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Chapter 1

Introduction

1.1 Physical background

Plasma is a mixture of ions, clectrons and neutral particles, collectively elec-
trically neutral, and usually permeated by macroscopic electrical and mag-
netic fields. In addition to these ‘smoothed’ or averaged electromagnetic
fields, which with laboratory plasma are often imposed from outside the
plasma volume, there are the microfields due to the individual particles.

There are four levels of description for a system of particles in magneto-
plasma, namely (a) the individual particle orbits, (b) kinetic theory giving
their collective behaviour in six-dimensional phase-space, (c¢) a multi-fluid
model in which the separate specics are treated as being distinct but in-
teracting continua, and finally (d) a one-fluid description, which lumps the
species into a single continuum with averaged properties ([61]).

Kinetic theory describes the behaviour of plasma in terms of the particle
motions. Numerical solutions of the Fokker—Planck equation give the slowing
down of a beam of particles injected into plasma and the resulting heating of
ions and electrons. Approximate forms of the equation allow the calculation
of the collisional transport of particles and energy. Magnetohydrodynamics
(MHD) is used for the research of plasma equilibrium and MHD instabilities.
It is noted that in this model the separate identities of ions and electrons do
not appear ([60]).

In the 1940s, nuclear fusion, the process that powers the sun and other



stars, was identified as a possible energy source and small groups carried
out early experiments. In the 1950s larger organized efforts to explore the
possibility of using fusion for peaceful purposes began in secrecy in Europe,
the United States and the Soviet Union ([34]). Particularly since the 2nd
Atoms for Peace Conference in Geneva in 1958, fusion scientists have shared
the information including the details of the Soviet Tokamak designed in 1951
to enable them to learn from each other. However they found that the way to
fusion power is more difficult, complex and costly than the first anticipated
([21], [36]). To accomplish the controlled nuclear fusion, we have to research
the way to control the high temperature plasma.

The fusion of Deuterium and Tritium nuclei is the lowest ignition tem-
perature, hence is the most suitable for fuel of nuclear fusion (Figure A.1 in
Appendix A). In order to obtain the fusion of Deuterium and Tritium nuclei
and the corresponding enormous release of energy, high collision speeds are
required to overcome the Coulomb repulsion of the positively charged nuclei.
One technique for confining the plasma is to use the interaction between the
electrically conducting plasma and magnetic fields ([33]). Since plasma con-
sists of positive and negative particles, it may be contained within a region
away from the vessel walls by the forces of magnetic fields on the charged
particles in the gas ([9]). Fusion machines of various type such as Stellara-
tor, Tokamak and so on, have been operating in the Soviet Union, the US,
the UK, Germany, France and Japan, and Tokamak is the most advanced
magnetic confinement device until now.

In Tokamak an axisymmetric plasma is confined by a strong magnetic
field (toroidal magnetic field) (see, for example, [38], [42] and Figure A.2 in
Appendix A). There plasma is surrounded by a vacuum insulation to sus-
tain the sufficiently high temperatures at which thermonuclear reactions take
place ([23]). Thereupon plasma exhibits anomalously high levels of particle
and energy transport. This enhanced transport of energy out of plasma is
deleterious, since it reduces the energy containment time. Thus, understand-
ing and controlling this transport are very important for controlled nuclear
fusion ([55]). Moreover the research of turbulence in fusion plasma is impor-
tant as well as its transport. Indeed, transport of plasma is greatly affected
by the presence of plasma turbulence ([20]).

It is said that the drift wave turbulence is important in fusion plasma.
High frequency electronic instability is no less dangerous in Tokamak since
ions are less sensitive for high frequency electromagnetic fields. On the other
hand low frequency instability can cause a loss of ions and are classified into
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three types: Reyleigh—Taylor instability, current driven instability and drift
instability ([4]). In general, if the electric fields are set up in plasma by charge
separation, both positive and negative particles obtain drift velocities. It has
been well known that the spatial gradients in plasma lead to the drift waves,
whose turbulence is a natural cause of anomalous transport from which the
dramatic reduction in confinement results ([1], [4], [18]). Experimentally it
was found that low frequency fluctuations in Tokamak turbulence plasmas
are in the domain of drift waves ([64], [65]). Furthermore, a vast variety of
plasma wave phenomena are found in the planet’s magnetosphere where the
anomalous transport occurs ([2], [7], [53]). Thereby the analysis of such drift
wave turbulences is important from various point of view.

Tokamak is subject to a variety of macroscopic instabilities which can
be attributed to identifiable MHD modes. The three principal instabilities
are Mirnov oscillations, sawtooth oscillations, and disruptions ([60]). Mirnov
oscillations are magnetic fluctuations mainly associated with the start-up
phase of a Tokamak discharge ([17], Figure A.3 in Appendix A). This activ-
ity was first measured by Mirnov and Semenov with magnetic coils around
the plasma surface. Sawtooth oscillations are expressed by periodic, coherent
magnetic pulses, generated near the interior of the confined plasma (Figure
A4 in Appendix A). The magnetic perturbation is prominently accompa-
nied by local variation in plasma temperature; the name “sawtooth” refers
to the temporal shape of the X-ray signal, each period of which consists of a
relatively slow rise followed by a very sharp drop. Although the two insta-
bilities described above do not prevent satisfactory operation of Tokamak,
disruptions involve a sudden loss of confinement and a rapid decay of the
whole current, leading to an end of the discharge (Figure A.5 in Appendix
A). Since there is at present no generally satisfactory theory of disruptions,
the analysis of experimental results is mainly carried out in terms of the
experimental operating conditions. It is considered that according to the ex-
perimental operating conditions, with enough space for standard operation
of ITER disruption is almost completely avoided ([22]).

In addition to the instabilities predicted by analysis of the ideal or re-
sistive MHD fluid equations, Tokamak plasma is susceptible to a number of
other instabilities. Predictions of such instabilities came initially from studies
using the Vlasov equation. These instabilities were termed microinstabilities.
Tokamak microinstabilities are classified as follows: the drift instability, the
trapped electron instability, the micro-tearing instability and the low fre-
quency ion modes. The trapped electron instability relies on the presence



of magnetically trapped, banana-orbiting electrons in the equilibrium. It is
driven unstable either by an inverse Landau damping mechanism or by col-
lisional dissipation of the trapped electrons. The micro-tearing instability
is a form of short wavelength tearing mode. The perturbed magnetic fields
associated with micro-tearing instabilities create magnetic islands in the mag-
netic surface structure of a Tokamak. It is considered that the turbulence
must be of microinstability origin since the transport anomaly remains when
Tokamaks operate in MHD stable regions ([60]).

In 1977 Hasegawa and Mima proposed the model equation of drift wave
turbulence with zero resistivity (Hasegawa—Mima equation) from the one
fluid model ([13], [14]). In 1983 Hasegawa and Wakatani proposed the equa-
tions (Hasegawa—Wakatani equations) from two fluids model, which describe
the resistive drift wave turbulence in Tokamak ([12], [15], [16], [37]). They
proposed these model equations based on the prediction that drift instability
plays an important role in anomalous transport. It is noted that experimental
investigations of the spectra of low-frequency plasma oscillations in American
and French Tokamaks indicate that the observed oscillations result from the
development of the drift instability ([5]). In 2005 Das, Sen, Kaw, Benkadda
and Beyer ([6]) studied the magnetic-curvature-driven Rayleigh-Taylor in-
stability for the plasma density, the electrostatic potential and the vector
potential for electromagnetic perturbations and derived the model equations
for it. Their model equations are an extended model of Hasegawa-Wakatani
equations.

It is noteworthy that Hasegawa—Mima equation has a dipolar vortex so-
lution, which is called modon ([19], [35]). Modon plays an important role
in anomalous transport according to the following predictions of Nezlin and
Snezhkin based on the experimental results ([41]). First, the drift instabil-
ity of plasma in magnetic traps (either closed, like Tokamak, or open, like
magnetic mirror) will generate monopolar vortical solitons which are larger
compared to the characteristic ion Larmor radius and carry trapped parti-
cles, as well as dipolar vortices degenerating into monopolar solitons. Second,
trapped particles will transfer from one vortex to another during the transi-
tion processes of streamline reconnection in the collisions (and merging) of
vortical solitons, and also in the stationary regime on the borders between
neighboring solitons, to that the particles will be carried over large distances
across the strong magnetic field. Such processes can therefore give rise to a
very large increase in transverse diffusion and heat transfer in the plasma.



1.2 Model equations of drift wave turbulence

In 1983 Hasegawa and Wakatani proposed the equations (Hasegawa—Wakatani
equations) from two fluids model, which describe the resistive drift wave
turbulence in Tokamak ([12], [15], [16], [37]). They consist of two nonlin-
ear partial differential equations for the perturbations of plasma density
n and electrostatic potential ¢ in the homogeneous strong magnetic field
B = Bye and the inhomogeneous plasma equilibrium density n* = n*(|z’|)
(:U = ($17x27x3) = (33/7333))

0 (v v)ag- o A2
@—( ¢ x€) - ¢——Eax§(¢—n)+cz ¢, e
0 0? o

Here By is the strength of a magnetic field assumed to be a constant, € =
(0,0,1), c; = T./(e*nwei), ca = p)(p2wei), p = 3T /(10m;w?) is the kine-
matic ion-viscosity coefficient, 7. is the electron temperature, 7; is the ion
temperature, v; is the collision frequency of the ion, e is the elementary
charge, 7 is the resistivity, m; is the ion mass, w, = eBy/m; is the cyclo-
toron frequency and p, = v/T,/ (wWein/m;) is the ion Larmor radius. Here for
simplicity we assume that c; and ¢y are positive constants.

In 2005 Das et al. ([6]) studied the magnetic-curvature-driven Rayleigh—
Taylor instability for the plasma density, the electrostatic potential and the
vector potential for electromagnetic perturbations and derived the model
equations for it. When neglecting the effect of electromagnetic perturbations
and gravitational drift, the model equations yield

) o
(at (Vo x -v) 8o = =2 50— ) + b,
((9015 — (Vo x €) -V) (n+logn®) (1.2.2)
1 07 x
2 e e

Here D = m,T,v./(eBy)? is the diffusion coefficient, m, is the electron mass,
Ve is the collision frequency of the electron ([49], [50]). We also assume that
D is a positive constant for simplicity.
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In advance of Hasegawa—Wakatani equations Hasegawa and Mima in 1977
([13], [14]) proposed the equation

(gt — (Vo xé)- V) (Ap — ¢ —logn*) =0 (1.2.3)

(Hasegawa—Mima equation) from the one fluid model under the same mag-
netic field and plasma equilibrium state. It is to be noted that Hasegawa—
Mima equation has a dipolar vortex solution, which is called modon ([19],
[35]). In a study of plasma turbulence, coherent vortex is an important re-
search topic, since plasma turbulence may produce self-organized structures
in the form of vortices, and indeed coherent vortices are observed in a vari-
ety of contents (see, for example, [25], [45], [54]). It is noteworthy that the
same equation can be found in geophysics, Charney—Obukhov equation with
respect to the quasi-geostrophic potential vorticity for Rossby wave ([3], [40],
[44], [47]).

1.3 Related mathematical results

For Hasegawa—Mima equation we have had some mathematical results. For
the initial value problem the temporally local existence and uniqueness of the
strong solution and the temporally global existence of the weak solution were
proved by Guo and Han [11] and Paumond [46] independently in 2004, and
the global existence of a strong solution by Gao and Zhu [8] in 2005. The
global in time existence and uniqueness of the solution and the existence
of a global attractor to the initial boundary value problem for generalized
Hasegawa—Mima equation with periodic boundary condition were proved by
Zhang and Guo [62] in two dimensional case and [63] in three dimensional
case. Furthermore, we have some stability proofs for modon (a dipolar vortex
solution of Hasegawa—Mima equation) ([32], [48], [56]).

Concerning the mathematical issue of Hasegawa—Wakatani equations we
have a few results [26], [27], [28]. In [26] we first established the existence and
uniqueness of a strong global solution to the initial boundary value problems
for (1.2.2), and second the existence and uniqueness of a strong solution to
the initial boundary value problems for (1.2.1). In [27] and [28] we proved
that the solution of Hasegawa-Wakatani cquations converges strongly to that



of the model equations of drift wave turbulence with zero resistivity as the
resistivity tends to zero.

It is noted that concerning the model equations of Das et al. ([6]), it
seems to be no mathematical results.

1.4 Formulation of the problems

We consider the initial boundary value problems for (1.2.2) first and for
(1.2.1) second in © x (0, 00) under the initial and the boundary conditions

¢(2,0) = ¢o(x), n(x,0) =ne(x) forz e
O(x,t) = Ap(z,t) =n(z,t) =0 forzel, t>0, (1.4.1)

¢, n, periodic in the xs-direction.

Here Q = w x (=L, L) is a 3-dimensional torus, w = {2’ = (z1,13) € R? |
2’| < R}, 0w = {2’ = (x1,22) € R? | |2/| =R}, T = 0w x [-L,L], R and L
are positive real numbers (see Figure A.6 in Appendix A).

In place of n(z,t) + logn*(|2'|) — logn*(R) and ng(z) + logn*(|z']) —
logn*(R), we use the same letters n(z,t) and ng(x), respectively. Then
equations (1.2.1) and (1.2.2) become

0 o 0? 2
— —(Voxe) V|Ap=———=(¢—n)+ A%,
ot n* 0xj
5 . (1.4.2)
AT
(at_(v¢xgj.v>n_ n*8x§(¢ n) forxe, t>0
and
0 o P 2
<8t—(V¢xe_)-V> Aé——gaimg(qb—n)—FCzA ?,
0 ! 0? (1.4.3)
forx € Q, t >0,

respectively, but (1.4.1) is unchanged.



Next by denoting € = 1/¢;, (1.4.2) is clearly written as

8 & e ey __ 2 e
<8t_(v¢ X €) - ><A¢ —nf) = A%,
1 P (1.4.4)

a (> _ g
(g - (Vo x 89 ) i == T - )

forz € Q, t >0,

Let (¢°,n°) = (¢°,n°) (x,t) be a solution of the initial boundary value prob-
lem (1.4.4) with € > 0 for x € Q, t > 0 and the initial-boundary conditions

¢°(x,0) = ¢§(x), n°(z,0) =ni(xz) for z €,
O (z,t) = Ag®(x,t) =n°(x,t) =0 for z €T, t>0, (1.4.5)
¢°, n®, periodic in the x3-direction.

For convenience, we introduce

QL/ (' x5) daxg = Mf(z) = f(x),

f(z) = fz) = Mf(x) = (T = M) f(x).
Then it is casily scen that problem (1.4.4), (1.4.5) is equivalent to the problem

(8875 (Vo© x é) - )(Aqﬁs—ns):czAngﬁE,

0 o .
cz-mf(5- s xe-v)ul L L (5 ),
M{(;ﬁ (Vo® x é) - V> }ZO forz € Q, t >0,

and (1.4.5).
Putting € = 0 in this problem, we have

(gt (ngo X e) ) (A@® — n%) = c, A%,
1 82 ~
M{((?at (V¢Oxe) v>n0}:0 forz €, t >0,
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and (1.4.5) with ¢ = 0.

In Chapter 2 first we establish the existence and uniqueness of a strong
global solution to problem (1.4.3), (1.4.1). Second we establish the existence
and uniqueness of a strong solution to problem (1.4.2), (1.4.1) (see [26]). In
Chapter 3 first we obtain uniform estimates to the solutions for Hasegawa-
Wakatani equations with respect to the resistivity. Then we establish the
existence and uniqueness of a strong solution to the problem (1.4.6), (1.4.5)
with ¢ = 0. Finally we prove that the solution of Hasegawa-Wakatani equa-
tions converges strongly to that of the model equations of drift wave turbu-
lence with zero resistivity as the resistivity tends to zero (see [27]).

1.5 Function spaces

We aim to solve the problems (1.4.3), (1.4.1) and (1.4.2), (1.4.1) and (1.4.6),
(1.4.5) with ¢ = 0 in Sobolev-Slobodetskii spaces. Before describing the
main theorem we introduce the function spaces that we use in the sequel.
Let  be a domain in R™ (m =1,2,3,...). By Wi(Q) (I € R, [ > 0) we
denote the space of functions u(z), x € Q, equipped with the finite norm

lullivi@ = 2_ IDsullz2) + IIUIIWz )’
|| <l
where
|Z IDgul72q) ifl€Z,
l
HUHIQ/VZ(Q) = |Dgu(z) — Dyu(y II§

1 .

Z/ |x_ ety drdy ¢ Z

la|=

Here, [I] is the integral part of I, and D%u = 9l%u/0z{* ... 0x% is the
generalized derivative of order |a| = a3 + ... 4+ ap, and a = (aq, ..., Q)
is a multi-index. For 1 < p < oo, we denote by || - ||z the norm of the
Lebesgue space LP(€2).
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Similarly, the norm of the space Wi(0,T) (T € R, T > 0) is defined by

I
Z ||Dgu||%2(0,T) if [€Z,

=0

HUH%VQZ(O,T) - Z HDgUH%2 0,T)

0 2
//’D ult) = DAuoF ar i 147

|t — 7|20

The anisotropic Sobolev—Slobodetskil space WQZ’Z/Q(QT) (Qr =02x(0,7))
is defined as L*(0,T;Wi(2)) N L3(%y WZ/Q(O,T)), equipped with the finite
norm

lulliie g,y = lull + llullfyouz
W2

@Qr) wa(Qr) Q)

T
2 2
/o Hu(t)”wg(m dt+/Q||“(x)HW;/2(O,T) de.
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Chapter 2

Initial boundary value problem
for model equations of resistive

drift wave turbulence

2.1 Main results

In this chapter the following theorems are proved.

Theorem 2.1.1 Let 1 >1>1/2, D >0, n*(|2|) € Wy (w) and n*(|2'|) >
Ny, Ny is a positive constant. Assume that (¢, ng) € Wit (Q) x WiTH(Q)
satisfies the compatibility condilions

do(x) = Agg(x) =ng(z) =0 forxzel,
(2.1.1)

o, ng, periodic in the x3-direction.

Then the initial boundary value problem (1.4.3), (1.4.1) has a unique solution
(¢,n) € (L2(0, T W5 H(Q)) n Wy ™2(0, T, WE(Q)) x W 2(Qr) for any
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T > 0.

Theorem 2.1.2 Let n*(|2'|) € Wi(w) and n*(|2'|) > n., n. is a positive
constant. Assume that (¢, no) € WH(Q) x WE(Q) satisfies the compatibility
conditions (2.1.1).  Then there exists a unique solution (¢,n) to problem
(1.4.2), (1.4.1) on some interval [0,T] such that (¢,n) € L*(0,T;W5(Q)) X
W5 (Qr), 0¢/ot € L*(0,T; W3(%)).

In §2.2 we shall prove Theorem 2.1.1. In §2.3 we first derive the uniform
estimates of the solution to problem (1.4.3), (1.4.1). Following the arguments
due to Kato ([26], [43]) by passing to the limit D — 0, we shall prove Theorem
2.1.2.

As a natural extension of Theorems 2.1.1 and 2.1.2, we can consider the
initial boundary value problem with Stepanov-almost-periodic initial data to
the magnetic field direction (see [29]).

Throughout this chapter, we denote by ¢ a constant which may differ at
each occurrence.
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2.2 Existence theorem for model equations of

resistive drift wave turbulence

2.2.1 Local in time existence and uniqueness

The following lemmas are well-known (see, for example, [10], [30], [31], [39],
[51], [59])-

Lemma 2.2.1 Let 1 > 0, D > 0, n*(|7'|) € Wit (w), n*(|2']) > n., n. is
a positive constant and 0 < T < oo. Assume that (Yo, ng) € WaT () x
W tH(Q) satisfies the compatibility conditions up to order max{[l — 3/2],0}.
Then for any (f,g) € Wzl’l/z(QT) X WQZ’Z/Q(QT), there exists a unique solution

(¥,n) € W22+l’1+l/2(QT) X W22+Z’I+Z/Q(QT) to the problem

o ¢ 0%n
E_C2A¢_Eai$§:f fOT :EGQ,t>O,
on ¢ n

— — —— —DAn = Q, t

ot ond n=gqg for xe€, t>0,

w(:ﬁ’ 0) = ¢0($>7 n(ZE,O) = ”0(35) Jor x €,

U(x,t) =n(x,t) =0 forxzel, t>0,

Y,n, periodic in the x3-direction.

Moreover, this solution satisfies the inequality
||1/J||W22+z,1+z/2(QT) + ||n||W22+z,1+z/2(QT)

< ¢ (IWollugeray + Mol oy + 1z gry + sy, )

15



Lemma 2.2.2 Assume that ¢ € W22+l’1+l/2(QT), [ > 0. Then the problem
Ap=v forxzeQ, t>0,

¢(x,t) =0 forzel, t>0,

¢, periodic in the x3-direction

has a unique solution ¢ € L*(0,T; Wy (Q)) N WQHl/Q(O,T; W2(Q)), which

satisfies the inequality

||¢”L2(0,T;W24“(Q)) + ||¢|’W21+l/2(0yT;W22(Q)) < C||¢||W22+z,1+z/2(QT).

Let us reduce problem (1.4.3), (1.4.1) to the problem with zero initial
data. According to Lemmas 2.2.1 and 2.2.2, there exist ¢* € L?(0, T; Wy (Q

)) N W20, 7, W3 (), n* € Wit H2(Qr) satisfying

ONAP* . 0*n*

a * 82 *

n_a Z_DAn*:O forz e Q, t >0,
ot n* 0xj

gb*(CL’,O) = (25()(33), n*(x,O) = no(l’) for z € Q,
¢*(v,t) = A¢*(z,t) = n*(z,t) =0 forz €T, t >0,

¢*,n*, periodic in the xs-direction
and the inequality

H¢*HL2(OvT§W24+Z(Q)) + H¢*”V[/21+l/2(0,T;VV22(Q)) + ||n*||W22+l’1+/l/2(QT)

s¢ (H%HWSH(Q) T ||n0HW21H(Q)> : (2.2.1)
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By putting ® = ¢ — ¢*, N = n—n*, the problem (1.4.3), (1.4.1) is equivalent
to the problem

8A® C1 02]\7 C1 82
92T A S
ot 02 n* Ox? n* 3.1‘2< +¢)
+H(V(®+ ¢*) x €) - VA(D + ¢*) = F(D),
2 2 (2.2.2)
(9]\7 C1 8 N C1 3
Y a9 pAN=-2L 7 (@44
ot n* 023 n* 8a:§( +97)
H(V(®+6%) x &) - V(N +n*) = G(®,N) forzeQ, t>0,
®(z,0) = N(z,0) =0 for x € Q,
O(z,t) = AP(x,t) = N(z,t) =0 forxzel, t>0, (2.2.3)

®, N, periodic in the x3-direction.

We solve problem (2.2.2), (2.2.3) by the method of successive approxima-
tions. Let (CI)(O),N(O)) = (0,0) and (<I>(m+1),N(m+1)) (m=0,1,2,...) be a
solution of the initial boundary value problem

aA@(m—i—l) c 82N(m+1)
T2 A2ty LY p )
ot @ n*  0x3 ( )
m+1 2 m—+1
ONC™D s PN i _ ggtm oy (224)
ot n*  0x3 7
forx € Q, t >0,
O (,0) = N (2.0) =0 for z € Q,
(I)("'L+1)(£Zl,t) — APm+1) (l’,t) — N(’TTL-‘rl)(l”t) =0
(2.2.5)

forxel', t >0,

Pt N+ periodic in the zs-direction,

where (&™), N0 € (L2(0, T; W3 *'(Q)) n Wy ™/%(0, T; WE(Q)) ) %

W2t (Qr) is given.
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It is easily seen that problem (2.2.4), (2.2.5) is equivalent to the problem

AT — it
2 A7(m+1)

\Ij(m+1)
g —adum ST
n* T
(m+1) 2 A7 (m+1) ’ (2.2.6)
('”Vat _ ClaNaQ _ DANGH Z G(@m) | Nm)
n* 3

forx e Q, t >0,

(@00 (2, 0) = WO (2,0) = N (2,0) = 0 for x € ©,

dmH) (g, ¢) = Wt (g, ¢) = N™HD (g, ¢) = 0
(2.2.7)
forx el t>0,
Gm+1) ylm+1) N+ - periodic in the xs-direction,
where (0™, wm, N0 € (L2(0,T; Wi (Q)) n Wy 7720, T; W3(Q) ) x
W22+l’1+l/2(QT) X W22+l’1+l/2(QT) is given and

a O (2+¢7) | (V(®+¢") x ) V(¥ + AgT).

F(o,0)=——
n*  Ox}
m+1)

Y

By applying Lemmas 2.2.1 and 2.2.2, a unique solution (@1 Wl
N+ exists and satisfies the inequality

2T = ||q)(m+1)”L2(0,T;W24+Z(Q)) + ||q’(m+1)||W21+”2(0,T;W§(Q))
+”\Ij(m+1) HW22+1'1—H/2(QT) + ||N(m+1) ||V[/22+l71+l/2(QT)
< ¢ (HF(q)(m)? \I/(M))Hwé*l/2(QT) + ||G((I)(m), N(m))HWQl’l/z(QT)) .

In order to estimate each term in the right hand side of the above in-
equality we use the following well-known lemma (see, for example, [52]).
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Lemma 2.2.3 Let | > 1/2 and Q be a bounded domain in R3. Then the

following estimates hold.
£ gllwyey < el flwyellglwrriq)  for [ e Wi(Q), g € Wy (Q),
11Vl < cll fllzo@l Ve
< cllflwz@llalizallolize for f € Wi(Q), g € WE(Q).

From this lemma and the interpolation and Young’s inequalities, it easily
follows

(m) \p(m)
HF((I) ,\Ij >”W2l,l/2(QT)

82 ¢*
03

< C' +6 (Hqﬂm)”W;H,O(QT) + ||‘I>(m)||w;+’/2(o,T;W§(Q))>

W, (@r)
+C(0)T <||‘I’(m)HW§71(QT) + ||(I)(m)”W21(O,T;W22(Q)))

3/41| & (m) (m 1/4
| + ¢*HW21(07T;W§+I(Q))||\D '+ A¢*“Wé(o,ir;wé(ﬂ))

XV + AG Y 2

m " v
+CT3/4||(I)( +¢ HW“'Z/Q (OT;W2(Q) ||‘§[J ) + A¢ || /1+l/2(0TL2(Q))

m 3/4
XH\I]( )+ A¢ ” /l/2 0TW2(Q))

for any § > 0. For ||G(®™) | N(m)||? wii/2 g ORe can get the similar estimate.
T

Consequently from these inequalities and (2.2.1), we obtain
ZMEN(TY) < cEi+4 cBIT?* + (5 + (6T + cElT3/4) (T T34 (T2,

where F; = ||§Z50||W23+l(9) + ||n0||W21+z(Q). We choose first a positive con-
stant M in such a way that M > cFE;, second a positive constant § so
that 6M < M — cE; and finally a positive constant 7" so that cEF1T"3/* +
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(C’(5)T’ + cElT’3/4) M + TP M? < M — cE; — 6M. Then we conclude
that 2™ (T") < M implies z(™*V(T") < M. This means that the sequence
{<<I>(m), yim), N(m))}oo is well-defined on (0,7") and 2™ (T") < M for all
m.

Now let us verify the convergence of { (<I>(m), VACY (m)) }::0. Subtract
from (2.2.6) the similar equations for (™ W™ N and set ¢*m+1) =
Pt _ plm)  gr(m+1) = glm+l) _p(m) - N*(m+1) = N(m+l) _ N)  Then

m=

we have

A(I)*(erl) _ \If*(erl),

8\1/*(m+1) . A\Ij*(erl) c aZN*(erl)
— — 0 R —

ot n 0z}
= F(e, ) — F(e D, wim ),

aN*(erl) 1 82N*(m+1)
ot  m  013
= G(®M™, N™) — (@M=D Nm=1) forz € Q, T" >t >0,

— DAN*m+D

O (2,0) = T (2, 0) = N* 0" (2,0) = 0 for z € O,
P*(m+1) (1" t) — Pr(m+1) ($7 t) - N*(m—i—l)(l’, t) =0
forzel, T">t>0,

Prm+1) gr(m+1)  N*(m+1) - periodic in the zg-direction.
By the same way as above, we can deduce
m+1 —_ *(m—+1 *(m—+1
2 :|W(+)W%wﬁﬂmﬁﬁ@(+nwﬁwmm@m

+H\IJ*(m+1)||W22+z,1+z/2(Qt) + ||N*(m+1)||W§+l,1+l/z(Qt)

< (04 CO)t +c(Bi+2m() #¥) 207 (t) (2.2.8)
for any 6 > 0 and any ¢ € [0,7']. Since we can find positive constants 0
and T"(< T') satisfying ((5 +C()T" +c (B, + M) T”3/4) < 1, the sequence
{(q)(m), g m) N(m))} converges uniformly on [0, 7"] to (®, ¥, N) as m — 0.

Y
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It is clear that (®, U, N) € <L2(0 T WAQ) N W1+2(0,T”;W22(Q)) x

2+l I+ 2(Qrr) X 2+l 1+ 2(Qr~) and (P, N) is a solution of problem (2.2.2),
(2.2.3).
The uniqueness of such a solution can be easily proved by making use of
the estimate analogous to (2.2.8).

2.2.2 A prior: estimates

In this subsection we proceed to get a priori estimates of the solution (¢, n)
established in §2.2.1. Let [ € (0,1] and (cb n) be a solution of (1.4. 3) (1.4.1)

belonging to <L2(0,T W) A W20, T Wg(Q))) x W (0, for

any T > 0. By || - || we denote the L?(Q2)-norm. Since the regularity of the
solution is not sufficient, the following arguments are formal. However, one
can justify them by using the method of difference quotients or mollifiers. It
is to be noted that the estimates obtained in this subsection are improved
from [26].

Lemma 2.2.4 For anyt € [0,T]

IVO@1” + 1Ae@)1* + [In()]* < Ege, (2.2.9)

[ (Hmww e

Here c is a constant independent of D and c¢* = min {c,, D}.

) dr < cE2. (2.2.10)

Proof. Multiplying the first equation of (1.4.3) by ¢ and integrating over €2,
we have, by virtue of the integration by parts,

HV¢()||2+02HA¢ y|2+/ a)&b

=0. 2.2.11
T3 (91’3 ( )

2 dt
Multiplying the second equations of (1.4.3) by n and integrating over 2, we
have, by virtue of the integration by parts,

c1 (¢ —n) On
Lin@IP + D V@) - [ES0NE e =0, (22.12)

2dt an* Ors Oxs
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Adding (2.2.12) and (2.2.13) yields

(I|V¢( P+ In@)P) + 2| Ad@)* + D[ Vn ()|

+' (Cl>2 8(¢>—n)(t)H2 _0. (2.2.13)

n* 03
In the similar way, multiplying the first equation of (1.4.3) by A¢ and
integrating over {2, we have

2dt

2 2
S S IA0I” + el VAG()]

2
C

C2

o [|0Ad

9(¢ —n)
Ot (1)

o,

(2.2.14)

Adding (2.2.13) and (2.2.14) multiplied by ¢ yields

L9 (19017 + 1 A0 + [n(OIF) + 2 (1A6)IE + IV AGOIP)
+D V(o) + (1-2) H o W(t)‘ <0, (2215)

Here we take € small enough to hold the inequality 1 — ecy/2 > 0.
Put

Si(t) = IVe@)|I* + ellAg®)1* + In()|.
Then S, (t) satisfies the differential inequality

dSy(t
Cit( ) 4 S, (t) < 0.
From this one can derive (2.2.9). Integrating (2.2.15) over [0, ¢] with the help
of (2.2.9), we have (2.2.10). 0

Lemma 2.2.5 For anyt € [0,T]

! oA
IVAG(E)[1* + [ Va(t)||* + /0 (HAQ@b H (b
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+D A2+ H%ZS(T) | ) ) dr
< C(D) (B3 + EY). (2.2.16)

Here C(D) is a constant depending on D.

Proof. Multiplying the first equation of (1.4.3) by A%¢ and integrating over
), we have, by virtue of the integration by parts and Schwarz’ inequality,

CIVAGD)|? + collAZ6(1)

2dt
< *HAQ O+ — ||VA¢(t)||i4(Q) Vo740
c 0% c e\t ?n, |’
con? 37$§(t) CoNy (n*) M,(t)H

Applying the Gagliardo-Nirenberg and Young inequalities to the second term
of the right hand side of the above inequality, we obtain with the help of
(2.2.9)

CIVAGEIE + e 2%

C
Si
Co

1 09 2
<61> 2 an(t)H + = (B3 + Eg®) e (2.217)
Ca

n*) Oz}

Similarly, multiplying the second equation of (1.4.3) by An and integrat-

ing over (), we get
8Vn

Cc
< Vo)l VRl sy [ARD] + ;1 [[An( II‘

(q)é ovn 0 ?
n*) Oxs '

2 2
S ITnOF + DIanF + (&

)

on
o, ——(1)

018

+csup n*(|az'|)7 + =
' ew 2

n*

1 ‘
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Here we used the inequality

on ovVn

&

cg OVn,  0On
. ) —— dz| < t t
/Qvn* O3 ( )3%( ) dej < e V Liw) || Os Lo Il 9%3 ( )H
c on ovVn i ovVn
< P -
- Can* 1w || O3 Oxs ®) Ox3 (t H
8 3 0Vn
< * ([T g s t
<eswp (o)) v 2 H (&) Fo |

For the first term of the right hand side we again use Gagliardo—Nirenberg
and Young’s inequalities. Then we have with the help of (2.2.9)

1 2
c1\ 2 O0Vn

2
+C(D) (E5 + Ef) e (2.2.18)

d
S IVR@IP + D An(b) +

g

xs3

<c

2
Adding (2.2.17) and (2.2.18) multiplied by =« yields
C2

d c cD
S (IvasE + Zuvmwu?) + el A% + 22 An(o)

< o >% ovn 0 ?
co | \n* Oxs - 8353

Integrating this over [0, T, we obtain (2.2.16) with the help of (2.2.10). The
estimates of the derivatives of A¢ and n Wlth respect t are easily derived
from the estimates above and equation (1.4.3). 0

Cc

o
Eé8)e et

Lemma 2.2.6 For anyt € [0,7]

[a26)[ + [ ane)|?

+/Ot (Hm? H + D ||VAn(D)|* + H%A?(T) ) dr
< cB} + C(D) ((Ef + Eo®)* + B3 + E3®) (1 +1). (2.2.19)
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Here C(D) is a constant depending on D.

Proof. 'The boundary conditions on T' in (1.4.1) yield that 9?/dz% and
(Vo(z,t) x €) - V are tangential derivatives on I', and hence

A*¢(x,t) = An(x,t) =0 forx e, t>0. (2.2.20)
Applying the Laplacian A to the first equation of (1.4.3), multiplying it by

A%¢p and integrating over €, we have, by virtue of the integration by parts
and Schwarz’ and Young’s inequalities,

S IO + el VAP

/ V (Vo x &) - VA) - VA% do + / ( (%) VA% da
3

1 0?An ca\ 0*Vn o°n 9
+/Q<TL* O3 T2V (n*> 0:(:3 +A<n*> (9903)A(b dz

C c
< TIVATOIF + = (1860 0) IVASD 110

HIVOO I~ [3200]") + o V% S ;
Lo (Q
Tt 0] loarenn]+ 2 [ [0
3
82V
—I_HV:Li LA (w) <| n H HAZ L4(Q)

9’n

2
axg

+ ‘

t) v |vazs)| ) }

Then we have, with the help of Gagliardo-Nirenberg and Young’s inequali-
ties, Sobolev imbedding theorem and (2.2.16),

d
F2% DI + ol VA% ()]
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2
9’n

< (C(D) (E§ + Es®) +¢) 1A% (1) + ¢ o2 )

i

In the similar way as in (2.2.21), we have

0°Vn
o2 ()

B

) + C(D)(E; + Eg°)?. (2.2.21)

d 2 2 01
San@I + DvanP -+ (2) 2 ()H

< VA AR IV )] Lo 0

HIAGD| Ly 1ARE) | s A

C1 62¢ C1 82V¢
ef (]vn 50],, o] o
C1 62
ve (' ‘o Ivan)
n* 1 L4(w) 8$3 LA(9)
62V
o)

Then we obtain, with the help of Gagliardo—Nirenberg and Young’s inequal-
ities, Sobolev imbedding theorem and (2.2.16),

() 22

< C(D)(E + E*) + (C(D)(E} + E) + ) [An(t)[.  (22.22)

d
SIAROI + DITARO +

Adding (2.2.21) and (2.2.22) multiplied by ;E yields
2

d 3 . .
5 (182601 + SE1an()) + ca VA% (1)

1 2
c1\ 2 OAn
(n*) 8$3 (t)H

26
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< (CD)(EBS + BP) + o) (18%(0)1 + plan()P)

2 2

n
a2

3
te + (D) (B3 + B + B2 + EY) (1 T )

De,

Integrating this over [0, 7], we have (2.2.19) by (2.2.16). 0

2.2.3 Proof of Theorem 2.1.1

By the standard arguments with the help of Lemmas 2.2.4-2.2.6 the solution
(¢,n) established in §2.2.1 can be extended to any time interval [0,7"]. Thus
the proof of Theorem 2.1.1 is complete.
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2.3 Existence theorem for Hasegawa—Wakatani

equations

2.3.1 Uniform estimates

Note that the estimates in Lemma 2.2.4 hold uniformly in D. The aim of
this subsection is to get the D-independent version of Lemma 2.2.5 and the
uniform estimates for n in Lemma 2.2.6. For that again the regularity of
the solution is not sufficient, so that the following arguments are formal.
However, one can justify them by using the method of difference quotients
or mollifiers.

Lemma 2.3.1 There exists a positive constant T independent of D such

that the estimate

VA + 91+ [ (1A% + Dl An(r)

2 C1(0)C, (t)
) N A O A A

n H ovn ()

(9x3

holds for any t € [0,T*). Here ¢ is a constant independent of D and

Cy(t) = c (B3 + EBp¥) (1+1).

Proof. Multiplying the second equation of (1.4.3) by An and integrating over
), we have, by virtue of the integration by parts and (2.2.11) (cf. (2.2.18)),

< o ) 3 9Vn (0 2
n* 0xs

<< (Ivael®+ %)

d
IV + DAn(OF +

+C: (V@) + [ Va|') + B (2.3.2)
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Here we used Schwarz’ and Young’s inequalities and the Sobolev imbedding
theorem.

Adding (2.2.17) and (2.3.2) multiplied by @ yields

d D
= (IV26@ 2 + Z19n®) + Z1a%01 + %

5 lAn(t )|
2 1 2
c5 — 2¢ec (q)z GVn(t)
2ecy n* 0xs3
<2 va va)|? + Ve
<5 o@)” + == (IVn()| + 19n ()]
CC2 2 18
+ ( + 25) (EO +Eg®). (2.3.3)
Here we take € small enough to hold the inequality ¢3 — 2ec > 0. Integrating
this over [0, 1], we get with the help of (2.2.10)

[Vn|? < c'/Ot (IVn@))* + 1Va(r)1?) dr + ¢ (B3 + Eg®) (1+ 1)

t
= ¢ [ (IVn(@)I* + V() a7 + C1(0) = Sa(0).
0
Differentiating S5(t) with respect to ¢, we have
dSs(t) 2 dCi(¢)
o = c(Iva@IP + Iva@]*) +

dt

dCy(t)

2

< o(Sa(t) + Sa(t)?) + =
Since C(t) is increasing, one can derive from this inequality,

_St (Szl(f)> C<521(t) " 1> i 52(1t)2 dilt(t)

- C( 1 +1>+ 1 dC(t)
- C1(0) Cy(t)? dt -

Integrating this inequality over [0,t], we have

LS. <c< ! +1>t—1+1
So(t)  S2(0) —  \C1(0) Ci(t)  C4(0)’
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and hence

C1(0)Ch (1)
C1(0) — (1 4+ C1(0))Ch ()t
Then we choose T* > 0 such that C1(0) — ¢(1 + C1(0))Cy(T*)T* = 0. This
and the integral of (2.3.3) over [0,¢] lead to the inequality (2.3.1). 0O

Sa(t) <

Lemmas 2.2.4 and 2.3.1 imply that there exists a subsequence of {(¢?, n?)
} peo converging to some function (¢, n) as D — 0 weakly in (L?(0, T*; W5 (Q)
YN0, T W2(Q))) x Wi (Qr+). In order to prove the convergence of the
full sequence {(¢”,n”)}psg, we prepare the following lemma.

Lemma 2.3.2 Letl = 1. Then there exists a positive constant T indepen-

) dr
C2(0)Ca(1)
= C5(0) — (1 4+ Cy(0)Cy(t)t

holds for any t € [0,T**). Here ¢ is a constant independent of D and

C1(0)Ch (1) (1 + EF)
C1(0) — o(1 + CL0))C (D)t

dent of D such that the estimate

0A
e+ [ (DI anrF+ |52

(2.3.4)

CQ(t) = E% +

Proof. We can prove this lemma in almost the same way as that in Lemma
2.3.1. Indeed, apply the Laplacian A to the second equation of (1.4.3),
multiply it by An and integrate over €. Then we have, by virtue of the

integration by parts,
2 0An
() o]
n T3

< IVAR(®)llza@ V)| oy 1ARE] + 32 1DIAE)] oo gy | AnE)|?

e o

Ly An(®) 2 + D [V A0 +\

2dt

A
8:1:3

9¢
6375

C
+ Hvi
n* | Lo w)

(1)

L>(Q) LA(©)
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o |520) +[az] |sme
Ny || Oxs3 n Oxs L(Q)
oV 0A
+ch1 AL }H 5 "(t)H.
n= L4 (w) T3 LA(Q) L3

Here we used the condition (2.2.20). From this we obtain, with the help of
Gagliardo—Nirenberg and Young’s inequalities, Sobolev imbedding theorem,

1 2
d 5 2 c1\2 0An
SIAnOP + DIvanF+ (%) )

< (| An@)* + 1An@)1* + V()|

+HA26®) [+ [VASH ' + [VAS(H)]?). (2.3.5)
Here we used the inequalities
16llw20) < DG, [[A0]ly2) < cl A%

Integrating this over [0,t], we get with the help of (2.2.10), (2.3.1)
i
[An@®)|* < E12+C/0 ([An(T)[I* + [An(r)|[?) dr

C1(0)Cy(t)(1 + Ef)
C1(0) — c(1 + C1(0))Ch ()t

= ¢ [+ [An(@I?) dr + Cal0) = S5(0).

Differentiating S3(t) with respect to t, we have
t

dSs(t)
dt

dCs(t)
dt

= c(lan@IP +lan()|*) +

< o (Sst) + S()?) + d%t(t).

Since Cs(t) is increasing, one can derive from this inequality

_5115(531(75)) = C<531(t) " 1) " Sgl(t) d(i;t(t)
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< c<021(0)+1>+ L det)

Integrating this inequality over [0,¢], we have

- <c< ! +1>t—+1
S3(t) ~ S3(0) =\ Ca(0) Co(t) — C2(0)’

and hence Co(0)Ca()
Sa(t) < 2 .
30 = G 0T = el 1 Co(0)) oD
Then we choose T** > 0 such that C5(0) — ¢(14 C2(0))Co(T**)T** = 0. This
and the integral of (2.3.5) over [0,¢] lead to the inequality (2.3.4). 0O

2.3.2 Proof of Theorem 2.1.2

By virtue of Lemmas 2.2.4, 2.3.1 and 2.3.2, we prove in this subsection that
the sequence {(¢”,n”)}psq is a Cauchy sequence in (LQ(O,T**; Wy () N
W;(O,T**;Wf(ﬁ)» x Wy (Qp--). Subtracting (1.4.3) with D = D’ from

those with D = D” (0 < D" < D' < 1) and denoting by ® = ¢ — ¢?”,
N =nP —nP” we have

82@ — (Vo x &) - VAD — (V® x &) - VA"
2
= —;;<®—N)+02A2®7
aN D/ = - — - DII 236
E—(w x &) VN = (V& x &) - Vn (2.3.6)
C1 02 —_ = —_— D’
3
forr € Q, t >0,

&(z,0) = N(z,0) =0 forx €,
®(x,t) = AdD(z,t) = N(z,t) =0 forz €D, T* >t >0,

®, N, periodic in the x5 direction.
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We separate five steps for the proof. In the rest of this subsection, we
denote inessential functions determined from Lemmas 2.2.4, 2.3.1 and 2.3.2
by the same symbol C(t) which is independent of D', D".

(i) Estimate of HV@(t)HQ + HN(t)HQ + /Ot HA@(T)HQ dr.

Multiplying the first equation of (2.3.6) by ® and integrating over €,
we have, by virtue of the integration by parts, Schwarz’ inequality and the
Sobolev imbedding theorem,

(9<I>
— t

<5 188+ 2 [V O g, [TEO] +

[+ o am] (2

2dt

cc
“
[~

con?

from which, together with (2.2.9) and (2.3.1), it follows

<n*) g(b( >H

<CHIVE@)|P + [N (2.3.7)

50| + eall AT 2 +

Similarly, multiplying the second equation of (2.3.6) by N and integrating
over ), we have
ON
(*)a ()
n T3

Rl

1d
ZINOIF+ D"

N[+

<c| v (1) V()

LA(Q) H LA(Q)

+2 o] + (54 >||N()||2+HAnD' |

Here we used the inequality

)
Tm%(t)

< c|as(s).
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Thus we get, by virtue of (2.2.9) and (2.3.4),

1 AT 2
C1 2 ON
() axg“)H

<DCH)+cINOIP+COIVe®)|* + %HA@(]S)H?. (2.3.8)

d
_ Nt 2 D//
CINOI? +

VNUWQ+‘

Adding (2.3.7) and (2.3.8) yields

VN )|

< (I3 + [N OI?) + el AT + D"

1 — 2 1 A= 2
C1\2 0P Cq 3 ON
+|(n) axg(“H *‘(H axg(”H

< DC) +CW) (IVR@)IP + IIN®)?) -

Then Gronwall’s lemma leads to

IV + [N+ [ (1A + D" [N ()|

ON

0P
+ 8703(7)

2
*’axﬁ \

2) dr < D'C(t).

(i) Estimate of HAa(t)HQ + /Ot HVA@(T)HZ dr.

Similarly as in (i), multiplying the first equation of (2.3.6) by A® and

integrating over €2, we have
1d, - _
——[|A®(1)]]? AD(t)|?
S IABW)? + ol T AT (1)

< c|wae o] [0l .., [a%00]

OAD | ON, |I? e, —
@] + L1zl

oz, )

Co

N 1
4

81'3

Co n%

This inequality, together with (2.3.1) and (i), implies
2
+C)laD@)]*.

- < ol 222
GBI + el VAT < e | 72 (1
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Applying Gronwall’s lemma and the estimate in (i), we obtain

_ t _
1AD(1)]2 +C2/0 IVAB(H)|?dr < D'C(t).

(iii) Estimate of HVA@(Z‘)HZ + HVN(t)HQ + /Ot HA25(T)H2 dr.
Multiplying the first equation of (2.3.6) by A?® and integrating over €,
we have
1d

S IVABOI? + e AZB()

< c|[V6" )], . [ VAP + e[ Va6 0] VOO, .o,

C1 582N
(n*> 03 ®)

2
L>(Q) ‘

R c 2

c 1 ?
. 71: i
axg( )H +C2

Co My

C — .
+2 %) | +

From this, (2.2.9), (2.3.1) and (i) it follows
d _ _
FIVAD + el (1)

< D'C@) + C()||VABQ)|? + Cﬁ

2

(Cl )% %Z;(t)HZ. (2.3.9)

n*

Multiplying the second equation of (2.3.6) by AN and integrating over €,
we have, by virtue of the inequality similar to the one preceding (2.2.18),

1d

B . ovn, P
5= IR + D AN(t)H2+|(;1) D (t)H
O 0+ (19 L,
e P
el PN o O -1
PV -
o[ o] I
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C1 8 8N
- (¢
\Y oz, )

+sup (o))" [V

' Ew

}

LH(w)

(2) 5|

s @] (Jan” @] + Jan )

g

+D'

Then we have, with the help of (2.2.9), (2.3.1), (2.3.4) and (i),

(q)é OV N

2
d _
—||[VN@®)||>+ D" t
Liemole + @) |

anl +

81’3
<DCt)+Ct) (1+ | A%7 1)) VNP + ¢ vADE)|?. (2.3.10)
Here we used the inequality

|as” )]

wag) = C“A2¢Dl(t>“‘

2
Adding (2.3.9) and (2.3.10) multiplied by = yields
Co

d — C _
5 (IVATO + STV @) + e A7) +

(2) 5|

<DC)+C) (1+ a2 @)]) (IVAR®)? + [ VN (©)]?) .

2¢D”
2

— |an)

C

&)

Then Gronwall’s lemma and (2.3.1) lead to

AN(T)H2

TATOF VRO + [ (18780 + D"

N GVN(T)
6.1/’3

)dT < D'Ct).

OAD(T)

(iv) Estimate of /ot (H 5 n HaN(T)

or

2
) dr.
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From the above estimates and (2.3.6) one can deduce

L1

(v) Passage to the limit D — 0.

From the estimates in (i)—(iv) it is easy to see that the sequence {(¢?,
nP)} pso is a Cauchy sequence in (LZ(O, T WHQ)) N WL (0, T, W;(Q))) X
Wy (Qr-+). Hence, (¢,n)(x,t) = Iljig})(qSD,nD)(x,t) exists in (L*(0, T W,
(Q)) NWEHO, T**: W2(Q))) xW3 (Qr+) and (¢, n) is our desired solution to
problem (1.4.2), (1.4.1).

The uniqueness of such a solution can be easily proved by making use of

the estimate analogous to the estimates in (i)—(iv).
Thus the proof of Theorem 2.1.2 is complete.

) ) dr < D'C(t).
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Chapter 3

Hasegawa—Wakatani equations

with vanishing resistivity

3.1 Main results

First main theorem is concerned with the problem (1.4.4), (1.4.5).

Theorem 3.1.1 Let ¢ > 0 and n*(|2]) € Wy (w) satisfy n*(|2'|) > n. with
a positive constant n,. Assume that (¢5,n§) € Wo(Q)xWE(Q) satisfies the

compatibility conditions

oy(x) = Agg(x) =ng(x) =0 for z €T,
(3.1.1)
@5, NG, periodic in the xs-direction.

Then there exists a unique solution (¢°,n°) to problem (1.4.4), (1.4.5) on
some interval [0, T] such that (¢°,n) € L*(0,T; WHQ))x W3 (Qr), d¢° /ot
€ L*(0,T;W(Q)). Here T is a constant independent of c.

To obtain the existence theorem to the problem (1.4.6), (1.4.5) with e = 0,
we rewrite this problem as follows: It is clear that the second equation of
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(1.4. 6) implies ¢0 nd =0 by virtue of the periodicity condition in z3 and
M@O = MnO = 0. This yields M{(quo X €) - Vno} = 0. Hence the third
equation of (1.4.6) implies

(gt—(wﬁxe) v>n0:o.

Subtracting this from the first equation of (1.4.6), we have, with the help of
QZ)O —nd = 07

<aat_<v¢0xe> >(A¢0_<$6)+(V$6xé‘).VnO_CQAQQso.

Hence we can rewrite problem (1.4.6), (1.4.5) with ¢ = 0 into the form
( 9 0 0 0 0 = 0 _ 2,0
(875 (V(b xe)-V) (Aqﬁ —gb)—l—(ngS xe)-Vn = o A%P,
8 _
— (V@' x¢€)-V|n0=0 forzeQ, t>0,
r,0) = ¢)(x) for z € Q,
"(x,0) = ¢o(w) (3.12)
(2/,0) =nd(z') for ' € w,
P°(x,t) = A°(x,t) =0 for z €T, t>0,
(

2, t)=0 for 2’ € 0w, t >0,

¢°, periodic in the z3-direction.

It is to be noted that if we impose an additional condition n3(z") = 0, the
equations of (3.1.2) is similar to the Hasegawa—Mima equation (1.2.3) with
an higher order correction term. In [28] we establish the unique existence of a
strong solution to the problem (1.4.4), (1.4.5) with & = 0 satisfying n®(a/,t) =
0, and the convergence of (¢, n°) to (¢°,n°) as ¢ tends to zero on some
interval [0, 7], which corresponds to the vanishing resistivity of Hasegawa—
Wakatani equations.

Second main existence theorem is to the problem (3.1.2).
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Theorem 3.1.2 Assume that (¢>8,n8> € WHQ)xW3(w) satisfies the com-
patibility conditions (3.1.1) with ¢ = 0. Then there exists a unique so-
lution (gzﬁo,m) to the problem (3.1.2) on some interval [0,T*] such that
(6°,00) € L2(0, T W () x L=(0, T Wi(w)), 0¢° /ot € L*(0,T*; WE(Q)),
on0 /ot € L0, T*; Wi(w)).

For this solution (gbo,ﬁ) let 770(33,15) = g@(x,t), and E%(x) = aq(x) Then

it is easily seen that (¢°, n°) satisfy (1.4.6), (1.4.5).
Our final main theorem is the following.

Theorem 3.1.3 Let (¢°,n°) and (¢°,n") be the solutions established in The-
orems 3.1.1 and 3.1.2, respectively. If the initial data (¢§,n5) — (¢, nd) as
e — 0 in WH(Q) x WHQ), then (¢7,1n°) — (¢°,n°) in L (0,T% W(Q)) x
Wi (Qrs) and A¢f—nf — Ag®—n in Wy (Qqz) and nF — nO in Wyt (wye)
(wTﬁ = w X (O, Tﬁ>) as € — 0 on the some time interval [0, T%] which is de-

termined from Theorems 3.1.1 and 3.1.2.

This chapter organized as follows. In §3.2 we prove Theorem 3.1.1 from a
priori estimates for problem (1.4.4), (1.4.5). In §3.3 Theorem 3.1.2 is proved
through the local in time existence and a priori estimates. In §3.4 we give a
proof of Theorem 3.1.3 by virtue of a priori estimates, Theorems 3.1.1 and
3.1.2. Throughout this chapter, we denote by ¢ a constant which may differ.

3.2 Uniform estimates for resistivity

3.2.1 A priori estimates

We denote the solution (¢,n) established in Theorem 2.1.2 in the case of
c1 = 1/e by (¢°,n%). Then it is easy to see that (¢, n%) is also the solution
of problem (1.4.4), (1.4.5). Since 7% in Theorem 2.1.2 may depend on ¢, to
complete the proof of Theorem 3.1.1, it is sufficient to show that 7T™* can be
taken independent of €.
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We proceed to get a priori estimates of the solution (¢°, n®). Let it belong
to (L2(0,T; WH(Q)) N WH0, T; W(Q))) x Wy (Qy) for T > 0.

First we prove

Lemma 3.2.1 For anyt >0
t
IV @I + [In*(O)]1* + Cz/o 1A¢"(7)I* dr < IVég)* + lIngl*,  (3.2.1)
t
)

Proof . Multiplying the first equation of (1.4.4) by ¢° and integrating over €2,
we have, by virtue of integration by parts,

0(¢° — n°)

2
€12 €112
G )| a7 = e (IVil” + Im?) - (322)

B . anéf
o Ot

1d

S SV O + o] A0 (1) =

¢ dx. (3.2.3)

Multiplying the second equation of (1.4.4) by ¢° — n° and integrating over
(), we have

one

(®) Q Ot

= ¢ dz. (3.2.4)

2 ey + H (J) o 1)

Adding (3.2.4) and (3.2.3) multiplied by ¢ yields

. (;; (IV6: @I + I (1)) + c2||A¢€<t>||2)

2

Integrating this over [0,¢], we have (3.2.1) and (3.2.2). 0O

Next we prove
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Lemma 3.2.2 There exists a positive constant T' independent of € such that

the estimate

€<HA¢€(t)H2 HIVREDI® + VA (@)]” + [[Ans(t)]”

+or [ (1986 ()P + 12267 ()|?) dr )

[ ([P PG )
_s% (3.2.5)

holds for anyt € [0,T). Here C3(t) = ||AG|I*+ || Vgl +||VAG||* + | Ang]|?
+e (VN2 + [In5]12) +c (IV 5|12 + [ng)|2)* ¢, and ¢ is a constant independent
of €.

Proof. Multiplying the first equation of (1.4.4) by A¢® and integrating over
(), we have

0

AT QI+l VAFQIR - [ (5 - (V6 x 39 ) g as

= 0. (3.2.6)

Multiplying the second equation of (1.4.4) by A(¢° —n®) and integrating over
), we have

<2dtuv ||2+/( (V" x &) - ) qusde)
) ]

2
<e (042 (7 A (O + A7) + ¢ (|an(@)]* + IIVrf(t)H“))

I(¢° —n®)

+c ot (1)

(3.2.7)
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Adding (3.2.7) and (3.2.6) multiplied by ¢ yields
302

¢ (341 (1A + 19 0P) +

2dt
(1)o7 =

% v ag >||2)

!
2

<= (Zgag @l + c (lan @l + 195 @)"))

2

(3.2.8)
Multiplying the first equation of (1.4.4) by A%¢¢ and integrating over €,

we have, by virtue of Sobolev imbedding theorem and Poincaré and Young’s
inequalities and (3.2.1),

3
S SIVAG DI + 22 A% (1) ||2+/( (Vo7 x€) - >€N¢>€dx

< VA BN + c(IVeRl* + lInal*)*. (3.2.9)

Applying the Laplacian A to the second equation of (1.4.4), multiplying it
by A(¢® — n®) and integrating over €2, we have

c (gaplan @l = [ (5 - 0o x3.9) s ar)

_/ (1 0*(¢° —n ))A(¢5_n5)dx

* 03
<e(Z(Ivac®lP + 1A% O)1)

+e (IVAFOI + A (®)* + 9 @)]) )-

Hence we get

2 9 € EAN2E
c (aplan i = [ (5 - 0o xa-9) s ar)
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(1) 22—

n*

1
4
< (2 (IVAF@IE +18% OI?)

+e(IVAGFOI + A (@) + 997 (0)]"))

2

c <1>% Ve =) ) (3.2.10)

2
(¢ —n)
n* 0x3 @ + CH

81’3

Adding (3.2.10) and (3.2.9) multiplied by ¢ yields

e (;i (IV 2¢O + |an<(1)]*) + CjHA%E(t)IIQ)
; (t)

n*

() 5

< e (ZIVAFWI + (IVAFDI* + A (@) + IVas(0)]Y)

2

9(¢° — n°)
B4 (t)

|Gy

+CH

2

e (IVe51I° + IIng]1°) (3.2.11)

Adding (3.2.11) and (3.2.8) multiplied by ¢ yields

d 2 € 2 € 2
! (;dt (G + cIVn @I + IVAFE()? + | An° (1))

+2 (IVAGF@I? + 4% (1)) )

o] Ly et =m0

n* Oxs (®)
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< ec([IVAGF @) + [An* @)]* + IVn=@]* + (IVGII* + In5]1%)?)

2

90 =) i 1 el ag= )| (3.2.12)

+c s (1)

Putting
Sa(t) = A7 + VR (O + IVAG (O)]* + [ Ant (1)

and integrating (3.2.12) over [0, t], we have with the help of (3.2.1) and (3.2.2)
! 2 2 2
Su(t) < c [ Su(r)dr + $(0) + e (V|12 + IIn )

2 t
e (IVo5l1° + 15 1) tEc/O Su(T)2dr + Cs(t) = Si(1).

Then S} (t) satisfis the differential inequality

dS;(t)
dt

dC3(?)

< eSi(t)?
—04()+ dt )

Since C3(t) is increasing, one can derive from this inequality,

d/ 1 1 dCs(1) 1 dCy(t)
_ < < .
dt(sz;(t)) =er o

Si(t)2 dt T Cs(t)? dt
Integrating this inequality over [0,¢] and noting S;(0) = C3(0), we have

. Cs(t)
S0 < T omr

Then we choose 1" > 0 such that C3(0) — c(1+ C3(0))C5(T)T = 0. This and
the integral of (3.2.12) over [0,¢] lead to the inequality (3.2.5). 0

3.2.2 Proof of Theorem 3.1.1

By the standard arguments based upon the a priori estimates in Lemmas
3.2.1 and 3.2.2 the solution can be extended up to 7" indicated in the proof
of Lemma 3.2.2. Thus the proof of Theorem 3.1.1 is complete.
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3.3 Existence theorem for model equations of
drift wave turbulence with zero resistiv-
ity

The proof of Theorem 3.1.2 is divided into two parts. First we prove the local
in time existence by the method of characteristics (see [57]) and the method of
successive approximations in §3.3.1. Second we prove the following theorem
with the help of a priori estimates in §3.3.2.

3.3.1 Local in time existence and uniqueness

Rewrite the first equation of (3.1.2) as a system of equations for
(Z = M) (A¢° = ¢") and M (Ag" — ¢°),

B _ - — .
(at (VX2 v> (AF — &) — (V6 x &) -V (A5 — )

— (T - M) {(V(Za X 5) -VA@} = A%,

(;—(Vfﬂ)xé).v> A@—M{(V@xg).VA@}:QAQ@.

Furthermore, denoting by #(x2/,t) = —V¢(2',t) x € and V (2/,t) = AgO,
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we rewrite problem (3.1.2) into the form

(5477 -an) (80 -5) = (V0 x &) -9 (v -im)

+H(Z - M){(V" x &) - VAGP} + A0 for z € Q, £>0,

Q

((% + TV —c2A>V—M{(v&sT>><5)-VA&¥)},

il 0
<0t+ >n 0,

(Uxe)=V, Vx(@xeée)=0 fora’ cw, t>0,

@O(2,0) = ¢d(z) for x € Q,
V(2 0) = Ag(z'), nO(2/,0) =nd(z') for 2’ €w,

Q

@(w,t):A(Ea(x,t):O for z e, t >0,
V(' t) =nO(z',t) =0, ﬁ(x’,t)z@ for 2/ € 0w, t >0,

&F), periodic in the x3-direction.
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It is easily seen that this problem is equivalent to the problem

<;+v V—02A>¢=(v@xg)-v(1/—n())
(T = M) {(V6" x &) -V} + 2 (6" + ),

gbo v forx e t>0,

(8 +z7-v—c2A>sz{(v$ixg)-w},

( i+ ) =0 (3.3.1)

V-(ixe)=V, Vx({WUxe)=0 forz' €w, t>0,

¥(w,0) = Adf(w) — @Y(z) for z€Q,
(2/,0) = AdY(a’), nO(z',0) =nd(z) for 2’ € w,
P(x,t) = Pz, t)=0 for z €T, t>0,

(2/,t) =n0(z',t) =0, T(a',t) =0 for 2’ € dw, t >0,

<

v, ¢07 periodic in the xs-direction.

The following lemma is well-known (see, for example, [30], [51]).

Lemma 3.3.1 Let [ > 0. Assume that vy € W5 (Q) satisfies the compati-
bility conditions up to order max{[l —3/2],0}. Then for any f € Wa'*(Qr)

there exists a unique solution 1) € W2+l 1+l/2(QT) to problem

é;f—chwzf forx e, t>0,

U(x,0) = o(x)  forz e,

(x,t) =0 forxel, t>0,

Y,  periodic in the xs-direction.
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Moreover, this solution satisfies the inequality

[ lgzstre gy < € (Ibollgoaay + 1 i)

Let us reduce problem (3.3.1) to the problem with zero initial data for
¢ and V. According to Lemma 3.3.1, there exists (¢*, V*) € Wy’ 2(Qr) x
Wy 372 (wr) satisfying the equations

(i_C2A>¢*—O forz € Q, t >0,

9,
(&_62A>V*:O for 2’ € w, t >0,

Y (2,0) = Agf(x) — @f(x) for z € Q,
V*(',0) = AdTB(:c’) for 2’ € w,

P (x,t)=0 forzel, t>0,
V*(a',t) =0 for 2’ € dw, t >0,

W*, periodic in the xs-direction,
and the inequalities

1" 72y < €868 = ]
(3.3.2)

1V lygs72 4y < CHA%

"

By putting ¢* = ¢ — ¢* and V* =V — V*, the problem (3.3.1) is equivalent
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to the problem

B)
+(Z = M) {(Ve" x &) -V (v + %)} — 5 Yy

(875“’ V—02A>¢ﬁ (Vo0 x &) -V (VE+V* —nd)
o2 (60 + ¥ +47)

A0 — 0 = pf 4 * forx €, t >0,

ot

a_» JR—
(at v ) -0

(Tx@)=Vi4+V*, Vx(Gxe)=0 fora' cw, t>0,

<8+6-V—02A> Vﬁ:M{(vg)xg).v(wuw*)}

—7-VV*,
(3.3.3)

W( 0)=0 for x €9,
VE(2',0) =0, nO(a',0) =nd(z") for 2/ €w,
Vi (x,t) = <b0(x t)=0 for x el t>0,

Vi t) =nO(a',t) =0, T(a/,t)=0 for 2’ € dw, t>0,

Yr, (;50 periodic in the x3-direction.

Now we transform the problem (3.3.3) by the method of characteristics.
As usual, we introduce the characteristic transformation II% : 2/ — & =
(&1,&) = X(0;2',t), where X (7;2/,t) is the solution curve of the ordinary
differential equations

;TX(H; N = 0(X (a8, 7), Xt t) =2 (0<7<t). (334)

The unique existence of such a solution curve X (7;2/,¢t) (' € Q, 0 < 71 <'t)
of (3.3.4) is due to the fundamental existence theorem of ordinary differential
equations provided that v is suitably smooth. Let 2’ = X~1(¢;£,0) be the
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inverse of X (0;2',t) = &. Then (3.3.4) implies that X! is a solution curve
of

d
dr
with @(¢';t) = v(X 1(t;£,0),t) = ¥(2', ), whose solution is expressed by

XNrg0)=a¢ ), X H0:¢00=¢ (0<r<t) (335

v =Xt €,0)=¢ + /075 u(é, m)dr = X, (&,1). (3.3.6)

According to the condition v = 0 on Ow, Hg,' is a one-to-one mapping from
w and Jw onto W and dw, respectively for each ¢ > 0.
The fourth equation of (3.3.3) yields

op/Ot =0 for p(€, 1) = nO(X,(€, 1), 1),
which is easily solved as
p(E 1) =p(¢',0) = nf (Xu(&',0)) = nf(¢)- (3.3.7)

For simplicity the transformation from x3 to £ = x3 is denoted by II¢?
and Hg,,g;’ = Hg}' Ig2. Transform the problem (3.3.3) by Hf::gf and replace p
with (3.3.7). Then we obtain the following problem for

(€,0°“,¢) (&, 6) =TIg & (v, 0%, 0) (x,1),
(0, v ) (¢ 1) =g (VE V) (@) (€= (£,8), & = 3) -
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(aat 62A£> ¢ = (vu@ X é) -V (U + V*(u) N 778)

(T = M) {(Vu@ x &) Vi (0 +07@) } =it V,*™

+or (P + 0+ 0") + oAy = Ag)d = F (4,8, U, il)
AG—P=0+0"" — (A= D) =G (4, p,10) for£eQ, t>0,
(3 o) v = { (75 ) 7. (54 6°9)

—ii - Vo,V ey (A, — D) U = H (4,8, U, i) (3.3.9)
Ve (ixe)=U+V¥—(V, =V, (ix¢&)=1(U,10),

(@x &) =—(Vy—Ve)x (i x&=J(@) foreew t>0,

)(£,0) =0 for €€Q,
£€.0)=0 for ¢ €w,

<

£><

=

(
L/)(f =& t)=0 for £€T, t>0,
UE,t)=0, a,t)=0 for &€ dw, t>0,

w, ¢, periodic in the ¢3-direction,

0 o 0
where ¥y = (Va1 Yz, Vo) = (gw ser) Ve = (agae) 9 =
3 1 2

X\

gl — (%5/ > = < ik + / g? dT) (the superscript ~* stands for the
k

0

transposition and inverse), A, =V, -V, V¢ = (Vgl, %,
3

) , Ag = Ve - Ve,
Notice that from the definition, it follows

P(E.0) =R (), a(€,0) =~V (¢) xé. (3.3.9)

Now we solve problem (3.3.8) by the method of successive approximations.
Let (¢©®, ¢, U@ q®) = (0,0,0,0) and (0D, G+ grim+h), gtm+1))
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(m=0,1,2,...) be a solution of the initial boundary value problem

ot
ApHD — D) — @ (), 5, 7 = G

) _ _
( _ 02A5> Pt = (¢(m)’ . U(m)7ﬁ(m)) = p(m),

for £ € Q) t >0,

(3.3.10)

<
3
x

£,0)=0 for €€,
UM+ 0) =0 for ¢ €w,
YD (€ ) = @t ) =0 for €T, t>0,

Uem(e 1) =0, @) =0 for € € dw, t >0,

Pt Zm+D) - periodic in the &-direction,

where Vi = Vo, Ay = ViV and (907, @0, U0 G0 ) € Wi (Qr) %
(L2(0, T; Wi (@) W3 (0, T3 WE(€2))) x Wy (wr) x (L2 (0, T5 Wi (w)) N W3 (0,
T;W3(w))) is given in such a way that

1/2 || =(m)
T2 i p(orwie) S (3.3.11)
with some positive constant ¢ and satisfy
FUE,0) =3 (&), a™M(€,0)=—Vegf(¢) x € (3.3.12)

For convenience, we denote
e ) = v, Ve = v, g =gl

The following lemma is well-known (see, for example, [10], [31]).
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Lemma 3.3.2 Assume that 1y € Wy (Qr). Then problem
Ap—op=1 forzeQ, t>0,
o(x,t)=0 forxel, t>0,

¢, periodic in the x3-direction

has a unique solution ¢ € L*(0,T; Wy (Q))NW3(0,T; W(Q)), which satisfies
the inequality

H¢HL2(0,T;W§(9)) + H¢||W21(0,T;W22(Q)) < C”Qﬂ”wjl(QT)-

Since the fourth and fifth equations of (3.3.10) constitute Cauchy—Riemann
equations, they have a unique solution ﬁ(mfl) x €. Applying Lemmas 3.3.1
and 3.3.2, one can find a unique solution (w(m“), lmt1) ym+1), ﬁ(m“)) to

the problem (3.3.10) satisfying the inequality

() = WMH)ij%Qﬂ + e L2 (01w3(@)

e

() + HU(WH)H

w}(0,1;w2 w3 (wr)

g

L2(0,T;W3 (w) Wi (0,1} (w))

<of

o

H ™)
L2(Qr) w3 (Qr) - H L2(wr)

iz + 177

Wyt (wr) )

In order to estimate each term on the right hand side of the above in-
equality we use the following lemmas (see, for example, [52], [58]).

w3 (wr)

Lemma 3.3.3 ([52]) Let Q be a bounded domain in R3. Then the following

estimates hold.

1£glle2@) < ellflls@llgllzse) < el fllwy@llgllwy @)
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for [ € W3(Q), g € Wy(Q),

3/4 1/4
1 £+ Vallzaey < ell fllesy 1 Vallzswy < ell fllwsn ol 1ol

for f e W3(Q), g € WZ(Q).

Lemma 3.3.4 ([58]) Let w be a bounded domain in R*. For any 4,ud €
(L2(0, T; W3 (w)) N W4 (0, T; Wi (w))) satisfying (3.3.11) and for any t < T,
the following inequality holds.

Hg[u] — gl

1/2 |~ —)
W22(w) S O(t, 6)t / ||u - U/||L2<0,t;W23(w)) 9

where C'(t,0) is a positive constant depending increasingly on both arguments.

Lemma 3.3.5 Let Q and w be a bounded domain in R® and R2, respec-
tively. Assume that f € (L*(0,T; W3(Q2)) N WH0,T; W4(2))) and i, u €
(L2(0,T; W3 (w)) N W3 (0,T; Wi (w))) satisfy (3.3.11). Then for any t < T,
the following inequalities hold.

f (@) < C(o)t'/? 111 oo 0.0:22(02)) »

s w2oign = CO I lwzoq, (1 o)

P = N oy S COEP N 2o 17 = @l (o rwzie) -

i — el (o) = CEO 1120 emgeon) 1T = Tz (opmze)

where C(6§) is a positive constant depending on 0.

Now we evaluate HF(m)H , From (3.3.2), (3.3.12) and Lemmas 3.3.3-

) L2(Qr
3.3.5 with @ = @™, @ = 0, it follows the inequalities

(V@™ x &) - ¥, (U™ 4 V) — f)

L2(Qr)
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2
L3(92)

L4(Q> )dT

+ Tl/QZ(m) (T)) (TI/QZ(HL) (T)

~(m) 26(9) va (U(m) _ 778)

e

L4(Q)

<]

(5) HQT(S wi

o (W

W2(Q)

| (14 120(T) ) + 12 ||nf

VV2 w))

@ = M) {(Tnp™ ) - Vo (57 0™}

<of (|-,
0

i

L2(Qr)

HVW

L3(Q)

L) > dr

s [V

< (8,120

|+ T2 (T))
X (T1/2z<m> (T) + C(9) ||}

L2( QT) - <H¢0

x (14 1'2:"(T)) |

i ( _l_Tl/ZZ(m)(T)) >7

@™ - T

L T2, (T > )) (45

W2 (w) WQ)

@ 4+ ) 4 g2

L2(QT)

<cfef

+e?(C ( quo

(m)
12(2) o T2 (T)> '

Lemmas 3.3.3 and 3.3.4 with @ = @™, @ = 0, yield the inequality

H(AS - Am) i(m)

L2(Qr)

[l =g 1)+ (6 1)+ (@ 1) ]7- v
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+{(QOMVQ>T.QOM}.V%&Mﬂ

L2(Qr)

< Cy(T,6)2(T) (1 4 2"(T)) (3.3.13)

where C(T,0) is a positive constant depending increasingly on both argu-
ments and C; | 0 as 7' ] 0. In what follows, we denote by C;(T,d) positive
constants having the same property as C(7,d). Therefore, we obtain

HF(m)

(m) (m) ()2
Lo < C0) +Co(T.9) (14 20M(T) + 2™(1)?),
where C'(9) is a positive increasing function of § and Cy(T,9) is a positive
increasing function of each argument.
Similar estimates for HG("”)

-7

H(m)

Mm

, and

w2 (Qr)’ H L2(wr)’ w2 (wr)

one can get.

w2t (wr)

Finally we have
Z(m+1)(T> < C'(8) + Cs(T, ) (1 + M (T) + »(m) (T)2) )

where C’(9) is a positive increasing function of § and C5(T), ) is a positive
increasing function of each argument.
We choose first a positive constant M in such a way that

M > C'(0),

where ¢ is the constant appeared in (3.3.11), and second a positive constant
T’ (< 6%/M?) so that

C5(T",8) (1+ M + M?) < M — C'(5).

Thus we conclude that 2™ (T") < M implies 2™ *)(T") < M. By induc-
tion we see that the sequence {<w(m),<ﬁ(m), U (m),ﬁ(m))} ~is well-defined
on (0,7") and 2™(T") < M for all m.

Now we verify the convergence of {(@E(m),gﬁ(m),U (m),ﬁ(m))}oo_o. Sub-

tracting from equations in (3.3.10) the similar equations for (JW, gm g,
ﬁ(m)) and setting (,J*(m—‘,—l),@*(m—‘,-l), U*(m—l—l),ﬁ*(m—i-l)) = (J(m—i—l) _ ,{E(m))
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gE(m-‘rl) o (ﬁ(m)7 U(m+1) - U(m)7 ,J(m—‘rl) . a’(m))’ we obtain

0
<at . CQA ) w (m+1) _ F(m) . F(m71)7

Aeprmt) — tmth) — qim) _Gm=D for ¢ € Q, 0 <t < T,
O A prmt) — gplm) _ prm—y)
a — CoL¢ U =H —H s

Ve - (g*(mﬂ) % g) = [(m) _ [m=1),
Vg x (@t % 5) = Jm) _ Jim=D) for ¢ cw, 0<t<T,
(€ 0) =0 for €€,
(¢ 0) =0 for & € w,
HmH) (¢ 1) = m+1>(§ t)=0 for €€, 0<t<T,
U*(m“)(f’,t) @t ) =0 for &€ €dw, 0 <t <T,

Pr(m+1), @*(m“) periodic in the &;-direction.

From (3.3.12), it obviously follows that
g m(€,0)=0, @™ (¢, 0)=0.

In the same way as for (3.3.10), we can derive

(m+1) _ ~*(m+1)
7 (t) = ‘ 'QZ} W2 LQy) + ‘ Y L2(0,t;W§(Q))
~x(m~+1) x(m—+1)
+‘90 ‘Wl(OtWZ ) +HU ‘ Wit (wr)
L2(0,6W3(w)) * ‘ ¢ ‘ W3 (0,6W3 (@)
< C(t,6,2M) 20(1) (3.3.14)

for any t € [0,7"] where C (¢,0,2) is a constant depending increasingly on
each argument and C' — 0 as t — 0. Since we can find a positive constant
T"(< T") satisfying

C(T",6,M) < 1,
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the sequence {(&(m),ﬁ(m),U (m),ﬁ(m)>}oo , converges uniformly on [0, 7"]

to (1;, o, U, ﬁ) as m — oo. It is clear that (QZ, o, U, ﬁ) € Wf’l(QTu) X
(L2(0,T"; W3(Q)) N W3 (0, T W3 (2))) x Wo™ (wrn) x (L2(0,T"; Wi (w)) N
W3 (0, T"; Wi (w))) and (@Z, @, U, ﬁ) is a solution of problem (3.3.8).

The uniqueness of such a solution can be easily proved by making use of
the estimate analogous to (3.3.14).

From (3.3.7), we find that p € L™ (0,T; W3(w)) .

Now we respectively define 2’and (zbu, >, gfiﬁ, ViV 7, W) by (3.3.6) and

(44,0, 90) (2, 6) =TS (0,04, ) (€,
(VE v, @,n0) (o, 1) = 115, (U v g, p) ).

Here the transformations from & and &3 to 2’ and x3 are denoted by Hgl, and

Hg; respectively, and 5% = H6 H53 Then we find that (M gbO Vi G no) is

z', T3

a unique solution of the problem (3.3.3) belonging to W' (Qpn) x (L*(0,T";
W3 ()W (0, T W3 (€2))) x Wy (wpn ) x (L2 (0, T"; Wi (w) ) W3 (0, T"; W (
w))) x (L0, T"; W3 (w)) N W5 (0, T W3 (w)))-

Now we define ¢° = ¢0 + @9, where ¢V is determined by A¢0 = V' + V*
with @95, = 0. Then it is easily seen that there exists a unique solution
(QSO,W) to the problem (3.1.2) on some interval [0, 7”] such that (&W) €
L0, T"; W4 (Q)) x L>=(0,T"; W3 (w)), 9¢°/0t € L0, T"; WZ(Q)), on°/0t €
L2(0,T"; W3 (w)).

Thus the proof of local in time existence and uniqueness is complete.

3.3.2 Proof of Theorem 3.1.2

In this subsection we proceed to get a priori estimates of the solution (gbo, W)

established in §3.3.1. Let T be an arbitrary positive number and ((/507 W) be a
solution of problem (3.1.2) belonging to (L2(0,T; W (2)) N WL(0, T; W2(2)))
X (L2 (0, T5 W3 (w)) N W5 (0, T5 W3 (w))).

Since the regularity of the solution is not sufficient, the following argu-
ments are formal. However, one can justify them by using the method of
difference quotients or mollifiers. Throughout this subsection, we denote by
c a constant which may differ at each occurrence.
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Lemma 3.3.6 For anyt € [0,T]

|t H (3.3.15)

R T
vaww+w@QW+4@AWvawﬂh
= ng(f + \(58”2 = (3.3.16)
Jas o] + Vo] + [ |vas @) ar
< gt + 98] + e (1+ (|8, + ) 1)

= C*(t). (3.3.17)

Proof. The solution of the second equation of (3.1.2) is given by the formula
(3.3.7), which yields (3.3.15).

Multiplying the first equation of (3.1.2) by ¢°, and integrating over Q, we
have, by virtue of integration by parts,

331 ([Fo0 +[@Of) + alasmr -o

Integrating this over [0,t], we obtain (3.3.16).

Multiplying the first equation of (3.1.2) by A¢° and integrating over 2, we
have, by virtue of integration by parts, the Gagliardo-Nirenberg, Schwarz’s
and Young’s inequalities and the Sobolev imbedding theorem

s ([80] + [v80)) + e [V
:/Q(v@xe*) -Vﬁmf’dx—/ﬂ(w(’xe*)-vabﬁAo;de
<c[veo) [»®),., [vac®)

te HVAQSO(t)H HngSO(t)

[o°)

LY(Q) LA(Q)

(t)

< Z[vasel + = (o)., + <

2>7
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and hence

I

;t (Hﬁczﬁo(f)ﬂ2 + Hvéo(t)‘f) + 02 [ VA (1)

< & (g e+ Jerol).

Here we used the estimates (3.3.15), (3.3.16) and the inequality
[ve] <[[ve] + v <2[[ve°]

Integrating this over [0, ], we obtain (3.3.17) with the help of (3.3.15) and
(3.3.16). -

Next we prove
Lemma 3.3.7 There exists a positive constant T* such that the estimates

[vag @)+ |ad @ +||vad) ;(w) + o /Ot |a26°()||" dr

Cy(t)

3.3.18
- 1- CC4(t)t, ( )
J— 2 )—=112 "

DEn°(1)|| oy, < (la%a Dging Lz(w)) Ca(t) = CA (1),

ol =1, 2, 3, (3.3.19)
oDn0 |’
H 5}” t) < \JC5 4 et [ (1), lal =0, 1,2, (3.3.20)
L2(w)

hold for any t € [0,T*). Here

Cutt) = [vagi] + ] + v

2
12(w)
*ok * Ykok 4 *2 KL vk 3
e (O (1) + C ()" + ¢ + ¢ 0™ (1)2)
and Cy(+) is a monotonically increasing function (|a| =1, 2, 3).
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Proof. Multiplying the first equation of (3.1.2) by A%¢° and integrating over
2, we have, by virtue of the Gagliardo-Nirenberg and Young’s inequalities,

23 (Ve + [ad@]) + a0
- —/ (V0 x &) - Vil A% da
Q

- /Q (Ve x &) -V (Ad° — @) A% do

< [V oy V7O sy + (VO ey [V
VO] g [Ty ) [226°0)]
< Z|ato| + Z((Ivarw] + [v@@l) [veel.,,

vl Jagwl [vaco] +[vew] jaeo]

+[vao|acol)
and hence

f(HVA¢°<t>\f+HA%HQ)+Cz NGOy

+ee (1) [vade)|

< c(HVAgzﬁo H + HVnO w)

njw

+? 4 IOt

) (3.3.21)

Here we used the estimates (3.3.16), (3.3.17) and the inequality

D\ < ||D2g?| + ||Degd| < 2||D2g’]

la] =1, 2.

~ Taking the gradient of the second equation of (3.1.2), multiplying it by
VnO, and integrating over €2, we have

2

’Vno L2w)

2 <chv¢0 )| %)va(t)

sl
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<35 (|l + [vasw]) + 7 [vt

. 3.3.22
12(w) (3.3.22)

Adding (3.3.21) and (3.3.22), we have

i ([vae@ + [adf + [vwel,,,) +e|aeo]

<C<HVA¢0 )"+ [ro) LQ()+(1+CO** N [vago)|

o2 4 c*%C**(t)‘S’). (3.3.23)
Putting

= [vaso] +[adw] + v

L2 (w)

and integrating (3.3.23) over [0, t], we have with the help of (3.3.17)

t 1 3
Ss(t) < c/0 Ss(7)?dr + S5(0) + ¢ (C’**(t) + O () + ¢ + C*EC’**(t)é)

- c./ot Sy(r)2dr + Cu(t) = S2(8).

Then S?(t) satisfis the differential incquality

dS5(t)
dt

dCy(t)
dt '

< cSi(t)? +

Since C4(t) is increasing, one can derive from this inequality,

><C 1 dCy(t) 1 dC4(t).

<
Teer @ ST aue @

d 1
de \ Sx(t)
Integrating this inequality over [0,¢] and noting S2(0) = C4(0), we have

Cy(1)

S5 < 1 —cCy(t)t’

Then we choose T* > 0 such that Cy(0) — ¢(1 + C4(0))Cy(T*)T* = 0. This
and the integral of (3.3.23) over [0, ] lead to the inequality (3.3.18).
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For |a| = 1, 2, 3, applying D% to the second equation of (3.1.2), multi-
plying it by D, no integrating over w, we have

sz)_c Z

la’|<]e

HD 2nO(t

D2 (V" x €) - VDI™n) Dgnd da|.

th

Then Gronwall’s lemma and (3.3.18) lead to (3.3.19).
From (3.3.18), (3.3.19) and the second equation of (3.1.2), one can easily
deduce (3.3.20). 0O

By the standard arguments based upon the a priori estimates in Lemmas
3.3.6 and 3.3.7 the solution (¢°,n%) established in §3.3.1 can be extended up
to T indicated in the proof of Lemma 3.3.7. Thus the proof of Theorem
3.1.2 is complete.
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3.4 Hasegawa—Wakatani equations with van-

ishing resistivity : Proof of Theorem 3.1.3

Denoting 7% = min (T, T*), where T and T* are indicated in Theorems 3.1.1
and 3.1.2, and subtracting (1.4.6) from (1.4.4) and denoting by ¢ = ¢° — ¢°,
n =n° —n', we have

(gt—(w xa-v) (Ap—n) = (Vo x &) - V (Ag" —n°)
= 02A2¢7

5(2—(V¢€xé)-v)n

=—c(I-M) { (8875 — (Vd)o X 5) ~V> no} (3.4.1)
—;az(gxgm—i-a(Vqﬁxg)-Vno forz e, 0<t<TH

H(x,0) = ¢5 — @), n(x,0)=n5—ny forzeq,
o(z,t) = Ap(x,t) =n(z,t) =0 forzel, 0<t<TF

¢, n, periodic in the x3-direction.

By virtue of Lemmas 3.2.1, 3.2.2, 3.3.6 and 3.3.7, we prove in this section
four lemmas necessary for the proof of Theorem 3.1.3. Again as in §3.3.2 the
following arguments are formal, however they are justified by the method of
difference quotients or mollifiers. We denote by ¢ a constant independent of ¢
and by C(t) a constant dependent on both ¢ and the bounds of ¢, n®, ¢°, n°,
which may differ at each occurrence.

Lemma 3.4.1 For anyt € [0,T%]
e (190t + Ino?+ [ lasnipar) + |25 4o
<<C() (IV6O)IF + InO)1* + ). 3.42)
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Proof. Multiplying the first equation of (3.4.1) by ¢ and integrating over €,
we have

L LIV + ol Aot ym/{( (Ve xe)- )}M
= /Q(Vszﬁs x €)-Vé Apda

< 2 A0+ V(1) ey IV (343

Here we used the integration by parts and Schwarz’ inequality.
Similarly, multiplying the second equation of (3.4.1) by ¢ — n and inte-
grating over {2, we have

= Sl + H %3@)“
A (3-wnas)en
:-gA(I—M){((i—(V&’xe) v)no}@_n)dx
be [(V6 %9V (6 n)r
[ a-a0{ (5~ (v x9)-v) w0} an

+e[Vo@)IIIIVa® ()]l =@ In(t)] (3.4.4)

Adding (3.4.4) and (3.4.3) multiplied by ¢ yields

2
< e%c

!
2

1/2 —n ?
(& (191 - I+ eaotor) +| ()50
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< ec ([IVF O30y + IVR () lz(@) (1Y + [n(t)]?)

(I—M){@—(wﬂxé)-v)nﬂ}

Then from Gronwall’s lemma (3.4.2) follows. 0

2
+e2c

Lemma 3.4.2 For any t € [0,T7]

 (Iao@I + IVl + [ 17 86()]dr)

2

+/Ot W(T) dr
<eC(t) (VOO 20y + 10O 520y +2) - (345)

Proof. In the similar way to Lemma 3.4.1, multiply the first equation of
(3.4.1) by A¢ and integrate over €. Then we have

salaoO1 +clvaool - [ (5 - (0o xa-9)afasas
< IV0Olsi (A6 =)0, IVAGO

< 2IVAdb2 + e [V (as - ) Iasw)?

tefas® )| 1va()*

and hence

1d 5  C2 9 0 i
salaoI+ 21 sewiz - [ { (5 - 96 x99} ubasas
< c[vias® =)0 as)?

e (ad — )0 Ve (3.4.6)
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Multiplying the second equation of (3.4.1) by A(¢ — n) and integrating
over {2, we have

ed ) 1\20V (¢ —n)
VP + () et

2

+s/g{ (aat (V¢ x @) - v) n}Aqﬁdx

/x;V(I—M) {(gt — (ngo % g) -V) no} dzs

OV (¢ —n)

<
: =

2 2

1
+=

5 n*1/2via(¢ — Tl,) (t)

n*  Oxs

tee 3 D8 (1) ey V(D)2

|af=2

2 () o

+e (181 [V (D) e g + 96100y 00

ey IV 0=l

and hence

d 1N\20V(6—n), |
cqvnor+| () S

)
+g/Q <0t — (Vé* x a-v) nAGdr

V(I—M){(;—(ngoxé)-V)no}

9(¢ —n)
0563

2
< e?c

2
+ee Y D207 ()l o V(D)

|a|=2
)

x|[V(¢ —n)l. (3.4.7)

e H (0

+e (181 [V 0] o g + 196100y 300
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Adding (3.4.7) and (3.4.6) multiplied by ¢ yields

1/2 n 2
53 (IA6@®)]2 + [ Vn()[]?) + eca VAS®)2 + H (nl) Wg@))(w”

<ol [V(a6 ) O] + 3 NP Ollsioy + [V

|af=2

+[Ar @)}, gy + 1) (186 + [Vn(0)[2) + el V(o)
row| 20"

V(J—M){(gt—(woxg)-v)no} o

Here we used the estimate (3.3.19). Then Gronwall’s lemma and Lemma
3.4.1 lead to (3.4.5).

2

2
+52c

U
Lemma 3.4.3 For anyt € [0,T%]

= (IV a6l + lan(@)P + [ 18%()Pr)
IA(¢ —n)

. 2
+ /0 s (1) H dr

<eC(t) (VS0 320y + I7(0) B2y +¢) - (34:8)

Proof. Multiplying the first equation of (3.4.1) by A%¢ and integrating over
), we have,

1d ' 0 ,
I TAsR + alatol + [ { (5 - (Vo x0)-9)natoas

< IV Ol g 1A% NV AS@)]]

+{v(ag® = n®) @) Vo) ll= @l A%
< ¢ (IVG Oy + (26" = )Y ) 120017 + Z1A%(0)
e vad - )| 1Ve@)I?.
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Therefore

S SIVAGIP + A% H2+/{<— (Vo™ = 0)- V) }A%dw

< e (IV6 Wiy + [V (260 = )W) 17200

te[[vad -ty v, (3.49)

Multiplying the second equation of (3.4.1) by A?(¢ —n) and integrating over
(), we have,

o g 1\2oa-—n), |
Sl ()

_ /{<_ (VoF x &) - v) }A2¢dx

(t)

OA(¢ —n)

z3 9]
<e /LA(I—M){<at—(V¢OXe) V) no} das Ors (t)”
1|/ 1\"2 9A(¢ — n) 2 d2e L OV(d—n) 2
5 (n*> amg(t)H +4 |n*! ZVE : T(t)
10
R Ul 2 5 1026 @l A0

e IVAS (1)l ey V(D) s |An®] + (IVAS] [Vl @)

H| A aey | An°(H)

iy TIVOO VAR ) A6 =),

and hence
2

**HA

O + 1/2 OA(p —n)
2 dt

amg — (1)

—5/{<at—(v¢sxa) ) }Angdx
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)

+5C< > D2 (Ol oy + IVAS(E )||L4(£2)>||An(t>”2

|af=2

< e2c

A([—M){(;—(ngoxe)-V)no}

ov(—n), |* [0 —n)
ot (|2 + 2=

+e [I[VAG ()] o) IVR(D)]*

+e(IVAd] [Fro(t)] . o + 120sce) [[An°(2)

HLoo(Q) L4(Q)

VO o0y VAR ) [ A(S = ). (3.4.10)

Adding (3.4.10) and (3.4.9) multiplied by ¢ yields

= (19207 + |An(0)|P) + eallA%(0)

. (nl*> 1/2 aA((;p’xg— n) (t)H2

< ec( IV ()2 + [T (A =)0+ X 1026 (O] 1oy

|a=2

HIVASE Ol sy + ||VP° @) ) + [AR°F)

+ HVAnO(t)H)

HLOO(Q) LA(Q)

< (IIVAG(H)]* + [An(t)]?)

A(I-M){(jt—(woxe) v>n0}

OV (¢ —n) 2
reo (|55 )

+e VA ()| s V()]

2
+ele

e
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e (anO(t) T an()

o+ [Vante)] ) laem?

[P
ve (|vant @]+ e[ vae @) 1762

Then applying Gronwall’s lemma and Lemmas 3.4.1, 3.4.2, we obtain (3.4.8).
O

Lemma 3.4.4 For anyt € [0,T%]

t|a(Ag—n), |
[[es=nc o

<c<t>(||v¢<o>||%vg(m+||n< Wz +¢), (34.11)

(1) (IV6(0) gy + OBy ey +) . (34.12)

Proof. Multiplying the first equation of (3.4.1) by 0 (A¢ —n)/0t and inte-
grating over {2, we have

9 (86— n)
Hat 0

2

(VDo IV (A — ) ()]

FIV0) 2w [V (26" = n®) ()] + 2 [ 2%0) ).

Integrating this over [0, t], we obtain (3.4.11) with the help of (3.2.1), (3.2.5),
(3.3.17), (3.3.19), (3.4.2), (3.4.5) and (3.4.8).

Applying the mean operator M to the second equation of (3.4.1) and
multiplying it by 0Mn /0t and integrating over w, we have

H@Mn

< ( 965 () ey 9082

L2

SO AEO] . )
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Integrating this over [0, t], we obtain (3.4.12) with the help of (3.2.1), (3.2.5),
(3.3.19), (3.4.2) and (3.4.5). .

From Lemmas 3.4.1-3.4.4, it is easy to see that if the initial data (¢§, n§) —
(#9,n]) as e — 0 in W3(Q) x W3(Q), then (¢°,n°) — (¢°,n°) as e — 0 in
L2(0, T% W) x Wy (wrs) and Ag®—nf — A¢®—n ase — 0in Wy (Qrz)
and n° — nY as ¢ — 0 in WQO’l(wTu). Thus the proof of Theorem 3.1.3 is
complete.
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Appendix A
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Figure A.1: Nuclear fusion reaction of Deuterium and Tritium ([9])
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Figure A.3: Mirnov oscillations ([60])
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Figure A.4: Sawtooth oscillations ([60])
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Figure A.5: Disruption ([60])

Figure A.6: Domain
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