 (4P)0 33,2+ A2) = 2P 33, 2) + (P (33,2 — A7) )
C c 2 A<p>
g X , , _
W(x,y3,2%) A Ay s

6.5 The estimated pressure field

The governing equations and boundary conditions were derived from the assumption
that the flow is inviscid. The viscous term calculated from the phase-averaged veloc-

ity field as shown in Fig. |6.25| shows that the viscous term uV? (i) has negligible effect
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compared to
9(P) /3x, which is a direct consequence of the similarities of the velocity profile in Fig.

This substantiate the inviscid flow assumption.

6.5.1 Pressure field on the xy-planes

The estimated pressure fields, as evaluated using Eq. (6.6), are shown in Fig. [6.26] at
the mid-chord, z = 0, and at the leading-edge, z = ¢/2, for $=0.25 and

® = 0.45. The pressure field is presented as the non-dimensional pressure coefficient
Cp=(p)/(12pU?).

The Poisson equation consists of only spatial derivatives and by using the Neumann
boundary condition, the pressure fields in Fig. are independent from each other and
not to be mistaken as a representation of the time evolution of the pressure. However,
it should be noted that the pressure difference on the surface of the plate can represent
the time evolution of the force acting on that surface. Strong discontinuities of the
pressure field between the global and the local mesh can be observed in Fig.
This discontinuity is caused by the mixed Dirichlet-Neumann boundary condition that
was used for the local mesh. The Neumann boundary condition was applied on the

boundary immediate to the surface of the plate.

The proposed method estimated the pressure field reasonably well on the mid-chord
and poorly on the leading edge as shown in Figs. This may be because
around the leading edge, the Neumann boundary condition on the surface of the plate
was insufficient to properly solve the Poisson equation because the measurement plane
is located around the bend of the edge of the plate. The spatial resolution of the out-
of-plane velocity component was evaluated by comparing the finite derivative of that

component,

2 a9 (w)
073

w (w) z —{(w) —
) _ Wl cran — 89 Liag

6.84
0z 2Az 6 () ( .
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with the one calculated with the assumption that the continuity condition is fulfillled,

ox + dy + 07 =0
3(w) Au) W)
B i et A R WA
o) ox
a<fv> (A(u) A(yv>) 1 ,0%u) 1 L0
Tﬁ‘(?*T)*(a(W ax 16, <S>)

(6.85)

In this study, the velocity gradients were calculated with a second order finite differ-
ence scheme. The comparison is shown in Fig. where it shows an underestimation
of the out-of-plane velocity gradient on the leading-edge.

The comparison of the out-of-plane velocity gradient on the mid-chord is shown in
Fig. On the mid-chord of the plate, the out-of-plane gradient was also underes-
timated. However, the gradients in Fig. is qualitatively more agreeable with each
other than the ones in Fig. Therefore, the flow around the leading edge, which is
highly three-dimensional, requires a proper volumetric PIV measurement to resolve the
boundary condition and the spatial resolution. The result of the pressure estimation in
Fig. suggests that with the current measurement configuration it is safe to estimate

the pressure field along —c/2 < z < ¢/2.

6.5.2 Pressure field on the xz-planes

The estimated pressure fields on the xz-planes were evaluated using Eq. with the
boundary conditions of Egs. (6.78)—(6.83). A sample of this pressure field is shown in
Fig.[6.29|for y = —c/2 and y = 0 at § = 0.25.

The pressure fields in Fig. show the cross-section of the flapping plate with the
measurement plane. for the plane at y = —c/2, the cross-section is represented by the
black square and at y = 0, a projection of the flapping plate on the measurement plane
is represented by the empty square as an indicator of the location of the flapping plate
relative to the flow.

The calculation of these pressure fields are more straightforward because they were

done only on the global mesh. This is due to the configuration that was used to measure
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Figure 6.27: Comparison of the out-of-plane gradient on the leading-edge, z = ¢/2, at
¢ =0.35.

the velocity on xz-planes. At ¢ # 0 and ¢ # 0.5, the measurement plane is not orthogonal
to the surface of the plate. Because the local mesh is a subset of the measurement plane,
it is impossible to assign the pressure gradient normal to the surface of the plate as the

boundary condition in the current configuration.
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Figure 6.28: Comparison of the out-of-plane gradient on the mid-chord, z = 0, at § =
0.35.
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6.6 Concluding remarks

This chapter demonstrates the visualization of pressure generated during flapping mo-
tion down to the surface of the flapping plate. The pressure field was obtained by solving
the Poisson equation for pressure, where the Laplacian of pressure was approximated
by the velocity field as obtained using stereo PIV.

An overlapping mesh system was proposed to estimate the pressure on the surface
of the plate. In this study, two meshes were used: global mesh, in the inertial frame
of reference, and local mesh, constrained to the motion of the flapping plate. Large
discontinuity in the leading edge section of the plate, z = ¢/2, is caused by improper
boundary condition and low spatial resolution of the measured plane. Because of its
location on the edge of the plate, the pressure gradient boundary condition normal to the
surface of the plate was not enough to obtain continuous pressure distribution because
the measurement plane was at the edge of the plate and it included the bend of the plate’s
surface.

The pressure estimation on xz-planes was done for only the global mesh due to
the measurement configuration where the measurement plane was not orthogonal to
the surface of plate except for § = 0 and ¢ = 0.5. Because of this configuration, the
assignment of the pressure gradient normal to the surface of the body was impossible to

be done.



Chapter 7
The estimation of flapping torque

This chapter presents the estimation of the flapping torque from the integration of the
surface pressure distribution. The flapping torque is the product of the force of the wing.
So, the estimation assesses the force acting on the wing as well. The flapping torque is
compared with the strain gauge measurement. The integral equation and the result is
presented in and final remarks are given in

7.1 Pressure integration

The estimation of torque was calculated by integrating the pressure along a set of lines,
which are the intersections of the local meshes with the surface of the plate. The integra-
tion was evaluated with the control surface, pgrs, as illustrated in Fig. The torque

is presented as the non-dimensional torque coefficient,

T

1op (2 fb®)2b(bc) (7.1)

Cr=

The torque acting on the axis of the flapping motion is shown in Fig. which is

153
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flapping
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n

Figure 7.1: Definition of the control surface for the integration of pressure on the plate.

the integration of the estimated pressure as evaluated by

d 2[// (p)iig +&(p) iy ) dldn (7.2)
/, / (’1( yite +E(p >nn)dCdn (7.3)

/ / P +E )nn>d§dn} (7.4)

Where on the right hand side, the first and third term were evaluated directly and the
second term was interpolated on p’q’ from that on pg and on 5’7 from that on sr.

In Fig. [7.2) the estimated torque is compared with the torque directly measured by
strain gauges. With the information available from the pressure field for estimating the
torque, reasonable qualitative agreement is observed for the amplitudes of both torque
curves. However, the similarity ends there because a phase difference is observed be-
tween them.

As discussed in the previous chapter, the pressure estimation on rs is inaccurate

because of the lack of spatial resolution and improper boundary condition because of
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Figure 7.2: Comparison of torque coefficients estimated (“est”) by pressure and torque

directly measured by strain gauges for flapping rigid plate at Re=3160.

the complicated surface. The integrations of surface pressure along pq and rs are given

in Fig.

In Fig. the infinitesimal surface of the plate is discretized as (¢q’)(dn), where
qq’ = rr’ = h is the distance between two laser sheet and the pressure distribution along
this length is assumed to be constant. Because of this, the magnitude in Fig. is one

order less than in Fig. The torque around pgq is

ro=["" [ (nipyie + E(pin )andt 15)

p—h/2

and the torque around the leading-edge is

/s h/z/ P +& >”n>dﬂd§ (7.6)

With the current measurement configuration, a sinusoidal form of the torque curves

at z =0 and z = ¢/2 are observed in Fig. An increase in torque is observed from
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Figure 7.3: Comparison of torque coefficients estimated by pressure integrated on the

mid-chord plane and on the leading-edge plane for flapping rigid plate at Re=3160.

¢ = 0.25 at z = 0 despite the plate is moving at low velocity. The torque at ¢ = 0.30 is
caused by the high pressure region on the forward facing surface of the plate as shown
in Fig. [7.4(a). The pressure difference between the forward and rear facing surface of
the plate decreases at ¢ = 0.50 as shown in Fig. a). Proportionally, the torque at
® = 0.50 is smaller than that at = 0.3. During the next flapping stroke, ie. at ¢ = 0.85,
the pressure difference increases because of the high pressure region on the front facing
surface of the plate (cf. Fig.[7.6(a)) similar to that described in Fig. [7.4(a).

In Fig. the torque curves at z = ¢/2 shows a phase difference compared with the
torque curves at z = 0 and the torque curves measured by strain gauges. The increase of
the torque curve at 7 = ¢/2 starts ® = 0.9 and positive torque observed until § = 0.4. The
pressure field distribution at z = ¢/2 and ¢ = 0.30 in Fig. b) shows large pressure
difference between the front and rear facing surface of the plate similar to the pressure
distribution at z = 0 of the same phase angle. At ¢ = 0.50 (cf. Fig. b)) high pressure

region is on the rear surface of the plate, which is the opposite of the pressure field



7.1. PRESSURE INTEGRATION 157

(@)z=0

(b)z=c/2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 7.4: Estimated pressure distribution on xy-planes at ¢ = 0.30.

at z = 0, Fig. [7.4(b). The high pressure region is caused by the leading edge vortex
moving towards the rear facing surface of the plate. The flow behind this surface acts
like stagnated flow. In Fig. b), the pressure distribution at ¢ = 0.85 around the
surfaces of the plate shows discontinuity especially on the left edge of the local mesh.

This result in a sharp drop of torque in Fig.[7.3]

Figure[7.3|shows that the qualitative comparison of the torque estimated by pressure
on the mid-chord agrees well with the directly measured one and the shift in the flapping
phase angle is due to the estimation of the surface pressure on the leading-edge. With
these regards, the flow at —¢/2 < z < ¢/2 can be used to estimate the pressure field and

its derived products.
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Figure 7.5: Estimated pressure distribution on xy-planes at ¢ = 0.50.

The mechanics of the increased torque is explained by the production of the vortex
flow behind the flapping plate. Slices of the pressure and vorticity distribution on the
xz-planes are shown in Figs.[7.7]-[7.12]and the pressure difference is compared with the

torque curve measured by strain gauges in Fig.[7.2]

The start of the flapping down stroke, ¢ = 0.25, is shown in Fig. where the
flapping velocity is at minimum. In Fig. the leading edge vortices produced in
the up stroke is shown on the rear surface of the plate. The diameter of each of the
leading edge vortex is about half of the plate’s chord length. These vortices interact
with the rear surface of the plate and produce secondary vortices on the surface of the

plate. Two counter rotating vortices induce the fluid to flow towards the rear surface of
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Figure 7.6: Estimated pressure distribution on xy-planes at ¢ = 0.85.

the plate called inter-vortex stream. The interaction of the inter-vortex stream with the
plate stagnates the flow and creates a region of high pressure. At minimum velocity, the

pressure distribution on the front surface of the plate is equal to the surrounding fluid.

The outer span of the plate is shown in Fig. The leading edge vortices are
smaller, positioned away from the plate, and are asymmetrical. The asymmetry of the
leading edge vortex suggests a break down of the tip vortex as indicated by the control
volume analysis in Chapter. [5| These vortices still show flow stagnation near the plate’s
tip as marked by the high pressure region on the bottom surface of the plate. The pres-
sure difference on both sections of the plate at § = 0.25 produces an increase of torque

even though the plate is at minimum velocity. However the maximum torque is reached
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Figure 7.7: Vorticity (0, (#®)/y) and pressure (C,) distribution at § =
0.25.

at = 0.35.

At § = 0.35, the plate is accelerating and the leading edge vortices are convected

around the edge of the plate as shown in Fig. The vortex from the up stroke
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is diffused and the secondary vortex is expanding rearward. At this phase angle, high

pressure is distributed on the front facing surface of the plate for the full chord length of

the plate. Because the vortices are being diffused the pressure distribution on the front
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facing surface is largely due to flow stagnation because of the plate’s motion. On the
rear surface there is no difference with the ambient pressure due to weak vortices and
how far apart they are positioned. These conditions create a large pressure difference

between the surfaces of the plate, which increase the flapping torque.

Similar distribution of the vorticity with Fig. at the outer span of the plate is
produced as shown in Fig. The leading edge vortices from the up stroke still exist
on this section because they were located farther from the plate. The interaction of the
vortices and the plate produces, on the front surface of the plate, pressure distribution
that is smaller than the one in the inner span. The pressure difference on the surface of

the plate at ¢ = 0.35 produces the maximum torque at the same phase angle in Fig.
The vorticity distribution in Fig. shows the growth of the leading edge vortices

toward the rear of the plate. These vortices produce a pressure drop inside the core and
two stagnation pressure points appear on the inside of the plate. A high pressure region
on the front surface of the plate is also observed. The outer span of the plate in Fig.
shows the leading edge vortices growing simultaneously with the inner span of the plate.
The pressure distribution also shows the pressure drop in the vortex core, two stagnation

points, and large stagnation region on the front surface of the plate.

The high pressure region on the front facing surface of the plate is caused by flow
stagnation related to the flapping motion as the plate’s velocity increases. The two
pressure stagnation points on the rear surface of the plate show how the surrounding
fluid is induced by the vortices but, has not produced a single stream. The strength of the
vortices and their position about one chord length apart produce two stagnation points
on the surface of the plate. Because of the increase of pressure on the rear facing surface
of the plate, the pressure difference on the plate’s surfaces decreases and is depicted by
the decrease of torque at ¢ = 0.40 in Fig.

At the mid-point of the down stroke, ¢ = 0.5, where the acceleration is minimum and
the plate is at maximum velocity, the leading edge vortices in Fig. are stretched
to the rear of the plate. These vortices are stronger and closer together than in Fig.
These conditions cause the stagnation point to converge about the center of the rear sur-
face of the plate. The pressure distribution on the front surface of the plate remains

unchanged. In Fig. the vorticity distribution of the leading edge vortices con-
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Figure 7.9: Vorticity (o, (#®)/y) and pressure (C,) distribution at ¢ =

0.40.
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verges at the center of the plate. These vortices are stretched rearward and show an

approximately symmetrical structure. This vorticity distribution depicts the extension

of the leading edge vortices to the tip vortex. The pressure distribution of this section
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is approximately similar to the inner section of the plate. The decrease of the pressure

difference of the surface of the plate further decreases the torque at ¢ = 0.50 in Fig.

The vorticity distribution during the deceleration of the plate in Fig. shows
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an increase of the size of the leading edge vortices. These vortices are also located closer

together. The pressure distribution still shows the stagnation on the front surface of the

plate and a stagnation pressure region above the rear surface of the plate. Two regions
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of lower pressure in the vortex cores are also observed on that surface.

At the outer span of the plate, the vorticity distribution in Fig. shows the
leading edge vortices develop into an asymmetric structure. The pressure distribution
on this section shows a considerably small pressure difference between the front and
rear surfaces. The stagnation pressure above the top surface also appears similar on the
inner section. The conditions of the two sections of the flow at this phase angle shows
a decrease in the pressure difference between the plate’s surfaces. This translates into
further decrease of the torque of the flapping axis at ¢ = 0.60 in Fig.

The end of the down stroke in Fig. ® = 0.75, the leading edge vortices
separate from the plate. These vortices are about half a chord length in diameter. The
interaction of the separated vortices with the plate induces the production of new vortices
on the rear surface of the plate. The pressure distribution at this phase angle shows a
stagnation region at the center of the rear surface of the plate and does not cover the full
chord length of the plate. The pressure distribution on the front surface of the plate is
equal to the surrounding fluid.

The outer span of the plate in Fig. shows an asymmetric vortical structure
and above the rear surface of the plate and the high pressure distribution is on the rear

surface of the plate. The conditions on both sections are similar to the start of the
downstroke shown in Fig.[7.12(a)l Indeed Fig. approximately mirrors Fig.
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Figure 7.12: Vorticity (o, (?©)/y) and pressure (C,) distribution at ¢ =

0.75.
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7.2 Concluding remarks

Comparison of the estimation of torque by surface pressure integration and the torque
measured by strain gauges show reasonable qualitative agreement with each other. The
comparison shows similar amplitude but different phase between the two curves. The
cause of the phase difference is the inaccuracy of the pressure distribution on the leading-
edge of the plate due to the pressure estimation on the plane intersecting the leading-
edge. This inaccuracy is due to the large discontinuity of the pressure field between the
global and local mesh because of the improper boundary condition and spatial resolution
to resolve the vortex flow. However, the torque calculated from the estimated pressure on
the mid-chord plane shows no phase difference with the measured torque. This suggests
that the torque can be estimated well by measuring the entire surface of the plate without
intersecting the edge of the plate and with special attention taken to resolve the spatial
resolution near the leading-edge.

The relation of the torque of the flapping axis with vorticity was investigated through
several slices of the vorticity distribution and pressure distribution. It was found that
the leading-edge vortices induce the surrounding fluid called the inter-vortex stream,
which in this study produces flow moving towards the plate. The presence of rigid plate
stagnates the inter-vortex stream and creates a region of high pressure on one side of the
plate’s surface. This condition dominates when the plate is at low velocity notably at the
start of every new stroke.

After the initial start of the stroke flow stagnation appears on the front facing surface
of the plate. The flow stagnates because of the plate moving through a quiescent fluid.
The aerodynamic efficiency may be improved by setting the flapping wing at an acute
angle of attack. In that configuration, the leading-edge vortex is diffused to middle of the
rear facing surface of the plate limiting the stagnation pressure on that surface. Thereby,
giving the pressure difference that benefits to the vertical component of the aerodynamic

force.



Chapter 8

Conclusions

8.1 Concluding Remarks

The study investigates the relation of vorticity and pressure distribution in the case of
flapping wing and the method to investigate the force of an actual micro-air vehicle.
The flapping wing was simplified as a flapping plate with a sinusoidal motion with the
flapping axis in the chordwise direction. Measurements were done using stereo PIV with
multiple measurement planes offset along the out-of-plane direction of the measurement
planes. Phase averaging of the velocity field of each discrete phase angles was used to
present the evolution of the flow in one flapping cycle, one downstroke and one upstroke.
The governing equations were decomposed into the averaged component and fluctuating
component.

The flow was visualized by calculating the second invariance of the deformation ten-
sor, (Q), which depicts the three dimensional structure of the vortex around the plate but
does not visualize the dynamics of that structure. Additional information were visual-
ized with streamlines for the regions where (Q) < 0.

The control volume analysis provides the investigation tool to study the dynamics
of vortex and structure interaction. The selection of control volume size for the force
analysis enables the investigation of selected parts of the phase-averaged velocity field,
which provides better understanding of the vortex structures that influences force gener-

ation. By properly selecting the size of the control volume, acceleration and convection

169
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of the flow can be explained using their respective terms in the integral equation of fluid

motion.

Force calculated by control volume analysis of the phase-averaged velocity field
shows that the vortex attached to the surface of the plate plays a dominant role in the
generation of the force. Delays reaching the maxima of the force magnitude are caused
by the existence of the vortex structure of the previous stroke obstructing the motion of
the plate. Increases in the extremes of the force due to the Reynolds number only appear

in the unsteady term of the leading edge of the plate.

To estimate the pressure distribution on the surface of the plate, the Poisson equation
was integrated in an overlapping mesh system. For the flapping plate, two meshes were
used: global mesh in the inertial frame and local mesh constrained to the motion of the
flapping plate. In the mid-chord of the plate, continuous pressure distribution with the
global mesh was achieved along the boundaries of the local mesh. However on the edge
of the plate, discontinuity of the pressure distribution is observed which may arise from
the lack of spatial resolution in the out-of-plane distribution and the improper boundary

condition because of the bend on the edge of the surface of the plate.

The pressure field on the xz-plane shows the spanwise sections of the flow generated
by a flapping plate. The pressure field was solved only for the global mesh because the
measurement planes are not orthogonal to the surface of the plate for all phase angles
except for § =0 and = 0.5.

Comparison of the estimation of the torque by surface pressure integration and the
torque measured by strain gauges shows reasonable qualitative agreement of each other.
The two torques have similar amplitudes but different phases. The phase difference is
due to the pressure distribution on the leading edge of the plate, which is inaccurate
due to improper boundary condition and lack of spatial resolution in the measurement
of the vortex flow. However, the torque calculated from the estimated pressure on the
mid-chord plane shows no phase difference with the measured torque. This suggest that
the torque can be estimated well by measuring the entire surface of the plate without
intersecting the edge of the plate and by improving the spatial accuracy along the out-

of-plane direction.

The relation of the torque of the flapping axis with vorticity was investigated through
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several slices of the vorticity distribution and pressure distribution. It was found that the
leading edge vortices induce the surrounding fluid which produces a part of the flow
moving between the vortices called inter-vortex stream. In this study the inter-vortex
stream moves toward the plate. The presence of rigid plate stagnates the inter-vortex
stream and creates a region of high pressure on one side of the plate’s surface. This
condition dominates when the plate is at low velocity notably at the start of every new

stroke.

8.2 Recommendations

Measurements were done by manually traversing the measurement plane along the out-
of-plane direction of the measurement plane or the chordwise direction of the plate. For
control volume analysis, the high spatial resolution of the plate is not important because
the integral equation is not a function of the velocity spatial gradient. In the estimation
of pressure field, the spatial resolution must be resolved adequately. The estimation of
pressure field can benefit from the volumetric measurement using more advanced PIV
measurement methods such as tomographic or holographic PIV.

Qualitative agreement between the torque curves as estimated by surface pressure
integration and strain gauge measurements shows that the pressure estimation method
can be used to estimate the forces of a small mechanical device such as an MAV. In this
study, further improvements of the estimation of the force of the flapping plate can be
done by measuring for the full surface of the plate without intersecting the edge of the
plate.

After the initial start of the stroke flow stagnation appears on the front surface of
the plate. The flow stagnates because of the plate moving through a quiescent fluid.
Aerodynamic efficiency may be improved by setting the flapping wing at an acute angle
of attack. In that configuration, the leading-edge vortex is diffused to the middle of the
rear surface of the plate limiting the stagnation pressure on that surface.

The author recognizes that certain aspects of this study are not perfect but hopes that
the results can help the understanding of the dynamics of flow generated by a flapping

wing.
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580. (Continued)
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Figure A.1: Velocity distributions on z/c = [0,0.25,0.5], Re=1580.
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Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)



194 APPENDIX A. VISUALIZATION RESULTS

Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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Figure A.2: Velocity distributions on z/c = [0,0.25,0.5], Re=3160. (Continued)
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Figure A.5: Velocity distribution of Re=1580, y = —c/2. (Continued)
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Figure A.6: Velocity distribution of Re=1580, y = 0. (Continued)
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Figure A.7: Velocity distribution of Re=3160, y = —c/2. (Continued)
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Figure A.8: Velocity distribution of Re=3160, y = 0. (Continued)
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Figure A.8: Velocity distribution of Re=3160, y = 0. (Continued)
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Appendix B

Poisson solver for circular cylinder in

potential flow

clear;
clf;

eps = le—12;

9% flow domain

dx = 0.2; dy = 0.2;

[x,y] = meshgrid(—4:dx:4, —4:dy:4);
initVarPressure2D (x)

ufree = 3000;

rho = 1.225;

releaseVer = 4.2°; % Gauss—Seidel Method

9% local mesh grid setup, at nodes

nmesh = 16;

dr = 0.0625;

dtheta = pi/50;

Rb = sqrt(10000/2/pi/ufree);

xb = Rb % cos(0:dtheta:2xpi);

yb = Rb % sin (0:dtheta:2xpi);

meshb = Rb:dr:Rb+(nmeshxdr) ;

xmeshb = zeros(size (length (meshb)), length (0:dtheta:2xpi));

ymeshb = xmeshb;

for i = 1:length (meshb)
xmeshb(i,:) = meshb(i) * cos(0:dtheta:2xpi);
ymeshb(i,:) = meshb(i) * sin(0:dtheta:2%pi);

end

rb = sqrt(xmeshb.”2 + ymeshb."2);

thetab = 0:pi/50:2x% pi;
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for i=1:size(rb,1); thetab(i,:) = thetab(1,:); end

9% global mesh grid setup simulates PIV velocity data,
9% (V in the body = 0) @ nodes

theta = get_angle(x,y);

r = sqrt(x.”2 + y."2);

utheta = —(1+Rb"2./r."2) x* ufree.* sin(theta);

ur = (I-Rb"2./r."2) x ufree .x cos(theta); % velocities in polar

coordinates
[nan_i, nan_j] = find(isnan(utheta))

for i = 1:length(nan_i)
utheta(nan_i(i), nan_j(i)) = 0;
end
[nan_i, nan_j] = find(isnan(ur))
for i = 1:length(nan_i)
ur(nan_i(i), nan_j(i)) = O0;
end
u = ur.xcos(theta) — utheta.xsin(theta);
v = ur.xsin(theta) + utheta.xcos(theta);

% velocities in cartesian coordinates
for i = 1:size(x,1) % velocity distribution in the body
for j = 1:size(x,2)
if r(i,j) <= Rb
u(i,j) = 03
v(i,j) = 03
end
end
end
urb = interp2(x,y,ur,xmeshb,ymeshb,’cubic’);
uthetab = interp2(x,y,utheta ,xmeshb,ymeshb, ’cubic’);

rb = [rb(:,end—1) rb(:,:)];
uthetab = [uthetab (:,end—1) uthetab (:,:)];
urb = [urb(:,end—1) urb(:,:)];

Y% % % local mesh, set up boundary condition and source term

Y% % % interpolate velocity

[erw, ethetaw] = set_polar_component(urb,uthetab ,rb,dr,dtheta);
[bAw] = set_bodyCirc_source (rb,rho ,erw,ethetaw ,dr,dtheta);
[bprw] = set_bodyCirc_pressureBoundary (rho,erw);

edge . global.u u;
edge.global.v = v;
edge.global.utheta = utheta;
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edge.global .ur = ur;
edge.global . x = x;

edge. global.y = y;

edge.local . xmeshb=xmeshb;
edge.local .ymeshb=ymeshb;
edge.local.uthetab = uthetab;
edge.local.urb = urb;

9% finite volume coordinates and velocities. @ center points
[midglobal.x, midglobal.y] = meshgrid(—4+dx/2:dx:4—dx/2, —4+dy/2:dy:4—
dy/2);
midglobal .u interp2(x,y,u,midglobal .x, midglobal.y, ’cubic’);
midglobal . v interp2(x,y,v,midglobal.x, midglobal.y, ’cubic’);
midglobal .r = sqrt(midglobal.x."2+ midglobal.y."2);
midglobal . theta = get_angle (midglobal.x, midglobal.y);
for i = 1:size(midglobal.x,1)
for j = 1l:size(midglobal.x,2)
if midglobal.r(i,j) <= Rb
midglobal . .u(i,j) = 0;
midglobal .v(i,j) = O;
end
end
end

meshbmid = Rb+dr/2:dr:Rb+(nmeshxdr)+dr/2;
for i = 1:length (meshbmid)
midlocal . xmeshb(i,:) = meshbmid(i)*cos(dtheta/2:dtheta:2xpi+dtheta

12)
midlocal .ymeshb(i,:) = meshbmid(i)=*sin(dtheta/2:dtheta:2xpi+dtheta
12);
end
midlocal .ub = interp2(x,y,u, midlocal.xmeshb, midlocal.ymeshb,’cubic’);
midlocal .vb = interp2(x,y,v,midlocal.xmeshb, midlocal.ymeshb,’cubic’);
midlocal .uthetab = interp2(x,y,utheta ,midlocal.xmeshb, midlocal.ymeshb
, ‘cubic’);
midlocal .urb = interp2(x,y,ur,midlocal.xmeshb, midlocal.ymeshb,’cubic’

)
midlocal .rb = sqrt(midlocal.xmeshb.”2 + midlocal.ymeshb."2);
for i=1:length (meshbmid)

midlocal . thetab(i,:) = dtheta/2:dtheta:2xpi+dtheta/2;
end

clear x y u v utheta ur xmeshb ymeshb ub vb uthetab urb r rb theta
thetab

= midglobal .x;
midglobal .y;
midglobal .u;
= midglobal.v;

< 8< X
1l
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r = midglobal .r;

theta = midglobal. theta;
xmeshb = midlocal . xmeshb;
ymeshb = midlocal . ymeshb;
ub = midlocal .ub;

vb = midlocal .vb;

uthetab = midlocal.uthetab ;
urb = midlocal.urb;

rb = midlocal.rb;

thetab = midlocal. thetab;

I
].

i

xmeshb = [xmeshb(:,end—1) xmeshb (:,:)
ymeshb = [ymeshb(:,end—1) ymeshb (: ,:)
rb = [rb(:,end—1) rb(:,:)];

thetab = [thetab (:,end—1) thetab (:,:)];

uthetab = [uthetab (:,end—1) uthetab (:,:)];

urb = [urb(:,end—1) urb(:,:)];

9% numerical mask

uu = zeros(size(u));

vv = zeros(size(v));

maskoff = [2 2 2 2];

masktemp = (u "= 0);

maskflow = zeros(size(u));

maskbody = zeros(size(u)); % "u” is the values at center points

maskflow (1+ maskoff (1) :end—maskoff (2),
I+maskoff(3) :end—maskoff(4)) = 1;

[mxb,myb] = gradient(maskflow,1,1);

mxb = mxb.* maskflow ;

myb = myb.x maskflow ;

maskbody (1+maskoff (1) :end—maskoff(2),
1+maskoff(3) :end—maskoff(4)) = .
masktemp (1+maskoff (1) :end—maskoff(2),
1+maskoff(3) :end—maskoff(4));

[mx,my] = gradient(maskbody,1,1);

mx = mx.* maskbody;

my = my.* maskbody;

maskbody = maskbody — round(abs(mx)) — round(abs(my));
[imask ,jmask] = find (maskbody == —1);
for i = 1:length(imask); maskbody(imask(i),jmask(i)) = 0; end;

9% perimeter of mesh interface (outer boundary of local mesh)
count = 0;
for i = 1:size(x,1)
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for j = 1:size(x,2)
if (mx(i,j)-mxb(i,j)) [| (my(i,j)—myb(i,j))
count = count + 1;
x2(count) = x(i,]);
y2(count) = y(i,j);
end
end
end

9% global mesh, velocity derivatives
[ux,uy,vx,vy,uxvy,uyvx] = set_Flowrect_velocityGradient
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(x,y,u,v,dx,dy,mx,my, mxb,myb, maskbody) ;
% % source term and boundary condition in global domain
[px,py] = set_flowRect_pressureGradient(x,y,u,v,ux,uy,vx,vy,rho);
[A] = set_flowRect_source (x,y,uxvy,uyvx,rho);

9% local mesh, set up boundary condition and source term

9% interpolate velocity

disp(’advection components, body domain’)
disp (’pressure gradient components, body domain’)
[er, etheta] = set_polar_.component(urb,uthetab ,rb,dr,dt

disp (’source term and boundary condition, body domain’)
[bA] = set_bodyCirc_source (rb,rho,er,etheta ,dr,dtheta);
[bpr] = set_-bodyCirc_pressureBoundary (rho,er);

0 VALV VALV VAV ANV

9% setup coefficient matrix for the solver

[ Acart ,ax,ay, Alistl , flagx , flagy , flagxw , flagyw ,XX2] =
PDMAneumann(dx "2 ,dy "2, mxb,myb, maskbody) ;

listx = flagx.x Alistl; listy = flagy.x Alistl ;

listxw = flagxw.x Alistl; listyw = flagyw.x Alistl ;

heta) ;

% % setup coefficient matrix with Dirichlet boundary condition near

the body

[Acart_d ,ax_d,ay_d, Alistl_d ,flagx_d ,flagy.d ,flagxw_d ,flagyw_d ,XX2_d]

PDMAdirichlet(dx"2,dy"2, mxb,myb, maskbody) ;

listx_.d = flagx_d.xAlistl_d;
listy_.d = flagy_d.x Alistl_d;
listxw_d = flagxw_d.x Alistl_d;

listyw_d flagyw_d.x Alistl _d;

% % setup coefficient matrix with Dirichlet boundary on the farthest

% point for circular coordinate

r_lower = 2; r_upper = size(rb,1)—1;

[Apolar, XX, Alist, frad, ftht] = PDMApolar(dr,dtheta,
r.upper);

rb,r_lower ,
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9% Iteration

disp(’iteration’)

YD////////////7/7/7/////// decompose coefficient matrices
AlD diag (diag(Acart));

AlL = tril(—Acart,—1);

AlU = triu(—Acart ,1);
AIOD = AIL + AlU;

A2D = diag(diag(Acart_d));
A2L = tril(—Acart.d,—1);
A2U = triu(—Acart_.d,1);
A20D = A2L + A2U;

A3D = diag(diag(Apolar));
A3L = tril(—Apolar,—1);
A3U = triu(—Apolar,1);

A30D = A3L + A3U;

rho_cart max (abs (eig (AID\AIOD))) ;

rho_cart_-d = max(abs(eig(A2D\A20D)));

rho_local = max(abs(eig(A3D\A30D)));

disp ([ num2str(rho_cart) ° ° num2str(rho_cart_d)
rho_local) ])

CONV1 = le-5;

CONV = le-5;

AN R R N N R R R R R R R R RN R R RN

for w = 1:1
P = zeros(size(x));
Pb = zeros(size (xmeshb,1), size (xmeshb,2));

bl s

num2str (

9% //( flow domain)xpressure calculation on global mesh
disp (’ Pressure calculation 1 on global mesh’)

[pxn,pyn] = set_flowTDMA _NumericalRHS (mxb,myb, listx , listy ,px,py);
[pxw,pyw] = set_flowTDMA _wallRHS (ax ,ay, listxw ,listyw ,px,py);

S = A(Alistl) — 2/3xpxn/dx — 2/3xpyn/dy — 2/3xpxw/dx — 2/3xpyw/dy;

count2 = 1;
res_cart(count2) = 100;
gconvl (count2) = 100;
Ptemp = P(Alistl *);
Twl = (AID-w=*AIL)\((1 —w)*AlD+wxAlU) ;
cwl = wx((AID-w+AIL)\S’) ;
while gconvl (count2) > CONVI
if "mod(count2,100)
disp ([ num2str(count2)
end
count2 = count2 + 1;

i s

num2str (gconvl (count2))])
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Ptemp = TwlxPtemp + cwl;
res_cart(count2) = sum(abs(AcartxPtemp — S’));

gconvl (count2) = abs(res_cart(count2) — res_cart(count2 —1));
end
P = reorder_flow (mxb,myb, maskbody, Alistl ,Ptemp,P);
P1 = P;

0 VANV LV

Yo //////////////////// pressure calculation on local mesh

9% xinterpolate pressure from global mesh to local mesh

95 at outermost circle

disp (’ Pressure calculation 2 on local mesh’)

Pb(end,2:end—1) = interp2(x,y,P,xmeshb(end,2:end—1),ymeshb(end,2:
end—1) ,...
>cubic’);

Pb = [Pb(:,end—1) Pb(:,2:end—1) Pb(:,2)];

% % (body domain) *PDMA on circular mesh

[bpl ,bp2] = set_-bodyTDMA _NumericalRHS (Pb, bpr,rb,dr, frad ,r_-lower ,
r_upper);

Sb = bA(Alist) + bpl + bp2;

count2 = 1;
res_circ2 (count2) = 100;
gconv2(count2) = 100;
Pbtemp = Pb(Alist *);
Tw3 = (A3D-wxA3L) \((1 —w) *A3D+wxA3U) ;
cw3 = wx((A3D-wxA3L)\Sb’) ;
while gconv2(count2) > CONV
if "mod(count2,100)

disp ([ ’*’ num2str(count2) ’ ’ num2str(gconv2(count2))])
end
count2 = count2 + 1;

Pbtemp = Tw3xPbtemp + cw3;
res_circ2 (count2) = sum(abs(ApolarxPbtemp — Sb’));
gconv2(count2) = abs(res_circ2(count2) — res_circ2 (count2 —1));
end
Pb = reorder_body (Alist ,rb,Pbtemp,Pb);
Pb(1,:)= —2/3%xbpr(1,:)*dr+4/3%xPb(2,:) —1/3%xPb(3,:);
Pow = —2/3xbprw (1 ,:)*dr+4/3%x(Pb(2,:)+Pb(1,:))/2 — 1/2%x(Pb(3,:)+Pb
(2,:))/2
Pbl = Pb;
count5 = 1;

Y% /////x interpolate pressure from local mesh to global mesh
for xklm = 1:6 % iterative method
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Y % % disp(’.. .. back interpolation: flow <— body’)
Y% % % at points closest to the inner most circle
Y % % overlap position —0.75<=x<=0.75, —0.75<=y<=0.75
R2 = max(rb (:));
[xlow, ylow] = find( x<-R2 & x>—(R2+dx) & y<—R2 & y>—(R2+dy));
[xup, yup] = find( x>R2 & x<R2+dx & y>R2 & y<R2+dy);
[ xcirc_rect ,ycirc_rect] = meshgrid (
x (xlow ,ylow)—eps:dx: x(xup,yup)+eps ,
y(xlow ,ylow)—eps:dy: y(xup,yup)+eps );
Pb2 = polar2cart_interp (rb,thetab , xcirc_rect ,ycirc_rect ,Rb,dr,
dtheta ,Pb);
for i = 1l:length(x2)
[ix,iy] = find(x == x2(i) & y == y2(i));
[ix2 ,iy2] = find(xcirc_rect > x2(i)—2xeps & ...
xcirc_rect < x2(i)+2xeps & ...
ycirc_rect > y2(i)—2xeps & ...
ycirc_rect < y2(i)+2xeps );
P(ix ,iy) = Pb2(ix2,iy2);
end

20 A ALV LV VLV VALV AV

9% /////7( flow domain) pressure calculation on global mesh
disp(’pressure calculation 3 on global mesh’)
[pxn_d,pyn_d] = set_flowTDMA _NumericalRHS (mxb,myb, listx_d , listy_d

,PX,py);

[pxw_d,pyw.d] = set_flowTDMA _dirichletRHS (ax_d ,ay.d,listxw_d ,
listyw_d ,P);

S.d = A(Alistl )— 2/3xpxn_d/dx—2/3xpyn_d/dy—pxw_d/dx/dx—pyw_d/dy/
dy;

count3 = 1;

res_cart3 (count3) = 100;
gconv3(count3) = 100;
Ptemp = P(Alistl_d ’);
Tw2 = (A2D-wxA2L) \((1 —w) *A2D+wxA2U) ;
cw2 = wx((A2D-wxA2L)\S_.d’);
while gconv3(count3) > CONV

if "mod(count3 ,100)

disp ([ ’#*%’ num2str(count3)
end
count3 = count3 + 1;

) )

num2str (gconv3 (count3))])

Ptemp = Tw2xPtemp + cw2;

res_cart3 (count3) = sum(abs(Acart_d«xPtemp — S_.d’));

gconv3(count3) = abs(res_cart3 (count3) — res_cart3 (count3 —1));
end
P = reorder_flow (mxb,myb, maskbody, Alistl_d ,Ptemp,P);
P2 = P;
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9% second iteration on local mesh
9% xinterpolate pressure from flow domain to body domain
9% xat outermost circle
disp(’Pressure calculation 4 on local mesh’)
Pb(end ,2:end—1)=interp2(x,y,P, .

xmeshb (end ,2:end —1),ymeshb(end ,2:end—1),  cubic’);
Pb = [Pb(:,end—1) Pb(:,2:end—1) Pb(:,2)];

9% (body domain) *xPDMA on circular mesh

[bpl ,bp2] = set_-bodyTDMA _NumericalRHS (Pb, bpr,rb,dr,frad ,r_-lower ,
r_upper);

Sb = bA(Alist) + bpl + bp2;

Twd = Tw3;
cwd = wx((A3D—wxA3L)\Sb’) ;
count4 = 1;

res_circ4 (countd) = 100;
gconv4 (countd) = 100;
Pbtemp = Pb(Alist *);
while gconv4 (count4) > CONV
if "mod(count4 ,100)
disp ([ ’##*x’ mum2str(count4)
end
count4 = countd + 1;

) )

num2str (gconv4 (count4d))])

Pbtemp = Tw4xPbtemp + cw4;

res_circ4 (count4) = sum(abs(ApolarxPbtemp — Sb’));
gconv4 (count4) = abs(res_circ4 (countd) — res_circ4 (countd —1));
end
Pb = reorder_body (Alist ,rb,Pbtemp,Pb);
Pb(1,:)= —2/3xbpr(1,:)*xdr + 4/3%xPb(2,:) — 1/3xPb(3,:);
Pbw = 15/8 % Pb(1,:) + (—=5/4)xPb(2,:) + 3/8 % Pb(3,:);
Pb2 = P;
save ([ circle poisson ’ releaseVer num2str(w) num2str(count5) ’
mat’]) ;
count5S = count5 + 1;
end

end
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Appendix C

Poisson solver for flapping wing

function fn_fw_poisson3d_6_1_mid (nconvl ,nconv2, freq ,nsec)
% naming convention

% fn = function

% fw = flapping wing

% poisson3d = solves 3d Poisson equation

% 6_1 = program version

%

% nconvl
% nconv2
% freq =
% nsec =

100000;
100000,

’

:3;

~ ~

Y% pressure around flapping wing
% MU, MV (mm/s);

% Mxp, Myp (mm);

% a, b (mm); THETA (rad);

% th2 (thickness/2, mm);
% rho (g.mm™(—3) )
load(’ ../ statistics_covariance_and_average .mat’,
‘'mu’,’mv’,’mw’, Cuu’,’uv’,uw’ L vy L Tvw L Tww )
load (’ ../ statistics_measurement_uncertainty .mat’,
‘sigma_pu2’,’sigma_pv2’,’sigma_pw2’);
[YP,XP] = meshgrid(—20:1.25:20,—-30:1.5:30);
if nsec(l) ==
releaseVer = [76.1.° num2str(freq) ’.mid’];
else if nsec(l) == 4
releaseVer = [76.1.° num2str(freq) ’.edge’];
end
end
= —
a = 12.56;
b 40;
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THETA = 0.1=xpi;

th2 = 1; % thickness
rho = 0.001;

visc = 8.9e—4;

baseCONV = [le—5 le—5 le—5 l1le—5 le—5 le—5 le—5 1le—5 le—5 le-5
le—5 1le—5 1le—5 l1le—5 le—5 1le—5 1le—5 le—5 le—5 le-5 |;

gCONV = 5e2x baseCONV;

ICONV = 1e0% baseCONV;

Stime = 1; Ntime = 20;

9% global mesh spatial lengths

dx = 1.5; %(mm)
dy = 1.25; %(mm)
dz = 2; Yo(mm)

dt = 1/freq/20; disp(dt) %s
9% local mesh spatial lengths
dxmesh = 1;

dymesh = 1;

dzmesh = dz;

9%k Data preparation for numerical procedure

MU = cell (1,20); MV=MU; MW=MU;
Muu=MU; Mvv=MU ; Mww=MU ; Muv=MU ; Muw=MU ; Mvw=MU; eu=MU; e v=MU; ew=MU;
Mxp=zeros ([ size (XP) ,3]) ; Myp=Mxp; Mzp=Mxp; fsec=zeros (1,3);
csec = [-2 0 2 8 10 12];
count0 = 0;
for sec = nsec
count0 = countO0 + 1;
for phase = 1:20
MU{phase } (:,:,count0) = reshape(mu{freq}{sec,phase},33,41) " ;
MV{phase } (:,:,count0) = reshape(mv{freq}{sec,phase},33,41)";
MW{phase }(:,:,count0) = reshape(mw{freq}{sec,phase},33,41)";
Muu{phase }(:,:,count0) = reshape(uu{freq}{sec,phase},33,41)";
Muv{phase } (:,:,count0) = reshape(uv{freq}{sec,phase},33,41)";
Muw{ phase }(:,:,count0) = reshape(uw{freq }{sec,phase},33,41)";
Mvv{phase } (:,:,count0) = reshape(vv{freq}{sec,phase},33,41);
Mwvw{phase }(:,:,count0) = reshape(vw{freq}{sec,phase},33,41)";
Mww{ phase } (: ,:,count0) = reshape (ww{freq}{sec,phase},33,41)’;
eu{phase } (:,:,count0) = reshape(sigma_pu2{freq}{sec,phase},33.,41)
ev{phase } (:,:,count0) = reshape(sigma_pv2{freq}{sec,phase},33,41)
ew{phase }(:,:,count0) = reshape(sigma_pw2{freq}{sec,phase},33,41)
end
Mxp(:,:,count0) = XP;
Myp(:,:,count0) = YP;
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Mzp(:,:,count0) = csec(sec)*ones(size(XP));
fsec(countQ) = csec(sec);
end
Y% set up local mesh, which is moving with the plate. The plate ’s

9% kinematics is represented by an analytical equation
xmesh = —10:dxmesh:10;

ymesh = —40:dymesh:5;

[YMESH, XMESH]=meshgrid (ymesh , xmesh) ;

for i=1:20
disp ([ *time num2str(i)]);
% set plate kinematics: t(characteristic time) and theta
% (plate ’s deflection angle)
t(i) = (1—=1)/20; % characteristics time index
theta (i) = —THETAxsin (2xpixt(i)); % phase angle
cutoff_1 = 28; % cuts the plate to define the part of the plate
% overlapping with the measurement plane
for kk = 1:3
YMESHT1{i }(:,:,kk)
1)) —40;
XMESHT1{i }(:,:,kk)
i));
YMESHT{i }(:,:,kk) YMESHT1{i }(:, cutoff_l1:end,1);
XMESHT{i }(:,:,kk) = XMESHTI{i }(:,cutoff_1:end,1);
end
% surface coordinate of local mesh from hub to tip for plane 1 edge
% nodes coord. of local mesh in the computational domain for plane
1-3

)

(YMESH+40)*cos(—theta (i) )+XMESH*sin(—theta (

—(YMESH+40) xsin(—theta (i) )+XMESHxcos(— theta (

% CREATE MASKS TO INDICATE COMPUTATIONAL AND WALL BOUNDARIES
%! template
MASK = ones(size (XMESHT{1}(:,:,1)));
% template of edge node MASK from local mesh
PLATE1 = MASK; HOW = MASK;
% PLATEI= mask for the local mesh
% PLATEX, PLATEY, PLATEZ= mask for the edges of the local mesh
Ix = (length (xmesh)—1)/2; % location(index) of the surface of the
plate
PLATE1(Ix:1x+2, 1:1+41—cutoff_1)= 0;
PLATEI(1,:) = 0;
PLATEI(:,1) =
PLATEl (end ,:) 0;
PLATE1(: ,end) = O;
% % % MASKING FOR THE EDGE NODES, INCLUDES WALL BOUNDARY
% % % AND COMPUTATIONAL DOMAIN BOUNDARY
[PLATEY1,PLATEX1] = gradient (PLATE1);
PLATEY1 = PLATEY! .x PLATE];
PLATEX1 = PLATEX1 .x PLATE];

i

)

oo
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PLATEX1(2 ,2:end—1) = PLATEXI1 (2 ,2:end —1)x4;

PLATEX1(end —1,2:end —1)

PLATEY1(2:end —1,2

PLATEY1(2:end —1,end —1)

for kk = 1:3
PLATEX(: ,: ,kk)
PLATEY (: ,: ,kk)

PLATE(:,: ,kk) =

end

PLATEX1(end —1,2:end —1) x4;
PLATEY1(2:end —1,2 ) x4,
PLATEY1(2:end—1,end —1) x4,

)

= PLATEX];
= PLATEY1;

PLATEL;

PLATEZ = zeros ([ size (PLATEl) 3]);:
PLATEZ(:,:,1) = PLATEl;

PLATEZ(: ,:,3) = —PLATEI;

clear PLATEl PLATEXI PLATEYI

% % % CREATE MASK TO INDICATE THE WALL BOUNDARY.
FLOW(1x+1,1:1+41—cutoff_1) = 0;
FLOW(:,:,2) = FLOW(:,:,1);
HOW(:,:,3) = FLOW(:,:,1);
MASK = ones(size (XMESHTL{1}(:,:,1)));

PLATE2 = MASK;

PLATE2(1x:1x+2,1:1+41)= 0;
[XY2,XX2] = gradient (PLATE2);
XY2 = XY2 .x PLATE2;
XX2 = XX2 .x PLATE2;

PLATEX2 = XX2;
PLATEY2 = XY2;

PLATE2(:,:,2) = PLATE2(:,:,1);
PLATE2(:,:,3) = PLATE2(:,:,1):
% % % MASKING FOR THE EDGE NODES, ONLY FOR THE WALL BOUNDARY

9% CREATE COORDINATES, DATA, AND MASKS FOR THE CENTER NODES IN
9% THE mid VARIABLE |[for global mesh and local mesh]

[mid.Myp, mid.Mxp]

12 )3
for kk = 1:3
mid .Myp (: ,:,kk)
mid .Mxp (:,:,kk)
mid . Mzp (: ,: ,kk)

= meshgrid(—20+dy/2:dy:20—-dy/2,—-30+dx/2:dx:30—-dx

mid .Myp(:,:,1);
= mid . Mxp(:,:,1);
fsec(kk) * ones(size(mid.Myp(:,:,1)));

mid MU{i } (:,:,kk)=interp2 (Myp(:,: ,kk) Mxp(:,:,kk) MU{i}(:,:,kk),

mid .Myp(:,: ,kk), mid.Mxp(:,:,kk));

mid MV{i } (:,: ,kk)=interp2 (Myp(:,: ,.kk) ,Mxp(:,:,kk) MV{i}(:,:,kk),

mid .Myp(: ,: ,kk) ,mid.Mxp(:,: ,kk));

mid MW{i } (:,: ,kk)=interp2 (Myp(:,:,kk) Mxp(:,:,kk) MW{i}(:,:,kk),

mid .Myp(: ,: ,kk) ,mid .Mxp(:,:,kk));

mid . Muu{i } (:,:,kk)=interp2 (Myp(: ,: ,kk) ,Mxp(:,:,kk) Muu{i}(:,:,kk)

s
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mid . Muv{i } (:,:,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk) ,Muv{i }(:,:,kk)
mid .Myp (:,: ,kk) ,mid .Mxp(:,: ,kk));

mid . Muw{i } (:,: ,kk)=interp2 (Myp(:,: ,kk) ,Mxp(:,:,kk) Muw{i }(:,:,kk)
mid .Myp(:,: ,kk), mid.Mxp(:,:,kk));

mid . Mvv{i } (:,:,kk)=interp2 (Myp(:,:,kk) Mxp(:,:,kk) ,Mvv{i}(:,:,kk)
mid . Myp(:,:,kk), mid.Mxp(:,:,.kk));

mid

mid

s

mid .Myp(:,:,kk), mid.Mxp(:,:,kk));

s

mid . Myp(:,:,kk), mid.Mxp(:,:,kk));

Mww{il}(:,:,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk) ,Mww{i}(:,:,kk)

Mww{i}(:,:,kk)=interp2 (Myp(:,:.,kk) ,Mxp(:,:,kk) Mww{i}(:,:,kk)

mid.eu{i }(:,:,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk),eu{i}(:,:,kk),

mid .Myp(:,:,kk), mid.Mxp(:,:,kk));

mid.ev{i}(:,:,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk),ev{i}(:,:,kk),

mid . Myp(:,:,kk), mid.Mxp(:,:,kk));

mid.ew{i } (:,:,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk) ,ew{i}(:,:,kk),

end

mid .Myp(:,: ,kk), mid.Mxp(:,:,kk));

% center point coordinates for (X,Y) and center—face coord for Z,
% and the values associated to them in global mesh.

% % coordinate for the local mesh

% % % coordinates associated with the full—length of the plate.
mid . ymeshO{i} = YMESHTI{i }(l:end—1,1:end—1,:)+dymesh/2;
mid . xmeshO{i} = XMESHT1{i}(l:end—1,1:end —1,:)+dxmesh/2;
Y% % % coordinates associated with the overlapping length of the plate
mid.ymesh{i} = YMESHT{i }(l:end—1,l:end —1,:)
+ dymesh/2xcos(—theta(i)) + dxmesh/2xsin(—theta(i));
mid. xmesh{i} = XMESHT{i }(l:end—1,l:end—1,:) ...
— dymesh/2xsin(—theta(i)) + dxmesh/2xcos(—theta(i));
xmesh_wall = size (mid.xmesh{i},1)/2;
% % MASKING OF THE CENTER NODES ENCOMPASSING THE FULL LENGTH OF THE
PLATE
mid. flow0{i} = ones(size (mid.xmesh0{i}));

mid .
mid .
mid .
mid .

flow0{i}(xmesh_wall: xmesh_wall+1 ,1:40,:) = 0;
mask{i} = ones(size (mid.xmesh{i}));

mask{i}( xmesh_wall:xmesh_wall+l ,1:41—cutoff_1,:)
flow{i} = mid.mask{i};

=0’

% % MASKING OF CENTER NODES ENCOMPASSING THE LENGTH OF THE PLATE
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% % INSIDE THE COMPUTATIONAL DOMAIN
mid . mask{i }(1 . ,i) = 0; mid.mask{i}(: I ,1) = 0;
mid . mask{i}(end,: ,:) = 0; mid.mask{i}(: ,end,:) = 0;
[mid.ymask{i}, mid.xmask{i}] = gradient(mid.mask{i});
mid. xmask{i} = mid.mask{i}.*xmid.xmask{i };
mid . xmask {i }(2 ,: ,:) = mid.xmask{i}(2 . L) 4
mid . xmask{i }(end —1,: ,:) = mid.xmask{i}(end—1,: 1) 4;
mid . ymask{i} = mid.mask{i}.*mid.ymask{i};
mid . ymask{i } (: ,2 ,:) = mid.ymask{i }(: ,2 ;i) x4y
mid . ymask{i }(: ;end —1,:) = mid.ymask{i}(: end—1,:) x 4;
mid . zmask{i } (:,:,1) = mid.mask{i }(:,:,1);
mid . zmask{i } (:,:,3) = —mid.mask{i }(:,:,1);
% % ANGULAR VELOCITY AND ACCELERATION OF THE PLATE [local mesh]
Y% plate kinematics
theta(i) = —1 % THETA x sin(2xpixt(i)); % phase angle
OMEGA(i) = —(2«pixfreq) * THETA * cos(2xpixt(i));
ALPHA(i1) = (2xpixfreq)”2 * THETA x sin(2xpixt(i));
for kk = 1:3
% % %(ON THE FACE)

umesh{i } (:,:,kk) interp2 (Myp(:

Y, ...
YMESHT{i }(: ,:
vmesh{i } (:,:,kk) = interp2 (Myp(:
Y, ...
YMESHT{i }(: ,:
wmesh{i }(:,:,kk) = interp2 (Myp(:
), .
YMESHT{i }(: ,:
vumesh{i }(:,: ,kk) = interp2 (Myp(
kk),
YMESHT{ i } (: ,
uvmesh{i } (:,:,kk) = interp2 (Myp(
kk),
YMESHT{i } (:
uwmesh{i }(:,:,kk) = interp2 (Myp(
kk) ,
YMESHT{i } (: ,
vvmesh{i }(:,: ,kk) = interp2 (Myp(
kk),
YMESHT{i } (: ,
vwmesh{i }(:,:,kk) = interp2 (Myp(
kk) ,
YMESHT{i } (:
wwmesh{i }(:,:,kk) = interp2 (Myp(

kk) ,

YMESHT{i }(: ,:

umesh_ntz{i }(:,:,kk) umesh{i }(

,o.kk), Mxp(:,:,kk), MU{i}(:,:,kk

,kk), Xl\/IESHT{i}(: ,:,kk));
,o,kk), Mxp(:,:,kk), MV{i}(:,:,kk

,kk) , XNIESHT{I}( ,:,kk));
.o, kk), Mxp(:,:,kk), MW{i}(:,:,kk

,kk), XMESHT{i }(:,:,kk));
t,,kk), Mxp(:,:,kk), Muu{i}(:,:,

:,kk), XMESHT{i }(:,:,kk));
t,i,kk), Mxp(:,:,kk), Muv{i}(:,:,

:,kk), XMESHT{i }(:,:,kk));
t,i,kk), Mxp(:,:,kk), Muw{i }(:,:,

:,kk), XMESHT{i }(:,:,kk));
t,i,kk), Mxp(:,:,kk), Mw{il}(:,:,

:,kk), XMESHT{i }(:,:,kk));
tLi,kk), Mxp(:,:,kk), Mvw{i}(:,:,

:,kk), XMESHT{i }(:,:,kk));
t,i,kk), Mxp(:,:,kk), Mww{i}(:,:,

,kk), XMESHT{i }(:,:,kk));

:,:,kk) *x cos(theta(i))
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— vmesh{i }(:,:,kk) * sin(theta(i)) — OMBGA(i)*(40+YMESHT
{1}(:,:,kk));
vmesh_ntz{i }(:,:,kk) = umesh{i}(:,:,kk) * sin(theta(i))
+ vmesh{i }(:,:,kk) * cos(theta(i));
wmesh_ntz{i } (:,:,kk) = wmesh{i }(:,:,kk);
cua = uvumesh{i }(:,:,kk) * cos(theta(i))"2;
cub = vvmesh{i}(:,:,kk) % sin(theta(i))"2;

cuc = uvmesh{i }(:,:,kk) x cos(theta(i)) * sin(theta(i));
cud = uwmesh{i }(:,:,kk) % cos(theta(i));
cue = vwmesh{i }(:,:,kk) x sin(theta(i));

cuf = wwmesh{i }(:,:,kk);

uu_ntz{i}(:,:,kk) = cua + cub — 2xcuc;
uv_ntz{i}(:,:,kk) = cua — cub;
uw._ntz{i}(:,:,kk) = cud — cue;

vw_ntz{i}(:,:,kk) cud + cue;
vv_ntz{i }(:,:,kk) cua + cub + 2xcuc;
ww_ntz{i}(:,: ,kk) = cuf;

% % % (ON THE NODE)

mid.umesh{i }(:,: ,kk)=interp2 (Myp(:,:,kk) Mxp(:,:,kk) MU{i}(:,:,kk
), ...
mid.ymesh{i } (:,:,kk), mid.xmesh{i}(:,:,kk));
mid.vmesh{i } (:,: ,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk) MV{i}(:,:,kk
T
mid.ymesh{i }(:,:,kk), mid.xmesh{i}(:,:,kk));
mid.wmesh{i } (:,: ,kk)=interp2 (Myp(:,:,kk) ,Mxp(:,:,kk) MW{i}(:,:,kk
), ...
mid.ymesh{i } (:,:,kk), mid.xmesh{i}(:,:,kk));
mid.umesh _ntz{i}(:,:,kk)=mid.umesh{i }(:,:,kk)*cos(theta(i))
— mid.vmesh{i }(:,:,kk)*sin(theta(i)) — OMEGA(i)*(40+mid.ymesh
{1},
mid. vmesh_ntz{i } (:,: ,kk)=mid.umesh{i }(:,:,kk)*sin(theta(i))
+ mid.vmesh{i }(:,:,kk)*cos(theta(i));
mid.wmesh_ntz{i }(:,:,kk)=mid.wmesh{i }(:,:,kk);
mid.umesh_ntz{i }(:,:,kk)=mid.umesh_ntz{i }(:,:,kk) .* mid.flow{i

(o, kk)
mid. vmesh_ntz{i } (:,: ,kk)=mid. vmesh_ntz{i }(:,:,kk) .x mid.flow{i
PG kk) s

mid. wmesh_ntz{i } (:,:,kk)=mid. wmesh_ntz{i }(:,: ,kk) .% mid.flow{i
P, kk)

end
MASK2 = zeros(size (mid.xmesh{1}(:,:,1)));
MASK2(1,:) = 1; MASK2(:,1) = 1; MASK2(end,:) = 1; MASK2(: ,end) =

end

1;

clear MASK umeshl vmeshl wmeshl
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% % calculate acceleration of flow on NODES with forward marching
scheme
[utmesh , vtmesh , wtmesh] = getAcceleration (mid.umesh_ntz ,
mid. vmesh_ntz , mid.wmesh_ntz, dt);
getAcceleration (mid .MU, mid.MV, mid MW, dt);
getAcceleration (mid.eu, mid.ev, mid.ew, dt);

[MUt, MVt,MWt]
[eut ,evt,ewt]

% >> phase averaged solutions starts here <<
%
for time = Stime:Ntime
disp ([ "Convergence limit 1: ° num2str(gCONV(time))])
disp ([ "Convergence limit 2: ° num2str (ICONV(time))])
9% (local mesh) source term and pressure gradients

ux = zeros(size (mid.xmesh{1}));
uy = zeros(size (mid.xmesh{1}));
uz = zeros(size (mid.xmesh{1}));
vx = zeros(size (mid.xmesh{1}));
vy = zeros(size (mid.xmesh{1}));

vz = zeros(size (mid.xmesh{1}));
wx = zeros(size (mid.xmesh{1}));
wy = zeros(size (mid.xmesh{1}));
wz = zeros(size (mid.xmesh{1}));
[ux,uy,uz,vx,vy,vz,wx,wy,wz] = get_local_velocityGradient (
umesh _ntz{time }, vmesh_ntz{time}, wmesh_ntz{time},
mid . flow {1}, dxmesh,dymesh,dzmesh, ux,uy,uz,vx,vy,Vvz,wX,wy,wz);

[vv_ntz_y2 ,uu_ntz_x2 ,ww_ntz_z2 ,uv_ntz_xy ,Vw_ntz_yz ,uw_ntz_xz] =
getReSecondDerivatives (
vv_ntz{time } ,uu_ntz{time } ,ww_ntz{time },
uv_ntz{time } ,vw_ntz{time } ,uw_ntz{time } ,dy,dx,dz);

bAl = ux.”2 + vy."2 + wz."2 + 2%uy.*VX + 2%UZ.*WX + 2%VZ.%xWy;
bA2 = uu_ntz_x2 + vv_.ntz_.y2 + ww._ntz_z2 +

2%kuv_ntz_xy + 2xvw_ntz_.yz + 2xuw_ntz_xz;
bA = —rhox( bAl + bA2 — 2+OMEGA(time)."2 + 2+OMEGA(time) *( uy—vx )

)

[uv_ntz_y, uu_ntz_x, uw_ntz_z] = getReFirstDerivatives (
uv_ntz{time } ,uu_ntz{time } ,uw_ntz{time },dy,dx,dz);
[vv_ntz_y, vu_ntz_x, vw_ntz_z] = getReFirstDerivatives(
vv_ntz{time },uv_ntz{time } ,vw_ntz{time } ,dy,dx,dz);
[wv_ntz_y, wu.ntz_.x, ww_ntz_z] = getReFirstDerivatives(
vw_ntz{time } ,uw_ntz{time } ,ww_ntz{time } ,dy ,dx,dz) ;

pxmesh = —rho*( utmesh{time}

+ mid.umesh_ntz {time }.xux
+ mid. vmesh_ntz {time }.xuy
+ mid.wmesh_ntz{time }.xuz
+ uv_ntz_.y + uu_ntz_Xx + uw_ntz_z +...
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— ALPHA(time).*(40 + mid.ymesh{1})

— OMEGA(time) "2.xmid.xmesh{1} ...

— 2xOMEGA(time )*mid. vmesh_ntz{time} );
pymesh = —rho*( vtmesh{time}

+ mid.umesh_ntz{time }.*vx
mid. vmesh_ntz {time }.x vy
mid. wmesh_ntz{time }.x vz
vv_ntz_y + vu_ntz_Xx + vw._ntz_z+...
ALPHA(time ) .*xmid.xmesh{1} ...

— OMEGA(time ) 2.%(40 + mid.ymesh{1}) .

+ 2+«OMEGA(time)+mid.umesh_ntz{time} );
pzmesh = —rho*( wtmesh{time }

+ mid.umesh_ntz{time }.xwx

+ mid.vmesh_ntz{time }.xwy

+ mid.wmesh_ntz{time }.xwz

+ wv_ntz_.y + wu._ntz_Xx + ww_ntz_z )
% % % pressure gradient and RHS of Poisson equation, local mesh

+ 4+ + +

pxmeshO = zeros(size (pxmesh)); pymeshO = zeros(size (pymesh));
for kk = 1:3
pxmeshO (xmesh_wall ,1:41—cutoff_1 ,kk) = —rho * ( .
ALPHA(time).*(40 + (—12.5:1: —0.5)) + OMEGA(time) "2.x(—0.5) );
pxmeshO(xmesh_wall+1,1:41 —cutoff_1 ,kk) = —rho * (
ALPHA(time).*(40 + (—12.5:1: —0.5)) + OMEGA(time) "2.x( 0.5) );
pymeshO(xmesh_wall ,1:41 —cutoff_1 ,kk) = —rho % (

—ALPHA(time ) .x(—0.5) + OMEGA(time) "2.%x(40 + (—12.5:1:-0.5)));
pymeshO (xmesh_wall+1,1:41 —cutoff_1 ,kk) = —rho * ( ...
—ALPHA(time) .x( 0.5) + OMEGA(time) "2.%(40 + (—12.5:1:-0.5)));
end % set boundary condition on the wall

9% (global mesh) source term and pressure gradients
[mid. gmask , mid.gx ,mid.gy,mid.gz] = set_flowRect_mask ( .
mid.Mxp, mid.Myp, mid.xmesh0{time}, mid.ymeshO{time}, mid.flow0{

time} );

% set flow area for global mesh at center nodes

msize = size (mid.Mxp);

gux = zeros(msize); gvx = zeros(msize); gwx = zeros(msize
)

guy = zeros(msize); gvy = zeros(msize); gwy = zeros(msize
)

guz = zeros(msize); gvz = zeros(msize); gwz = zeros(msize
)

[gux,guy,guz,gvx,gvy,gvz,gwx,gwy,gwz] =
get_global_velocityGradients (
MU{time } MV{time } MW{time } ,dx,dy,dz,(mid.gmask==0) ,mid. gx , mid
.8y, ...
gux ,guy, guz,gvx,gvy,gvz ,gwXx,gwy,gwz); %=velocity gradients
[vv_y2 ,uu_x2 ,ww_z2,uv_xy ,vw.yz ,uw_xz]| = getReSecondDerivatives (...
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376 Mvv{time } ,Muu{ time } Mww{ time } ,Muv{time } ,Mvw{time } ,Muw{time },dy,
dx,dz);

377, Al = gux."2 + gvy."2 + gwz."2 + 2%guy.*gvx + 2%gUzZ.*xgWX + 2%gVZ.%
gwWYy,

378 A2 = uu_x2 + vv_y2 + ww_z2 + 2%xuv_Xy + 2*%uw_XzZ + 2xVW_yZ;

379 A = —rhox( Al + A2 );

380

381/ [uv_y,uu_.x,uw_z]=getReFirstDerivatives (Muv{time } ,Muu{time } ,Muw{time

382 dy,dx,dz);

383 [vv_y,vux,vw_z]=getReFirstDerivatives (Mvv{time } ,Muv{time } ,Mvw{time

384 dy,dx,dz);

385 [wv_.y,wux,ww_z]=getReFirstDerivatives (Mvw{time } ,Muw{ time } Mww{ time

386 dy,dx,dz);

387| px= —rho*(MUt{time} + mid MU{time }.*gux + mid.MV{time }.*guy

388 + mid MW{time }.xguz + uu_x + uv_y + uw.z);

389 py= —rhox(MVt{time} + mid .MU{time }.*xgvx + mid.MV{time }.% gvy

390 + mid MW{time }.xgvz + Vu_X + VV_.y + Vw_z);

391 pz= —rhox(MWt{time} + mid .MU{time }.*xgwx + mid .MV{time }.xgwy

392 + mid MW{time }.xgwz + Wu_X + Wv_.y + ww_z);

393

394

395| % ambiguity

396 eux = zeros(msize); evx = zeros(msize); ewx = zeros(msize
)3

397 euy = zeros(msize); evy = zeros(msize); ewy = zeros(msize
)

398 euz = zeros(msize); evz = zeros(msize); ewz = zeros (msize
)

399 [eux ,euy,euz,evx,evy,evz ,ewX,ewy,ewz] =
get_global_velocityGradients (

400 eu{time },ev{time } ,ew{time }, dx,dy,dz,

401 (mid . gmask==0) ,mid.gx ,mid.gy, eux,euy,euz,evx,evy,evz,ewX,ewy

,EWZ) ;

402 %=velocity gradients

403| epx = —rhox*(eut{time} + mid.eu{time }.xgux + mid.MU{time }.*eux

404 + mid.ev{time }.x guy + mid .MV{time }.xeuy

405 + mid.ew{time }.x guz + mid MW{time }.xeuz);

406| epy = —rhox(evt{time} + mid.eu{time }.*gvx + mid MU{time }.xevx

407 + mid.ev{time }.xgvy + mid .MV{time }.xevy

408 + mid.ew{time }.xgvz + mid MW{time }.xevz);

409| epz = —rhox(ewt{time} + mid.eu{time }.xgwx + mid .MU{time }.*xewx

410 + mid.ev{time }.*xgwy + mid .MV{time }.xewy

411 + mid.ew{time }.xgwz + mid MW{time }.xewz) ;

412 sigma_p=sqrt (((px./gux)."2+(gux.xepx). " 2+(px.xeux)."2) .xmid.eu{time
}.72
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+ ((py./gvy)."2+(gvy.xepy)."2+(py.*xevy)."2) .xmid.ev{time

1.2
+ ((px./gwz)."2+(gwz.*xepz). " 2+(pz.xewz)."2) .xmid.ew{time
}r2)s
% % % another procedure to create mask
plate_on_rect=griddata (mid.ymeshO{time } (:,:,kk) ,mid.xmeshO{time
Py, kk) L

“mid. flowO{time }(:,: ,kk), mid.Myp(:,:,kk), mid.Mxp(:,:,kk) );
for i=1:size(plate_on_rect ,1)
for j=1:size(plate_on_rect ,2);

if isman(plate_on_rect(i,j)); plate_on_rect(i,j) = 0; end
if plate_on_rect(i,j) =0; plate_on_rect(i,j) = 1; end
end

end

[mask_y2 ,mask_x2] = gradient(plate_on_rect);
mask_x2= mask_x2.x" plate_on_rect;

mask_y2= mask_y2.x" plate_on_rect;

temp2 = round(abs(mask_x2)+abs(mask_y2));
mask_x3 = temp2.sxmid.Mxp(:,:,1);

mask_y3 = temp2.xmid . Myp(:,:,1);

gmask2 = plate_on_rect + temp2;

gmask?2 (: ,1:2 ) = 1; gmask2 (1:2 .t ) =
I;

gmask2 (end —1:end ,: ) = 1; gmask?2 (: ,end—1l:end ) =
1.

gmask2 (:,:,2) = gmask2(:,:,1); gmask2(:,:,3) = gmask2(:,:,1);
[gy2,gx2] = gradient(gmask2(:,:,1),1,1);
gx2 gx2.x(gmask2 (:,:,1)==0);

gy2 = gy2.%(gmask2 (:,:,1)==0);
gx2(3,3:end—-2) = gx2(3,3:end—-2)x4;
gx2(end —2,3:end—-2) = gx2(end —2,3:end—2)x4;
gy2(:,3) = gy2(:,3) x4,

gy2(:,end—2) = gy2(:,end—2) x4;

gx2(:,:,2) = gx2(:,:,1);

gx2(:,:,3) gx2(:,:,1);

gy2(:,:.,2) = gy2(:.:.1);

gy2(:,:,3) = gy2(:,:,1);

gz2 = zeros(size (gmask2));

gz2(:,:,1) = (gmask2(:,:,1)==0);
gz2(:,:,3) = —double(gmask2(:,:,3)==0);
sigma_p = sigma_p.*x(gmask2==0);

9% >>>>> CALCULATING MATRICES
disp(’calcuting matrices’);
P = zeros(size (mid.Mxp));
Pb = zeros(size (mid.xmesh{time }));

clear P2 mask_x4 mask_y4
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457 Pbx = zeros(size (mid.xmask));

458 Pby = zeros(size (mid.xmask));

459 Pbz = zeros(size (mid.xmask));

460

461|% procedure 1: apply Dirichlet boundary condition on the numerical

boundary

462|% procedure 2: apply mixed boundary in the local mesh

463| %o >>>>> PROCEDURE #1, CALCULATE PRESSURE ON GLOBAL MESH

464 disp (' procedure 1: Agloball’);

465 [Agloball , Alistl ,flagyl , flagxl ,flagzl ,flagywl ,flagxwl , Xgloball] =

466 PDMAglobal_neumann_neumann (dy ,dx ,dz,—gy2,—gx2,gz2 ,” gmask2);
467 Agloball = single (Agloball);
468| AID = diag(diag(Agloball)) ;

469 AIU = triu(—Agloball, 1) ;

470 AIL = tril(—Agloball,—-1) ;

471 [plo ,p20 ,p3o0 ] = set_global_NeumannBC(—gx2,—gy2,gz2,
472 flagx1 ,flagyl , flagzl ,px,py,pz, Alistl);

473 Y=boundary condition on numerical boundary

474 [pli ,p2i ,” ] = set_global_ NeumannBC(—gx2,—gy2,gz2,
475 flagxwl , flagywl , flagzl ,px,py,pz, Alistl);

476 Y9=boundary condition on wall

477 [7,7] = set_global_dirichletBC(—gx2,—gy2, flagxwl ,flagywl ,P, Alistl);
478
479 S1 = A(Alistl) + 2/3xplo/dx+2/3xp2o/dy+2xp3o/dz + 2/3xpli/dx+2/3x%
p2i/dy;

480 wl = 1;

481 countl = 1;

482 gconvl (countl) = 100;

483 resO = 0;

484 Ptemp = P(Alistl )

485 Tal = (AID—wI*AIL)\((1 —wl)*AlD+w1*AlU) ;

486| cal = wlx((AID—wl*AI1L)\S1");

487
488 while gconvl(countl) > gCONV(time) && countl < nconvl
489 if "mod(countl ,100)

490 disp ([ num2str(countl) > ’ num2str(gconvl (countl))])
491 end

492 Ptemp = Tal x Ptemp + cal;

493 countl = countl + 1;

494 res = sum(abs(Agloball«Ptemp — S1°));

495 gconvl (countl) = abs(res — res0);

496 resO = res;

497

498 if countl ==

499 gCONV(time) = gCONV(time) .x gconvl(3);
500 end

501 end %=solution of pressure
502 P = flowRect_reorder (gmask2, Alistl , Ptemp, P); Pg_templ = P;
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% CHECK RESULT #1
P = get_pressure_global(—gy2,—gx2,py,px,dy,dx,P); Pg_temp2 = P;
% CHECK RESULT #2 % pressure AT INNER boundary

9o >>>>> Interpolate and specify Plocal ( @outer BOUNDARY) from

P_Global

for kk = 1:3

x6 = 0; y6 = 0; clear ai;
ai = find (MASK2 == 1);

xtemp = mid.xmesh{time }(:,:,1);

ytemp = mid.ymesh{time }(:,:,1);
x6(1:length(ai)) = xtemp(ai(1l:length(ai)));
y6(1:length(ai)) = ytemp(ai(l:length(ai)));
Pbl = griddata (mid.Myp(:,:,kk), mid.Mxp(:,:,kk), P(:,:,kk), y6,x6

)
for i=1:length(ai)

[bi,bj] = find(

mid.xmesh{time } (:,:,kk) == x6(i)
& mid.ymesh{time }(:,: ,kk) == y6(i));
Pb2(bi,bj,kk) = Pbl(i);

end
end
Pb3(:,:,1) = ( pzmesh(:,:,1)*2xdz + Pb(:,:,2)).+mid.mask{time
P, 1)
Pb3(:,:,3) = (—pzmesh(:,:,1)*2xdz + Pb(:,:,2)).xmid.mask{time
FCiu.3)

9o >>>>> PROCEDURE#2, CALCULATE PRESSURE ON LOCAL MESH
disp (*decompose Alocal2’);
[Alocal2 ,Alist2 ,flagy2 ,flagx2 ,flagz2 ,flagyw2 ,flagxw2 , Xlocal2] =

PDMAIlocal_neumann_dirichlet (dymesh ,dxmesh, dzmesh ,
mid . ymask{time } ,mid . xmask{time } ,mid.zmask{time } ,mid. mask{time });
Alocal2 = single (Alocal2);
A2D = diag(diag(Alocal2)) ;
A2U triu(—Alocal2, 1) ;
A2L tril(—Alocal2,—1) ;

[pbxd,pbyd,pbzd] = set_local_dirichletBC (flagx2 ,flagy2 ,flagz2,
mid . xmask{time } ,mid . ymask{time } ,mid.zmask{time } ,Pb2,Pb2, pzmesh,
Alist2);
pbyn2 = set_local_neumannBC2 (flagy2, mid.ymask{time}, pymesh,
Alist2);
[pbxn,pbyn,pbzn] = set_local_neumannBC (flagxw2 ,flagyw2 , flagz2 ,
mid . xmask{time } ,mid . ymask{time } ,mid.zmask{time } ,...
pxmeshO , pymeshO , pzmesh , Alist2);
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545
546|9%% >>>>> TEST the boundary condition

547 | % index (convert column vector to matrix)

548 %0 >>>SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SIS SIS SIS SIS SIS SSSSSSSSSSSSSSSSS
549 listx2 = flagx2 .x Alist2;

550 listy2 = flagy2 .xAlist2;

551 listz2 flagz2 .x Alist2;

552 listxw?2 flagxw?2 .x Alist2;

553 listyw?2 flagyw2 .x Alist2;

554 [mml,mm2,mm3] = size (mid.mask{l});

555
556 [mml,mm2,mm3] = size (mid.xmesh{1});
557 plxn = zeros (mml,mm2,mm3) ;

558 p2xn = zeros (mml,mm2,mm3) ;

559 p3xn = zeros (mml,mm2,mm3) ;

560 plxd = zeros (mml,mm2,mm3) ;

561 p2xd = zeros (mml,mm2,mm3) ;

562 p3xd = zeros (mml,mm2,mm3) ;

563 p4xn = zeros (mml,mm2,mm3) ;

564

565 for mmi=1:mml

566 for mmj=1:mm2

567 for mmk=1:mm3

568 idx = (mmk—1)*(mml*mm2) + (mmj—1)*mml + mmi;

569 idx1 = find (listxw2 == idx);

570 if “isempty(idx1); plxn(mmi,mmj,mmk) = pbxn(idx1l); end
571 idx2 = find (listyw2 == idx);

572 if “isempty(idx2); p2xn(mmi,mmj,mmk) = pbyn(idx2); end
573 idx3 = find(listz2 == idx);

574 if “isempty(idx3); p3xn(mmi,mmj,mmk) = pbzn(idx3); end
575 idx4 = find (listx2 == idx);

576 if “isempty(idx4); plxd(mmi,mmj,mmk) = pbxd(idx4); end
577 idx5 = find(listy2 == idx);

578 if “isempty (idx5); p2xd(mmi,mmj,mmk) = pbyd(idx5); end
579 idx6 = find(listz2 == idx);

580 if “isempty (idx6); p3xd(mmi,mmj,mmk) = pbzd(idx6); end
581 idx7 = find (listy2 == idx);

582 if “isempty(idx7); p4xn(mmi,mmj,mmk) = pbyn2(idx7); end
583 end

584 end

585 end

586 plxnl = plxn(:,:,1); %pbxn
587 p2xnl = p2xn(:,:,1); %pbyn
588 p3xnl = p3xn(:,:,1); %pbzn
589
590 plxdl = plxd(:,:,1); %pbxd &
591 p2xdl = p2xd(:,:,1); %pbyd &
592 p3xdl = p3xd(:,:,1); %pbzd

593

Re Re R
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p4xnl = pdxn(:,:,1); %pbyn2 &
count2 = 1; gconv2(count2) = 100; resO = 0;
w2 = 1; Pbtemp = Pb(Alist2 ’);
S2 = bA(Alist2)
pbxd/dxmesh/dxmesh
pbyd/dymesh/dymesh
2/3xpbyn2/dymesh ... Y%=gradients on numerical boundary
pbxn/dxmesh
pbyn/dymesh
2«pbzn/dzmesh; %=gradients on the wall
% % pbzd is ignored because forward and backward difference
scheme was
Y% % set on the coefficient matrix Alocal2.
Ta2 = (A2D—w2xA2L) \ ((1 —w2)*A2D+w2+A2U) ;
ca2 = w2x((A2D—w2xA2L)\S2");

+ 4+ 4+ 4+ 4+ +

while gconv2(count2)>ICONV (time) && count2 < nconv2
if "mod(count2,100)
disp ([ num2str (count2)

> i

num?2str (gconv2 (count2))])

end
Pbtemp = Ta2«Pbtemp + ca2;
count2 = count2 + 1;
res = sum(abs(Alocal2xPbtemp — S2°));
gconv2(count2) = abs(resO — res);
resO = res;
if count2 ==
ICONV (time) = ICONV(time) .x gconv2(3);
end
end

Pb = bodyRect_reorder (mid.mask{time } ,Pbtemp, Alist2 ,Pb2,Pb2,Pb,
cutoff_1);

Pl_templ = Pb;

Pl_temp2 = Pb;

Pb = get_pressureLocal_outer (mid.xmask{time } ,mid.ymask{time } ,...

dxmesh , dymesh , pxmesh , pymesh ,Pb) ;
Pl_temp3 = Pb;

% force component normal to wing’s surface AND torque
% in the direction of the rotation
Pn_plus=15/8«Pb(9,1:13,1:3)+(—5/4)*Pb(8,1:13,1:3)+(3/8)*Pb
(7,1:13,1:3);
Pn_minus=15/8«xPb(12,1:13,1:3)+(—=5/4)*xPb(13,1:13,1:3)+(3/8)%Pb
(14,1:13,1:3);
dP = Pn_plus — Pn_minus;
for kk=1:3
Fn.val(kk) = sum( dP(:,:,kk).xdymeshxdzmesh );

267
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638 Tz.val(kk) = sum( dP(:,: ,kk).*x(40 + [—-12.5:1: —0.5])*dymesh*dzmesh
)3

639 end

640 Fn.note

641 Tz.note

642

643 save ([ pressure flapping3d

mat’ ])

644 clear Pbl maskx temp plate_on_rect Agloball Alocal2 Aglobal3

645 clear AID AIL A1U AILU A2D A2L A2U A2LU A3D A3L A3U A3LU

646 clear gconvx

647| end

648

649| beep

’not normalized’;
>not normalized’;

bl

releaseVer ° t_’ num2str(2000+time) .
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