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Abstract

A hamiltonian cycle is one of the most well-studied subjects in graph theory. A lot of suffi-
cient conditions have been considered for a graph to contain a hamiltonian cycle. Among them,
Chvatal(1973) introduced the notion of toughness. A graph G is said to be t-tough, if t-w(G —S5) <
|S| for every subset S C V(G) with w(G — S) > 2, where w(G — S) denotes the number of com-
ponents in the graph G — S. It is an easy observation that every graph containing a hamiltonian
cycle is 1-tough. Chvétal conjectured that there exists a constant ¢ such that every tg-tough graph
contains a hamiltonian cycle. This conjecture is still open.

For k > 3, there is a sufficient condition concerning the toughness for a graph to have a k-tree.
A k-tree in a graph is a spanning tree with maximum degree at most k. The property of containing
a k-tree is a relaxation of the hamiltonian property. Win proved in 1989 that if a connected graph
G satisfies w(G — 5) < (k — 2)|S]| + 2, for every subset S of V(G), then G contains a k-tree.

In this thesis, we obtain more sophisticated results on spanning connected subgraphs in terms
of toughness-like conditions. For this purpose, we introduce the notion of total excess.

In Chapter 2, we consider the total excess of spanning trees. For a spanning tree T" of a connected
graph, the k-excess of a vertex v is defined to be max{0, degy(v) — k}. The total k-excess is the
amount of the k-excesses of all vertices. This chapter gives a sufficient condition for a graph to
have a spanning tree with bounded total k-excess, which is a generalization of Win’s theorem.

In Chapter 3, we discuss total excess of spanning trees again. Especially, we consider a t-tough
graph for a fixed ¢. By using the result in Chapter 2, for each integer k£ > 3, we obtain a spanning
tree with certain total k-excess upper bound depending on k, ¢t and |V (G)|. We discuss the relation
between these spanning trees. As a consequence, we prove the existence of ‘a universal tree’ in a
sense.

In Chapter 4, we discuss a more general problem obtaining a spanning connected subgraph.
Suppose that we are given a spanning disconnected subgraph F' of G, and an integer-valued function
¢ with ¢(v) > degp(v) for each v € V(G). We give a sufficient condition to be able to obtain a
spanning connected subgraph by adding edges to F' such that the total ‘p-excess’ is bounded by a
prescribed constant.

In Chapter 5, we deal with spanning walks. A k-walk in a graph is a spanning closed walk
visiting each vertex at most k times. We can define the total k-excess of a spanning walk similarly.
By using the result in Chapter 2, for k > 3, we immediately obtain a toughness condition for a
graph to contain a spanning walk with bounded total k-excess. In this chapter, we also discuss on

a spanning walk with bounded total 2-excess.
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Preface

This thesis is written on the subject “ITrees and Factors with Bounded Total
Excess” and is to be submitted for the degree of Doctor of Science at Keio
University. The basis of this thesis is formed by papers written during these
eight years.

The toughness of a graph is an invariant introduced by Chvatal [8]. Let
G be a graph, and let S be a subset of V(G). The number of components
in G — S is denoted by w(G — S). For a real number t, if |S| >t - w(G — 5)
holds for every S C V(G) with w(G — S) > 2, then G is called t-tough. The
maximum number ¢ for which G is t-tough is the toughness of G. If G is a
complete graph, its toughness is defined to be oco. It is easy to see that every
hamiltonian graph is 1-tough. On the other hand, Chvétal conjectured that
there exists a constant ¢y such that every tyo-tough graph is hamiltonian.

A k-walk in a graph is a spanning closed walk using each vertex at most &
times. When k£ = 1, a 1-walk is a hamiltonian cycle, and the above-mentioned
conjecture by Chvéatal states that any graph with sufficiently large toughness
has a 1-walk.

In this thesis, we introduce the notion of Total Fxcess, and show how to
handle the concept. We define several variations of the total excess of graphs
in each chapter accordingly.

After an introductory chapter, the reader will find four chapters. General
terminology and notation in graph theory can be found in Chapter 1. The

other chapters can be read independently from one another.



Chapter 2 discusses total excess of spanning trees. Win proved in 1989

that if a connected graph G satisfies
w(G = 8) < (k—2)|S| + 2, for every subset S of V(G),

then G has a spanning tree with maximum degree at most k.
For a spanning tree T of a connected graph, the k-excess of a vertex
v is defined to be max{0, deg;(v) — k}. The total k-excess te(T, k) is the

summation of the k-excesses of all vertices, namely,

te(T, k) = Y max{0,deg,(v) — k}.
veV(T)
This chapter gives a sufficient condition for a graph to have a spanning tree
with bounded total k-excess. Our main result is as follows. Suppose k& > 2,

b > 0, and G is a connected graph satisfying the following condition:
w(G—S) < (k—2)|S|+2+b, for every subset S of V(G).

Then, G has a spanning tree with total k-excess at most b.

Chapter 3 discusses total excess of spanning trees again. Especially, the
relationship of many spanning trees is treated. Win’s result implies that for
any integer k > 3 every k—iQ—tough graph has a spanning tree with maximum
degree at most k. In this chapter, we investigate ¢-tough graphs including

the cases where ¢ ¢ {1, %, %, ...}, and consider spanning trees in such graphs.
Using the notion of total excess, we prove that if G is ==

k—2+¢

integer £k > 2 and a real number £ with |V(2G)| < ¢ < 1, then G has a

-tough for an

spanning tree 7' such that
te(T, k) < e|V(G)] — 2.

We also investigate the relation between spanning trees in a graph ob-
tained by different pairs of parameters (k,e). As a consequence, we prove

the existence of “a universal tree” in a connected ¢t-tough graph G, that is a



spanning tree 1" such that te(7, k) < ¢|V(G)| — 2 for any integer k£ > 2 and

l1—¢
k—2+4¢"

Chapter 4 discusses total excess of connected factors. For a spanning

real number ¢ with ﬁ < e < 1, which satisfy t >

subgraph H of a graph G, and nonnegative integer-valued function ¢ on
V(G), the total p-excess te(H, ¢) is defined as

te(H,p) = > max{0,degy(v) — o(v)}.
veV (H)
Let I be a disconnected spanning subgraph of a connected graph G. Let h
be a nonnegative integer-valued function on V' (G), and let b be a nonnegative
integer. A spanning (F, h,b)-tree H is a spanning connected subgraph of G
with E(H) D E(F) such that te(H, ¢) < b, where p(v) = degp(v) + h(v) for
v € V(G), and that every edge of E(H)\E(F) is a cutedge of H.

Our result in Chapter 4 can be stated as follows. Assume that each
component of a spanning subgraph F' of G has at least « vertices. We prove
that G has a spanning (F, h, b)-tree if for every nonempty S C V(G) at least
one of the following holds:

(i) w(G = 95) <X ,eqh(v) —2|S|+3+b; or
(i) a>2and w(G —S) <X ,eqh(v) —|S|+3+b; or
(ill) w(G —S) <3 Tuesh(v) — B+ 2+ 4.

This result is a total-excess generalization of the result by Ellingham, Nam
and Voss [9].

Chapter 5 discusses total excess of spanning walks. When k& > 3, Jackson
and Wormald used a result of Win to show that any graph with sufficiently
large toughness has a k-walk. We extend k-walks by introducing the notion
of total k-excess. We define the total k-excess of a spanning closed walk W
as

> max{visitw (v) — k, 0},
veV(G)



where visity (v) is the number of times W visits v. Usually, a spanning closed
walk with total k-excess at most b is written for short as a (k,b)-walk.

By using the result of Chapter 2, it is easy to show the following statement
on the existence of a (k,b)-walk. Suppose k > 2, b > 0, and G is a connected
graph satisfying the following condition.

For every subset S of V(G), w(G —S) < (k—2)|S|+b+ 2.

Then, G has a spanning walk with total k-excess at most b.

However, when k& = 2 this does not give a sufficient condition on tough-
ness. Ellingham and Zha [10] proved that all 4-tough graphs have a 2-walk.
This chapter gives a sufficient condition for a graph to have a (2,b)-walk
based on a result of a 2-walk proved by Ellingham and Zha. Our main result
is as follows.

Let b be an integer with b > 0. Suppose that G is a graph, where

min{@, W} if b is odd

min{ 5L, SES0EI00 ¢ 1 s even

w(G—S)<{

|
2 4

for every subset S C V(G) with w(G — S) > 2. Then G has a (2, b)-walk.
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Chapter 1

Introduction

1.1 Terminology, Notation and Preliminary

A graph G = (V, E) consists of a finite nonempty set V' whose elements are
called vertices and a set E of 2-element subsets of V' whose elements are
called edges. We denote the vertex set and the edge set of G by V(G) and
E(G), respectively. Let (‘2/) be the set of all 2-element subsets of V', then

E(G) C (‘2/) We denote by |X| the number of elements of a finite set X,
called the cardinality of X. The order of a graph is the number of vertices in
the graph, and is written by |G].

The edge e = {u, v} is said to join the vertices u and v. If e = {u,v} is
an edge of G, u and v are called adjacent, while u and e are incident, as are
v and e. It is convenient to henceforce denote an edge by wv or vu rather
than by {u,v}. Sometimes, we call u and v endvertices of e.

A loop is an edge whose endvertices are equal. Multiple edges are the
edges which have same pair of endvertices. We call a graph which has no
loops or multiple edges a simple graph, otherwise we call a multigraph. Unless
otherwise noted, we consider only simple graphs in this thesis.

A graph is complete if every two of its vertices are adjacent. We denote

a complete graph of order n by K,. A graph is bipartite if its vertex set
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can be partitioned into subsets X and Y such that each edge joins a vertex
of X and a vertex of Y. We denote a bipartite graph G with partition
(X,Y)by G=(XUY,FE). A graph G = (X UY, E) is complete bipartite if
E(G)={uv:ue X,veY}. A complete bipartite graph G = (X UY, E) in
which |X| =m and |Y| = n is denoted by K, .

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G).
Particularly if V(H) = V(G) then H is called a spanning subgraph of G. A
spanning subgraph of G is sometimes called a factor of G. For X C V(G), a
graph G[X] is an induced subgraph (the subgraph induced by X) if V(G[X]) =
X and E(G[X]) = {w € E(G) : u,v € X}.

If X € V(G), we denote by G — X the subgraph induced by V(G) \ X.
If X () \ E(G), we denote G’ = (V, EUX) by G + X. If X C E(G), we
denote G" = (V, E\ X) by G — X. For v € V(G) and e € E(G), we denote
G —{v}, G—{e} and G+ {e} simply by G — v, G —e and G + e respectively.
Furthermore, if H is a subgraph of G, the subgraph G — V(H) is denoted
simply by G — H.

When X C V(G) and X # 0, if G[X] has no edges, then X is called an
independent set. We denote the cardinality of a maximum independent set
of vertices in G by a(G).

The neighborhood N¢(x) of a vertex x in G is the set of all vertices adjacent
to x in G. The degree of a vertex x, denoted by deg.(z), is the cardinality
of the neighborhood of . The minimum degree of G is the minimum value
of degrees among the vertices of G and is denoted by §(G). The mazimum
degree of G is defined similarly and is denoted by A(G). A k-factor of G is
a spanning subgraph F' such that for any vertex v € V(G), degp(v) = k.

A sequence of vertices W = zox; ... x; is called a walk (joining xy and x;)
of Gif z; € V(G) for 0 < i <[ and z;x;11 € E(G) for 0 < i <[ —1. Let
W = xoxy...2; be awalk in GG. Then [ is called the length of W and denoted
by {(W). A walk is called a path if its vertices are distinct. Let P = yoyi - . . Ym
be a path in G, then P is called (yo,ym)-path. A walk W = zozy...2; is

called a circuit if [ > 3, the endvertices, namely, xg and x; are the same, and
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ToX1,T1Ta, ..., x;_1x; are distinct. A circuit C = xgxy... 2170 is called a
cycle if xg, xq,...,x;_1 are distinct.

A graph G is connected if any two vertices of G are joined by a path.
A maximal connected subgraph is called a component of G. We denote the
number of components of G by w(G). A subset S C V(G) is a cutset in G if
G is connected and G — S is not connected. The cardinality of a minimum
cutset in G is called the connectivity of G, denoted by k(G). Exceptionally,
if G = K, we define k(G) = n — 1. A graph G is called k-connected if
k < k(G).

A circuit containing all edges of a graph is called an eulerian circuit in the
graph. We say that a graph G is eulerian if G has an eulerian circuit. A cycle
containing all vertices of a graph is called a hamiltonian cycle in the graph.
A path containing all vertices of a graph is also called a hamiltonian path
in the graph. We say that a graph G is hamiltonian if G has a hamiltonian

cycle.

1.2 Toughness and Spanning Trees

The toughness of a graph is an invariant introduced by Chvétal [8]. Let G
be a graph, and let S be a subset of V(G). The number of components in
G — S is denoted by w(G — S). For a real number ¢, if |S| >t w(G — 9)
holds for every S C V(G) with w(G — S) > 2, then G is called t-tough. The
maximum number ¢ for which G is t-tough is the toughness of G which is
denoted by t(G). If G is a complete graph, its toughness is defined to be oo.

The notion of toughness was introduced in the study of hamiltonian cycle.

It is clear that 1-tough is a necessary condition for a graph to be hamiltonian.
Proposition 1 Every hamiltonian graph G is 1-tough.

Proof. Take a hamiltonian cycle C' of G. If we remove one vertex from C,

then there remains a path. In general, if we remove k vertices from C', then
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there remain at most & components. Therefore, w(G — S) < w(C —5) < |9|
for every nonempty subset S C V(G). From the definition of toughness, we
conclude that G is 1-tough. O

Conversely, Chvatal conjectured as follows.

Conjecture 1 (Chvatal, 1973 [8]) There exists a constant t, such that

every to-tough graph is hamiltonian.

Theorem 2 (Enomoto, Jackson, Katerinis and Saito, 1985 [11]) Let
k be a positive integer. If G is a k-tough graph with k|V(G)| even, then G
has a k-factor. Moreover, for any e > 0, there exists a (k — €)-tough graph
G with k|V(G)| even which has no k-factor.

This implies that for any € > 0, there exists a (2 — £)-tough graph which
has no 2-factor, and hence no hamiltonian cycle. So, it had been believed
that every 2-tough graph would be hamiltonian. The following conjecture
concerning K s-free graphs is a special case of 2-tough hamiltonian conjec-
ture, because every 4-connected K s-free graph is 2-tough, where a K s3-free

graph is a graph which does not contain K 3 as an induced subgraph.

Conjecture 2 (Matthews and Sumner, 1984 [16]) FEvery 4-connected and

K 3-free graph is hamiltonian.

Although Conjecture 2 still remains open, it has been proved that 2-tough
is not a sufficient condition for a graph to be hamiltonian. Bauer, Broersma

and Veldman [2] showed that there exists a (2 — €)-tough non-hamiltonian

graph.

Theorem 3 (Bauer, Broersma and Veldman, 2000 [2]) For everye >

9 _

1 — €)-tough graph without hamiltonian paths.

0 there exists a (
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Thus, if Conjecture 1 is true, the value ¢ty must be at least %

There are only a few structural results on graphs by only assuming certain
toughness condition. On the other side, in hamiltonian graph theory, it is
known that assuming certain condition on the toughness, sufficient conditions
of various theorems about hamiltonicity can be weakened. Let o (G) be the
minimum degree sum of k vertices taken over all independent set of G. This
“degree sum condition” is one of the classic conditions of hamiltonian graph
theory.

Theorem 4 (Ore, 1960 [18]) Let G be a graph on n vertices with n > 3.
If 05(G) > n, then G is hamiltonian.

The 05(G) condition has been weakened a little by assuming 1-tough,
although we have to assume that |V(G)| is large.

Theorem 5 (Jung, 1987 [14]) Let G be a I-tough graph on n > 11 ver-
tices with 09(G) > n — 4. Then G is hamiltonian.

Theorem 6 (Falbender, 1992 [12]) Let G be a 1-tough graph on n > 13

vertices with o3(G) > 212, Then G is hamiltonian.

Note that, the 02(G) condition and o3(G) condition are the best possible
in each theorem.

Theorem 7 (Bauer, Chen and Lasser, 1991 [3]) Let G be a t-tough graph
on n > 30 vertices with t > 1. If 09(G) > n — 7, then G is hamiltonian.

About minimum degree condition together with the independence num-

ber, the following sharp result is known.

Theorem 8 (Nash-Williams, 1971 [17]) Let G be a 2-connected graph

on n vertices with 6(G) > max{™=2, a(G)}. Then G is hamiltonian.
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The condition can be also weakened a little for 1-tough graphs.

Theorem 9 (Bigalke and Jung, 1979 [4]) Let G be a I-tough graph on
n > 3 vertices with §(G) > max{3,a(G) — 1}. Then G is hamiltonian.

Bondy generalized Theorem 8 in 1980 as follows.

Theorem 10 (Bondy, 1980 [5]) Let G be a 2-connected graph on n ver-
tices with o3(G) > max{n + 2,3a(G)}. Then G is hamiltonian.

In the condition using o3(G) and connectivity, a similar phenomenon is

known.

Theorem 11 (Bauer, Broersma, Li and Veldman, 1989 [1]) Let G be
a 2-connected graph on n vertices with o3(G) > n+ k(G). Then G is hamil-

tonian.

Theorem 12 (Wei, 1993 [19]) Let G be a 1-tough graph onn > 3 vertices
with 03(G) > n+ k(G) — 2. Then G is hamiltonian.

A k-walk in a graph is a spanning closed walk of GG that visits every vertex
of G at most k times. A k-tree is a spanning tree whose maximum degree is
at most k. Needless to say, a 1-walk is a hamiltonian cycle, and a 2-tree is a
hamiltonian path. Jackson and Wormald [13] showed that the existence of a
k-walk implies the existence of a (k + 1)-tree. And it is easy to see that any
graph with a k-tree has a k-walk.

Win [20] gave a sufficient condition for a graph G to contain a k-tree, in
terms of |S| and w(G — S) with S C V(G).

Theorem 13 (Win, 1989 [20]) Let k be an integer with k > 2. If G is a

connected graph satisfying the following condition:

For every subset S of V(G), w(G — S) < (k —2)|S| + 2.
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Then, G has a k-tree.

Let h be a positive integer-valued function on V(G). An h-tree T is a
spanning tree with deg,(v) < h(v) for every v € V(G). If h(v) = k for every
v € V(G), an h-tree is nothing but a k-tree.

Theorem 14 (Ellingham and Zha, 2000 [10]) Let G be a connected graph.
If for every S C V(G),

w(G—8) < Y (h(v) —2) +2,

vES

then, G has an h-tree.

Theorem 13 implies a sufficient condition of toughness for the existence

of a k-tree, and hence a k-walk.

Corollary 15 For k > 3, every k—ig-tough graph has a k-tree, and hence has
a k-walk.

However, 1-walk and 2-walk are not so easily obtained by toughness con-
dition. The 1-walk case, that is hamiltonian cycle case, corresponds to Con-
jecture 1. So it is a difficult problem to find a toughness condition implying

the existence of a 1-walk. The 2-walk case was solved by Ellingham and Zha.

Theorem 16 (Ellingham and Zha, 2000 [10]) Every 4-tough graph has

a 2-walk.

For the lower bound of toughness for the existence of a k-walk, Ellingham
and Zha generalized the example of a (§ — €)-tough non-hamiltonian graph

in Theorem 3, and proved the following theorem.

Theorem 17 (Ellingham and Zha, 2000 [10]) For every ¢ > 0 and ev-

ery k > 1, there evists a (5ontt

k1) e)-tough graph with no k-walk.
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1.3 Total Excess

In this thesis, we introduce the notion of Total Fxcess, and show how to
handle the concept. We define several variations of the total excess of graphs
in each chapter accordingly.

In Chapter 2, for a spanning subgraph H of a connected graph G, we
define the k-excess of a vertex v as max{0,degy(v) —k}. We define the total
k-excess te(H, k) as follows,

te(H,k) = > max{0,degy(v) — k}.
veV (H)
This chapter gives a sufficient condition for a graph to have a spanning
subgraph with bounded total k-excess. Our main result is an extension of
Theorem 13. Suppose k > 2, b > 0, and G is a connected graph satisfying

the following condition:
w(G —8) < (k—2)|S|+2+ b, for every subset S of V(G).

Then, G has a spanning tree with total k-excess at most b.

In Chapter 3, we consider the graphs with toughness of intermediate
11

)99 39"

such graphs. We again consider the k-excess of spanning trees as Chapter 2.

fractions, other than 1 ., and discuss the spanning trees contained in

However, we estimate the k-excess by a function depending on the order of

G. Using the notion of total excess, we prove that if G is k:is—tough for
an integer £ > 2 and a real number £ with |V(QG)| < e < 1, then G has a

spanning tree 7' such that
te(T, k) < e|V(G)| — 2.

We also investigate the relation between spanning trees in a graph ob-
tained by different pairs of parameters (k,e). As a consequence, we prove
the existence of “a universal tree” in a connected ¢-tough graph G.

In Chapter 4, we consider total excess from a given factor. Let ¢ be a

nonnegative integer-valued function on V(G). For a spanning subgraph H
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of G, we define the p-excess of a vertex v as max{0,degy(v) — p(v)}. We
define the total p-excess te(H, ) to be the summation of the ¢-excesses of

all vertices, namely,

te(H,p) = > max{0,degy(v) — p(v)}.
veV (H)
Let F' be a disconnected spanning subgraph of a connected graph G. Let h
be a nonnegative integer-valued function on V(G), and b be a nonnegative
integer. A spanning (F, h,b)-tree H is a spanning connected subgraph of G
with E(H) D E(F') such that te(H, ¢) < b, where ¢(v) = degp(v) + h(v) for
v € V(G), and that every edge of E(H)\E(F) is a cutedge of H.

Our result is a total-excess generalization of the result by Ellingham, Nam
and Voss [9].

In Chapter 5, we introduce total k-excess of spanning closed walks. We
may generalize the idea of a hamiltonian cycle to that of a k-walk; a closed
walk that visits every vertex of a graph at most k£ times. We extend k-walks
by introducing the notion of total k-excess. We define the total k-excess of a

spanning closed walk W as

> max{visitw (v) — k,0},
veV (@)
where visity (v) is the number of times W visits v. Usually, a spanning closed
walk with total k-excess at most b is written for short as a (k, b)-walk.
When k > 3, it is easy to show the existence of a (k, b)-walk by the result
of Chapter 2.
Suppose k > 2, b > 0, and G is a connected graph satisfying the following

condition.
For every subset S of V(G), w(G — S) < (k —2)|S| + b+ 2.

Then, G has a spanning walk with total k-excess at most b.
However, when k& = 2 this does not give a sufficient condition on tough-

ness. Ellingham and Zha [10] proved that all 4-tough graphs have a 2-walk.
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This chapter gives a sufficient condition for a graph to have a (2,b)-walk

based on a result of a 2-walk proved by Ellingham and Zha.



Chapter 2

Spanning Trees with Total

Excess

2.1 Total Excess of Trees

In this chapter, we consider what kind of spanning trees we can get if we
replace the constant term in the inequality of the condition in Win’s theorem
(Theorem 13). We give one answer to this problem, based on another proof
of Win’s theorem by Ellingham and Zha [10]. We introduce the following

notion.

Definition 1 For a spanning subgraph H of a connected graph, we define the
k-excess of a vertex v as max{0,degy(v) — k}. We define the total k-excess
te(H, k) as follows.

te(H,k) = > max{0,degy(v) — k}

veV (H)

The main result in this chapter is the following.

Theorem 18 Suppose k > 2, b > 0, and G is a connected graph satisfying

the following condition.

19
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For every subset S of V(GQ), w(G —8) < (k—2)[S|+b+2.

Then, G has a spanning tree with total k-excess at most b.

2.2 Proof of Theorem 18

In the proof, we need a notion of bridge.

Definition 2 For S C V(G), an S-bridge of G is

e a subgraph consisting of an edge both of whose ends are contained in S,

or

e a subgraph consisting of a component C' of G—S together with the edges
joining S and C.

A k-forest of G is a spanning subgraph of G which is a forest with maxi-
mum degree at most k. Take a k-forest F' of G with the smallest number of
components. Let r be the number of components in F.

Let F be the set of k-forests in GG such that the vertex sets of the com-
ponents coincide with the ones of F. For S C V(G), let F(S) be the set of
k-forests F' € F such that the vertex sets of the S-bridges of F’ coincide
with those of the S-bridges of F'. Let Ay be the set of vertices which have
degree k in all k-forests in F. Let A; be the set of vertices which have degree
k in all k-forests in F(Ap). In every forest in F(A), the degree of vertices
in Ay is k, therefore Ag C Aj;.

Claim 1. Each edge of G which connects different components of F' — A,

has an end vertex in A;.

Proof of Claim 1. Let uv € E(G) be an edge which connects different
components of F' — Ay. Then, for every F' € F(Ap), u and v are contained

in different components of F' — Ag. Suppose u ¢ A; and v ¢ A;. Then, there
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exist Fy, F, € F(Ap) satisfying degy, (u) < k and degy, (v) < k. By replacing
the Ag-bridge in F; that contains v with the Ag-bridge in F5, that contains
v, we get another k-forest I3 € F(Ap) such that the degrees of u and v are
less than £.

If there does not exist a (u,v)-path in F3, F3 + uv is a k-forest of G with
less number of components than F'. This contradicts the minimality of F'.

If there exists a (u,v)-path F3(u,v) in Fj, the path contains a vertex w
of Ag. By adding uv, and removing one of the edges in F3(u, v) incident with
w, we obtain a k-forest in F such that the degree of w is less than k. This
contradicts the fact that w € Ay. Therefore, we establish u € A; or v € Aj;.
Thus the proof of Claim 1 is completed.

To continue this inductively, we define A;;; as the set of vertices which
have degree k in all forests in F(A;). Then we can show the following claim

by the same argument as in Claim 1.

Claim 2. Each edge connecting different components of F' — A; has an end

vertex in Aj;.

Proof of Claim 2. Let wv € E(G) be an edge which connects different
components of F — A;. Then, for every F’' € F(A,), u and v are contained
in different components of F' — A;. Suppose u ¢ Ajyq and v ¢ A;4. Then,
there exist Fy, F, € F(A;) satisfying degp, (u) < k and degp,(v) < k. By
replacing the Aj-bridge in F; that contains v with the A;-bridge in I, that
contains v, we get another k-forest F3 € F(A;) such that the degrees of u
and v are less than k.

There exists a (u,v)-path F3(u,v) in Fj, and the path contains a vertex
wof Aj. If we A;_, then uv is an edge connecting different components of
F — A;_;. By the induction hypothesis of Claim 2 (or by Claim 1), u € A;
or v € A;. This contradicts the fact that v and v are in F' — A;. Thus,
w € A;\ A;_;. By adding the edge uv, and removing one of the edges in
F3(u,v) incident with w, we obtain a k-forest Fj € F(A,_1) such that the
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degree of w is less than k. This contradicts the fact w € A;. Therefore, we
establish u € Aj, or v e Aj4;.

Any vertex in A; keeps degree k in F(A;), therefore A; C A,;. There-
fore, we get the following progression, where Vi (F') is the set of all vertices

whose degree is k in F'.
AyC A CAC---CAC--- CV(F)

Because Vi (F') is a finite set, we get A,, = A,,+1 at some integer m. Then, by
Claim 2, A,, has the property that any edge connecting different components
of F'— A,, has an end vertex in A,,. In other words, there is no edge of G
connecting different components of F' — A,,. This implies that for S = A,,,
we have w(G — 5) = w(F — 9).

Let r = w(F'), and let s be the number of components in F which does
not contain a vertex of S. If r = 1, then F'is a desired k-tree. Assume r > 2.
Then, since G is connected, we have S # (). Thus, we have s +1 < r.

We shall construct a spanning tree of G by adding edges to F'. At first,
we add edges connecting a component C' containing no vertices of S with
another component C’. Note that C’ must contain a vertex of S, because
w(G —8) =w(F —S). At this point, the total k-excess increases by at most
1 for adding one edge. We repeat this procedure until there is no component
containing no vertices of S. Then the total k-excess increases by at most
s. Next, we add edges between the components until only one component
remains. The total k-excess increases by at most 2 for adding one edge. So,
this operation increases the total k-excess by at most 2(r —s—1). Therefore,
the total k-excess of the resulting spanning tree 7" is at most 2(r — 1) — s.

On the other hand, we can evaluate w(F' — S) as follows. At first, the
number of components in F' is r. For each component of F' containing a
vertex of S, when we remove the first vertex in .S, the number of components
increases k — 1, since the degree of this vertex is k. Then we remove vertices

of S according to the distance from the first vertex. If the removing vertex is
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adjacent to the vertex already removed, then the number of components in-
creases by k—2. Otherwise, the removal increases the number of components

by k — 1. Taking sum of them, we have
wWF =8)>r+(k=2)|S|+r—s=(k—2)|S|+2r—s.
By the condition of this theorem w(G —S) < (k—2)|S|+ b+ 2, we obtain
(k—=2)|S|+2r—s<w(F—95)=w(G-5) < (k—-2)|S|+b+ 2.

So we have 2r—s < b+2. Thus the total k-excess of T' is at most 2(r—1)—s <
b. O

2.3 Remarks

When the constant term b in the condition of Theorem 18 is negative, what
kind of spanning trees does the graph contain? In [9], Ellingham, Nam
and Voss proved the following result, which is also a generalization of Win’s

theorem.

Theorem 19 ([9]) Let G be a connected graph, and let h be a positive
integer-valued function on V(G). Then, G has a spanning tree T with deg(v) <
h(v) for every v € V(QG), if for every S C V(QG)

w(G=8) < Y (h(v) —2) +2.

veS
For a given subset X C V(G) with | X| = b, define

h(v):{k_l’ veX

k, veV(G)\ X.

Suppose that G satisfies the following condition; for every nonempty subset
S CV(G),
w(G—=298)<(k—-2)|S|+2-0.
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Then,

w(G—=95) < (k—2)|5)+2—|X]|
< (B=2)[5S]+2—-|SNnX]|
= > (h(v)—2)+2.

veS

Thus, by Theorem 19, G has a k-tree in which the vertices in X have
degree strictly less than k.
Similarly, for a subset X C V(G) with |X| = b, we can consider the

following function;

1
h(v>:{k+ . veX

k, veV(G)\ X.
By Theorem 19, if for every subset S C V(G),
w(G@-=95)<(k=2)|S|+2+|SNX]|,

then G has a spanning (k+1)-tree T such that deg,(z) < k for z € V(G)\ X.
In particular, G has a spanning tree 7" with te(7,k) < b. However, this
condition is slightly stronger than the one in Theorem 18. Thus, Theorem

19 does not imply Theorem 18.



Chapter 3

Excess Depending on the Order
of the Graph

3.1 Many Spanning Trees of Graphs

1
k—2
has a k-tree for any integer £ > 3. In this chapter, we consider the graphs

11
?2 2737 °

As a corollary to Theorem 13, we can easily see that every -tough graph

with toughness of intermediate fractions, other than 1 ., and discuss
spanning trees contained in such graphs.
Recall that for a spanning subgraph H of G and an integer k, the total

k-excess of H is

te(H,k) = > max{0,degy(v) — k}.

veV (H)

We proved the following theorem in Chapter 2, which gives a sufficient

condition for a graph to have a spanning tree with bounded total excess.

Theorem 20 (Chapter 2, Theorem 18) Suppose that k > 2, b > 0, and

G is a connected graph satisfying the following condition.

For any subset S of V(G), w(G —S) < (k—2)|S|+b+ 2.

25
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Then, G has a spanning tree T with te(T, k) < b.
Using this theorem, we can easily prove the following corollary.

Corollary 21 Let G be a connected graph, k > 2 be an integer and € be a

<e<1l IfG is k:fra-tough, then there exists a

. 2
real number with %l

spanning tree T such that
te(T, k) < e|V(G)] — 2.

Proof of Corollary 21. Let S be a nonempty subset of V(G). If w(G—S) >

2, then since G is kigig—tough, we obtain
1—¢
S|>—w(lG-S

or

(k—=24¢)[S] > (1 —e)w(G —5).

Since each component of G — S has at least one vertex, we have |S|+ w(G —
S) < |V(G)|. Thus, by the above inequality,

WG —8) < (k—2)8] +e(S] +w(G - S5))
< (k=2)|S|+ (e|V(G)| — 2) +2.

The last inequality holds even when w(G — S) = 1. Thus, it follows from
Theorem 20 that there exists a spanning tree T' with te(T, k) < |V (G)| — 2.
O

For a given graph G, there are many pairs (k,e) which satisfy the as-
sumption of Corollary 21. Therefore, we obtain a lot of spanning trees from
such pairs by applying Corollary 21. Needless to say, they are not necessarily
the same tree. But sometimes, one spanning tree may satisfy the conclusion
of Corollary 21 for many distinct pairs (k, ). In the next section, we discuss

the relation of the conclusions of Corollary 21 for distinct pairs (k, €).
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3.2 A Relation Between Spanning Trees

We obtained a lot of spanning trees by applying Corollary 21. In this section,
we compare these spanning trees.

Formally, for an integer k and for positive real numbers £, and €5, we set

1-— &1 _ 1-— €9 (3 1)
k—24¢e (k+1)—2+¢e ’
and suppose that G is a connected graph satisfying (é; | 5 > kigila - =

1—eo

for any nonempty subset S of V(G). And suppose £, > ﬁ

m
and 9 > ‘V(G” Note that by (3.1), we get
]{361 -1
&9 = L—1 "

By applying Corollary 21 to the pairs (k,e1) and (k + 1,&3), we obtain two

spanning trees 7} and 75 with
te(T1, k) < e1|V(G)| — 2

and .
te(Ty, k1) < &lV(G) 2= L V(G)] - 2,

respectively. We shall show that T, can play the same role as 77.
Let V,(T) = {v € V(G)|degp,(v) = p}. We shall estimate te(7%, k).
Since te(Ty, k+ 1) < 52|V(G)| — 2, we have
key —
k—

\V( =22 (1= DV (T2)]- (3.2)
I>1
On the other hand, since |E(T3)| = |V(G)|—1 and 2|E(Ty)| = 3,51 p|V,(12)],

we have

2AV(G)| =2 =3 pIVo(T)],

p>1

and hence

V(@) =2=>(p—DIVo(T)| = > _(k+1—1)[Viu(T2)]. (3.3)

p>1 1>1
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By computing (3.2) x £ + (3.3) x 1, we deduce
€1|V(G)| -2 Z Zl|Vk+l(TQ)| = te(TQ, k‘)
>1
Thus, 75 has the same bound on the total k-excess as T7.
Applying the above argument repeatedly, we obtain the following theo-
rem, in which a spanning tree 7" of G is said to be good at a pair (k,e), if T
satisfies the conclusion of Corollary 21, namely te(7, k) < ¢|V(G)| — 2.

Theorem 22 Let |V(G)| <eg <1 andky > 2. If a spanning treec T of G 1is
good at (ko,eo), then T is also good at all pairs (k,e) such that 2 < k < ky

1—eg

and k 2+8 = k‘of2+60'

3.3 A Universal Tree

In this section, we shall prove the existence of a universal tree, that is a
spanning tree which is good at any pair (k,e) satisfying the assumption of
Corollary 21.

Theorem 23 Let G be a connected graph and let t = t(G). Then there is a
spanning tree T ofG such that te(T, k) < e|V(G)| — 2 for any integer k > 2
< e <1, which satisfy t >

and real number

(G)| 2+5
Proof of Theorem 23. Consider all pairs (k,¢) satisfying - - = =t
Among them, let £ > 2 be the maximum integer such that the corresponding
: 2 : 1-t(k—2)
¢ satisfies € > 4@k equivalently —-—= > ‘V( -

Claim 1. G has a (k + 1)-tree.

Proof of Claim 1. Let €' be the real number corresponding to k+1, namely

ﬁflﬂ, t. By the definition of k, we have &’ < %l ( ik Let g =

that €9 > &’. Then,

2
@] 5°

o 1—¢ > 1—60
Skt =24 " (k+1)—2+¢
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and hence by Corollary 21, G has a spanning tree T" such that te(7,k+1) <
eo|lV(G)| —2=0. Thus, T is a (k + 1)-tree.

Let T be a (k + 1)-tree of G such that |V, (T)| is as small as possible.
The most important property of T is the following claim, which is on the

total k-excess of T'.

Claim 2. te(T,k) < ¢|V(G)| — 2, where ¢ is the real number satisfying

1
k— 2+s_t

We first finish the proof of Theorem 23 by using Claim 2. We shall prove
that T is a desired spanning tree of G, that is T is good at any pair (k;’ "

such that £ is an integer at least 2 and )I <g<1 satlsfylng t> W
Suppose that 2 < k' < k. Let ¢’ be a real number satisfying IV(G)I <d<1
and t > k'lf;zig'v namely max{= tlit 2) Jis G)|} < & < 1. Since the value

¢'|V(G)| — 2 is monotone increasing of €', it suffices to prove that 7" is good
at (k',¢) for &’ = 17t1(_]i;2), namely, m =t. If ¥ =k, then the assertion
is equivalent to Claim 2. Moreover, by using Theorem 22 we can verify that
T is good at any pair (K,&') with 2 < ¥ <k and 157 = 1.

Suppose that &' > k+ 1. Since T'is a (k + 1)—tree, we have te(T, k") = 0,
and hence T is good at (', i G)|)
any pair (k',¢’) with &' > k + 1 and e

Thus T is good at any pair (K, ) satlsfymg kK > 2

We can easily verify that T is good at
< <1
, IV( 0 <& <1and

In the rest of this chapter, we shall prove Claim 2. In order to prove Claim
2, we use the notion of a bridge. Recall that for S C V(G), an S-bridge of G
is a subgraph consisting of a component C' of G — S together with the edges

joining S and C, or an edge both of whose ends are contained in S.

Proof of Claim 2. For S C V(G), let T(S) denote the set of (k+ 1)-trees
T" of G such that Vi41(T") = Vi11(T) and the vertex sets of the S-bridges of
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T’ coincide with those of the S-bridges of T'. Let Ay = Vi11(T). Note that
te(T, k) = |Ap| since T is a (k + 1)-tree. If Ay = 0, then te(7T, k) = 0, which
means T is a desired tree. Thus, we may assume Ag # ().

Let A; = AgU{x € V(G)|degp(z) =k for all " € T (Ap)}.

Subclaim 1. Each edge of G which connects different components of T'— Ay

has an end vertex in A;.

Proof of Subclaim 1. Let uv € E(G) be an edge which connects different
components of T'— Ag. Then, for every T" € T (Ap), u and v are contained in
different components of 7" — Ay. Suppose u ¢ A; and v ¢ A;. Then, there
exist 71,75 € T(Ap) satisfying degy, (u) < k and degy, (v) < k. By replacing
the Agp-bridge in T} that contains v with the Ay-bridge in 75 that contains v,
we get another (k + 1)-tree T3 € T (Ap) such that the degrees of u and v are
less than k.

There exists a (u,v)-path T3(u,v) in T3, and the path contains a vertex
w of Ayp. By adding the edge wv, and removing one of the edges in T5(u,v)
incident with w, we obtain a (k + 1)-tree T35 such that Vi1 (75) C Vit (T) \
{w} since the degree of w is less than k+ 1. This contradicts the minimality
of |Viy1(T)|. Therefore, we establish u € A; or v € A;.

To continue this inductively, we define A; 1 = A;U{zx € V(G)| degp (x) =
k for all 7" € T(A;)}. Then we can show the following subclaim by the same

argument as in Subclaim 1.

Subclaim 2. Each edge connecting different components of 7' — A; has an

end vertex in A; ;.

Proof of Subclaim 2. Let uv € E(G) be an edge which connects different
components of T'— A;. Then, for every 7" € T(A4;), v and v are contained
in different components of 7" — A;. Suppose u ¢ Aj;; and v ¢ Aj4q. Then,
there exist 71,7, € T(A;) satisfying degy, (v) < k and degp, (v) < k. By
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replacing the Aj-bridge in 77 that contains v with the A;-bridge in T that
contains v, we get another (k + 1)-tree T3 € T (A;) such that the degrees of
u and v are less than k.

There exists a (u,v)-path T3(u,v) in T3, and the path contains a vertex
w of A;. If w € Aj;_4, then uv is an edge connecting different components
of T'— A;_;. By the induction hypothesis of Subclaim 2 (or by Subclaim 1),
u € Aj or v € A;. This contradicts the fact that v and v are in T' — A;.
Thus, w € A; \ A;_1. By adding the edge uv, and removing one of the edges
in T3(u, v) incident with w, we obtain a (k 4+ 1)-tree T5 € T (A;_1) such that
the degree of w is less than k. This contradicts the fact w € A;. Therefore,

we establish u € Aj 4 orv e Ajyy.

We get the following sequence of vertex sets, where V5, (T") is the set of

vertices whose degree is at least k in 7.
Ay C A CAC---CAC - CVo(T).

Because V5, (T) is a finite set, we get A,, = A,,4+1 at some integer m. Then,
by Subclaim 2, A, has the property that any edge connecting different com-
ponents of T'— A,, has an end vertex in A,,. In other words, there is no
edge of G connecting different components of T — A,,,. This implies that for
S = A, we have w(G — 5) =w(T - S5).
Let B =S\ Ag. Then,

w(G@—=85)=w(T—-15)>2+ (k—1)]A| + (k—2)|B|. (3.4)

In particular, we have w(G — S) > 2 by (3.4). Since w(‘GSlS) > 1= 155,
(1-c)w(G—=15) < (k—2+¢)|5|.

w(G = 29) (k—2)|S|+<(|S| +w(G = 9))

(k= 2)(|Ao] + |B]) +e[V(G)]. (3.5)
By (3.4) and (3.5), we have €|V (G)| — 2 > |Ag| = te(T, k). This completes
the proof of Claim 2. O

<
<
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3.4 An Example of Theorem 23

In this section, we present a theorem which is a special case of Theorem 23.

First, this is a corollary of Theorem 13.

Corollary 24 Let G be a connected graph. If for any nonempty subset S of
V(G),
5] 1
>
wG@—-9) " k-1
holds, then there ezists a (k + 1)-tree T'.

1

. in Corollary 21, we get

On the other hand, when we substitute ¢ for

the following result.

Corollary 25 Let G be a connected graph with |V(G)| > 2k. If for any
nonempty subset S of V(G),

Sl o 1-3 L

wG=9) " k—-2+1 k-1

holds, then there exists a spanning tree T such that
1
te(T) k) < %|V(G)| — 2.

Note that for any (k + 1)-tree T of G, te(T, k) can be bounded as the

following proposition.

Proposition 26 If T is a (k + 1)-tree of G, then te(T, k) < 1|V (G)| — £.

Proof. Recall that V;(G) is the vertex set of G such that its degree is i.
V()] = V(@) + [Va(G)] + - - + [Vi(G)] + [Vieya (G
Counting the number of edges of T', we obtain
20B(T)) = V(D) +2Va(T)] + - - + EVA(T)] + (k + D[V (T))]

= V(@) + Va(T)[ + -+ (k = DIVi(T)| + k[Viea (T
> V(G + EVien (T)].
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Because T is a tree, |E(T)| = |V(T)| — 1.
kVie(T)] < [V(T)] -2

1 2
Vira(T)| < %W(Gﬂ—%-[‘

Thus, the assumptions of Corollary 24 and 25 are same, but their con-
clusions are different. However, we can prove the existence of a (k + 1)-tree
which satisfies the conclusion of Corollary 25.

Theorem 27 Let G be a connected graph with |V (G)| > 2k. If for any

nonempty subset S of V(G),

Bl 1
>
wG=95) " k-1
holds, then there exists a (k + 1)-tree T' such that

te(T, k) < ;|V(G)| —2.

Proof of Theorem 27. By the assumption, the toughness ¢ of GG is at least

5. Note that the pairs (k + 1, ﬁ) and (k, ;) satisfy the condition of

Theorem 23, because

1 1— 2 _
>

V(G
= 2
and .
1 -+

k—1 k—2+1
Thus the Theorem 23, there exists a spanning tree T" such that

te(T,k+1) < V(@) -2,

2
V(G|
and

te(T, k) < 2 V(G)] 2.

That is, T is a (k + 1)-tree such that te(T, k) < £|V(G)| — 2. O



Chapter 4

Connected Factors and Total

Excess

4.1 Total Excess of Connected Factors

Let G be a graph, and let ¢ be a nonnegative integer-valued function on
V(G). For a spanning subgraph H of GG, we define the @-excess of a vertex v
as max{0,degy (v) — p(v)}. We define the total p-excess te(H, p) to be the

summation of the p-excesses of all vertices, namely,

te(H,p) = > max{0,degy(v) — p(v)}.
veV(H)

For S C V(G), we denote by G — S the subgraph obtained from G by
deleting the vertices in S together with their incident edges. We denote by
w(G) the number of components of G. A cutedge of a graph is an edge whose
deletion increases the number of components.

Before stating our results precisely, some further definitions from the
paper [9] are required. Let F' be a factor of G. An F-forest is a subgraph H
of G such that every component of F' is either contained in or vertex-disjoint
from H, and that every edge of E(H)\E(F) is a cutedge of H. A connected

34
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F-forest is called an F-tree. Loosely, an F'-forest consists of some components
of F' joined together in a forest-like way, without creating any new cycles.
Given a nonnegative integer-valued function h on V(G), we define an (F, h)-
forest to be an F-forest H with degy (v) < degp(v) + h(v) for all v € V(G).
A connected (F, h)-forest is called an (F h)-tree.

Ellingham, Nam and Voss [9] proved the following theorem.

Theorem 28 ([9]) Let G be a connected graph, and h be a nonnegative
integer-valued function on V(G). Assume that G has a factor F in which
each component has at least a vertices. Then G has an (F, h)-tree if for every
nonempty S C V(G) at least one of the following holds:

(i) w(G—=29) <X,egh(v) —2|S|+3; or
(i) a>2 and w(G —S) < Xyegh(v) —|S|+3; or
(iil) w(G =) < [3S,esh(v) — Bl +2].

We also consider the total excess in this chapter. Let F' be a factor of G,
h be a nonnegative integer-valued function on V(G), and b be a nonnegative
integer. An (F, h,b)-forest is an F-forest H with te(H, ¢) < b, where ¢(v) =
degp(v)+h(v) for v € V(G). A connected (F, h,b)-forest is called an (F, h, b)-
tree. We give sufficient conditions for a connected graph to contain a spanning
(F, h,b)-tree, corresponding to the conditions in Theorem 28. The following

theorem is our main result.

Theorem 29 Let G be a connected graph, b be a nonnegative integer, and
h be a nonnegative integer-valued function on V(G). Assume that G has a
factor F' in which each component has at least o vertices. Then G has a
spanning (F, h,b)-tree if for every nonempty S C V(G) at least one of the
following holds:

(1) W(G_ S) < Zv65h<v) o 2’5’ +3+b: or
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(i) @ >2 and w(G — S) <X ,esh(v) —|S|+3+0b; or
(i) (G — ) < 3 Syesh(v) — 2[4,

In particular, let F' be a totally disconnected spanning subgraph, namely,
E(F) = 0, of a connected graph G. Then, by Theorem 29 with h being
constant, we get the following theorem.

Theorem 30 (Chapter 2, Theorem 18) Suppose h > 2, b> 0, and G is

a connected graph satisfying the following condition.
For every subset S of V(G), w(G —S) < (h—2)|S|+b+ 2.
Then, G has a spanning tree T" with te(T, h) < b.

Moreover, we derive some corollaries of Theorem 29.

Corollary 31 Let G be an m-edge-connected graph, m > 1, h be a nonneg-

ative integer-valued function on V(G), and

b = 2(: max{deg.(v) — m(h(v) — 2),0}.
veV(G)

If b = max{ [%1 — 2,0}, then G has a spanning tree T with te(T, h) < b.

This is a generalization of Theorem 32.

Theorem 32 ([9],Theorem 20) If G is an m-edge-connected graph, m >
1, then G has a spanning tree T such that

@&@0gz+{*ﬁjww

for every vertex v € V(G).

Corollary 33 Let G be an m-edge-connected graph, m > 1, b be a positive
integer. If Y ev(q)(degg(v) —m) < m(b+2), then G has a spanning tree T
with te(T, 3) <b.
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This is a generalization of Corollary 34.

Corollary 34 ([9],Corollary 22) Every m-edge-connected m-reqular graph

has a 3-tree.

In section 4.2, we prove Theorem 29. In section 4.3, we prove these

corollaries of Theorem 29.

4.2 Proof of Theorem 29

In this section we prove Theorem 29. Following [9], we will give a few pre-
liminary definitions and lemmas.

Let G be a graph and let v be a vertex of G. Let Q(G,v) denote the
component of G containing a vertex v. Given a set of edges A, V(A) will
denote the set of ends of the edges in A. Given u,v € V(G), we say that
an edge e (necessarily a cut edge of G) separates u and v in G if Q(G,u) =
Q(G,v) but QG —e,u) # QG —e,v).

In the subsequent argument, we fix a factor F' of a connected graph G.
We define M to be the set of edges in G joining different components of F'.
Let H be an F-forest. Note that E(H) \ E(F) = E(H) N M. Given two
vertices u and v in the same component of H, there is a unique set of edges
of E(H) N M each of which separates u and v in H, which we denote by
Py (u,v). (Note that if Q(H,u) = Q(H,v) then Py(u,v) = () by definition.)

Given a graph H, an induced subgraph J of H, and a graph K with
V(J) = V(K), the graph H — E(J) + E(K) will be called H with J replaced
by K and denoted by H[J — K]|. The following lemma from [9] is easy to

verify.

Lemma 35 If H is an F-forest and J,K are F-trees with J C H and
V(J) = V(K), then H[J — K] is also an F-forest consisting of the same

vertex sets of components as H.
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The following lemma corresponds to Theorem 1 in [9], but it gives a little

more information. The proof is essentially same as the one in [9].

Lemma 36 Let G be a connected graph, F' be a factor of G, and h be a non-
negative integer-valued function on V(G). If G does not contain an (F,h)-

tree, then there exists a disconnected (F,h)-forest H and a nonempty subset
S C V(G) such that

(a) degy(v) = degp(v) + h(v) for every v € S;

(b) for each uw € V(G) \ S, there exists an (F,h)-tree L, with V(L,) =
V(QUH,u)) such that deg; (u) < degp(u) + h(u); and

(c) if Rg is the set of edges in G with at least one end in S and with ends
in different components of F', and Ry = Rg N E(H), then every edge
of G joining two components of H — Ry belongs to Re.

Proof of Lemma 36. Let H be an (F, h)-forest of G with the least number
of components. By the assumption, H is disconnected.

Now, we consider a set of vertices T" C V(G), and subgraphs J, and K,
for each v € T satisfying the following properties (1), (2) and (3).

(1) J, is an F-tree with J, C Q(H * T,v) (and hence, J, is an induced
subgraph of H).

(2) K, is an F-tree of G such that V(K,) =V (J,).

(3) H = H[J, — K,] is an (F, h)-forest such that degy, (v) < degp(v) +
h(v).

Let Ty = {v € V(G)| degy (v) < degp(v) + h(v)}. Then,

T=T, J,=K,=QHxT,v)forveT
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obviously satisfy the above properties. We choose a maximal subset 7" C
V(G) with Ty C T such that we can take J, and K, for each v € T satisfying
the properties (1), (2) and (3).

Claim 1. There exists no edge wx € F(G) with w,x € T such that w and

x belong to different components of H.

Proof. Suppose that there exists an edge wx with w, x € T and Q(H, w) #
Q(H,x). Let H = (H[J, = Kyl|[J. = K.|) +wz. Then, H' is an (F,h)-
forest H' with one fewer components by properties (1), (2), (3) and Lemma
1. This contradicts the choice of H. Thus, Claim 1 holds.

Claim 2. There exists no edge wzr € E(G) with w,z € T such that w and

x belong to different components of H x T

Proof. Suppose that there exists an edge wz € F(G) with w,x € T and
QH*T,w) # Q(Hx*T,z). By Claim 1, w and x are in the same component
in H. Let AT = V(Pg(w,z))\ T and 7" = T U AT'. Since w and z are in
different components of H * T', there exists an edge of Py (w, ) which is not
in H «T. This means that at least one end of this edge does not belong to
T. Hence, AT # (). Remark that for each t € T, F-trees J; and K satisfy
(1), (2) and (3) for 7", because J; C Q(H = T,t) C Q(H = T",t). This means
that we can employ the same F-trees J; and K; also for T".

For each v € AT, we define J, = Q(H xT",v) and K, = (J,[J», —
K,)[Je = K;]) — uwv + wzx, where uv € Py (w,x) for some u (possibly v = w
or u = x). Then, J, is an F-tree because it is a component of the F-forest
H «T'. We must show that K, is an F-tree and that properties (1), (2)
and (3) are satisfied. Since uv € Pg(w,z), it follows that uv separates
w and x in J,. Let A, and A, be the components of J, — uv such that
w € V(A,) and x € V(A,). Note that A, and A, are also F-trees. Since
v ¢ T, uv is not an edge of H x T, and hence is not an edge of J, or
Jy. Thus, we have J, C A, and J, C A,. Now, it is easy to see that
K, = Ay[Jw = K| U A, [J, — K] +wuv and it is an F-tree, as required.
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Properties (1) and (2) now hold trivially. To verify property (3), let H* =
H[J, — K,|[J. — K], and note that H[J, — K,] = H* — uv + wz. Now,
H* has degrees equal to those of H[J,, — K] for vertices of V(G) \ V(J,,),
and equal to those of H[J, — K| for vertices of V(J,) C V(G) \ V(Jy).
Thus, H* is an (F, h)-forest, and by property (3) for w and x, we have

degy+(2) < degp(z) + h(2), for z € {w,z}.

Consequently, H' = H* — uv + wx is an (F, h)-forest such that deg;, (v) <
degp(v) + h(v).

Thus, 7" and J,,K, for v € T satisfy the properties (1), (2) and (3),
which contradicts the maximality of T". Thus, Claim 2 holds.

Now we define S = V(G) \ T. We shall show that H and S satisfy the
conditions (a), (b) and (c).

Since Ty C T, we have S C V(G) \ Ty, and so, the condition (a) holds.
Let w € V(H) \ S be an arbitrary vertex. Since u € T, there are F-trees
J, and K, satisfying (1), (2) and (3). Let L, = Q(H,u)[J, — K,]. Then,
H[QH,u) — L,) = H[J, — K,], and the degree of u in this graph is less
than degp(u) + h(u) by (3). This shows the condition (b).

Now H — Ry = H*T. By Claim 2, there exists no edge wx with w and x
both in T" and in different components of H *T'= H — Ry. So every edge of
GG with ends in two components of H — Ry has at least one end in S. Thus,
condition (c¢) holds.

Since G is connected but H is disconnected, G has an edge joining two

components of H. By Claim 1, at least one end of the edge is not in 7', and
hence is in S. Thus, S # (). O

Proof of Theorem 29. Suppose that G does not have a spanning (F) h, b)-
tree. Then, in particular, G does not have a spanning (F,h)-tree. Thus,
there exist H, S, Ry, and Rg as in Lemma 36.

Claim 1. If K and K’ are components of H such that K NS = () and
K'N S =0, then there is no edge of G joining K and K’.
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Proof. If such an edge exists, it joins two components of H — Ry but
does not belong to R, which contradicts the condition Lemma 36 (c¢). Thus,
Claim 1 holds.

Let ¢ = w(H) and let d be the number of components of H containing a

vertex of S.
Claim 2. There exists a spanning (F, h,c+ d — 2)-tree in G.

Proof. Let K1, Ko, ..., K. 4 be the components of H containing no vertex
of S. For each i € {1,2,...,c — d}, we choose an edge s;t; € E(G) with
s; € V(K;) and t; ¢ V(K;). Since s; ¢ S, by the condition of Lemma 36
(b), we have an (F,h)-tree L; with V(L;) = V(K;) such that deg; (s;) <
degp(s;)+h(s;). Note that by Claim 1, ¢; is not contained in K;U---UK,._4.
Thus H' = H[K; — L] + {s;t;]1 <i < c¢—d} is a spanning F-forest whose
total (degp +h)-excess is no more than c—d, since deg, (s;) < degp(s;)+h(s;)
for 1 <i < c¢—d. The graph H' consists of d components. We add d — 1
suitable edges to H’ so that we obtain a spanning connected subgraph whose
total (degp +h)-excess is at most (¢ —d) +2(d — 1) = ¢+ d — 2. Thus, Claim
2 holds.

Since G does not have a spanning (F) h, b)-tree, by Claim 2, we have
c+d>b+ 3. (4.1)

We call a component of H— Ry bad if all its vertices belong to .S, and good
otherwise. Since G— Rg and H — Ry have the same vertex sets of components
and G—S = (G—Rg)— S, corresponding to each good component of H— Ry,
we obtain at least one component of G—S. So, in order to estimate w(G —.5),
we only need to estimate the number of good components of H — Ry.

Let C' be a component of H. Let Soc = SNV(C) and Rc = Ry N
E(C). Note that each edge of R¢ is a cutedge of C. Let good(C) be the
number of good components of C'— R, and let bad(C') be the number of bad
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components of C'— Re. Then w(G—S) > Y good(C). For i = 1,2, let r; be
the number of edges of R with ¢ ends in S. By the condition Lemma 36 (a),
we have Y-, g, h(v) = 71421y, and hence, |Rg| = 11475 = (r1 +2r2) =10 =
Yvese (v) — 7.

If S¢ = 0, then good(C) = 1.

Suppose that Sc # (. Let € be the number of components of C' — R¢
that contain at least one vertex of S. Since each bad component of C' — R¢
contains « vertices of S, we have ¢ < |S¢| — (v — 1)bad(C). And then
ry <e—1<[S¢| = (a—1)bad(C) — 1. Therefore, |Rc| = Y ,cs, h(v) =12 >
Yvese P(v) = |Sc| + (o = 1)bad(C') + 1.

Among the |R¢| + 1 components of C' — R, the number of good ones is

good(C) = |R¢|+1—bad(C) > > h(v)—|Sc|+ (a—2)bad(C) +2. (4.2)

vESE

Since a > 1 and bad(C) < |S¢], it follows from (4.2) that

good(C) > Y h(v) —|Sc| —bad(C) + 2

vESE

> Y h(v) - 2Sc| +2.

veESCH

Thus,

w(G@—=295) > Y good(C)+ > good(C)

C:Sc#0 C:Sc=0
> 3 (Y h(v)=2[Se|l+2)+ Y1
C:Sc#D veESc C:Sc=0
= > h(v)—=2[S|+2d+ (c—d)
veES
= > h(v)—=2[S|+c+d
veES
> > h(v)—2[S|+b+3, (by (41))
veS

a contradiction to the hypothesis (i) of Theorem 29.



If @ > 2, then for each component C of H with Sc # (), by (4.2),

Thus,
w(G—29)

good(C) > > h(v) — |Sc| + 2.
vESE
> Y good(0)+ Y good(©)
C:Sc#0 C:Sc=0
> > (X hv)=ISel+2)+ > 1
C:Sc#0 veSc C:Sc=0
= > h(v)—|S|+2d+ (c—d)
ves
> > ) =S| +b+3, (by (4.1))
veS

a contradiction to the hypothesis (ii) of Theorem 29.

Since bad(C) < |S¢|/a and |R¢| =11+ 19 >

we have
good(C) =

Hence,

w(G —9)

|Rc| + 1 — bad(C Z h(v) — |Sc|/a + 1.
UESC
> > good(C)+ Y good(C)
C:o#£0 C:Sc=0
> Z Z h ‘ C| + Z 1
CSc;ﬁ@ ’UGSC C:Sc=0

Since ¢ > d, we have ¢ > [3(c+d)] > [5(b+ 3)]

w(G—S)zézh@)—'a

>

,Zh

th —ﬂ+d+(c—d)

UES
_ @ L
vES

S b
| +24+ =],
veES 2

a contradiction to the hypothesis (iii) of Theorem 29.

Therefore, G certainly has a spanning (F, h, b)-tree. O

=2+ %] by (1). Thus,
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4.3 Proof of Corollaries

Proof of Corollary 31. Let S be a nonempty set of vertices of G. Since each
component of G — S has at least m edges leaving it,

mw(G — 8) <Y degg(v).

veS
Note that
Vo= > max{degs(v) — m(h(v) —2),0}
veV(G)
> ngax{degg(v) —m(h(v) —2),0}
> S deg(e) = m(ho) ~2)
= Z degs(v) — Z m(h(v) — 2).
veS veS
Then,

w(G—S)gzdegG@)SZ(h(v)—z)Jr:;SZh(v)—2|Sy+b+2.

ves ves ves

Taking F' to be the totally disconnected spanning subgraph of GG, by Theorem
29(i), we conclude that G contains a spanning tree 7" with te(7,h) < b. O

Proof of Corollary 33. Consider a constant function h = 3 in Corollary
31. O



Chapter 5

Spanning Walks with Total

Excess

5.1 Total Excess of Walks

We introduce the notion of total k-excess for spanning closed walks. Define

the total k-excess of a spanning closed walk W as

> max{visitw (v) — k,0},
veV(G)
where visity (v) is the number of times W visits v. Usually, a spanning closed
walk with total k-excess at most b is written for short as a (k, b)-walk.
Jackson and Wormald [13, Lemma 2.2] observed that the existence of a
k-tree implies the existence of a k-walk. In a similar way, we can obtain a
spanning walk with total k-excess at most b from a spanning tree with total

k-excess at most b. Thus, Theorem 18 implies the following corollary.

Corollary 37 Suppose k > 2, b >0, and G is a connected graph satisfying

the following condition.

For every subset S of V(G), w(G — S) < (k—2)|S|+b+2.

45
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Then, G has a spanning walk with total k-excess at most b.

This corollary shows that ﬁ—tough or a little weaker condition is suffi-
cient for the existence of a (k, b)-walk when k > 3. However, when k = 2 this
does not give a sufficient condition on toughness. Ellingham and Zha [10]
proved that all 4-tough graphs have a 2-walk. In this chapter, we discuss the
existence of a (2,b)-walk based on a result of a 2-walk proved by Ellingham

and Zha.

5.2 Toughness and F-trees

In this section we present a sufficient toughness-like condition for the ex-
istence of a spanning connected subgraph obtained from a given spanning
subgraph of G by adding some edges in G with some restriction on the num-
ber of new edges incident with each vertex.

Given a graph G, fix a (usually disconnected) spanning subgraph F'. Color
the edges of GG as follows: all edges joining two vertices of the same component
of F' are red, and all edges joining two vertices in different components of F'
are green. An F-forest ) (derived from F') is a subgraph of G that has m
components and that is the union of ¢« components of F' and ¢ —m green edges
whose ends lie in those components, for some ¢ > 1. Loosely, ) is a subgraph
of G obtained by joining some (not necessarily all) of the components of F’
together in a forest structure using green edges. Especially, when m = 1 we
call an F-forest an F-tree. Given k > 1, an (F, k)-forest H is an F-forest of
G in which every vertex is incident with at most k green edges.

Ellingham and Zha proved the following theorem in [10].

Theorem 38 (Ellingham and Zha, 2000 [10]) Suppose that g and k are
positive integers with g+ k > 3. Suppose further that G is a connected graph

with a spanning subgraph F', each component of which has order at least g,
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and that for every S C V(G) we have

@_%9# ifk=1and g > 2, or

w(G—=9)<q (k=2)|S|+3 ifk>2andg=1, or
(k—1)|S|+3 ifk>2andg>2.

Then, G has a spanning (F, k)-tree.

7

We will generalize this theorem with bounded “total excess.” The main
idea is same as the proof of Theorem 18, but the details are more complicated,
because we cannot delete and replace edges of F'in trying to extend our tree
structure, and the argument counting the components varies according to
the degree condition and the order of the components of F.

We now state our generalization of Theorem 18. Theorem 18 is just the
case of our result when F' is the spanning subgraph of G with no edges, so
that ¢ = 1. For k > 3, this theorem implies that every ﬁ-tough graph has
a k-tree.

We need some more notions. For any v € V(H), qdegy (v) is the number
of green edges of H incident with v. For an F-tree H of GG, we define the
total 1-excess of H (or, simply, the total excess of H) as

> max{qdegy(v) — 1,0}
veV(Q)

An (F,1,b)-tree is an F-tree with 3, ¢y () max{qdegy(v) — 1,0} < b. In a

similar way, we can define the total excess of an F-forest.

Theorem 39 Suppose that g is a positive integer with g > 2, and b is an
integer with b > 0. Suppose further that G is a connected graph with a
spanning subgraph F', each component of which has order at least g, and that
for every S C V(G) we have

(g—2)[S[+(b+3)g if b is odd
w(G - 8) < { (g2 br0)9-2

29—2

if b is even.

Then, G has a spanning (F,1,b)-tree.
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To prove Theorem 39, we will give a few preliminary definitions and
lemmas, which already appeared in Chapter 4.

Let G be a graph. Let Q(G,v) denote the component of G containing a
vertex v. Given u,v € V(G), we say that an edge e (necessarily a cut edge of
G) separates u and v in G if Q(G,u) = Q(G,v) but QG —e,u) # QG —e,v).

In the subsequent argument, we fix a factor F' of a connected graph G.
We define M to be the set of edges in G joining different components of F'.
Let H be a spanning F-forest. Note that E(H)\ E(F) = E(H)N M. Given
two vertices v and v in the same component of H, there is a unique set of
edges of E(H)NM each of which separates u and v in H, which we denote by
Py (u,v). (Note that if Q(F,u) = Q(F,v) then Py (u,v) = 0 by definition.)

Lemma 40 (Chapter 4, Lemma 36) Let G be a connected graph, F be a
factor of G, and k be a nonnegative integer. If G does not contain a spanning
(F, k)-tree, then there exists a disconnected spanning (F,k)-forest H and a
nonempty subset S C V(G) such that

(a) degy(v) = degp(v) + k for every v € S;

(b) for each u € V(G) \ S, there exists an (F,k)-tree L, with V(L,) =
V(QUH,u)) such that deg; (u) < degp(u) + k; and

(c) if Rg is the set of edges in G with at least one end in S and with ends
in different components of F', and Ry = Rg N E(H), then every edge
of G joining two components of H — Ry belongs to Re.

The following lemma will be used in one of our counting arguments.

Lemma 41 ([10, Lemma 3.2]) Let G, F and M be as described earlier,
and let H be a spanning (F,k)-tree. For any ¢ > 2 and R C M N E(H), the

number of components of H — R incident with fewer than q edges of R is at
least (¢ = 2)|R|/(¢ —1) +¢/(¢—1).
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Proof of Theorem 39. Suppose that G does not have a spanning (F, 1, b)-
tree with total excess b. Then, in particular, G does not have a spanning
(F,1)-tree. Thus, there exist H, S, Ry, and R as in Lemma 40.

Claim 1. If K and K’ are components of H such that K NS = () and
K'n S =0, then there is no edge of G joining K and K’.

Proof. 1f such an edge exists, it joins two components of H — Ry but
does not belong to Rg, which contradicts the condition Lemma 40 (c). Thus,
Claim 1 holds.

Let ¢ = w(H) and let d be the number of components of H containing a

vertex of S.
Claim 2. There exists a spanning (F, 1, ¢+ d — 2)-tree in G.

Proof. Let Ky, Ks, ..., K. 4bethe components of H containing no vertex
of S. For each i € {1,2,...,c — d}, we choose an edge s;t; € E(G) with
si € V(K;) and t; ¢ V(K;). Since s; ¢ S, by the condition of Lemma
40(b), we have an F-tree L; with V(L;) = V/(K;) such that deg; (s;) <
degp(s;) + 1. Note that by Claim 1, ¢; is not contained in K; U--- U K._4.
Thus H' = H[K; — Li][Ky — Lo] -+ [Ke_g = Le_g]+{siti|]l <i<c—d}isa
spanning F-forest whose total excess is no more than ¢ —d, since degy.(s;) <
degp(s;) + 1 for 1 <i<c¢—d. The graph H' consists of d components. We
add d — 1 suitable edges to H' so that we obtain an F-tree whose total excess
is at most (¢ —d) +2(d — 1) = ¢+ d — 2. Thus, Claim 2 holds.

Since G does not have a spanning (F) 1,b)-tree, by Claim 2, we have
c+d>b+ 3. (5.1)

Moreover, since ¢ > d, we have

¢> F’;ﬂ . (5.2)
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We call a component of H— Ry bad if all its vertices belong to S, and good
otherwise. Since G— Rg and H — Ry have the same vertex sets of components
and G—S = (G—Rg)— S, corresponding to each good component of H — Ry,
we obtain at least one component of G—S. So, in order to estimate w(G —.5),
we only need to estimate the number of good components of H — Ry.

By the assumption, suppose that g > 2. Let C' be a component of H and
good(C) be the number of good components of C'— R¢. Note that good(C)
is at least the number of components that are incident with fewer than g
edges of R, which by Lemma 41 is

g

g—2
d > _
go0d(€) = 4 Ro| +

Hence, by using (3.1) and (3.2),
w(G—=1S) > Y good(C)+ > good(C)

C:Sc#0 C:Sc=0
g—2 g
972 Re| + 1
> Ccl{,ZSc;«é@(g_1| C‘—i_g_l)_'—CcH,ZSC:V)
_ ;(zj)m H( L) e-d)
= (DI s+ e
1,g—2 —2[b+3
> 2@—&Mﬂ+(g—1yb+$+z—1{2w'

If b is odd, then
G5 2 s (e (22 (1Y

- 2\g—1 g—1 g—1 2
_ lg—2 (b+3)g
= SIS+ 5=
If b is even, then
1,g—2 1 N
w(@-5) 2 F(E)Is1+ (=) 0+ 3+ (2=7) (557)
_ 1l,g9-2 (b+4)g—2
= 5l T s
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These contradict the hypothesis of Theorem 39.
Therefore, G certainly has a spanning (F, 1,b)-tree. O

5.3 Toughness and (2,b)-Walks

In this section we apply the main result of Section 5.2. We use a spanning
(F,1,b)-tree derived from a 2-factor to establish the existence of a (2, b)-walk.

Theorem 42 Let b be an integer with b > 0. Suppose that G is a graph,

where
(G- 9) < min{@, W} if b is odd
w —
min{%l, ‘SH?’#} if b is even

for every subset S C V(G) with w(G — S) > 2. Then G has a (2,b)-walk.

This theorem is a generalization of the following theorem. The outline of

this proof is also similar.

Theorem 43 ([10, Theorem 4.1]) Suppose that G is a graph, where w(G—
S) < min{|S]/2, (|S| +9)/4} for every subset S C V(G) with w(G — S) > 2.
Then G has a 2-walk.

Proof of Theorem 42. The given condition implies that GG is 2-tough and
hence connected; moreover, since Enomoto, Jackson, Katernis, and Saito [11]
proved that every k-tough graph has a k-factor, G has a 2-factor F'. Now,

since .
13649 p g -
P2 if bis odd
w(G—8) < { 1|35+ 10
2

if b is even,

it follows from Theorem 39 with ¢ = 3 that G has a spanning (F, 1,b)-tree
H. Replacing each green edge of H by two multiple edges creates an eulerian
multigraph, and an eulerian circuit in this multigraph corresponds to a (2, b)-
walk in H and hence on G. O
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If we know that G has a 2-factor in which every component is of length
at least g, where g > 4, then we can improve our argument in an obvious
way.

Theorem 44 Let b be an integer with b > 0. Suppose that G is a connected
graph with a 2-factor F' in which every component has length at least g, g > 3.
Suppose further that

(g=2)|S|+(b+3)g if b is odd

w(G—-9) < { 29-2

(9=2)[S|+(b+4)9—2
2g9—2

if b is even

for all S C V(G) with w(G — S) > 2. Then G has a spanning (F,1,b)-tree,
and hence, a (2,b)-walk.
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