Performance and area
optimization methods in compiler
for a dynamically reconfigurable processor

August 2011

TOI, Takao

AY

= W X #H F

wewn | (0)z ® 5| K & | PR

I dm B H
Performance and area optimization methods in compiler for a dynamically

reconfigurable processor

(EBRER 7 1 T = 3o T2 D MERE & R O fi{b)

(NEDOEF)

RSO IRE SN rFE O 1 ChRRMERE 2 R IE T 2 72D OB 7 v & v (DRP)
M a A ZICBIT A ELFEEZ T, DRPO7 —X%7 7 F+ Tlid,. 2HDO 7t v
vl A b (PE) EHHBIZERTZX D70 7 I~ TNERRN DT — X N AR S
Nb, [arTXALN] EIESZDOT—X 2% REEE 2 hun—F (STC) 2@
B0 B2 TENVMET D 2 L2k 0, WHHE LoF W BBy & RIR I 72350 4y D it)7 % (- FFo
2 OT7 7V r—a rERZER ETHHERICEINT LN TED, ZOT7—F77F %
DOEFTEEFTIICOWTE LD ET, CREENLDa L A7 a— IO TIkR5, T
D7 u—"7TiX, BEAR, 77 /rny—~ v 8— T L TRERRE VI IEETEKT 5,
FRICEMESRIL C Ll b @WilisE 2 RF>7 — 4 (A LIREEER~ Y V25T D&
DERI L7225,

W, BESRRIZH 1T A DRP [T D 3 SO LWRE(LTFE & FOERGERE ~T, —
FHIZ, BEOFEAT v T E2ar 77X A M EOTPE SR LED S, —FKH
I%. DRP D EF OB 22l R BRI 2 g V—T A T FA M T D' 2 A7 Y
2— Y TIZONTIRRE, STC#FHL T re—r btz e— 7N, T4
AT =G LTz, =F B3, f8E LIZ8EEER CENT 2D R Y a—1 7)
FEIZHOWTIRARD, BRZERRA A~ F 0352 DRP OB 22iEH 35, JPEG ~X— 2R
DOEBE FALLELZ | & LT 3 SO Fikz/MiR Lz, £9 a7 XX MoEREN
P LITICR Y SOICHEESOMERHDRIT 25 U EICH ELEZ, $721 7T 14 1k
(2L - T, PE % 2.2 0Nk LT, 3.6 5D A /v—7 v b _EOMERER EA#ER L7z,
B WIBIEFIEMEIC X0 | BERR SR MR R L LT,

BB, BECRRRMER B8 LB ES) HELERR £ TO 2 DO KEA K FIEE 7”7, PE
ERRT D T TOVERRIE. BT — X N R BT X D, BLAR OO TRMEREIC
BENMEOS, —FBHOTFETHE, 207 F A FORRBIEEZBEARICT 4 — KXy
7 LCIRMZ D ESES, BIERNZE2 27 7V r—rva cEfiLiz& A, 20T
o4 T3NS ZGRAEITH 21% 50 LTz, &% H OTFIEIL. BOROIRME 248 L CRGEL &
HEE L C, KENHRE TORMZR U3 12T 5, ZORE, BIEEMEREIT T 17%
ThOH, —FBBHOTFIEEL LT A%DEMTHEAT,

SUMMARY OF Ph.D. DISSERTATION

School Student Identification Number SURNAME, First name
Science for Open and TOI, Takao
Environmental Systems
Title
Performance and area optimization methods in compiler for a dynamically reconfigurable
processor
Abstract

This thesis presents compiler’s optimization methods to maximize performance in a limited area
for a dynamically reconfigurable processor (DRP). At first, the DRP architecture is introduced. It
is suitable for both control-intensive and parallelizable parts of an application program since it
has a distinctive state transition controller (STC) that switches “contexts” consisting of many
processing elements (PEs) and programmable wires. Characteristics of the architecture, each of
which has pros and cons, are clearly stated. The compiler from C language consists of a
high-level synthesizer (HLS), technology mapping tool, and place and route (place&route) tool.
The HLS is the most important tool which extracts both highly parallelized data-paths and finite
state machine.

Then, I propose three new optimization techniques in HLS for the DRP. First, several
control-steps are combined as a context to maximize PE utilization ratio. Second, modulo
scheduling algorithm is described for a loop pipelining, considering both spatial and time
efficiencies of the DRP. The STC is used to control pipeline stages for prologue and epilogue.
Third, a scheduling technique to improve controllability of clock frequency is explained. It
utilizes a disadvantage of the architecture, such as long delay in a routing switch. I have
evaluated techniques using a JPEG-based image decoder as one of examples. Experimental
results show that the number of contexts is reduced to less than half. The PE usage rate becomes
more than 2.5 times higher. Despite an overall increase in performance on pipelining of 3.6 times
than that without pipelining, the number of operational units increased by a factor of 2.2. The
clock frequency is maximized with accurate delay controllability.

At last, two iterative synthesis methods from HLS to place&route tool for making aware of wire
congestion are presented. Although complex data-paths can be synthesized with the
programmable wire, its delay is long where wires are congested. First, I feed back wire delays
for each context to a scheduler in the HLS. Experimental results showed that a critical-path delay
was shortened 21% on average for applications with timing closure problems. Second, the
routing is skipped. Wire delays are estimated based on their congestions. The synthesis time was
shortened to 1/3 causing delay improvement rate degradation at four points on average compared
to the first method.

