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Abstract

This thesis presents compiler’s optimization methods to maximize performance in a limited area
for a dynamically reconfigurable processor (DRP). At first, the DRP architecture is introduced. It
is suitable for both control-intensive and parallelizable parts of an application program since it
has a distinctive state transition controller (STC) that switches “contexts” consisting of many
processing elements (PEs) and programmable wires. Characteristics of the architecture, each of
which has pros and cons, are clearly stated. The compiler from C language consists of a
high-level synthesizer (HLS), technology mapping tool, and place and route (place&route) tool.
The HLS is the most important tool which extracts both highly parallelized data-paths and finite
state machine.

Then, I propose three new optimization techniques in HLS for the DRP. First, several
control-steps are combined as a context to maximize PE utilization ratio. Second, modulo
scheduling algorithm is described for a loop pipelining, considering both spatial and time
efficiencies of the DRP. The STC is used to control pipeline stages for prologue and epilogue.
Third, a scheduling technique to improve controllability of clock frequency is explained. It
utilizes a disadvantage of the architecture, such as long delay in a routing switch. I have
evaluated techniques using a JPEG-based image decoder as one of examples. Experimental
results show that the number of contexts is reduced to less than half. The PE usage rate becomes
more than 2.5 times higher. Despite an overall increase in performance on pipelining of 3.6 times
than that without pipelining, the number of operational units increased by a factor of 2.2. The
clock frequency is maximized with accurate delay controllability.

At last, two iterative synthesis methods from HLS to place&route tool for making aware of wire
congestion are presented. Although complex data-paths can be synthesized with the
programmable wire, its delay is long where wires are congested. First, I feed back wire delays
for each context to a scheduler in the HLS. Experimental results showed that a critical-path delay
was shortened 21% on average for applications with timing closure problems. Second, the
routing is skipped. Wire delays are estimated based on their congestions. The synthesis time was
shortened to 1/3 causing delay improvement rate degradation at four points on average compared
to the first method.




