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Abstract

An Indoor Positioning Architecture Based on Visible Light Communication and Multiband
Received Signal Strength Fingerprinting

by

Chinnapat Sertthin

Doctor of Philosophy in Engineering

Keio University, Yagami

Professor Tomoaki Ohtsuki, Chair

In the recent years positioning has become basis for a number of emerging technologies
such as wide area ubiquitous network, robotics, cognitive radio and LTE release 9+. Location
information can provide additional context for location-aware mobile stations. The mean-
ing and the relevance of data can be interpreted differently as the mobile station’s location
changes with time. The outdoor localization can be achieved by the assist of GPS; neverthe-
less, GPS accuracy in indoor environment is highly degraded due to the effects of multi-path
component and obstacles. Numerous of indoor positioning systems have been proposed;
such as ultra wide band (UWB) system, Pseudolite that requires extra infrastructures and
high complexity transceiver for synchronization due to the property of time-of-arrival (TOA)
method. Therefore, indoor location determination for mobile stations imposes a significant
challenge for the success of ubiquitous and pervasive wireless computing.

In this dissertation we focus on developing a new architecture that could be an eco-friendly
solution for indoor positioning system that does not require any extra infrastructure, has
long life cycle, and does not generate extra carbon footprint during the implementation. The
proposed platform must be able to access from anywhere, anytime, anyone and anything.
We focus on the high compatibility function of the proposed platform, of which can be
seamlessly implemented on the existing infrastructure. In the approach we focus on the
following technologies, visible light communication (VLC) and multiband received signal
strength (MRSS) fingerprinting. The studied highlight system characteristic, difficulty and
breakthrough.
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Chapter 1

Introduction

In the recent years positioning has become basis for a number of emerging technologies
such as wide area ubiquitous network [1], robotics, cognitive radio [2] and LTE release 9+ [3].
Location information can provide additional context for location-aware mobile stations. The
meaning and the relevance of data can be interpreted differently as the mobile station’s
location changes with time [4]. The outdoor localization can be achieved by the assist
of global positioning system (GPS); nevertheless, GPS accuracy in indoor environment is
highly degraded due to the effects of multi-path component and obstacles. Numerous indoor
positioning systems have been proposed; such as ultra wide band (UWB) system, Pseudolite
that requires extra infrastructures and high complexity transceiver for synchronization due
to the property of time-of-arrival (TOA) method. Therefore, indoor location determination
for mobile stations imposes a significant challenge for the success of ubiquitous and pervasive
wireless computing.

Positioning estimation or location determination refers to a process used to obtain loca-
tion information of a mobile station (MS) with respect to a set of reference positions within
a predefined space. In many literatures, this process is usually also widely known as radiolo-
cation [4], position location [5], geolocation [6], location sensing [7], or localization [8]. This
dissertation will primarily use positioning but all of these terms are also used interchange-
ably throughout the document. A system developed to determine or estimate the location
of a targeting unit is called a positioning system. The term positioning system will be used
to represent the system throughout this document. An existing infrastructure refers to a
previously installed infrastructure for the other purpose such as light bulb for the purpose of
illumination, mobile phone infrastructure or wireless local area networks (WLANs), for the
purpose of communication. An emerging wireless infrastructure refers to the future wireless
technology infrastructure that will be implemented for communication purpose to its sub-
scribed user. A set of coordinates or reference points within the predefined space is typically
used to indicate the physical location of the entity. For example, an indoor positioning sys-
tem may include position information such as a floor number, a room number, and other
reference objects to represent an entity’s position.
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In this dissertation we focus on developing a new architecture that could be an eco-friendly
solution for indoor positioning system that does not require any extra infrastructure, has
long life cycle, and does not generate extra carbon footprint during the implementation. The
proposed platform must be able to access from anywhere, anytime, anyone and anything.
We focus on the high compatibility function of the proposed platform, of which can be
seamlessly implemented on the existing infrastructure. In the approach we focus on the
following technologies, visible light communication (VLC) and multiband received signal
strength (MRSS) fingerprinting. The studied highlight system characteristics, difficulty and
breakthrough solution. First, this chapter presents the background of indoor positioning
systems, identifies the challenges of such systems, and briefly describes indoor positioning
systems. Next, the assumptions of study, the overview of approaches, and the contributions
are presented. Finally, the organization of this dissertation is outlined.

1.1 Background of Indoor Positioning Systems

The success of location service technologies provides an incentive to the research and devel-
opment of indoor positioning systems. Most of the outdoor location based services such as
Google Map or Foursquare1 are provided based on GPS system support. Unfortunately, the
GPS system cannot be used effectively inside buildings and in dense urban areas owing to
the reasons explained in the preceding context. As the result, many divertive technologies
are being developed. As a result, indoor positioning systems require alternative means to
detect the MS’s location without relying on the direct radio frequency (RF) signal from GPS
satellites. Infrared, RF, and ultra sound signals are major technologies used for indoor posi-
tioning systems [6]. Different types of sensors are required to detect these signals depending
on its characteristics. Such as, a photodiode is used as a sensor to detect signals that lie
in the range of infrared to visible light. Sensors process the received signal and convert by
the selected algorithm into quantifiable metric such as distance or latitude and longitudes
for later location determination [6]. Unlike outdoor areas, the indoor environment imposes
different challenges on location discovery due to the dense multipath effect and building ma-
terial dependent propagation effect. Thus, an in-depth understanding of signal characteristic
for positioning is crucial for efficient design and implementation.

Concurrently, there has been an increasing deployment of new wireless infrastructures
such as WLANs, digital terrestrial broadcasting system (DTBS), Worldwide Interoperabil-
ity for Microwave Access (WiMax), and femtocell for mobile communication by many or-
ganizations. Thus, the popularity of wireless infrastructure opens a new opportunity for
location-based services. In addition to wireless infrastructure, smart ambient environment is
enabled by visible light communication (VLC) is also attracting many attentions. The focus
of this dissertation is to enable new indoor positioning system architecture based on VLC
and wireless technology without deploying additional infrastructure. We consider a terminal

1Foursquare is a location-based social networking website based on hardware for mobile devices.
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that poses VLC and multi-frequency band capability as a kind of sensor device. Location
information has become a mandatory requirement for many emerging technologies such as
cognitive radio and LTE release 9+ [3]. We are convinced that our proposed architecture
can possibly become a prevalent solution for many emerging technology of the future. Kr-
ishnamurthy [4] identifies four areas of challenges in position location in mobile environment
which are performance, cost and complexity, security, and application requirements. We
elaborate our proposed architecture with the preceding issues are elaborated as follows.

• Performance: Accuracy is the most important metric used to evaluate performance
of positioning system; usually error distance between the estimated location and the
actual mobile location. The report of accuracy should include the confidence interval of
the estimated distance error. Other essential performance metrics are delay, coverage,
scalability and capacity of the positioning system. The delay metric refers to the time
taken between sensing of the location to reporting the information. The capacity metric
measures the number of location estimations that a system can process per unit time.
The coverage metric reports the boundary of a space that location information can be
estimated. Scalability is a metric that suggests how well the system performs when
it operates with a larger number of location requests and a larger coverage [9]. The
proposed architecture uses existing infrastructure, of which are installed everywhere.
Therefore, low delay, high coverage, scalability and capacity can be achieved. Details
of the proposed architecture are described in chapters 2 to 4.

• Cost and Complexity: The cost incurred by a positioning system can come from
the cost of extra infrastructure, additional bandwidth, fault tolerance and reliability,
and nature of deployed technology. The cost may include installation and survey
time during the deployment period. Our proposed architecture utilizes purely existing
infrastructure. Thus, implementation cost, and communication bandwidth can be
saved. Moreover, existing communication signals can also be used for location sensing.
After the system becomes operational, the extra power consumption at each mobile
can be considered as a cost for the positioning system [9]. However, the proposed
architecture solely uses existing infrastructure, only marginal power consumption is
increased from additional positioning server that we introduce as shown in Fig. 4.1.
The complexity of the signal processing and algorithms used to estimate the location is
another issue that needs to be balanced with the performance of positioning systems.
Trade-off between the system complexity and the accuracy affects the overall cost of the
system. Therefore, we use only low-complexity algorithm to illustrate the advantage
of the proposed architecture.

• Application Requirements: There are three major application requirements for
the location information, the granularity, the performance, and the availability. All of
which, we had explained in the preceding parameters. The necessities are depending
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on the type of application. Firstly, the granularity can be classified into temporal gran-
ularity and spatial granularity. Temporal granularity determines the frequent at which
the location information is requested, while spatial granularity indicates the level of
location information detail. Secondly, the performance requirements can be the combi-
nation of any performance metrics discussed above. Based on the types of applications,
the requirement of location information entities may be different. For example, utiliz-
ing position information at a centralized server is more appropriate for application such
as user tracking. Based on the entity that estimates the location information, there
are two approaches for location systems: self-positioning and remote-positioning [4].

• Security: Users privacy is one of the most important issue for mobile user, the position
of any mobile user can be easily inquire via remote-positioning. Thus, location infor-
mation should be made available only to those with authorized access. It is also related
to how the system determines the location information and the type of application.
For example, GPS device can derives its own position from the GPS satellites which is
completely. On the other hand, a location tracking such as the E-911 system [10] with
the main purpose to capture the user location can be misused by unauthorized groups
if there is no security protection in place. Thus, the location system requires security
protocol embedded within the system to protect the location information. Unfortu-
nately, the security of the system is limited by the location sensing technique. For
instance, a positioning system that reuses the communication signals for the purpose
of location detection cannot completely secure the MS’s privacy because of its active
nature [9].

1.2 Principle of Localization Technology

The need to locate people and objects as soon as possible have always been an important
part of many organizations and industries, such as in robotic, telemetry and logistics. With
the increasing sophistication of wireless technology, it is now possible to remotely locate
objects or people within a predefined time frame.

In this section, we discuss types and techniques used in localization technology. The
type of localization technology can be majorly classified by either the access methods or
measurement classes. Both types based on the same technique which are either ranges or
angulations [11].

1.2.1 Access Methods

The access method can be classified in to three major types, which are received signal based,
time of arrival based and angle of arrival based types. Three of which can be used to explain
any localization technology that enable distance measurement, and estimated location from
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analysis of specific physical characteristic. Details of each access method are provided as
follows and also in Table 1.1. We use all of the mentioned access methods advantages to
compromise their disadvantage and create solution architecture for indoor positioning that
can fully operate in any environment. Details of how we utilize each access method in our
proposed architecture are provided in section 1.6

Received Signal Strength (RSS)

The signal strength of received signals from at least three transmitters are used to determine
the location of the object or person being tracked. The greatest advantage of RSS method is
that the accuracy of the system is irrelevant with modulation scheme, and system bandwidth.
We use this access method as one of key technology to enable our proposed platform solution.

Time of Arrival (TOA)/Time Difference of Arrival (TDOA)

Both TOA and TDOA are based on time access method, which use measured elapsed time
for a transmission between a transmitter and a receiver. TOA method is based on the exact
time difference between transmitters and receiver. Therefore, synchronization between trans-
mitters and receiver becomes significantly important. On the other hand, TDOA method is
based on time differences from transmitters to receiver, only synchronization among transmit-
ters is required. Moreover, the system bandwidth has direct impact on positioning accuracy
in multipath environment.

Angle of Arrival (AOA)

This method is for determining the direction of propagation of a received signal. By using
direction sensitive antennas on a receiver, the direction to a transmitter can be obtained.
In practical wireless systems, the measurement of the difference in received phase at each
element in the antenna array is used for calculating AOA. In our proposed platform AOA is
achieved by the embedded 6-Axis sensor that provides angulations information.

Table 1.1: Comparison of advantage and disadvantage among access methods

Method Advantage Disadvantage
TOA High positioning accuracy can be

achieved
Achievable accuracy is depended on
system bandwidth

AOA Generally used with TOA method
to enhance positioning accuracy

More than one transmitters are re-
quired to perform AOA

RSS Achievable accuracy is irrelevant
with system bandwidth and modu-
lation types

Low positioning accuracy owing to
multipath reflections and interfer-
ences
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1.2.2 Measurement Types

Distance measurement has two major classes, which are instantaneous measurement and
fingerprinting method. The major difference between both classes is an instantaneous mea-
surement estimate position based on prior knowledge of source location with only one time
measurement. On the other hand, fingerprinting method does not require the prior knowl-
edge of the transmitters’ coordination. Premeasured of desired signals must be conduct to
create the database in relationship to coordinate in the usage area, which will be used to
estimate position.

Instantaneous Measurement

Instantaneous measurement refers to detection of a mobile terminal by a single measurement
within signal range of a fixed location so that the mobile is known to be within an area around
that location. The measured accuracy of this class is lower than the other due to the effects
of multipath and Doppler effects. However, it is the most popular measurement class because
pre-measurements of the desired signals are not required.

Fingerprinting (Database)

RSS fingerprinting, or radio map [12], uses the statistical approach. Rather than estimating
distance to the transmitters and performing triangulation to estimate position, RSS fin-
gerprinting estimates positions by recognizing correlation between measured RSS and the
premeasured RSS database; denoted as fingerprint. Therefore, exact locations of the wire-
less infrastructures are not required. RSS fingerprinting consists of two phases, which are
training and positioning phases. In the training phase, fingerprint of each location is cre-
ated as reference database. In the positioning phase, the instantaneous measured RSSs are
compared to the fingerprint, from the training phase to estimated location.

1.2.3 Techniques in Positioning System

Four geometric arrangements for calculating location coordinates by the combination of basic
measurements of distances, (ρ) and angulations (θ) are described

Distance (ρ) and Angulations (θ)

When both direction finding and distance measurement capability are available, only one
terminal is needed to determine the position coordinates of the target as shown in Fig. 1.2.
The target is located on the intersection between a circle whose radius is ρ, the distance
between fixed terminal Tx and target Rx, and a bearing line that is at an angle of θ referenced
to north.
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Figure 1.1: Rho-Theta location measurement configuration

If the distance is estimated by RSS the perimeter line may result as a contour rather
than circle. Coordinates of Rx can be derived as

x = ρ · sin(θ), y = ρ · cos(θ) (1.1)

Two Angulations (θ)

Directional antennas can be used at two or more fixed terminals to find target location when
the coordinates of the terminals are known relative to a reference point. The geometric
procedure for calculation location is called triangulation. The advantage of this method is
that synchronization and modulation type have no impact on positioning accuracy. When
coordinates of Tx1 and Tx2 are known, the angles of arrival, θ1 and θ2 of the signal reference
clockwise from north are measured; as in Fig. 1.2. Coordinate of Rx can be derived as

x = y · tan(θ1), y =
y2 · tan(θ2)− x2
tan(θ2)− tan(θ1)

(1.2)

Spherical Curves

Time-of-arrival (TOA) location is determined by trilateration using distance data only. Dis-
tance can be estimated using received RSSI data or time-of-flight (TOF) measurements,
where the transmitter and receiver must have synchronized clocks. In this method, three or
more fixed positions are required.
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Regarding Fig. 1.3, if we can find the distances ρ1 and ρ2, we can determine the location
of Rx from the intersection points of two circles. If there is no other knowledge to eliminate
the ambiguity, a third fixed terminal is required.

In the case of TOA, assuming that all of the transmitters are synchronized, the one-way
distance between Rx to Tx1 or Tx2 can be derived from relationship between propagation
speed of light, c, and receive times, t. The transmission time is defined as t0, and received
time from Tx1 and Tx2 are t1 and t2 consequently.

ρ1 = (t1 − t0) · c, ρ2 = (t2 − t0) · c (1.3)

The equations of the two circles are

ρ21 = x2 + y2, ρ22 = (x− x2)
2 + (y − y2)

2 . (1.4)

These two nonlinear equations can be solved to find x and y.

Hyperbolic Curves

Hyperbolic curves are used in time difference of arrival (TDOA), which has the advantage
over TOA on synchronization. In TDOA method synchronization among fixed transmitters
and receiver are not required [11][13]. Nevertheless, the achievable accuracy is low, comparing
with TOA method.

The TDOA method uses time difference in the reception of that starting point at the sev-
eral fixed transmitter, not the actual TOF of the signal from the target to the fixed stations.
Therefore, one time difference value is not enough to calculate the two coordinate values of
the receiver position. Thus, in order to have sufficient data to find receiver’s coordinate,
TDOA requires one more reference station than TOA. Geometric layout of TDOA in two
dimensions is shown in Fig. 1.4, the clock of Tx1 and Tx2 are synchronized but Rx’s clock
is not. So, t0 is unknown. The difference of the distances between the two fixed stations
and the target is d = d2 − d1 = c(t2 − t1). The locus of points of d is a constant, which
described hyperbola. Thus, the estimated position is located somewhere on that hyperbola.
The expression for the hyperbola is

x2

a2
− y2

b2
= 1. (1.5)

Expressing a and b in terms of the known quantities ∆d and D, we have

a2 = (∆d/2)2 (1.6)

b2 =

(
D

2

)2

− a2 (1.7)

The equations (1.5)−(1.7) are not sufficient to find the coordination of the receiver.
Hence, the time of arrival at a third fixed transmitter, Tx3, is needed to pinpoint the target
location.
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Figure 1.4: Geometry of TDOA location method

1.2.4 Limitations

Normally, distance measurement system design involves compromises among parameters of
accuracy, bandwidth, clock rate, measurement time, and complexity. High accuracy in a
short time needs a high clock rate and consequently high bandwidth. A large bandwidth, in
turn, means greater noise power and reduced range and high clock rates increase complexity
and current consumption, and cost.

In this subsection, the basic terms and factors those have effect on positioning system
are introduced. The ability to use radio transmission for distance measurement, and the
estimated location accuracy that can be achieved depend on basic parameters of the signal,
as well as the nature of its propagation.

Time Resolution

Figure 1.5 expects that the initiator’s time base clock has been added. A pulse is transmit-
ted and the time interval until reception is measured. The distance resolution is directly
proportional to the period of the clock. The one-way distance resolution, ∆d, of a pulse
signal with a 100MHz clock can be calculated as follows.

Tc = 1/100 MHz = 10 ns, c = 3 · 108 m/s
∆d = (Tc · c) = 3 m

(1.8)

In case of radar system assuming the same configuration, (1.8) must be divided by 2 to
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Figure 1.5: Illustration of time resolution (τclk)

find the one-way distance resolution, ∆d, as in (1.9)

∆d = (Tc · c)/2 = 1.5 m (1.9)

The minimum measurement period is equal to the time of flight.

Bandwidth Resolution

The system bandwidth is a factor in the resolution of the time of detection. Note that while
the resolution is involved, the influence of the bandwidth is different from that of the clock
rate dealt with in section 1.2.4 and therefore bandwidth is discussed separately here. The
bandwidth referred to is the total bandwidth of the signal path between the generation of the
pulse in the transmitter and its detection in the receiver. Therefore, it includes transmitter
and receiver intentional and unintentional filtering, as well as the frequency response of
transmitter and receiver antennas and that of the propagation path, which is not a constant
function of frequency.

In effect, the pulse rise time depended on the bandwidth, according to the relation-
ship (1.10)

Bbb = k · 1

2 · Tr
(1.10)
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where Bbb is the total noise bandwidth referred to as baseband signal (one-half of the band-
width in the RF pass band) and Tr is the rise time. k depends on the particular transfer
function that determines Bbb and on how Tr is defined. As a useful approximation we assume
k = 1

Bbb =
1

2 · Tr
hence, Bbp =

1

Tr
(1.11)

where Bbp is the RF bandpass bandwidth, equal to twice of the baseband bandwidth. The
rise time is important because it creates an uncertainty as to the instant of arrival in a
receiver of a transmitter pulse.

An important consequence of the bandwidth is its effect on multipath resolution. Radio
signals arrive at a receiver over multiple paths because they are reflected from objects situated
between the transmitter and the receiver. The paths of the reflected signals are longer than
that of the direct, line of sight path, to a degree that depends on the distance of the reflecting
object from the direct path.

Accurate distance measurement depends on identifying the earliest arriving pulse, since
its time of arrival is needed to find the true distance between transmitter and receiver. When
bandwidth is relatively low, the rise time is long and the extended leading edge of the line
of sight signal may be interfered with or smeared by pulsed arriving along the multipath;
thereby, making it difficult to distinguish.

The bandwidth needed in a multipath environment depends on required accuracy, on the
differences in path lengths of reflected echoes, and on the strength of the echoes relative to
the line of sight signal. Assume a one-way distance accuracy of 3 m is specified. A two-way
time-of-flight resolution of 2×(3 m/3× 108 m/s)= 20 ns must be achieved. A rule of thumb
bandwidth is Bbp = 1/20 ns = 50 MHz. Bandwidth can be traded for measurement time in
order to obtain a given accuracy with lower bandwidth than indicated by (1.11), when the
interference is random noise.

1.3 Common Components of Indoor Positioning Sys-

tems

A basic function of wireless positioning system block diagram is suggested in [6]. It consists
of 2 parts, which are sensing devices, a positioning algorithm, and display system. Figure 1.6
from [6][9] illustrates their components and their relationships. First, the sensing devices de-
tect incoming signals from known or unknown sources such as radio frequency (RF), infrared
(IR), visible light (VL) or ultrasound. The sensing techniques can be any method mentioned
in both section 1.2.1 and section 1.2.2. Then, the positioning algorithm processes the mea-
sured information using approaches such as signal processing [5], deterministic approach [14],
or probabilistic approach [15]. Finally, the display system interprets location information
into a suitable format for the end user.
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Figure 1.6: A general wireless positioning system functional block diagram

1.3.1 Sensing Technologies

In this dissertation we use visible light and multiband radio wave sensors in our proposed
platform. Based on the sensing technologies deployed, we must investigate the characteristics
and limitations on both types of the deployed signal. The propagation delay, reflection,
transmission, diffraction, and scattering are general characteristic of all signal types. The
effective range, available bandwidth, regulatory constraints, interference, power constraints,
safety, and cost are technology limitations [9]. Note that other technologies such as infrared,
ultrasound, laser ranging, scene analysis, and inertial based systems are also possible for
indoor positioning system, but are beyond the scope of this study.

Visible Light Sensor

The visible light signal has the same properties as infrared. It cannot pass through walls
or obstructions; therefore, it has a rather limited range in the room size. However, the
propagation speed is high, approximately 3 × 108 m/s; therefore general method for short
range positioning such as TOA cannot be utilized. Indoor lighting interferes and external
sun light can causes problems on accuracy of sensor. The photodiode is used as visible light
sensor; limitation of photodiode is owing to its field-of-view (FOV).

Multiband Radio Wave Sensor

The motivation of using multiband radio wave sensor is based on the emerging of cognitive
radio technology. Cognitive radio is very well known for two of its unique property, dynamic
spectrum allocation and multi-frequency band capable terminal. The radio frequency (RF)
signal can penetrate most indoor building material; therefore, it is affected by reflection,
transmission, diffraction and scatter. So as the visible light, RF propagation speed is also
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approximately 3 × 108 m/s. With the multiband capable of cognitive radio numerous fre-
quencies unlimited radio sources can be accessed such as WLAN 2.4 GHz, 5.2 GHz and
digital terrestrial broadcast television.

1.3.2 Related Indoor Positioning Systems

Excellent comprehensive surveys of positioning systems can be found in [7] and with a special
focus on indoor positioning systems in [9]. Therefore, this section will not delve into greater
details of each of the forerunners of indoor positioning systems. A subset of these systems
is reviewed as examples. The major characteristics of these systems are summarized.

Active Badge

The Active Badge location system [16] is one of the first generation of indoor positioning
systems. This system uses a central server to determine user’s location, sensors are used to
pick up either periodically transmitted or on demand signals from infrared badges attached
to the mobile user. Each infrared badge has its unique identifier. The achievable accuracy is
very low as in room-size, for the reason that location determination is based on the proximity
of badge and the sensors. The main limitations of this system are its range and interference
from sunlight and fluorescent lights on infrared signal [7].

Active Bat

The second location system called Active Bat [17] is evolved from Active Badge by utilizing
both radio and ultrasound signals instead of infrared signal. The system consists of a set of
ceiling-mounted sensors that detect the on demanded ultrasound signal from the Active Bat
tag that respond to an RF request packet from the centralized controller. Active Bat is also
a centralized computation system that determines distance based on time-of-flight (TOF)
of the ultrasound signal. The ceiling mounted sensors calculated the distance measurement
between the time they transmit RF request packet and the time they receive ultrasound
pulse from the mobile “Bat”. This achievable accuracy is in the range of 9 cm for 95 % of
locations.

SpotON

The SpotON is an ad hoc based location system [18], which uses distance measurement
based on received signal strength instead of TOF. The system inventers combine the ideas
of ad hoc networking with object localization. All of the targeting objects are attached with
RF tags. Ad hoc lateration is performed using the estimated inter-tag distance instead of
the distance from known sensors or base stations. Therefore, the system could provide both
relative and absolute referencing. A dynamic cluster of tags enables any participating node
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to exploit correlation of multiple measurements and improves the location accuracy as the
tags’ cluster becomes denser [18].

Cricket

Cricket location-support system is a location-based system designed with four objectives:
privacy, decentralization, low cost, and room-sized granularity [19]. Unlike the preceding
systems, Cricket is an independent of data network technology, which do not contain cen-
tralized server. Thus, the mobile device calculates its own location using both ultrasound
and RF technologies. The main equipment is a beacon that transmits an RF pulse with
a unique ID for that particular room. The RF signal is used for synchronization, and to
identify the period of the ultrasound signal which is used in order to calculate the range
with TDOA techniques. This mobile-based approach ensures its privacy. Nevertheless, RF
beacon interference between two adjacent rooms can cause accuracy degradation.

These pioneer works in this area have some disadvantages such as the limitation of the
infrared or ultrasound sensing signals that cannot penetrate the walls and doors which are
common inside most buildings. The cost of sensor infrastructure installation and badges or
tags for most of these systems becomes significant for a building with a lot of small rooms
or offices. Notice that the angular or direction-based measurement was not used in any of
these systems due to the dense multipath effect inside buildings. However, these position-
ing systems have only demonstrated their success empirically, and they all lack theoretical
explanation of their system and performance.

1.4 Signal Characteristics

In this section, we discuss the fundamental factors that make differences between VLC and
RF channel, which are wavelength property, reflection, diffraction, and transmission. In
order to compare its behavior with RF signals, we view visible light as electromagnetic wave
that has frequency in the range of THz. The first factor is the property of wavelength, since
the electromagnetic wave with wavelength of λ cannot penetrate through the gap that has
distance equal to or smaller than the λ/2. Thus, specular reflection points in each frequency
band can be varied in different environments, of which alter the propagation paths in each
frequency band. The more obstacles in environment are, the more diverse propagation paths
in each frequency band becomes. The varied specular reflection points in each frequency
band are considered to be the major impact to all of the following factors [20].

1.4.1 Reflection

The second factor that causes diversity is reflection. The normal handling of specular reflec-
tion is simplified by physical optics. Reflection is the function of frequency, polarization and
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incident angle. In our experimental case, by utilizing dual-band access points as transmitters,
reflection coefficients are mainly impacted by only two factors; frequency of the transmitted
wave and incident angles of each frequency band alternated from the wavelength property.
The reflection coefficients of parallel and perpendicular polarizations are shown in (1.12) and
(1.13).

R∥ =
η2 sin γt − η1 sin γi
η2 sin γt + η1 sin γi

(1.12)

R⊥ =
η2 sin γi − η1 sin γt
η2 sin γi + η1 sin γt

(1.13)

where yi is the angle of incidence relative to a tangent plane at the point of reflection and
η1,2 is the complex permittivity given by (1.14).

η0,1 =

√
jωµ1,2

σ1,2 + jωε1,2
(1.14)

where σ, ε, and µ are the conductivity, permittivity, and permeability of the air and the
reflecting material and ω is the frequency of the incident radiation in radians.

1.4.2 Diffraction

The third factor, diffraction, is also the consequences of discrepancy of specular reflection
points in different frequency band caused by wavelength property and reflection. Diffraction
is the function of frequency and incidental angle. It occurs when there is a partial blocking of
a portion of the wave front by an object. Luebbers model [21] is regarded as one of the most
accurate model that included reflection coefficient, which is also the function of frequency,
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into the uniform theory of diffraction (UTD) as shown in (1.15).

D⊥
∥ =

−ej(π/4)

2n
√
2πk



cot

(
π + (ϕ− ϕ′)

2n

)
F (kLa+ (ϕ− ϕ′))

+ cot

(
π − (ϕ− ϕ′)

2n

)
F (kLa− (ϕ− ϕ′))

+R⊥
∥,0 cot

(
π − (ϕ+ ϕ′)

2n

)
F (kLa− (ϕ+ ϕ′))

+R⊥
∥,n cot

(
π + (ϕ+ ϕ′)

2n

)
F (kLa+ (ϕ+ ϕ′))


(1.15)

where ∥ and ⊥ denote diffraction coefficient of parallel and perpendicular incident wave,
respectively. Symbols ϕ′ and ϕ are the angles of incidence and diffraction, and nπ is exterior
wedge angle. The phase constant, k, is directly proportional to wavelength as 2π/λ. The
Fresnel integral to correct for the singularities at the shadow boundaries is given by

F (X) = 2j
√
XejX

∫ ∞

√
X

e−jτ2dτ (1.16)

where X represents the various possible arguments of F (·) in (1.15). The distance term L is

L =
ss′

s+ s′
(1.17)

where s is the distance from diffracting edge to the field point, which can be varied in each
frequency band due to the wavelength property, and s′ is the distance from the edge to the
source. The parameter a in (1.15) is given by

a± (ϕ− ϕ′) = 2 cos2
(
2nπN± − (ϕ± ϕ′)

2

)
(1.18)
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In (1.18), the parameters N± are integers, which most closely satisfy the equations

2πnN+ − (ϕ± ϕ′) = π (1.19)

2πnN− − (ϕ± ϕ′) = −π (1.20)

The terms R0 and Rn refer to the reflection coefficients of the incidence wedge face (0
face) and the opposite wedge face (n face). They are computed for parallel and perpendicular
polarizations by using (1.12) and (1.13), respectively.

1.4.3 Transmission

The fourth factor is transmission, which is occurred when an electromagnetic wave penetrates
from one medium to another. Part of the energy is reflected and the rest is transmitted into
the second medium. The transmitted wave changes amplitude and direction as it continues
into the second medium. The transmission coefficients take a form similar to the reflection
coefficients; transmission is also functions of frequency and incident angle, as follows

T∥ =
2η2 sin γi

η2 sin γt + η1 sin γi
(1.21)

T⊥ =
2η2 sin γi

η2 sin γi + η1 sin γt
. (1.22)

The RSS of EM wave that transmitted through human body, is greatly attenuated with
2.4 GHz frequency band [9][22]. Since water, which also has a resonance frequency at 2.4
GHz, is a significant part inside the human body.
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1.4.4 Scattering

A smooth reflecting surface is an idealized surface that is only occasionally encountered in
real propagation environments. Typically encountered surfaces have random variations as in
the earth’s surface or have systematic variations such as in the walls and roofs of artificial
structures. Depending on the wavelength of the wireless signal, the height of these variations
may or may not be significant in terms of how reflection amplitude is calculated. In extreme
cases, the surface may appear to be a pure scattered. The degree of roughness, or the
criterion on which roughness warrants considerations, is often given by [23] which is also
known as the Rayleigh criterion:

hR ≥ λ

8 sin γ0
(1.23)

where hR is the difference in the maximum and minimum surface variations as illustrated in
Fig. 1.9. For a frequency of 2 GHz and an incident angle of 20 degrees, hR = 5.5 cm. Terrain
and the outside surfaces of buildings can easily exhibit surface variations greater than this.

1.4.5 Similarity and Differences

Geometrical optics (GO) is used to describe both light and electromagnetic propagation in
terms of “rays”. The “ray” in geometric optics is used to approximately model how wave
will propagate. Together with UTD described in section 1.4.2 form a widely used as a radio
wave propagation modeling known as ‘ray-tracing’. The limitation of ray-tracing is that the
physical dimension of the scattering objects must be large compared to the wavelength. The
five propagation primitives, four of which were described in section 1.4, usually included in
a ray-tracing model are free-space propagation, reflection, diffraction, diffuse wall scattering
and wall transmission.

Although both VLC and RF signal are electromagnetic wave, their characteristics are
relatively different owing to their operational frequency. Therefore, not all of propagation
primitives in ray-tracing model can be applied to VLC. In VLC system only free-space
propagation, 1 time reflection, and diffusion are included in the simulation model [24]. On
the other hand, RF propagation use 7 times reflection scattering, 1 time diffraction, and
7 times transmission [20]. Details of both VLC and RF systems are fully discussed in
chapter 2, 3 and 4.

1.5 Motivation of This Research

The main motivation behind this research is that GPS accuracy in indoor environment is
highly degraded due to the effects of multi-path component and obstacles. Apart from the
fact that GPS accuracy is highly degraded in indoor environment. There are two more moti-
vations for this research. Firstly, general wireless technology has short lifetime such as mobile
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phone system that lifetime approximately 5-10 years in each generation [25], of which use
different transmission technology; as shown in Fig. 1.10. Thus, high investment is required
for upgrading infrastructures to the newer generation. Secondly, the entire conventional
technologies such as Pseudolite [26], active badge [16], Active bat [17], and SpotON [18]
require new infrastructure that cannot be used for other purpose. Thus, high investments
on unnecessary infrastructures are required for wide area deployment. In this dissertation,
we focus on developing a new indoor positioning architecture that has long lifecycle and can
utilize the existing infrastructures in order to make it widely deployable with low cost.

1.6 Proposed Positioning System Architecture

The momentous goal of this research focuses on creating a new solution architecture for
indoor positioning, which has lower complexity, irrelevant with available bandwidth, com-
patible with existing and emerging systems. In order to accomplish this goal, we had been
studying on numerous potential solutions and came up with two candidate systems that fit
the previously mentioned objectives. We believed that both VLC and multiband received
signal strength (MRSS) fingerprinting can be a lifetime solution for indoor positioning sys-
tem. In this dissertation, we define the word lifetime solution as a solution that after being
implemented, it does not require any modification on the core equipment and can be used
throughout our lifetime. We deploy machine learning algorithms in both subsystem to ensure
the system involvement throughout its lifetime. In the proposed architecture, we carefully
design both systems to be very flexible. Thus, they can operate solely on their own, or can
be collaboratively operate, as shown in Fig. 1.11. Details of both subsystems are explained
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in the following subsections.

1.6.1 Visible Light Communication Subsystem

The first subsystem, our proposed VLC based positioning focuses on the improvement of vis-
ible light communication identification (VLID) system that provides positioning information
via LED light bulb, which is a part of VLC system. VLC is the communication technology
that uses illumination from light bulb to transmit data. The visible light is everywhere
around our daily life in the indoor environment, such as in office, supermarket, museum,
etc. Undeniably, vision is one of the most important human sensory to perceive day-to-
day information. Illumination of the visible light is also has a great impact on deliberating
aesthetic and practical effect. For instance, illuminations in supermarket are designed to be
vividly bright in order to make customer feel secure. On the other hand, illuminations in fine
dining restaurant are designed to deliberate the elegance of the inhabiting space. Lighting
architect plays important role on adding these secondary sensory function into illumination.
Prof. Masao Nakagawa had taken visible light into the further step by adding the third
functionality, communication, into visible light. VLC is finalized as Japanese communica-
tion standards JEITA-1221 [27] and JEITA-1222 [28], and currently being pushed forward
as international standard under IEEE802.15 TG7. By combining VLC with power line com-
munication (PLC) ubiquitous communication can be achieved without installing any extra
infrastructure [29].
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VLC with positioning information broadcasted from the LED light source, visible light
ID (VLID) [28], can offer many opportunistic applications; such as application in area of
barcode reader for supply management system. In basic positioning systems, where only
VLID is used, the direction and position from light source of estimated position cannot be
identified. The achievable positioning accuracy only by VLID is very low as in room level as
shown in Fig. 1.12(a). In our approach, neither additional infrastructure nor modification is
required on the transmitter side, as shown in Fig. 1.13. On the receiver side, 6-axis sensor is
embedded to provide 3-axis of Azimuth and 3-axis of tilt angulations information to perform
positioning estimation. The higher estimated position accuracy can be achieved contributed
to angulations information from 6-axis sensor. Hereafter, we denote this generic system
as a general orientation sensor’s information (GOSI), the estimated achievable accuracy is
shown in Fig. 1.12(b). Furthermore, we proposed a positioning scheme called switching esti-
mated receiver position (SwERP) scheme that can further enhance the positioning accuracy
over GOSI system, as shown in Fig. 1.12(c). Details of the proposed architecture and its
subsystem are elaborate in the following paragraphs.

Chapter 2 presents the characteristics investigation of the proposed VLC architecture.
Extensive experiments was performed and compared to the previously proposed VLC mod-
els [28]. By incorporating 6-axis sensor into VLID receiver, we discovered two unique char-
acteristics, based on our proposed architecture, which are field of view (FOV) and sensitivity
limits. FOV limit is contributed to receiver limitation and sensitivity limit are the effects
of channel characteristic of VLC. Both FOV and sensitivity limit are the fundamental at-
tributes to enable the proposed SwERP scheme. SwERP scheme is a low complexity that
took advantage of the occurrences of FOV and Sensitivity Limit. We use root mean square
error of distance error to evaluate the performance of the proposed architecture. The results
show that SwERP can provide higher accuracy and tolerant from receiver’s height variation
than GOSI scheme. The uniqueness of the proposed VLC architecture is only one transmit-
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Figure 1.13: Visible light communication based positioning system

ter is required for positioning estimation. Thus, higher accessibility can be achieved from
the proposed scheme.

On the contrary, SwERP scheme requires the presences of sensitivity limit. Therefore, in
chapter 3 we introduce optical orthogonal code (OOC) into conventional VLID system for
positioning purpose. Apart from gaining higher capacity from OOC codes [30], we propose a
nearest transmitter classification method based on optical orthogonal code (NTCOC). The
proposed NTCOC uses TDOA access method to enable SwERP scheme. Thus, even without
the presences of Sensitivity Limit, SwERP can still be utilized. The breakthrough came from
the courtesy of oversampling deployment that yields time resolution of OOC autocorrelation
function’s resolution. Furthermore, in section 3.2 we used system characteristics studied
from chapter 2 to create a physical layer evaluation model. A machine learning algorithm,
specifically support vector machine (SVM), is used to solve the geometrical problem of FOV
limit’s projection. All of the parameters that curtail in modeling process are also discussed
in section 3.2.

Apart from defining VLC based positioning architecture we propose three novel sub-
systems that helped us realized the positioning accuracy enhancement, which are switch-
ing estimated receiver positioning (SwERP), optical orthogonal code (OOC) based nearest
transmitter classifier method (NTCOC) and physical layer simulation model for VLC based
positioning system. To sum up, the proposed VLC based positioning subsystem provides an
opportunistic indoor positioning solution from utilize existing illumination infrastructures.
The achievable accuracy from this subsystem is less than 1 meter. However, the VLC based
positioning has an unavoidable communication limitation, owing to its wavelength property
that has low transmission property as explained in section 1.4.3. To ensure the success of
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Figure 1.14: Simulation of (a) instantaneous RSS (b) RSS fingerprinting of 2.4 GHz band
in LOS environment (30 × 50 meter), based on log-normal distribution with 4 transmitters
located outside at each corner of the simulation area.

accessibility, we introduced MRSS fingerprinting subsystem as a complimentary into the
proposed architecture. The extensive discussion on VLC based positioning subsystem and
its contributions can be found in chapter 2 and 3.

1.6.2 MRSS Fingerprinting Subsystem

In the second subsystem, we develop the system architect based on RSS fingerprinting system
by deploying frequency diversity at receiver in order to capture multi-band received signal
strength (MRSS). RSS fingerprinting system utilizes the radio frequency (RF) of the existing
WLANs infrastructure endorsing many location based services (LBSs). The fingerprinting
technique refers to a technique that exploits the relationship between any premeasured value
at a specific location. There are many types of fingerprinting technique, all of which named
after its premeasured value. In the RADAR case [14], the RF received signal strength is
the stimulus, also known as RSS fingerprinting technique. The advantage of fingerprinting
technique is no specialized hardware other than the ordinary wireless network interfaces
equipment required. RSS is the most suitable access method over AOA and TOA owing
to its robustness under indoor environment. The current limitation on achievable accuracy
from RSS fingerprinting method is presented in [9][22][31][32]. Thus, in this dissertation
we focus on improving the conventional RSS fingerprinting system. We introduce MRSS
fingerprinting, from the courtesy of cognitive radio multiband capability, as a part of our
solution architecture. The proposed architecture can incorporate RF signal not limit to only
WLAN but also any existing wireless infrastructure. Like conventional RSS fingerprinting
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system, MRSS deployment of fingerprinting based positioning systems can be divided into
two phases.

First, in the training or off-line phase, the MRSS fingerprinting created by performing
a site survey for collecting RSS from multiple frequency band. To prove that frequency
diversity itself can improve the fingerprinting performance. We use dualband access points
(APs) which can simultaneously transmit signal in both frequency bands as our multiband
transmitter. The objective for deploying frequency diversity on RSS fingerprinting is to
increase its resolution. Thus, we record the premeasured RSS value from each frequency band
separately. The entire studied area is measured by a rectangular grid points. The distance
between two closest grid points, grid spacing, defines the minimum achievable accuracy.
However, some part of the grid points can be omitted due to inaccessibility of measurement.
The differences between instantaneous RSS measurement and RSS fingerprinting is shown
in Fig. 1.14. Due to the RSS fingerprinting map liked characteristic, it is also called as radio
map [22]. The vectors of RSS values from each frequency band are stored respect to the
fingerprint location of than point.

Second, in positioning or on-line phase, MS measures multiband RSS signals vector from
several APs and existing wireless infrastructures compare with the premeasured database.
The measured RSS vector is compared to premeasured MRSS fingerprinting database in the
training phase. Position estimation can be done either on MS station or processed at central
server depended on the complexity of utilized algorithm. The most common algorithm used
for positioning estimation is the computation of Euclidean distance between the samples
measured in positioning phase and MRSS fingerprinting database. The fingerprint location
that provides lowest Euclidean distance is selected as the estimated position. There are
many advances algorithms such as neural network [31] and Bayesian modeling [33] that can
be used for positioning estimation. However, we focus only on using simple algorithm, such
as nearest neighbor (NN) and k-th nearest neighbor (KNN) method, to prove that frequency
diversity can improve the performance of RSS fingerprinting system. Details of this proposed
MRSS fingerprinting subsystem is elucidated in chapter 4.

Utilizing MRSS gives us numerous advantages as follows. Firstly, no synchronization is
required between transmitter and receiver. Secondly, modulation schemes and system band-
width do not have impact on RSS [11]. Moreover, radio wave provides higher accessibility
than VLC based positioning system; remote positioning can be achieved even without LOS
between transmitter and receiver. Last but not the least, transmitted signal from existing in-
frastructures (e.g. WLAN, digital broadcasting system, cellular network) and other emerging
wireless technology infrastructures will provide numerous frequency bands. In cooperation
with multi-band capable receiver; such as cognitive radio [2], receiver can simultaneously
access to the numerous frequency bands. Hence, no additional infrastructures are needed to
perform localization.

There are two major advantages of MRSS fingerprinting based indoor positioning sys-
tem. Firstly, the fingerprint at each location can be created by RSS from numerous types
of existing wireless network infrastructures, as a result of deploying frequency diversity on
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RSS fingerprinting, without prior knowledge of those transmitter locations. Secondly, Fin-
gerprinting method is a database approach that can initiate highly compatible platform as
shown in Fig. 1.15. MRSS fingerprints are constructed from both singleband and multiband
radio terminal. Therefore, any type of terminal that has premeasured RSS recorded in MRSS
fingerprinting server can utilize the database for localization.

To sum up, MRSS fingerprinting provides an opportunistic indoor positioning solution
from the existing wireless infrastructures and any emerging wireless infrastructure. MRSS
fingerprinting utilizes RF signals for localization. Thus, this system has lower limitation
on accessibility, owing to wave propagation, than the previously described VLC based po-
sitioning system. In contrast, MRSS fingerprinting requires abundant manpower to create
database during training phase. Intuitively, using estimated position from VLC based posi-
tioning subsystem to calibrate MRSS fingerprint in radio wave pre-measurement process can
greatly reduce manpower during the training phase, as shown in Fig. 1.11. However, perfor-
mance of the mention system is not evaluated since it is out of this dissertation scope. The
extensive details and discussion on MRSS fingerprinting subsystem are provided in chapter 4.

1.6.3 Positioning Engine (Machine Learning)

In order to ensure the objective of the proposed solution architecture, we include machine
learning algorithms into each subsystem of the proposed architecture, to enable the system
adaptation during its lifetime. To be slightly more specific, the architecture of a typical
machine learning “agent” described in [34] is shown as Fig. 1.16. This agent perceives and
models its environment and computes for appropriate actions. The updated made to any
of the components in the figure counted as learning process. Different learning algorithms
might be employed depending on which system it’s being implemented on. Prof. Nils J.
Nilsson defined definition of machine learning in [34] as

Machine learning usually refers to the changes in systems that perform tasks
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associated with artificial intelligence (AI). Such tasks involve recognition, diag-
nosis, planning, robot control, prediction, etc. The “changes” might be either
enhancements to already performing systems or ab initio synthesis of new sys-
tems.

The reasons that we need machine learning algorithms because some algorithms used in
practical system cannot be accurately designed. By letting machines adjust their internal
structure to compute the output is more appropriate for large number of sample inputs
such that in our system. Moreover, there is a possibility that hidden among large piles of
data can have important relationships and correlation. Machine learning algorithms were
introduced to extract these relationships [34]. Lastly, the environments can change over
time. A platform that could adapt to a changing environment is vital for lifetime solution
and can definitely reduce the need for constant redesign.

1.7 Advantage and Disadvantage of Each Subsystem

As mentioned in section 1.6, the study approach focuses on VLC that uses next generation
light bulb that provides illumination as transmitter and MRSS fingerprinting created from
existing wireless infrastructure. The mention technologies are based on infrastructures that
necessary for our life (illumination and radio wave communication). Each technology has its
advantage and disadvantage and is complimenting each other, details are being discussed as
follows:
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Table 1.2: Advantages and disadvantages of each subsystem

Subsystem Advantage Disadvantage
Visible
Light

• VLC uses illumination for commu-
nication.

• Receiver’s field-of-view (FOV)
limits communication connectivity.

• Light bulbs are everywhere in in-
door environment.

• VLC cannot be operated under
shadowing environment.

• High accuracy can achieved with-
out pre-measurement.

MRSS Fin-
gerprinting

• MRSS fingerprinting uses ra-
dio wave transmitted from existing
wireless infrastructure.

• Pre-measurement of RSS signal is
required to create fingerprinting.

• The MRSS fingerprinting does
not have communication problem in
non-line-of-sight (NLOS) and high
shadowing environment.

• Human presences have impact on
positioning accuracy.

For the reasons mentioned in table 1.2, we require both technologies to in order to provide
all time accessibility. We design our proposed architecture to have two subsystems that can
operate parallely.

1.8 Approaches and Contributions

This dissertation is a systematic study of the proposed indoor positioning lifetime solution
architecture based on eco-friendly approach. The overview of this dissertation is shown as in
Fig. 1.17, where existing wireless infrastructure are used for localization purpose. Beginning
with an investigation of the system characteristic of VLC approaches, a model of the VLC
based positioning is derived. Next, a MRSS fingerprint model of positioning system is
proposed to compromise the limitation of VLC based proposed system. Both of the outline
systems consist of three main components: the model of localization subsystem, path loss
propagation model, and the positioning algorithm. The result models are considered for
a system design framework for the indoor positioning system. Finally, system design and
implementation guidelines are suggested based on the performance study of the proposed
indoor positioning architecture.

There are two main subsystems for the proposed architecture, which are VLC based
positioning subsystem and MRSS fingerprinting subsystem. Machine learning algorithms are
the key factor to accomplish lifetime solution, for the reasons mentioned in section 1.6.3. We
limit scope of this research into five main assumptions as follows. First, this study is limited
to the investigation of stationary mobile, no mobility tracking is considered. Second, the
placement of wireless infrastructure is not considered. The indoor positioning is assumed to
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Figure 1.17: Illustration of the proposed architecture.

be overlaid on top of existing infrastructure. Therefore, the performance of the positioning
system depends on the placement of wireless infrastructure. Third, this study does not
consider the search of an optimal positioning algorithm, but assumes generic algorithms as
baseline to prove that the proposed architecture can operate properly. Finally, although it is
intuitive that both of the proposed subsystem can be combined. We only provide the analysis
of the individual subsystems. The performance of the combined subsystems is beyond the
scope of this dissertation.

We start with channel analysis of VLC based positioning system from analytical and
experimental result. This study performs an extensive data analysis of the VLC based po-
sitioning system in order to understand its underlying features. We proposed an algorithm
based on system characteristic to enhance system performance. Furthermore, we proposed
two subsystems that enhance the VLC system performance. This dissertation provides theo-
retical understanding and concrete recommendations on how to design the indoor positioning
system. The VLC based positioning system has unavoidable communication limitation, ow-
ing to its wavelength property that has low transmission property. To ensure the success
of accessibility, we introduced MRSS fingerprinting system as a complimentary system. So
as VLC based positioning system, we made analysis and experiment to prove our claim.
The work on this subsystem is mainly focus on proving that frequency diversity can greatly
improve the accuracy of conventional fingerprinting subsystem. The main goal is to prove
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that both of the proposed subsystems can solely work on itself. The following is the list of
contributions:

• Study and characterization of the proposed VLC and MRSS fingerprinting through an
extensive measurement and simulation.

• Proposed minimum requirement infrastructures and algorithms for VLC and MRSS
fingerprinting subsystem.

• Identified system parameters used for designing indoor positioning system such as
the grid spacing, number of access points, oversampling ratio and switching angle.
We quantify the impact of these system parameters on the performance of proposed
architecture.

• Recommended design guidelines to facilitate the deployment of indoor positioning sys-
tem based on the proposed architecture.

We summarize the problems of conventional systems in each chapter, and categorize them
by difficulty, breakthrough solution and discuss the effect of the proposed scheme. Details
of the study are provided in Table 1.3.

1.9 Organization

Chapter 2 reports on our detailed investigation of the first subsystem VLC based positioning
characteristics and infrastructure. We define FOV and sensitivity limits, of which are key
factor to positioning accuracy improvement. Based on both limits, we propose a switching
estimated receiver position (SwERP) scheme that can greatly enhance positioning accuracy.
In chapter 3, we propose two enhancement modules to help enabling the SwERP scheme.
Firstly, an optical orthogonal code (OOC) based nearest transmitter classification (NTC)
method is proposed to yield the necessity of sensitivity limit presence. Secondly, based on
FOV limit we propose a physical simulation model to help evaluating the effectiveness of
the proposed SwERP scheme. For the reason that VLC has unsolvable shadowing problem.
Thus in chapter 4, we propose MRSS fingerprinting subsystem as a parallel system to ensure
the pervasiveness of accessibility. The fundamental infrastructure and its characteristics
are discussed in this chapter. Finally, the conclusion and discussion of the future work is
presented in Chapter 5. The overall structure of this dissertation is shown in Fig. 1.18.
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Table 1.3: Problems of existing schemes and the contribution of the proposed schemes

Chapter 2 Topic Visible light communication based positioning sub-
system

Problems of exist-
ing research [28]

In conventional visible light identification (VLID)
system, the direction and position from light source of
estimated position cannot be identified. The achiev-
able positioning accuracy only by VLID is very low
as in room level.

Proposed solution We integrated 6-axis sensor into the receiver to pro-
vide Azimuth and Tilt angulations information. FOV
and sensitivity limits are defined based on the inte-
grated system. Thus, switching estimated receiver
position (SwERP) scheme is proposed based on the
presences of sensitivity limit.

Effect of proposed
scheme

SwERP is a low computation scheme that could pro-
vide over 85% of accuracy improvement with higher
tolerance to terminal height variation.

Chapter 3: Topic Nearest Transmitter Classification (NTC) Method
(Section 3.1) Problems of exist-

ing research [52]
SwERP scheme requires the sensitivity limit control-
ling module, which is unnecessary for communication
and complicate.

Proposed solution NTC based on optical orthogonal code (NTCOC) is
utilized as the complimentary module to presences of
sensitivity limit.

Effect of proposed
scheme

Optical orthogonal code can be used for communica-
tion and NTCOC provides higher correct classifica-
tion rate.

(Section 3.2) Topic Physical Layer Simulation Model
Problems of exist-
ing research [52]

Integrating 6-axis into VLC based positioning sys-
tem changes conventional VLC system characteris-
tics. Thus, new simulation model must be developed
for further study of the proposed VLC based posi-
tioning subsystem.

Proposed solution We use characteristic study from chapter 2 to con-
struct simulation model. Support vector machine
(SVMs) is used to classified the FOV limit, of which
one of the most important parameter to enable
SwERP scheme.

Effect of proposed
scheme

Apart from successfully constructing simulation
model for VLC based positioning subsystem. We
found out that from the proposed simulation model
can reduce computation complexity up to 90%
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Chapter 4 Topic Multiband Received Signal Strength Fingerprinting
Subsystem Architecture

Problems of exist-
ing research [64]

Conventional RSS fingerprinting system has limita-
tion on achievable accuracy, and can only be used
with WLAN infrastructure.

Proposed solution We deploy frequency on RSS fingerprinting to en-
hance achievable accuracy. Moreover, with the pro-
posed solution architecture every existing wireless in-
frastructure can be used as signal sources.

Effect of proposed
scheme

Higher achievable can be achieved in non line-of-sight
(NLOS) environment, owing to the deployment of fre-
quency diversity on RSS fingerprinting.
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Chapter 2

VLC Based Positioning Subsystem
Architecture

In this chapter, we study the characteristic of the proposed VLC subsystem through
extensive measurements and confirm with simulation results. As mentioned in 1.6.1, embed-
ding 6-axis sensor into conventional VLID system greatly change system characteristics. In
the study, we identify system parameters used for enhancing positioning accuracy. Based
on the studied characteristics we proposed a switching estimated receiver position (SwERP)
scheme that can greatly enhance positioning accuracy.

2.1 Proposed Infrastructure

In the first proposed system, we focus on developing low-complexity indoor positioning sys-
tem that utilizes existing infrastructure based on VLC transmitted via power line communi-
cation (PLC) [28][29]. The VLC based positioning is eco-friendly because no carbon footprint
(CF) is produced from construction, and VLC uses LED light bulb, which consumes less elec-
tricity and longer usage life cycle as transmitter. In addition, old style incandescent light
bulb is banned from European Union since September 2009 and will be obsolete at the end
of 2016 [35]−[37]. The United States of America also has announced its plan to phase out
old style incandescent light bulb and finish by year 2014 [38]. By that time, we would be
able to fully realize the pervasiveness of VLC system. In addition to the conventional VLC
system, we embedded the 6-axis sensor, which provides 3-axis of Azimuth and 3-axis of Tilt
angulations information, at a receiver to provide information. We propose a positioning
scheme base on system characteristic to enhance positioning estimation accuracy.
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Table 2.1: Standard of Visible Light ID System

Wavelength 380-780 mm
Data rate 4.8 kbps
Modulation method SC-4PPM
SC Modulation frequency 28.8 kHz
Payload length 512 bit
Frame length 542 bit
Frame time 0.113 s
Payload ID, General Data

SOF
(Start of Frame)

PRE
(6-bit)

F-Type
(8-bit)

PRE
(6-bit)

F-Type
(8-bit)

SOF
(Start of Frame)

Payload

DATA
(512-bit)

EOF
(End of Frame)

CRC-16
(16-bit)

Payload

ID                DATA
(128-bit)          (  512-bit)

EOF

CRC-16
(16-bit)

(1) TYPE A

(2) TYPE B

(End of Frame)

Figure 2.1: Visible Light ID Frame Construction.

2.1.1 Visible Light Communication (VLC)

Visible light communication (VLC) [24] is regarded as one of the most promising alternative
to radio wave communication. VLC system can provide various opportunistic solutions to the
deficiency of frequency band in radio wave communication, for the reason that visible light is
not interfering with radio frequency band. Moreover, by integrating VLC into existing power
line communication [29], true indoor ubiquitous environment can be achieved. VLC system
is adopted as Japan Electronics and Information Technology Industries Association standard
body number CP-1221. Currently, VLC is being considered as one of the candidates for IEEE
802.15 in task group 7 (IEEE 802.15.7). VLC standard promises both indoor and outdoor
applications such as traffic control infrastructure, outdoor advertising, infrastructure-to-
mobile communication, mobile-to-mobile communication, secure indoor LAN and position
information (VLID) [28]. At present stage, VLC can transmit data up to 1 Gbps [39].
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Table 2.2: Parameters of VLC Development Tool Kit

VLC data rate 4.8 kbps
Modulation method 28.8 kHz SC-4PPM
Semi-field of view (FOV: ψc) 25o, 17.5o, and 10o

Half-power angle (Φ1/2) 50o

Transmit optical power (PT ) 400000 nW
Rx sensitivity (RxS) 16 nWrms
Refraction index (n) 1.460 (Plastic)
Concentrator gains (g(ψ)) 11.9346 (ψc = 25o)

2.1.2 Visible Light Identification System (VLID)

Positioning information broadcasted from LED light source, visible light ID (VLID), can
provide many opportunistic applications; such as application in area of barcode reader for
supply management system. VLID was adopted as JEITA (Japan Electronics and Informa-
tion Technology Industries Association) CP-1222 standard since June 2007. In this section,
standard and modulation method of VLID system are described.

Standard of Visible Light ID System

Standard of VLID system is shown in Table 2.1. Wavelength used in VLID system is in
the range of visible light. Frame construction detail is illustrated in Fig. 2.1. There are two
types of frame construction type A and B. Both of frame constructions contain SOF (start
of frame), payload and EOF (end of frame). SOF consists of PRE (preamble) and F-TYPE
(frame type). The payload part contains only data for Type A, while containing both ID
and Data in Type B. In EOF part, cyclic redundancy check (CRC-16) is contained. The
VLID from each transmitter is multiplexed by TDMA [29], and self-position can be obtained
by the received VLID only.

Modulation Method

Modulation method of visible light ID system is SC-4PPM, with subcarrier modulation
frequency of 28.8 kHz and data rate of 4.8 kbps. Fig. 2.2 illustrates signal waveform of
SC-4PPM, where parameter a, b and c are defined as follows.

Amplitude of signal = (c− a) and degree of modulation = (c− b)/c. We can vary signal
waveform for many applications from value of a, b and c. In this evaluation we use VLID
development kit2, which is consisted of a pair of transmitter and receiver. The specification
of transmitter and receiver are described in Table 2.2.

2Visible Light ID System Development Kit, Nakagawa Laboratory Inc.
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Figure 2.2: Signal Waveform of SC-4PPM.

Figure 2.3: VLID development kit (Transmitter).

VLID Transmitter (Tx)

Visible Light ID System transmitter consisted of NVT-001 module and 4 LED, Fig. 2.3
satisfied standard JEITA CP-1222. The transmit data is configurable via NVT-001’s USB
module. The specifications are stated in Table 2.2.

VLID Receiver (Rx)

Visible Light ID System receiver, Fig. 2.4, satisfied standard JEITA CP-1222, the connection
is done via USB connector and enabled serial communication. In the receiver, bandpass filter
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Figure 2.4: VLID development kit (Receiver).

Table 2.3: Specification of 6-Axis Sensor Model AK8976A3

Azimuth measurement 3-axis magnetic sensor
Inclination measurement 3-axis magnetic sensor
Magnetic sensor sensitivity 1 µT/LSB
Acceleration sensor sensitivity 45 LSB/G
Operation temperatures −30o C to +85o C
Operating supply voltage +2.5 V to +3.6o V
Package size 4.5 mm × 4.5 mm × 1.0 mm

is embedded for optical noise filtering to make the receiving VLID and data stable. CRC and
limiter are also embedded to enhance the satiability when the receiving high level optical
power.

2.1.3 6-Axis Sensor

6-axis sensor development kit3 model AK8976A is developed by ASAHI KASEI MICROSYS-
TEMS CO., LTD. The AK8976A is a geomagnetism detection type electronic compass IC
with built-in 3-axis acceleration sensor; specifications are stated in Table 2.3. The packet
size of AK8976A is very small, as shown in Fig. 2.5 (4.5 mm×4.5 mm×1.0 mm), which can
be integrated into normal mobile phone. By embedding the AK8976A into the system, a
navigation system is achieved with reduced space in a PDA or mobile phone incorporating
the GPS function.

Specifically, the AK8976A has the following features. Firstly, Azimuth (β) measurement,
where the geomagnetism can be detected by processing 3-axis magnetic sensor output data.
Secondly, tilt (ϕ) measurement. The posture (inclination) of the sensor (the equipment
incorporating the sensor) can be detected by processing 3-axis acceleration sensor output
data. Currently, there are many mobile terminals available in market that embedded 6-axis
sensor to provide function of accelerometer and compass, such as iPhone and iPad from
Apple, HTC and many other manufacturers.

36-Axis sensor model AKD8976A-std, Asahi Kasei Corporation.
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Unit:  mm 

Figure 2.5: Outline dimensions of 6-axis sensor AK8976A.

Table 2.4: Difinition of 6-Axis Sensor AK8976A Log File3

TM Time (hour: minute: second.milisecond)
HH Geomagnetic measurement data
AA Acceleration measurement data
TH Azimuth angle (degree)
PH Pitch angle (degree)
ET Roll angle (degree)
TE Temperature (Converted to centigrade)

The AK8976A evaluation kit can capture the 6-axis sensor orientation as the log file.
Fig. 2.6 illustrates the log file capturing window, where definition of log file is described in
Table 2.4. The processing procedures of captured log files are described in the following
subsection.

2.1.4 Positioning Display System (PDS)

Evaluations of the proposed architect were conducted numerous times by performing both
experiment and simulation to confirm the results. VLID development kit and 6-axis sensor
development kit were developed separately, thus the data formats are different. In order to
ease up the investigation procedure, graphic user interface (GUI) of VLC based positioning
system is developed, as discussed in section 1.3. The developed GUI consists of two parts,
which are experimental data acquisition for positioning estimation in section 2.3.2, and data
analytical part for receivable range experiment in section 2.3.1.



CHAPTER 2. VLC BASED POSITIONING SUBSYSTEM ARCHITECTURE 40

Figure 2.6: Log format of 6-axis sensor AK8976A.

  

Figure 2.7: GUI of VLC based indoor positioning system (Data analytical module).

Data Analytical Module

The data analytical module is created in order to observe the relationship between the
terminal tilt angle and the furthest receivable point of only effect from FOV, effect from
channel DC gains. The experimental results are compared in Fig. 2.7. This GUI is used for
receivable range calculation, as experimented in section 2.3.1.

Data Acquisition Module

Data acquisition module, as shown in Fig. 2.8, is used for the experiment of positioning
estimation, in section 2.3.2. The input of the program is x−axis, y−axis and times (hour,
min, second) of the experimented position. The experimented database is exported in the
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Figure 2.8: GUI of VLC based positioning system (Data acquisition module).

format of MS Excel (.xls), which is to be processed with the log file of 6-axis sensors from
Fig. 2.4.

2.2 Proposed System Characterestics

Krishnamurthy [4] identifies accuracy as the most important performance metric in location
positioning in mobile environments. Accuracy is usually reported as an error distance be-
tween the estimated location and the actual mobile location. The report of accuracy should
include the confidence interval or percentage of successful location detection which is referred
to as the location precision. To maximize system performance, we verified the proposed sys-
tem characteristics by making both empirical and numerical analysis. We define two words
to justify the characteristic of the proposed system, which are FOV (ψc) Limit and Sensitiv-
ity (RXS) Limit. Both parameters have crucial impact on positioning estimation accuracy;
details are discussed in the following part.

2.2.1 Positioning Characteristics

Data from both VLC tag and 6-axis sensor are combined based on the time measured at
receiver, and forwarded to processing unit, as shown in Fig. 1.13. In our case, we use
MATLAB as processing unit. VLID can contain information such as (XTx, YTx) and HR,
shown in Fig. 2.9 that can be broadcasted from server via power line communication to
each VLC transmitter. Thus, each VLC transmitter broadcasts its own information to
the receiver. HT is a preconfigured variable, which can be calculated from user height
and user’s posture (e.g. standing, sitting). Therefore, vertical height between receiver and
transmitter (H) can be estimated. In our evaluation we assume that H value is equal to 150
cm, because the average vertical distance between terminal in experimenter’s hand (with
standing posture) to the ceiling in our campus is equal to 150 cm. Positioning estimation
can be calculated by data from 6-axis sensor, ϕ and β angulations, together with VLID
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Figure 2.9: Position is estimated from Tilt and Azimuth angulations data from 6-axis sensor.

information (XTx, YTx), as shown in Fig. 2.9 and (2.1) − (2.3).

DA=(H +∆H(x)) · cot θ (2.1)

∆H =

{ 1

b-a
for a ≤ x ≤ b,

0 for x < a or x > b
(2.2)

[XA YA]
T = [DA cos β DA sin β]T + [XTx YTx]

T (2.3)

where θ is the elevation angle from the ground (θ = 90 - ϕ). The probability density function
(PDF) of vertical distance uncertainty is assumed to be uniform distribution represented by
H. [a b] in (2.2) represented the uncertainty range which is assumed to be equal to [-10 10]
cm. (XTx, YTx) and (XA, YA) are coordinates of the transmitters, which are broadcasted
from transmitters, and estimated receiver positions (ERPs) respectively. The accuracy of
ERP calculated from preceding information is area level.

2.2.2 FOV Limit

In our proposed system, we consider the effect of tilt angle, Azimuth angle from 6-axis sensor
and semi FOV (ψc) of the receiver. ψc is defined as maximum of receivable signal incident
angle. In Fig. 2.10, with one tilt angulations data, ψc of the terminal creates three estimated
receiver positions (ERPs) A, B and C. ERP A is the line-of-sight (LOS) position explained
in (2.1), ERP B and C are the nearest and furthest receivable positions of receivable range,
respectively. The ERP and receivable range are calculated by using tilt (ϕ) angulations data
from 6-axis sensor and ψc of the receiver, as in the following equation.
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ERP A

H

+

ERP C ERP B

90o

: Tilt Angle
: FOV/2

: Vertical HeightH

−

−+

Figure 2.10: An illustration of Tilt angulations plane. ERP A shows the line-ofsight, ERP
B and C are the nearest and furthest position from the transmitter.
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Figure 2.11: An illustration of incident angle of normal light source (ψ) and transmitter’s
half-power angle (Φ1/2).
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|DC −DB| = H · |cot (θ − ψc)− cot (θ + ψc)| (2.4)

The DB and DC are horizontal distances from VLC transmitter to ERP B and ERP C,
respectively. Distance between ERP B and C, calculated from (2.4), is denoted as (signal)
receivable range. The receivable range shows the range that a receiver is able to receive
VLID transmitted from VLC transmitter, which is physically limited by FOV of the receiver.
The smaller receivable range is, the lower estimation uncertainty becomes. In other words,
accuracy is increasing in inverse proportion to receivable range. We denote a receivable range
that caused by FOV Limit as DFOV , of which is calculated from geometrical line of receiver’s
FOV, as shown in Fig. 2.4.

2.2.3 Sensitivity Limit

In addition to FOV Limit, the (signal) receivable range can be reduced owing to the effect
of channel direct current (DC) gain [24][40], when received optical power (Pr) is lower than
receiver’s sensitivity (RxS).

Pr =
Txs∑{

PtHd (0) +

∫
walls

PtdHref (0)

}
(2.5)

Pr is the aggregation of direct (2.6), and reflected components (2.7), which are obtained from
GO calculations [20], from all of the possible transmitters (Fig. 2.11 and 2.12).

Hd (0) =



(m+ 1)A

2πD2
L

cosm (φ)Ts (ψ) g (ψ) cos (ψ) ,

0 ≤ ψ ≤ ψc,

0,

ψ > ψc,

(2.6)

where A is the physical area of the optical concentrator. DL is the distance between
a Tx and a Rx, ψ is the angle of incidence, Ts(ψ) is the gain of an optical filter, and
m = − ln 2/(ln cosΦ1/2), Φ1/2 is the semi-angle of transmitter. φ is an angle of irradiance
calculated from tan−1(D/H) as shown in Fig. 2.11. ψc denotes the receiver’s semi FOV.

Href (0) =



(m+ 1)A

2π2D2
1D

2
2

ρdAwall cos
m (φ) cos (α)

cos (δ)TS (ψ) g (ψ) cos (ψ) ,

0 ≤ ψ ≤ ψc,

0,

ψ > ψc,

(2.7)
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Figure 2.12: An illustration of transmitter (Tx) and its mirror, which are used in geometric
optic calculation.

cψ
Original FOV Configuration
Modified Sensitivity Limit
Modified FOV Limit

Figure 2.13: Illustration of difference between FOV (ψc) Limit, and Sensitivity (RxS) Limit.
FOV limit is unmodifiable physical attribution of the receiver. On the other hand, sensitivity
limit is a property of received optical power (Pr), which is modifiable.
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Table 2.5: Parameters of Experimental Environment

Room height (HR) 2.04 m
Terminal height (HT ) 0.54 m
Vertical distance (H) 1.50 m
Room width 1070 mm
Room length 5000 mm
Transmitter location (490, 1250) mm

  

Figure 2.14: Experimental environment the VLC transmitter is attatached at the ceiling and
the receiver is attached with 6-axis sensor to measured the angulations data.

whereD1 andD2 are the distance between Tx and reflective point (ref), and distance between
ref and Rx. ρ is the reflectance factor, dAwall is a reflective area of small region. α and
δ are the angle of irradiance to ref , and the angle of irradiance to the receiver (Fig. 2.12).
The optical concentrator g(ψ) is given as

g (ψ) =


n2

sin2 ψC

, 0 ≤ ψ ≤ ψc,

0, ψ > ψc.

(2.8)

Receivers can retrieve VLID only when received optical power (Pr) is higher than the receiver
sensitivity (RxS). The shrinkage of receivable range effects are occurred when Pr is lower
than RxS in the DFOV , denoted as sensitivity limit. We denote the receivable range caused
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Figure 2.15: Experimentation on error distance estimation, 44 oriented positions with ran-
dom tilt angle (ϕ) were experimented.

by sensitivity limit as DRxS, of which DRxS ≤ DFOV . The differences between DRxS and
DFOV are shown in Fig. 2.13

2.3 Experimental Setup

Regarding performance evaluation of the proposed system, both experimentation and simu-
lation have been conducted to confirm the results on both aspects of receivable range, and the
estimated root mean square of error distance (RMSED). Experimental setup are shown in
Fig. 2.14 and Fig. 2.15, where the VLC transmitter is attached to the ceiling and the receiver,
and the VLC tag is attached with the 6-axis sensor experimental kit (AK8976A). Data from
VLC tag and 6-axis sensor are computed in PC, by using MATLAB. This is to calculate
the receivable range, estimated positions and analyze the effect of azimuth angulations error
(βErr) from 6-axis sensor in the experimented environment.

We tried to generalize our proposed model, by conducting several experiments with dif-
ferent configurations and simulation are made to confirm the experimental results. The
simulation parameters are adjusted to fit the experiments. The experiment and simulation
procedures are illustrated in Fig. 2.16, in the hypothesis formulation part; the accuracy of the
proposed system are affected by both VLC system (Pt, H, ψc, andΦ1/2) and 6-axis sensor (ϕ,
and β). Hence, the evaluations are separated into two parts as receivable range estimation
and positioning estimation.
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Figure 2.16: Illustration of the experiments and simulation procedures, simulation parame-
ters are adjusted to fit the configuration of the experiments [41].
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Table 2.6: Parameters of Experimental Environment

Half power angle (Φ1/2) 50o

Field of view (ψc) 25, 17.5, and 10 Degree
Light incident angle (ψ) 0 6 ψ 6 ψc

Transmit optical power (PT ) 400000 nW
Room height (HR) 2.04 m
Terminal height (HT ) 0.54 m
Vertical distance (H) 1.50 m
Area of receiver (A) 80 mm2

Filter coefficient (Ts(ψ)) 1
Rx sensitivity (RxS) 16 nWrms
Refraction index (n) 1.460 (Plastic)
Concentrator gains (g(ψ)) 11.9346 (ψc = 25o)

2.3.1 Receivable Range

In the receivable range investigation, transmitter’s optical power (Pt), vertical distance (H),
FOV (ψc), half-power angle (Φ1/2) from VLC system, only tilt angle (ϕ) from 6-axis sensor
are investigated; in other words, 2 dimensional system evaluation as illustrated in Fig. 2.10.

Table 2.2 shows the parameters of VLC transmitter and VLC tag2. The default FOV of
VLC development tool kit is 25o, in this evaluation the FOVs receiver are modified by limiting
the receivable light incident angle (to 17.5 and 10 Degree) rather than replacing the lenses of
VLC tag. Hence, no concentrator a gain (2.8) is acquired, the calculated concentrator gains
is equal to 11.9346 in every system configurations. Table 2.2 shows the parameters of 6-axis
sensor model AK8976.

The experimental environment configurations are shown in Table 2.5. The vertical dis-
tance (H) is set as 1.50 m to make it the prospect of average usage height. The experiment
has been conducted as illustrated in Fig. 2.10; the measured distance is in reference with the
transmitter. The evaluations of receivable ranges are analyzed by the effect of channel DC
gains (2.4) and transmitter half-power angle (Φ1/2).

2.3.2 Positioning Estimation

In the positioning estimation experiment, transmit optical power (PT ), vertical distance (H),
FOV (ψc), half-power angle (Φ1/2) from VLC system, tilt angle (ϕ) and azimuth angle (β)
from 6-axis sensor are also investigated; in other words 3 dimensional system evaluation.
The experimental environment is set as shown in Fig. 2.15, where numbers of experimented
positions are arranged under VLC transmitter. For each position, 10 experiments are per-
formed with unarranged tilt angle (ϕ). The configuration of experimental environment is

2Visible Light ID System Development Kit, Nakagawa Laboratory Inc.
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Figure 2.17: General architecture for data fusion.

stated in Table 2.2, Table 2.3, and Table 2.6. Three of FOV configurations have been inves-
tigated, under 44 oriented positions with 10 experiments at each position. Hence, 1320 (3 ×
44 × 10) experiments were conducted. The evaluation process is described in the following
subsections.

2.3.3 Information Fusion and Integration

Information integration corresponds to the use of information from several sources (or the
same source with several times) to accomplish a particular task. Information fusion refers
to particular mathematical functions, algorithms, methods, and procedures for data combi-
nation [42]. The architecture for information integration is illustrated in Fig. 2.17.

In our proposed model, data sources are from 6-axis sensor log files, section 2.1.3, and
experimented positions, which is illustrated in section 2.1.4. Both 6-axis sensor in Fig. 2.18
and the experimented positions data in Fig. 2.19 are preprocessed by inserting the sample
acquired time and converting azimuth angle, this is described in section 2.3.4. The data
fusion process is done by matching the sample acquired time from both data sources. The
executions of data are conducted under MATLAB environment, which is described in the
following subsection.

2.3.4 Angulations Conversion

Before information fusion, section 2.3.3, the 6-axis sensor data must be converted from
azimuth (β) angulations in reference with North into angle reference with VLC transmitter,
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H M S

Figure 2.18: Experimented log file of 6-Axis sensor, the first three columns show the samples
acquired time (hour: min: second), which is used as fusion indicator with data from VLC
based positioning GUI.

H M S

Figure 2.19: Experimented data from VLC based positioning GUI. The first column shows
experimented order, where second and third show coordination of experimentd positions.
Column four to six show the samples acquired time (hour: min: second).
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Figure 2.20: Angulations conversion, the data from 6-axis sensor is mapped in to angle
reference with VLC transmitter.

as in Fig. 2.20. The derivation of azimuth angle toward VLC transmitter (βN) is shown in
(2.9).

βN = (βR + 90)− β (2.9)

Besides, the actual experimented azimuth angle toward VLC transmitter (βA) is shown in
(2.10). Where R is the measured distance from Tx to Rx, but R̂ is the distance of estimated
user position A, B and C, as illustrated in ( 2.1) and ( 2.3).

[βA] =

{
cos−1

(
Xi

R̂

)}
∩
{
sin−1

(
Y i

R̂

)}
(2.10)

2.4 Proposed Positioning Modules

In this section, we discuss the methodologies that are utilized for positioning estimation
along with its requirements. Based on occurrence of DRxS, we proposed a positioning es-
timation scheme which is switching estimated receiver position (SwERP) for the case that
light attenuator is deployed DRxS < DFOV . We also defined the case that DRxS = DFOV as
general orientation sensor’s information (GOSI), because of its similarity with other system
that has FOV. The proposed SwERP scheme requires two additional modules, FOV Limit
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Figure 2.21: Position is estimated from receivers ψc, ϕ and β from 6-axis sensor.

classification and nearest transmitter classification algorithm, of which will be discussed in
the following sections.

2.4.1 General Orientation Sensor’s Information (GOSI)

We defined GOSI as the case that DRxS = DFOV , which is the general condition of any
system that has FOV. For the simplicity in calculation only a single ERP is utilized. Root
mean square is used to illustrate total distance error between each of the experimented
position and its estimated receiver position as in Fig. 2.21. The root mean square of error
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distance (RMSED) can be calculated by

RMSED =

√√√√ 1

n

n∑
i=1

ErrD2
i ,

=

√
ErrD2

1 + ErrD2
2 + · · ·+ ErrD2

n

n
,

(2.11)

where n is the numer of estimated positions. Intuitively, estimated position can be regarded
as position calculated from receiver’s tilt angle (ERP A). Nevertheless, in the practical usage
wider FOV provides wider communication range [24], which is the main purpose of VLC.
Hence, we analyzed RMSED achieved from each ERP (A, B and C) to find the one that
provide the lowest RMSED.

2.4.2 Switching Estimated Receiver Position (SwERP)

The SwERP scheme utilizes more than one ERP in the positioning estimation to eliminate
dependence between achievable RMSED from each ERP and tilt angulations. The proposed
scheme is working on the basis that DRxS < DFOV , which is the effect of sensitivity limit. As
shown in Fig. 2.13, at the higher receiver’s tilt angle, receivable range is shrunken to ERP
B. Intuitively, ERP B should provide higher accuracy at the higher receiver’s tilt angle than
those with ERP A and C. Hypothetically, when sensitivity limit occur receiver’s tilt angel
(ϕ) is affecting RMSED of each ERP.

In this proposed scheme, SwERP, we denote the tilt angle that estimator switched from
utilizing one ERP to the other, e.g. ERP A to ERP B, and provided the lowest achievable
RMSED as the proper switching angle (ϕS). On the other hand, the tilt angles that do
not provide lowest achievable RMSED are denoted as improper switching angle (ϕI). In
(2.12)−(2.15) derive polynomial regression algorithm is used to predict relationship between
RMSED calculated from each ERP versus its tilt angulations (ϕ), where xi is the value
calculated from ERP A, B or C. We use an intersection point of the 6-th order polynomial
regression (m) of each ERP, from the 440 experimented positions (i) of 3 receiver’s FOV
configuration, to calculate a proper switching angle (ϕS).

yi = a0 + a1xi + a2x
2
i + · · ·+ amx

m
i + εi, (i = 1, 2, . . . , n) (2.12)

y1
y2
...
yn

 =


1 x1 · · · xm1
1 x2 · · · xm2
...

...
...

1 xn · · · xmn



a0
a1
...
am

+


ε1
ε2
...
εn

 (2.13)

Y = Xa⃗+ ε (2.14)
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The estimated polynomial regression coefficients using ordinary least squares estimation
is [43]

ˆ⃗a =
(
XTX

)−1
XTY (2.15)

The objective of utilizing polynomial regression is to study the relationship between switching
angle (ϕS) from experimental data and achievable RMSED of each ERP in the generalized
manner.

2.5 Performance Evaluation

We made feasible study on all aspects of the proposed solution architect characteristic, for
the purpose of future design and implementation. Performance of the proposed architecture
is varied from the following factors, tilt (ϕ) azimuth angulations error (βErr), receiver’s FOV
(ψc), sensitivity (RXS) and uncertainty of terminal height (∆H). Details of each factor are
explained in the following sections.

2.5.1 Azimuth Angulations Error (βErr)

The azimuth error (βErr) is the error from magnetic sensor of 6-axis sensor. The azimuth
error is calculated from actual azimuth angle (βA) - azimuth angle toward VLC transmit-
ter (βN). Derivations of the actual azimuth angle (βA) and azimuth angle toward VLC
transmitter (βN) are described in (2.10) and (2.20), respectively.

The azimuth angulations error (βErr) shows normal distribution, where mean value is
nearly 0o, as illustrated in Fig. 2.22. In this section PDF (Probability Distribution Function)
of azimuth angulations error (βErr) is studied, the normal distribution equation is illustrated
as follows.

f (x|µ, σ) = 1

σ
√
2π
e

−(x−µ)2

2σ2 (2.16)

where µ is expected value and σ is standard deviation.
The experimental azimuth error shows µ = 7.84o and sigma = 36.18o, of 1320 exper-

iments. Nevertheless, the PDF does not fit the azimuth error distribution. This can be
the result of interference at experimental environment; further investigation is conducted by
neglecting the βErr, which has value more than the investigated angle, as in Table 2.7.

Table 2.7: Percentage of Error Under Investigated Angle

Azimuth error (|βErr|) < 100 96.28 % of Error Distribution
Azimuth error (|βErr|) < 75 94.24 % of Error Distribution
Azimuth error (|βErr|) < 50 89.84 % of Error Distribution
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Figure 2.22: Azimuth (βErr) error distribution analysis.

The azimuth error’s PDF that is calculated from |βErr| < 50o have 89.84 % of azimuth
errors; this shows the highest compatibility with the experimental results. Thus, µ = 0o and
σ = 18.18o are selected as PDF of azimuth error distribution. Furthermore, the positions
that have |βErr| more than investigated angle are illustrated in Fig. 2.23, only 6 positions
from 44 positions have |βErr| > 50.

2.5.2 Receivable Range Investigation Analysis

The actual receivable range of the proposed system can be shrunken from the one calculated
from geometrical line of receiver’s FOV due to the attenuation of channel DC gains (2.6).
To be specific when sensitivity limit occurred, ERP C is shrunken. Computer simulations
using the same parameter as experiments were performed, the comparison of experimental
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Figure 2.23: Positions that azimuth error occur higher than the investigated value (100, 75
and 50 degree).

and simulation results are illustrated as in Fig. 2.24. The x-axis shows the experimented
angle, while the y-axis shows the receivable positions relative with VLC transmitter. The
minus distance shows the receivable distance in the opposite direction. The line with o sign
shows line-of-sight positions calculated from receiver’s tilt angle, also denoted by ERP A.
The trend lines with + at each end show FOV Limit, which defines receivable range (DFOV ).
The DFOV is calculated from geometrical line of receiver’s FOV. Nevertheless, the actual
receivable range (DRxS) is shrunken from DFOV due to the attenuation of channel direct
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Figure 2.24: Comparison of the relationship between terminal’s tilt angle (ψc = 25, 17.5 and
10 degree) and furthest receivable point (in the case of effects from FOV only, effects from
channel DC gains, and experimental results, respectively).

current (DC) gains, referred to as sensitivity limit; as shown with lines with � sign at both
end. The experiment of receivable range conducted to confirm the simulation results are
shown as line with asterisk symbol.

The results from both empirical and analytical examination show small error, confirm
that our analytical model is correct. Consequently, we perform simulation to illustrate
relationship between FOV and sensitivity limit by utilizing the same parameters as shown
in Table 2.5, where concentrator gain g(ψ) The results from both empirical and analytical
examination show small error, confirm that our analytical model is correct. Consequently, we
perform simulation to illustrate relationship between FOV and sensitivity limit by utilizing
the same parameters as shown in Table 2.5, where concentrator gain ψc = 25o. Fig. 2.25
shows the comparison of receivable range simulation of each tilt angulation, from three
FOV’s configuration, where x-axis is receiver’s tilt angle and y-axis is the receivable position
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Figure 2.27: Relationship of RMSED among estimated receiver positions and tilt angle
(under receiver’s FOV = 25,17.5, 10 degree configuration).

relative with transmitter. The result shows that receivable range is decreasing in proportion
to receiver’s FOV, and receivable range is shrunken toward receiver’s line-of-sight (ERP A).
In all of the investigated cases, the sensitivity limit is presence. The furthest receivable
position (ERP C) is start to shrink at tilt angle (ϕMAX) is equal to 22o . ERP C is equal
to line-of-sight position (ERP A) at ϕMAX = 48o, and equal to nearest receivable position
(ERP B) at ϕMAX = 72o. To sum up, if sensitivity limit presence, the higher tilt angulation
is, the higher accuracy becomes. The effect of sensitivity limit is also presented in Fig. 2.26.
Unlike FOV Limit, receivable range occurred by sensitivity limit, DRxS, is shrunken toward
the ERP B.
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Figure 2.28: Illustration of switching angle (ϕS) calculation, derived from intersection point
of estimated receiver position A and C polynomial 6th order trend line of receiver’s FOV =
25, 17.5, 10 degree configuration.

Table 2.8: Calculated Switching Angle (ϕS)

Experimental Configuration Switching Angles (ϕS)
ψc = 25 Degree 38.31 Degree
ψc = 17.5 Degree 43.90 Degree
ψc = 10 Degree 40.51 Degree

2.5.3 Relationship Between Tilt Angulations and Estimated Re-
ceiver Position

In this section the further investigations on relationship of RMSED among estimated receiver
position and tilt angle (ϕ) is shown. In section 2.4.1, experiments were conducted in 44
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FOV = 25 degree configuration.

positions, 10 times at each position for receiver’s FOV configuration.
The influence of tilt angle on RMSED among utilization of ERP (estimated receiver

position) are studied, by classifying tilt angulations of each experimented position; arranged
by lowest to highest tilt angulations. Thus, we got 10 experimental groups sorted by tilt angle
(ϕ), in each group root mean square of tilt angle (ϕ) and error distance from utilizing each
estimated receiver positions are calculated. Figure 2.27 illustrate the dependency between
tilt angle and estimated error distance. The achievable RMSED of ERP A and ERP B, are
increasing in proportion to the receiver’s tilt angle, while RMSED of ERP C is in inverse
proportion.

The x-axis shows experimental group number sorted by tilt angle; experimental group 1
has the lowest RMSTA (Root Means Square of Tilt Angle) where group 10 has the highest
RMSTA. The left Y-axis shows the RMSED of each estimated receiver positions, while the
right Y-axis shows the RMSTA. Figure 2.27 illustrate that by switching from ERP A to
C, utilizing plural estimated position scheme, this can prevent RMSED from increasing as
tilt angle become higher, or in other words solving the dependency between estimated error
distance of each ERP and receiver’s tilt angle. The appropriate tilt angle (ϕ), to perform
switching between ERP, is studied in the following sections.
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(FOV=25, 17.5, 10 degree).

Switching Angle Calculation

The relationship between tilt angle and RMSED of estimated receiver positions, Fig. 2.27,
show that switching ERP between A and C can prevent RMSED from increasing as the tilt
angle becomes higher. In this section, the tilt angle (ϕ), which constitutes most impact on
reducing system RMSED when switching between estimated receiver positions is utilized.
The switching angles (ϕS), are shown in this section.

In this study switching angle (ϕS) calculation is done by utilizing polynomial regression
algorithm from the ERP A, B and C. Each trend line is calculated from estimated position
of 440 experiments in each configuration from (2.13) the polynomial 6th order (m = 6) is
used as the trend line. Orange lines in Figure 2.28 illustrate the switching ERP technique, at
tilt angle higher than switching angle (ϕS) ERP C is utilized instead of ERP A. The highest
estimated error distance is limited at the switching angle (ϕS). The calculated switching
angle (ϕS) of each FOV is described in Table 2.8.

Improper Switching Angle (ϕI)

In the case that switching is performed between ERP A and ERP B at other angles rather
than the calculated switching angle (ϕS), we defined it as improper switching angle (ϕI),
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Table 2.9: Performance Comparison among Conventional System and the Propose Scheme

Conventional System w/ Azimuth GOSI (RMSED: mm) SwERP (RMSED: mm)
FOV Estimated Estimated Estimated w/ βErr w/o βErr Switching Switching Improvement (%)
(ψc) Area (mm2) Range (mm) Range (mm) C A B C A B w/ βErr w/o βErr w/ βErr w/o βErr

25o 9,025,874 3,390 1,695 976 671 629 893 577 599 463 364 72.68 78.53
17.5o 9,025,874 3,390 1,695 960 393 496 904 295 460 336 248 80.18 85.37
10o 9,025,874 3,390 1,695 646 349 398 566 231 331 298 183 82.42 89.20

Table 2.10: N % of Error Distance

FOV N % of Error Distance without βErr (mm) N % of Error Distance without βErr (mm)
(ψc) ERP C ERP A ERP B ERP C SwERP ERP A ERP B SwERP

90 % 95 % 90 % 95 % 90 % 95 % 90 % 95 %
25o 1375 1450 1090 1284 968.7 1089 752.0 820.1 1283 1376 958.5 1186 963.4 1088 588.8 672.5
17.5o 1297 1419 615.4 783.5 707.5 770.8 522.8 599.9 1233 1291 510 607 673.7 735.3 408.4 485.0
10o 1079 1280 503.8 633.5 544.1 633.5 421.1 500.1 971.4 1132 384.5 461.1 507.4 548.3 282.1 331.5

as illustrated in Fig. 2.29. The RMSED can be increased if the switching is performed at
improper switching angle (ϕI). The effect of improper switching angle (ϕI) is shown in
Fig. 2.30. The achievable RMSEDs are varied between the one achieved from utilizing only
ERP B or ERP A. For the case that switching angle is set as 0o, the achievable RMSED
is equal to the one achieved from utilizing only ERP B. Fig. 2.30 shows that the lowest
achievable RMSED occurs at the calculated switching tilt angle (ϕS).

2.5.4 Achievable Accuracy

In this section we assume that ∆H = 0 in order to calculate the RMSED achieved from calcu-
lable parameter, therefore ∆H +H = 1500 mm. Performance improvement of the proposed
methods, comparing with conventional method is provided in Table 2.9. In conventional
system, which only VLID is used under experimental configuration shown in Table 2.9, pro-
vides very rough estimated position as receivable area of 9,025,874 mm2. The achievable
area is calculated from diameter obtained from section 2.5.2, which is equal as 3,390 mm.
In the proposed system, by incorporating Azimuth angulations obtained from 6-axis sensor
without utilizing any proposed scheme, the estimated position can be narrowed down from
achievable area into receivable range of 1,695 mm.

The proposed estimation scheme, SwERP, we include not only Azimuth angulations but
also additional information such as the effects of channel DC gains, tilt angulations and
receiver’s FOV into calculation, of which create 3 ERP. The comparisons on achievable
accuracy between the proposed scheme and GOSI that include and exclude Azimuth error
are presented in Fig. 2.31 and Table 2.9. In GOSI under 3 receiver’s FOV configurations
provides the lowest achievable RMSED in the range of 349 and 629 mm. If we assume that
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Figure 2.31: Effect of Azimuth angulations error on achievable RMSED of each positioning
scheme (ψc =25, 17.5, 10 degree).

Azimuth angulations error can be reduced, the achievable RMSED can be reduced to the
range of 231 and 577 mm. The results show that ERP A provides lowest RMSED in most of
the experimental cases, except for the ψc = 25o where ERP B provides the lowest RMSED;
as a result of sensitivity limit. As mentioned in section 2.5.3, sensitivity limit created the
effect that make estimated error distances of each ERP vary in proportion to receivers’ tilt
angle. Therefore, the utilization of plural ERP scheme is proposed to solve this problem.

The proposed scheme, SwERP, utilizes plural ERPs, where the selected ERP is switched
between ERP A and ERP B at switching angle (ϕS). The contributions of this scheme
are the decrease in dependency between estimated error distances and tilt angle, and the
highest estimated error distances are limited at switching angle. Hence, lower RMSED can
be achieved. In our evaluation, utilizing SwERP scheme provided the lowest achievable
accuracy in the range of 298 and 463 mm through all FOV configurations. If we assume
that Azimuth angulations error can be reduced, the achievable RMSED can be reduced
down to the range of 231 and 577 mm. To sum up, SwERP schemes show the accuracy
improvement over conventional, in the range of 72.68 % and 82.42 % depending on receivers’
FOV configurations.

After analyzing the statistical data of error distance, we plot the performance of the
three experimental configurations, both with and without Azimuth angulations error (βErr),
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Figure 2.32: Cumulative distribution function of error distance from receiver’s ψc = 25, 17.5
and 10 degree configuration.

using the error distance distribution as CDF in Fig. 2.32. The results confirm that SwERP
provided higher accuracy improvement, particularly on wider FOV configuration, like the
result provided in Fig. 2.32. Besides, reducing Azimuth angulations error, which is the char-
acteristic of the embedded sensor, higher accuracy can be achieved. We analyze the precision
performance at 90 % and 95 % of error distance, the details are provided in Table 2.10. In 90
% precision achieved from GOSI provided accuracy in the range of 503.8 and 968.7 mm, on
different configurations. SwERP scheme provides accuracy in the range of 421.1 and 752.0
mm for 90 % precision. So as 90 % precision, SwERP scheme provides lower RMSED than
GOSI, of which in the range of 500.1 and 820.1 mm for 95 % precision. Hypothetically, re-
ducing Azimuth angulations can reduce error distance down to the range of 331.5 and 672.5
mm.

2.5.5 Uncertainty of Terminal’s height (∆H)

In the proposed system, only 6-axis sensor is embedded at the receiver. Vertical height
(H) is calculated from preconfigured terminal’s height (HT ) and broadcasted room height
(HR), which is transmitted via VLID. Due to the limited information, H cannot be precisely
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Figure 2.33: Effect of terminals height uncertainty on achievable RMSED of each positioning
scheme ψc = 25, 17.5 and 10 degree configuration.

calculated and can be varied from to the posture of each user. The impact of H is evaluated
in this section. From the observation during our experiment, we found out that our HT

is varied around ±10 cm from the preconfigured value. In this evaluation, we used the
experimental data from section 2.3. Thus, βErr is included in the evaluation.

Fig. 2.33 shows the confidence interval of achievable RMSED created from ∆H of GOSI
and SwERP schemes. The solid markers represent RMSED calculated from H = 1500 mm,
and the hollow markers are calculated from ∆H +H = 1500± 100 mm. The results confirm
that the proposed SwERP scheme provides lower RMSED with smaller confidence interval
than GOSI. SwERP improves not only positioning accuracy but also the system reliability.

2.6 Conclusion

In this chapter, we discuss the design and implementation method of our proposed solution
architect for lifetime evolution indoor positioning system based on visible light communi-
cation identification (VLID) system. In the approach, neither additional infrastructure nor
modification is required on the transmitter side. In contrast, we install 6-axis sensor to
provide tilt and Azimuth angulations for positioning estimation. From our study, we define
FOV (ψc) Limit and Sensitivity (RXS) Limit to justify the characteristic of the system after
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embedding 6-axis sensor at the receiver.
Apart from basic infrastructure, we proposed a Switching estimated receiver position

(SwERP) scheme based on FOV and sensitivity limits. The proposed scheme provides re-
markable accuracy improvement and higher reliability than the case that embedding 6-axis
sensor without utilizing any positioning scheme or GOSI. The results are confirmed by both
analytical and numerical analysis, 440 experimental samples of 3 receiver’s FOV configu-
ration are collected in the area of 1200 × 5000 × 2050 mm. Root mean square of error
distance (RMSED) and cumulative distribution function (CDF) of error distance are used
as performance indicator.

Main advantages of the proposed architecture are described as follows. Firstly, the pro-
posed system utilizes existing infrastructure, neither modification nor additional infrastruc-
ture is required at the transmitter side. Thus, any new kind of investment can be avoided.
Secondly, the system is eco-friendly, for the reason that no additional carbon footprint is
created during construction, and VLC uses LED that consumes less energy during opera-
tion. Thirdly, accuracy achieved in the proposed system does not depend on transmitter
orientation since only one transmitter is required for positioning estimation. Fourthly, both
of the proposed positioning schemes use low complexity algorithm that can be implemented
on portable device such as mobile phone.

Last but not the least, our investigation experimental results confirm that under conven-
tional VLC narrower receiver’s FOV can provide higher accuracy but communication acces-
sibility is also limited owing to the FOV configuration. In our proposed scheme, SwERP that
based on sensitivity limit, even wide FOV configuration can provide high accuracy. Thus,
both accessibility and localization can achieve in the wide receiver’s FOV configuration.
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Chapter 3

Enhancement Modules for VLC
Based Positioning Subsystem

In this chapter, we discuss the proposed enhancement modules for our proposed VLC
based positioning subsystem, of which are required to enable SwERP scheme. As mention
in section 2.4 that SwERP scheme is performed based on prior information of the closest
transmitter and FOV limit required. Thus, we proposed two subsystems to enable the
proposed SwERP scheme, which are nearest transmitter classification (NTC) method and
physical layer simulation model based on FOV limit classification, respectively.

3.1 Nearest Transmitter Classification (NTC) Method

Nearest transmitter information is a mandatory requirement for utilizing Switching Esti-
mated Receiver Position (SwERP) scheme, of which was proposed to enhance accuracy of
Visible Light ID (VLID) positioning system. The conventional approach is achieved by con-
trolling Sensitivity (RxS) limit. Conversely, general distance estimation by optical received
power can also be used. Both of the mentioned methods have disadvantage on implemen-
tation complexity and inaccuracy due to noise fluctuation, respectively. In this paper, we
propose a nearest transmitter classification (NTC) method by utilizing Optical Orthogonal
Code (OOC) with On-Off Keying (OOK) modulation at transmitters (Txs), and perform
oversampling at a receiver (Rx) to overcome the limitation of bandwidth resolution (B).
The results confirm that the proposed method can classify the nearest Tx accurately, with
some tradeoff with computation complexity from the increment of oversampling factor (Oc).
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3.1.1 Received Optical Power Based NTC (NTCOP ) Method

The NTCOP classifies the nearest Tx based on received optical power. The optical received
power of VLC system is shown in Fig. 2.12, and (2.12), which are modified from [24][40]

Pr,k = Pt,kHd,k (0) +

∫
walls

Pt,kdHref,k (0) +N︸ ︷︷ ︸
ξk: Error

, (3.1)

Pt,k is the transmitted optical power and N denotes the noise. Hearafter, all the parameters
with (·)k denotes the index number of Tx ranging from 1 to NT . Pr,k is the received optical
power calculated from line-of-sight (LOS) path (Hd,k (0)) and reflected paths (dHref,k (0)).
We define dHref,k (0) and N as error function (ξk), which represent undesirable value. Time
domain of (3.1) can be expressed as

1

2T

T∫
−T

yk (t)dt

︸ ︷︷ ︸
Pk
r >

=
1

2T

T∫
−T

(xk (t)⊗ hk (t)) + nk (t) dt

︸ ︷︷ ︸
Pk
t Hk

d (0)+ξk>

, (3.2)

where xk(t) > 0 and yk(t) are transmitted and received optical pulse power, respectively.
nk(t) represents Additive Gaussian White Noise (AGWN), hk(t) is the wireless optical chan-
nel that has both direct and reflected path. “⊗” denotes convolution and limT → ∞.

The method used in NTCOP is similar to the method used in received signal strength
indication (RSSI) [44], which estimated distances among Txs and Rx solely based on LOS
path. Detail of the NTCOP can be expressed as the following equations.

Hd,k (0) =



(m+ 1)A

2π(DPL,k)2
· cosm (φk)Ts (ψk) g (ψk) cos (ψk)︸ ︷︷ ︸

Θk

,

0 6 ψk 6 ψc,
0,

ψk > ψc,

(3.3)

DPL,k =


√

(m+ 1)A

2π
· Pt,k

Pr,k + ξk
·Θk, 0 6 ψk 6 ψc,

+∞, ψk > ψc,

(3.4)

NTCOP = min [DPL,1, DPL,2, ..., DPL,NT
] , (3.5)

where A is the physical area of the optical concentrator. DPL,k is the estimated distance
between a Tx,k and Rx, ψk is the angle of incidence, Ts(ψk) is the gain of an optical filter, m =
− ln 2/(ln cosΦ1/2), and Φ1/2 is the semi-angle of transmitter. φk is an angle of irradiance
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calculated from tan−1(D/H) as shown in Fig. 2.11. The optical concentrator g(ψ) is given
as

g (ψ) =


n2

sin2 ψc

, 0 ≤ ψ ≤ ψc,

0, ψ > ψc.

(3.6)

ψc denotes the receiver’s semi FOV. NTCOP select Dk
PL that has the lowest value.

Interference from noise and reflected path can directly degraded accuracy of the conven-
tional NTCOP . The channel DC gain of the first reflection is [29]

Href (0) =



(m+ 1)A

2π2D2
1,kD

2
2,k

ρdAwall cos
m (φ′) cos (α′)

cos (δ′)TS (ψ) g (ψ
′) cos (ψ′) ,

0 ≤ ψ′ ≤ ψc,

0,

ψ′ > ψc,

(3.7)

where D1,k and D2,k are the distance between Tx,k and reflective point (ref), and distance
between ref and Rx. ρ is the reflectance factor, dAwall is a reflective area of small region. α′

and δ′ are the angle of irradiance to ref , and the angle of irradiance to the receiver, respec-
tively (Fig. 2.11). However the spreading gain of OOC code can mitigate the interference
from noise and reflected path.

3.1.2 Optical Orthogonal Code (OOC)

VLC uses LED light bulbs, which are incoherent light sources, as Tx. Therefore, we use one
dimensional OOK-OOC, which is the simplest form of Incoherent Optical Codec [30]. The
OOC codeword is (0, 1) − sequences represented by C = (n,w, λa, λc). n and w denote code
length and number of ‘1’, in each codeword, respectively. Autocorrelation of each codeword
X = (x0, x1, · · · , xn−1) and cross-correlation between two distinct codewordsX and Y , where
Y = (y0, y1, · · · , yn−1), satisfy the following properties respectively [30][45].

θXX (τ) =
n−1∑
i=0

xi · xi⊕τ =

{
w, τ = 0,

6 λa, 1 6 τ 6 n− 1,

θXY (τ) =
n−1∑
i=0

xi · yi⊕τ 6 λc, 0 6 τ 6 n− 1

 , (3.8)

for xi, yi ∈ {0, 1} , τ ̸= 0, X ̸= Y, λa = λc = λ and “⊕ ” denotes modulo−n addition. Thus,
the largest possible cardinality is denoted as |C|max = Φ(n,w, λ). The C is said to be
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Table 3.1: Codeword Sets of an Optimal (341,5,1)−Code [45]

S1 0 1 85 21 5 S10 0 17 264 203 165
S2 0 2 170 10 42 S11 0 19 88 267 220
S3 0 3 111 104 53 S12 0 22 90 55 152
S4 0 6 222 106 208 S13 0 23 293 252 118
S5 0 9 268 151 105 S14 0 24 206 83 150
S6 0 11 45 76 198 S15 0 25 54 169 221
S7 0 12 103 75 212 S16 0 26 269 86 113
S8 0 13 305 227 43 S17 0 37 147 217 81
S9 0 15 107 146 164

OOC−optimized when

|C| =
⌊
1

w

⌊
(n− 1)

(w − 1)

⌊
. . .

⌊
(n− λ)

(w − λ)

⌋
. . .

⌋⌋⌋
. (3.9)

In this research we use OOC which has combination of n = 314, w = 5, λ = 1, which
provide |C| = 17. We use finite projective geometry to construct the code words [30][45].

The finite projective geometry PG(d, q) is represented by a finite vector space as V (d+
1, q), where d+ 1 denotes the vectors dimension and q is a prime power of the finite GF (q).
There are

(
qd+1 − 1

)
/ (q − 1) points (n) in PG(d, q), so as different lines in V (d + 1, q).

Regarding projective geometry theorem, two codewords will intersect at no more than one
point. Discrete logarithm is used to provide cyclic shift on the points of geometry.

Define ϑ as a vector in the space V (d + 1, q), and α is a primitive element of GF (qd+1)
which has the nonzero elements of oth through the (qd+1−2)th. Thus, the relationship between
α and ϑ is defined as logα ϑ = γ, where γ is the o−th power of α. For an arbitrary point p
in PG(d, q), let log p denote the discrete logarithm of any vector on the line corresponding
to p in V (d+ 1, q) modulo−n as in

log p = 1 + log p′ (mod n) , (3.10)

for the cyclic shift of some point p′ on the same line as p.
In projective geometery the cyclic shift of a line is still a line in PG(d, q). An orbit

size of lines in PG(d, q) is its size (n), of which n =
(
qd+1 − 1

)
/ (q − 1) and w = q + 1.

The codewords of C(314, 5, 1) can be obtained from Table 3.1, the reason for using these
codewords is described in section 3.1.3.

Modeling of One-Dimensional OOC

We assume the evaluation situation is similar to that in [46] where all of Txs are simultane-
ously broadcast to Rx. At any instantaneous time Rx receives signal from Tx of 1 6 k 6 NT .
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The light sources in the system are all incoherent. Therefore, the intensities of light signals
that occur simultaneously are additive. Under mentioned assumption, the encoded signal
from Tx of the k−th Tx is

xk (t) = Pk · sk (t) ck (t) , (3.11)

where Pk, sk(t) and ck(t) represent the kth of Tx’s transmitted optical power, binary data
signal, and |C| for 1 6 k 6 NT , respectively

sk (t) =
∑∞

m=−∞
sm,k ⊓τs (t−mτs), (3.12)

ck (t) =
∑∞

l=−∞
cl,k ⊓τc (t− lτc), (3.13)

where sm,k and cl,k are m−th bit of data and code l−th of k−th Tx. ⊓τs (t) and ⊓τc (t)
indicate the rectangular pulse of duration τs and τc, which start at t = 0, respectively.
The relationship between τs and τc is τc = τs/n, where τs is bit interval of data, τc is chip
interval, and n is OOC codelength. The received optical signal at Rx is denoted by y (t),
where y (t) =

∑NT

k=1 yk (t) and yk (t) is explained in (3.2).
Thus, the output of the first Tx can be expressed by [46]

z1 =
1

τc

∫ τs

0

y (t) c1 (t) dt ≷ Th (3.14)

where the received optical pulse y (t) is multiplied by the correct codeword c1 (t) and sampled
output of both the optical correlator and its equivalent matched filter at time t = τs. Thus,
the sampled signal is compared with threshold Th, to decide whether the output is ‘0’ or ‘1’.

3.1.3 System Description

The proposed method is based on the system model shown in [29]. Apart from introducing
OOC-OOK to enable the proposed NTCOC , at the Rx oversampling is performed in order
to enhance the distance resolution (∆DL) of VLC channel, as shown in Fig. 1.13. We choose
OOC ahead of other incoherent optical code division multiple access (OCDMA) codes for
the following reasons. Firstly, OOC provided high bandwidth efficiency. Secondly, OOC
possesses the ideal auto- and cross-correlations [45], which is the key driver in our proposed
method.

Simulation Environment

Simulation area consists of a grid 18 transmitters, with grid size of 1 m × 1 m in room area
of 6 m × 12 m × 3 m. Details of simulation can be found in Table 3.2, Fig. 3.1, and Fig. 3.2,
where receivers are uniformly distributed along x and y axis. Each Tx transmits its own
location ID ranging from ‘00001’ to ‘10010’. OOC-OOK is implemented at the Tx as VLC
modulator, each Tx is assigned to a OOC code. We assumed that all of the transmitters are
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Table 3.2: Simulation Parameters I

Parameters Quantity
Environment 6 m × 12 m × 3 m
Transmitter (Tx : NT ) 18
Transmitter’s Height (h) 1.5 m
Receiver (Rx : NR) 10,000 Trials
OOC Codewords (C(n,w, 1)) C(314, 5, 1)
Chip rate (rc) 34.1 Mbps
Tx’s Half-Power Angle (Φ1/2) 50 Degree
Semi FOV (ψc) 50 Degree
Number of Reflection 0 Time
Tilt Angulation’s (ϕ) 0 Degree

synchronized via PLC as reported in [47][48]. We define state ‘0’ of the modulated signal as
ON, and state ‘1’ as OFF. We use C(314, 5, 1) codewords, because it is the shortest optimal
code length that can provide number of codewords very close to NT in our evaluation. The
details of NTCOC method, and necessity of oversampling unit at Rx are presented in the
next section.

Transmitter Signal to Noise Ratio : TSNR

Noise and reflection can degrade estimated DPL,k mentioned in (3.4). VLC uses illumination
to transmit information; illumination design is another sophisticate field of study that deals
with deliberating application of light to achieve some artistic or practical effect. Therefore, in
this subsystem we use, TSNR instead of general SNR in order to study the NTCs performance
in various type of illumination intensity. In this section, we discuss TSNR which is the ratio
of signal power to the noise power distorting the signal [24], we model noise our system as

TSNRdB = 10 log

(
Pt

σTotal

)2

, (3.15)

we define noise (σTotal) as composites of thermal noise (σTh), and shot noise (σSt). Definition
of each term is provided as

Pt = lim
T→∞

1

2T

∫ T

−T

(
NT∑
k=1

xk (t)⊗ hk (t)

)
dt, (3.16)

where xk (t) is OOC encoded signal described in (3.11). Variance of shot noise is given as

σSt = 2qPrBN + 2qIbgI2BN , (3.17)
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Figure 3.1: Block diagram of the modified VLC transceiver for the proposed NTC method.
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Table 3.3: Simulation Parameters II [24]

Open-loop Voltage Gain (G) 10
Fixed Capacitance (η) 112 pF/cm2

FET Channel Noise Factor (Γ) 1.5
FET Transconductance (gm) 30 ms
Absolute Temperature (Tκ) 298 K
Background Light Current (Ig) ∼5100 µA
Chip Rate (rc) 34.1 Mcps

where q is the electronic charge, BN is equivalent noise bandwidth, Ibg is background current
and we assume the background current from [49]. The noise bandwidth factors I2 = 0.562.
The thermal noise variance is

σTh =
8πκTκ
G

ηAI2B
2
N +

16π2κTκΓ

gm
η2A2I3B

2
N , (3.18)

where Boltzmann’s constant is denoted by κ, Tκ is absolute temperature, G is the open-loop
voltage gain, η is the fixed capacitance of photodetector per unit area, Γ is the FET channel
noise factor, gm is the FET transconductance, and I3 = 0.0868. The parameters in (3.17)
and (3.18) are obtained from [24], and provided in Table 3.3.

3.1.4 Proposed OOC Based NTC (NTCOC) Method

The principle of NTCOC method is based on Time-of-Arrival (TOA) technique [44]. Dis-
tances in TOA are measured from time difference between Tx,k and Rx as c · (τk − τ0) =
(DL,k ±∆DL). τk and τ0 are time measured at Rx and Tx,k, respectively. DL,k is the ac-
tual distance between ⟨Tx,k, Rx⟩, ∆DL is one-way distance resolution, and c is light speed
(3×108 m/s). The accuracy of TOA depends on ∆DL, accurateness of τ measurement shown
in Fig. 3.3, and is varied by time resolution (τclk) and bandwidth resolution (B).

Bandwidth Resolution (B)

In general TOA system, B decides the estimation accuracy [44]. Assume we want distance
accuracy in the range of 30 cm. Thus, at least (3× 10−1 m/3× 108 m/s) = 1 ns must be
achieved. A rule of thumb, B = 1/(1 ns) = 1 GHz, which is much higher than the current
achievable chip rate (rc = 1/τc = 200 Mcps) for LED light bulb [50]. Therefore, we propose
a novel method using OOC and perform oversampling at the Rx that can overcome the
limitation of B.
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Figure 3.3: Time resolution (τclk) and its relationship with Time-of-Flight (τ kf ).

Oversampling (↑ τclk)

Generally, oversampling is being implemented for noise cancellation. In this subsystem,
we took advantage of its necessity to yield the B limitation by utilizing the oversampling
together with orthogonality of OOC to enhance time resolution (τclk). The achievable ∆DL

of OOC encoded signal after oversampling is

∆DL = c/ (2 · rcOc) (3.19)

where Oc is the oversampling factor. The conventional VLID system [28] is a low bit rate
system, for the ease of calculation we assume that rc = 34.1 Mcps. Hence, the transmitted
data rate is equal to 100 kbps/Tx, of which is higher than that in [28]. Thus, the achievable
∆DL = (3 × 108 m/s)×(1/(68.2 · Oc × 106) s) = 4.40/Oc m. For desired ∆DL of 30 cm, at
least Oc = 15 is required.

Methodology

As mentioned in system description, we assume communication among Txs are synchronous
[47][48], and communication between Txs and, Rx are asynchronous. Therefore, for the ease
of evaluation, synchronization frame of IEEE 802.11 short preamble, of which has 56 ‘1’s,
are transmitted from Txs for synchronization. The NTCOC method classifies the Tx based
on auto-correlation in (3.8) and (3.14), with rclk = 2rc · Oc at the receiver. Detail of the
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Figure 3.4: An impact of oversampling (Oc) on auto-correlation (θXX) function.

NTCOC method is provided as

NTCOC = min
τk;k=1,2,...,NT

[θXX (τ1) , ..., θXX (τk)] (3.20)

where τk is the time that provide θXX (τk) = (w ·Oc), and w is OOC-codeweight. The
proposed NTCOC method selects the lowest τ from k−th Tx of the synchronization frame.

3.1.5 Performance Evaluation

In this section we discuss the effectiveness of the proposedNTCOC by analyzing oversampling
effects on the enhance classification rate over the conventional NTCOP . Figure 3.4 shows
sampling clock rate of 1000 time over τc. The result shows that auto-correlation peak can be
correctly separable owing to the enhanced time resolution from oversampling. Nevertheless,
computation complexity of auto-correlation function regarding (3.23) is increasing by factor
of O2

c . Therefore, optimized value of Oc that can enhance correct NTC classification is
studied.

Figure 3.5 shows simulation result of the relationship between Oc and the nearest Tx
correctly classified, in our studied environment. The result shows that with Oc(10) = 10,
80 % of nearest Tx correctly classified can be achieved. There is 70 % improvement be-
tween Oc(10) = 10 and Oc(5) = 5 with the computation increased by O2

c (10)/O
2
c (5) =

100/25 = 4 times. The correctness of 90 % can be achieved with Oc(50) = 50 which require
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O2
c (50)/O

2
c (5) = 2500/25 = 100 times higher computation than Oc(5) = 5. Therefore, we

use Oc(10) = 10 which is the optimal value for the further evaluation.
The effectiveness of NTCOC is shown in Fig. 3.6, where x−axis shows transmitter signal
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to noise ratio and y−axis shows nearest Tx correct classification rate. The higest acheivable
correct classification rate of the conventional NTCOP is close to 60 % and cannot be im-
proved. On the other hand, the highest correct classification rate of the proposed NTCOC

is equal to the value presented in Fig. 3.5, which is limited by Oc. The proposed NTCOC

provides high correct classification rate and high stability, owing to spreading gain and FOV
limit that filter out the neighboring codes.

3.2 Physical Layer Simulation Model

The high positioning accuracy of SwERP scheme is achieved from Sensitivity (RxS) Limit,
Field-of-View (FOV) Limit, and assisted Azimuth and Tilt information from 6-Axis sensor.
In this section, we propose a physical simulation model that can predict the latter three
factors. The conventional Visible Light Communication (VLC) model uses only geometric
optics (GO) to predict light propagation, which is not enough to define the FOV Limit.
Thus, we propose a novel method using rotation matrix with cone function and Support
Vector Machines (SVMs) to classify the boundary of FOV Limit. Based on Sensitivity and
FOV limits, possible Azimuth and Tilt angulations are mathematically defined. Moreover,
by including FOV Limit into the simulation, transmitters and their mirrors that are outside
FOV Limit can be neglected, of which reduce at least 80 % of computation during GO
calculation.

3.2.1 Geometric Optics : GO

Geometric Optics (GO) is a method used for estimating light propagation and its reflected
paths for (2.7). We calculate reflection by using mirror image of transmitters as shown in
Fig. 2.12. We define [·]MR as diagonal matrix whose component are mirror positions of walls

on North, East, West, and South (NEWS) direction, and [·]ij as a j× 1 matrix that only has
a component on row i. Diag (·) represents a diagonal matrix.

Tx =
[
Tx(x) Tx(y) Tx(z)

]T
(3.21)

RA =
[
Rx(x) Rx(y) Rx(z)

]T
(3.22)

TMR = Diag (TxN,TxE,TxW,TxS)
TxW = Tx− [Tx (x)]

i=1
j=3 ,TxS= Tx− [Tx (y)]

i=2
j=3

TxE = Tx+ [|Tx (x)−Xmax|+Xmax]
i=1
j=3 ,

TxN = Tx+ [|Tx (y)− Ymax|+ Ymax]
i=2
j=3 ,

(3.23)

Tx and RA matrixes represent Cartesian coordination of a Tx and Rx, respectively.
TxN,TxS, TxE and TxW are mirror positions of Tx calculated from NEWS walls. Dist(·)
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Table 3.4: Simulation Parameters III

Parameters Quantity
Environment 6 m × 12 m × 3 m
Transmitter (Tx) 38
Receiver (Rx : n) 600,000 Trials
Rx’s X-Axis (Rx (x)) U([0 6]) m
Rx’s Y -Axis (Rx (y)) U([0 12]) m
Rx’s Z-Axis (Rx (z)) 1.5 + U([-0.1 0.1]) m
Tx’s Half-Power Angle (Φ1/2) 50 Degree
Semi FOV (ψc) 20, 30, 40 Degree
Number of Reflection 1 Time

denotes Euclidean distance. Xmax and Ymax are maximum value of x and y axis, respectively
as shown in Table 3.4.

Reflection coordinate on each wall can be derived from the following equations

R∗
A

+(TMR −R∗
A)T︸ ︷︷ ︸

Txmirrors to Rx line equation

=

Wk=0
MR

+
(
Wk=1

MR −Wk=0
MR

)
U

+
(
Wk=2

MR −Wk=0
MR

)
V︸ ︷︷ ︸

Walls (NEWS) equation

(3.24)

R∗
A −Wk=0

MR︸ ︷︷ ︸
A

=

 R∗
A −TMR

Wk=1
MR −Wk=0

MR

Wk=2
MR −Wk=0

MR


T

︸ ︷︷ ︸
E

 T

U

V

 (3.25)

[
T U V

]T︸ ︷︷ ︸
Reflection points

= E−1A (3.26)

We define R∗
A = Diag (RA,RA,RA,RA). T,U and V are 4 × 4 diagonal matrixes that

represent eigenvalue of reflection points from wall NEWS, respectively. Wk
MR contains k-th

sample of WMR. In (3.24), 3 samples are required to construct each wall equation, thus k
= {0, 1, 2}.

3.2.2 Proposed Method

FOV of VLC receiver can be viewed as cone function. Intersection of a cone and plane define
FOV Limit of the system, which create quadratic functions. All of the possible conic sections
are illustrated in Fig. 3.7. The conventional conics equation cannot be used, because ERP
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A (calculated from ϕ) is undefined. Therefore, we propose a novel method using rotation
matrix with cone function and Support Vector Machines (SVMs) to classify the boundary
of FOV Limit. Cone function is shown in Fig. 3.7 and (3.27)

C =

XA

YA
ZA

 =

[
l − u

l
r cos (ϖ)

l − u

l
r sin (ϖ) u

]T
(3.27)

for ψc = tan−1(r/l), u ∈ [0, l], ϖ ∈ [0, 2π) and l = 15 m.

3.2.3 Rotation Matrix

Rotation matrix is a matrix that performs a rotation in Euclidean space. Rotation matrix
is denoted as R, in our case R = Rz (β) ·Rx (ϕ). The rotated cone function is defined as

CN = R ·C+RA =
[
XB YB ZB

]
(3.28)

Rz (β) =

 cos (β) sin (β) 0
− sin (β) cos (β) 0

0 0 1

 , (3.29a)

Rx (ϕ) =

 1 0 0
0 cos (ϕ) sin (ϕ)
0 − sin (ϕ) cos (ϕ)

 , (3.29b)

where Rz (β) and Rx (ϕ) are rotation matrix of Azimuth and Tilt plane, which β ∈ [0, 2π)
and ϕ ∈ [0,π/2] . Therefore, R is denoted as

R =

 cos (β) sin (β) cos (ϕ) sin (β) sin (ϕ)
− sin (β) cos (β) cos (ϕ) cos (β) sin (ϕ)

0 − sin (ϕ) cos (ϕ)

 . (3.30)
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Closed form equation of FOV Limit can be derived by, rewriting ZB of (3.28) in term of
u. ZB is the height of rotated cone that intersected with plane. Hence, ZB = H where H is
vertical height (Fig. 2.11), and r = l · tan(ψc) for the boundary of cone. FOV Limit matrix
is defended as

FOVLt = R2D ·C+Rx2D (3.31)

Rx2D =
[
Rx (x) Rx (y)

]T
(3.32)

u =
lZB + l sin(ϕ)r sin (ϖ)

l cos (ϕ) + sin (ϕ) r sin (ϖ)
(3.33)

R2D =

[
cos (β) sin (β) cos (ϕ) sin (β) sin (ϕ)
− sin (β) cos (β) cos (ϕ) cos (β) sin (ϕ)

]
(3.34)

3.2.4 Support Vector Machines

Support vector machines (SVMs) are supervised learning methods that use the training
algorithm to builds a model that predicts if a new input falls into which category. SVM use
training set to create hyperplane between categories of training set. Training set is defined
as

D = {(xi, yi) |xi ∈ Rp, yi ∈ {−1,+1}}ni=1 (3.35)

yi =

{
+1, if xi ∈ {FOVLt|r ∈ [0, l tan (ψc)]}
−1, if xi ∈ {FOVLt|r ∈ (l tan (ψc) ,∞)}

(3.36)

the xi is p−dimensional real vector with n training samples obtained from FOVLt. Samples
of yi = +1 are values inside the conics, and yi = −1 are values outside the conics. Optimal
functional margin (γ) between training sample and hyperplane (γ = γ̂/ ∥w∥). In order to
prevent non-convex constrain, the geometric margin (γ̂) is rescaled to 1. Hence, problem set
is

min
γ,ω,b

1

2
∥w∥2

s.t. yi
(
wTK (xi, xj) + b

)
> 1, i, j = 1, ..., n

(3.37)

K (xi, xj) = ϕ (xi)
T ϕ (xj) = (1 + xixj)

2 (3.38)

(w, b) are weighting factors that determine the offset of hyperplane from the original along
the vector w, which is perpendicular to hyperplane. Thus, solving this problem will result
in (w, b) with the smallest possible γ with respect to the training set. K(xi, xj) is denoted as
Quadratic Kernel function, which is used to map observations from inner product of (xi, xj)
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Figure 3.8: an illustration of simulation environment with the dimension of 6 m × 12 m ×
3 m.

into (ϕ(xi), ϕ(xj)) in order to gain linear structure.

L (w,α) = 1
2
∥w∥2 +

n∑
i=1

αigi (w)

= 1
2
∥w∥2 −

n∑
i=1

αi

[
yi
(
wTK (xi, xj) + b

)
− 1
] (3.39)

θ∗D = max
α

min
w

L (w,α)

6 min
w

max
α

L (w,α) = θ∗P
(3.40)

(w, b) in (3.38) can be obtained with the condition that θ∗D = θ∗P , which is also refered to as
Karush-Kuhn-Tucker (KKT) conditions [51].

3.2.5 System Model

In this subsystem we propose physical layer simulation model for a visible light communi-
cation system, which is a part of our previous research [52]. Simulation model consists of
3 parts, VLC transmitters (Tx), receiver (Rx), and 6-axis sensor embedded at the receiver.
Simulation area consists of 38 transmitters, in room area of 6 m × 12 m × 3 m. Details of
simulation can be found in Table 3.4 and Fig. 3.8, where receivers are uniformly distributed
along x and y axis. Vertical height (H) between Tx and Rx is assumed as

H (h) = 1.5 m + U (∆ f (h)) (3.41)
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Figure 3.9: Azimuth angulations distribution from simulation environment.

U(∆f(h)) is the uncertainty range. The probability density function (PDF) of ∆f(h) is
expressed as

∆ f (·) =

{ 1

b− a
, for a 6 (·) 6 b

0, for (·) < a or (·) > b
(3.42)

(a, b) are range value equal to (−0.1, +0.1) m, respectively [52]. Azimuth (β) and Tilt (ϕ)
angulations are generated from pairwise between Tx(x, y) and Rx(x, y) denoted as TR, which
is uniformly selected from

Dist (Tx (x, y) , Rx (x, y)) 6 H (x) · cot
(
Φ1/2

)
(3.43)

The condition in (3.43) is selected based on transmitter half-power angle (Φ1/2).
We assumed that no angulations errors as in [52]. Hence, Tilt and Azimuth angulations

can be calculated as

ϕ (h, ψc)= tan−1 (Dist (TR) /H (h))+U (∆f (ψc)) (3.44)

β (x, y)=

{
tan−1 Θ, for Dist (TR) /Ξ > 0

tan−1 Θ+ 180o, for Dist (TR) /Ξ < 0
(3.45)

where Θ = (Tx (y)−Rx (y)) /Ξ, and Ξ = (Tx (x)−Rx (x)). U(∆f(ψ)) is the uncertainty
range created from FOV, which have PDF that shown as in (26) with value of (−ψc,+ψc).
Intuitively, β(x, y) should be a uniform distribution. However, to prevent the case that
β(x, y) is pointing to direction that has no transmitters, we use relationship of TR to define
β(x, y).

3.2.6 Performance Evaluation

Figure 3.10 and 3.11 are visible light propagation path calculated from geometric optics
explained in (3.21) to (3.26). The input distribution of Azimuth (β) angulation is presented
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in Fig. 3.9. Figure 3.12 illustrates conic sections (FOVLt) and a set of training samples
(D) for SVM. Square symbol represents Rxs, circle represents Txs and dashed line represents
TR. Training samples (D) are generated from FOVLt as described in (3.36), where yi = +1
(inbound) and yi = −1 (outbound) conditions; represented by “+” and “*”, respectively
in Fig. 3.12. The solid line represents decision boundary of (3.37). Figure 3.13 shows the
mirrored position of Txs from Figs. 2.12 and 3.12. Only Txs that have inbound condition are
calculated in (2.5)−(2.8) and (3.21)−(3.26). Because the outbound Txs have condition that
ψ > ψc, of which Hd(0) and Href (0) are equal to 0.

We analyze effectiveness of the proposed model by percentage of calculated Tx, and
training samples required for SVM. Figure 3.14 left-axis shows percentage of calculated Tx,
and right-axis shows PDF of simulated Tilt angulations. The results confirm that percetage
of calculated Tx can be reduced over 80 % in the entire cases. Figure 3.15 shows relationship
between training set’s size, and correctness of classification achieved by SVM. The complexity
of SVM method is increased in proportion to the size of training sets. However, with only
50 samples for training set, 25 samples for inbound and 25 samples for outbound condition,
classifier can perform accurately in the entire cases.

3.3 Conclusion

In this chapter, we proposed enhancement modules for SwERP scheme, of which is proposed
based on sensitivity and FOV limits. Sensitivity limit is originally used to find the nearest
transmitter information. The first proposed module is focused on developing a nearest
transmitter classification (NTC) method by utilizing Optical Orthogonal Code (OOC) with
On-Off Keying (OOK) modulation at transmitters (Txs), and perform oversampling at a
receiver (Rx) to overcome the limitation of bandwidth resolution (B). Furthermore, based
on FOV limits we propose a physical simulation model for 6-Axis sensor assisted VLC based
positioning system.

Nearest Transmitter Classification Method

Firstly, we propose a nearest transmitter classification method called NTCOC based on TOA
technique for Switching Estimated Receiver Position (SwERP) scheme. Hypothetically, TOA
technique can provide highest positioning accuracy rely on the bandwidth resolution (B).
Optical Orthogonal Code (OOC) and oversampling are implemented at Rx to overcome
the limitation of B. We analyze the effectiveness of our proposed method by nearest Tx
correct classification over the varied transmitter signal to noise ratio, and oversampling
factor versus extra computation complexity during auto-correlation function calculation.
The results confirm that the proposed method can classify the nearest Tx accurately, with
some tradeoff with system complexity from the increment of oversampling factor (Oc).
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Physical Simulation Model

We propose a physical simulation model for a 6-axis assisted VLC based positioning sys-
tem. SVM and 3D rotation matrix are used to calculate precise FOV Limit. Based on the
Sensitivity and FOV Limits, possible Azimuth and Tilt angulations are mathematically de-
fined. We discover that the propose model can reduce computation redundancy during GO
calculation over 80 % in the entire evaluation cases.
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Chapter 4

MRSS Fingerprinting Subsystem
Architecture

In this chapter, we discuss the method of design and implementation for multi-band
received signal strength (MRSS) fingerprinting architecture. The proposed VLC based po-
sitioning architect chapter 2 has a curial communication barrier as visible light cannot pen-
etrate through blockage such as when terminal is inside pocket. Furthermore, remote posi-
tioning cannot always be achieved in VLC based positioning system, due to the previously
mentioned condition. In the main objective of our proposed architecture is not to intro-
duce any extra infrastructure to perform localization. Therefore, only transmitted signal
from existing infrastructures (e.g. WLAN, digital broadcasting system, cellular network)
and other emerging wireless technology infrastructures are used for localization purpose.
In cooperation with multi-band capable receiver; such as cognitive radio [2], receiver can
simultaneously access to the numerous frequency bands without installing any extra infras-
tructures. Moreover, radio wave provides higher accessibility than VLC based positioning
system as explained in chapter 2. Thus, more pervasive positioning can be achieved even
without LOS between transmitter and receiver.

4.1 Basic Infrastructure

The proposed MRSS fringerprinting architecture is developed based on RSS fingerprint-
ing, radio map [12], which is the statistical approach. Rather than estimating distance to
the transmitters and performing triangulation to estimate position, RSS fingerprinting es-
timates positions by recognizing correlation between measured RSS and the premeasured
RSS database; denoted as fingerprint. Thus, exact locations of the wireless infrastructures
are not required to perform localization. There are two major advantages of our propose
MRSS fingerprinting architecture. Firstly, the fingerprint at each location can be created by
RSS from numerous types of existing wireless network infrastructures, as a result of deploy-
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ing frequency diversity on RSS fingerprinting, without prior knowledge of those transmitter
locations. Secondly, Fingerprinting method is a database approach that can initiate highly
compatible platform as shown in Fig. 4.1. MRSS fingerprints are constructed from both
singleband and multiband radio terminal. Therefore, any type of terminal that has premea-
sured RSS recorded in MRSS fingerprints can utilize the MRSS fingerprint for localization.
The core elements of our proposed architect are harvesting terminals, wireless infrastructure,
and localization engine. The detail and functionality of each element are elaborates in the
following sections.

4.1.1 Cognitive Radio

We assume that harvesting (premeasuring) terminals in this evaluation are cognitive radio
terminals. Cognitive radio is regarded as a future solution for the spectrum scarcity problem,
by providing multiband capability terminal. The multiband aspect of cognitive radio is the
basis of this subsystem for indoor positioning information. Cognitive radio requires location
information to perform opportunistic spectrum usage management [2]. However, cognitive
radio terminals are not commercially applicable in market yet. Thus, we use dualband
WLAN (2.4/5.2 GHz) as the replacement for ideal cognitive radio terminal. The underlying
challenge is to prove that existing multi-type wireless infrastructures can be used to provide
reliable and economical solution for location information.

4.1.2 Existing Infrastructure

In the recent years, the market of wireless communication and multimedia service experienced
a large increased, driven by the fast growing of internet database services [54]. There have
been several evolutions of mobile generations (from 2G to 4G), many new infrastructures
had been introduced to support its advance function while the old infrastructures are still
operating. The perspective of today’s information society require a versatility of devices,
including home appliances, vehicles, personal computers, sensors, actuators, all of which can
be globally connected via internet protocol (IP). The objective of this proposal is to create a
lifetime evolution indoor positioning system that still can be used by our descendant. Thus,
we design the proposed architecture to be compatible with existing infrastructure and any
emerging technologies without introducing any extra infrastructure. RSS access method is
the key technology to enable our propose architecture owing to its high compatibility and
accessibility regardless of modulation schemes, as explained in section 1.2.1.

The proposed architecture is illustrated in Fig. 4.1, MRSS Fingerprinting server is the
only infrastructure we introduced to the architecture. Multiband and singleband terminal
are used to premeasuring RSS of broadcasting channel from existing wireless infrastructure
such as WLAN, WiMax, WCDMA and other emerging technology such as LTE+. The
premeasured RSS can be collected through internet from either any type of wireless access
technology, or via smart pay system transaction at convenient story, subway, . . . etc. In this
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Figure 4.1: Infrastructure of MRSS fingerprinting based positioning system.

chapter, we are trying to prove that by implementing frequency diversity on conventional
RSS fingerprinting, higher achievable positioning accuracy can be realized.
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Figure 4.2: Multiband RF Fingerprint diagram A) Training phase, MRSS are premeasured.
B) Positioning phase, instantaneous MRSS are compared with MRSS database.

4.1.3 Principle of MRSS Fingerprinting

So as conventional RSS fingerprinting, MRSS fingerprinting consists of two phases, which
are training and positioning phases as shown in Fig. 4.2. In the training phase, fingerprint
of each location is created as reference database. In the positioning phase, the instanta-
neous measured RSSs are compared to the fingerprint, from the training phase to estimated
location. The details of both are provided in the following subsection.

Training Phase

The MRSSs are premeasured in order to create database, fingerprint, as illustrated in
Fig. 4.2A. Generally MRSS Fingerprint, MF, is comprised of Fingerprint, F, from each
frequency band, [1,2, . . ., B], as shown in

MF = [F1,F2, . . . ,FB] (4.1)

The location fingerprints and their labels, location information L, are usually denoted
as a tuple of (MF,L). The received signal strength of dataset, premeasured during training
phase is referred to as a training set [14]. In this subsystem, we define the location informa-
tion as two-dimensional system which can be expressed as (4.2). The location information
components are stored as coordinate x and y, with the orientation {o|o ∈ {North, East,
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West, and Sout}}.
L =

{
(x, y, o) |x, y ∈ R2, o ∈ {N,E,W, S}

}
(4.2)

To create a fingerprint, as described in [14][32], a number of RSSs are measured during
a period of time for each location. In this subsystem, the average RSS of each access points
are used as main indicator for fingerprint. The premeasured RSS from N access points can
be written as a vector of average RSS elements, ρN , as shown in

F = (µ1, µ2, . . . , µN)
T (4.3)

The extra fingerprint information, (e.g. standard deviation, skewness) for each RSS
element, which is suggested in [12], can be added into the fingerprint as another vector:

D = (σ1, σ2, . . . , σN)
T (4.4)

The equation (4.4) is also applied to the standard deviation vector of MRSS, MD. The
usages of multi-band fingerprint are provided in the following sections.

Positioning Phase

The measured RSS is compared with RSS database which was built in the training phase,
as in Fig. 4.2B. In this subsystem we use deterministic type of algorithm based on nearest
neighbor (NN) classifiers. The basic concept of NN is that the measured RSS is classified
to the closest fingerprint value to estimate the position. Presume that a set of l location
multi-band fingerprints is denoted by {MF1,MF2, . . . ,MFl}, each of which has one-to-one
matching with {L1,L2, . . . ,Ll}. In the positioning phase, the measured MRSS is defined as
S which is the mean value of MRSS in a short measured period of time. Assuming that
wireless networks have N transmitters with B frequency bands, S can be described as in

S =


s11 s12 . . . s1B
s21 s22 . . . s2B
...

...
. . .

...
sN1 sN2 . . . sNB

 (4.5)

where entries in each column show RSSs values from B different frequency band and each
row show RSSs values from N different APs. Each location of multi-band fingerprint i in
the database can be expressed as

MFi =


ρi11 ρi12 . . . ρi1B
ρi21 ρi22 . . . ρi2B
...

...
. . .

...
ρiN1 ρiN2 . . . ρiNB

 (4.6)
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where entries in each column show average value of MRSS from B different frequency band
and each row show average value of MRSS from N different APs. Thus, machine learning
algorithms, explained chapter 1, are applied on S and MFi in order to find the most similar
pair of signal vector.

4.2 Wireless Chanel Characteristics

Propagation models are fundamental tools for analyzing wireless network characteristics for
design and implementation purpose. A propagation model predicts what will happen to
the transmitted signal through different environment at the receiver. In general, there are
five attributes that varied transmitted signal characteristics are propagation loss, reflection,
diffraction, transmission and scattering, of which partially explained in section 1.4. The
signal is wakened and distorted in particular ways from the five mentioned attributes. The
purpose of the design is to ensure that transmitted information is to be successfully delivered
to the receivers after implementation. In our proposed architecture, we only use existing
infrastructure, since no transmitters design are required, thus propagation models are solely
used to explain the characteristic our proposed architecture.

In the early days of cellular system deployment, the Hata-Okumura model was very
widely used for predicting the coverage of cell sites [20]. Unfortunately, this model was
developed in relatively flat areas so it did not explicitly design for indoor environment which
is the main focus of our proposed architecture. The result was poor coverage, impaired
system performance. Currently, there are more advanced and sophisticated models available,
Choosing and applying the appropriate propagation model is an important aspect of wireless
system design [20]. Some sample of propagation models are explained in the following
sections.

4.2.1 Empirical Model

Empirical models are created based on observations or measurements. For propagation
models, these measurements are typically done in the field to measure path loss, delay spread,
or other channel characteristics. Empirical models are widely used in mobile radio and
cellular system engineering. The measurements are then used to refine empirical propagation
models used in the system-planning tool [20]. We provide example the sample models are
those currently being used for system dimensioning. Lastly, we elaborate the suitability on
our proposed architecture.

IEEE 802.16 (SUI) Models

The IEEE802.16 standards empirical model was developed for bands above 11 GHz, the
mentioned model was published in [55][56]. For frequencies below 11 GHz was proposed by
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Table 4.1: Model Constants for IEEE 802.16 Model for 2.5 2.7 GHz Band

Model constant Terrain Type A Terrain Type B Terrain Type C
a 4.6 4.0 3.6
b 0.0075 0.0065 0.005
c 12.6 17.1 20

Table 4.2: Terrain Types

Terrain types Delay spread Rice k factor Doppler
A Low High Low

Low High Low
B Low Low Low

Moderate Low High
C High Low Low

High Low High

Stanford University Interim (SUI). The basic path loss model and categorization of prop-
agation environments was taken from [57]. This basic path loss equation is illustrated as
follows:

L = A+ 10γ log

(
d

d0

)
+Xf +Xh + s for d > d0 (4.7)

where d is the distance in meters, d0 = 100 meters, hb is the base station height above ground
in meters (10 m < hb < 80 m), with

A = 20 log

(
4πd0
λ

)
(4.8)

and

γ =
a− bhb + c

hb
(4.9)

The constants a, b and c are chosen on the basis of one of three environments designated as
A, B or C as shown in Table 4.1

The terms Xf and Xh are correction factors for frequency and receiver (remote terminal)
antenna height above ground, respectively. These corrections are defined as

Xf = 6.0 log

(
f

2000

)
(4.10)

Xh = −10.8 log

(
hm
2.0

)
for Terrain Types A and B (4.11)
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Xh = −20.0− log

(
hm
2.0

)
for Terrain Type C (4.12)

where f is the frequency in MHz and hm is the receiver (remote terminal) height above
ground in meters.

The term s is a lognormal-distributed path loss factor that takes into account shadow
fading from trees and structures. From [58], the standard deviation of s is typically 8.2 to
10.6 dB, depending on the terrain type explained in Table 4.2.

COST-231 Hata Model

The COST-231 Hata model [59] was devised as an extension to the HataOkumura model [60][61].
The HataOkumura model is an empirical model developed for the 500 to 1500MHz frequency
range using measurements done by Okumura [61] and equations fitting to the path loss curves
by Hata [60]. The COST-231 model also has correction for urban, suburban, and open areas.
Further extensions to these models could perhaps adapt them to the MMDS band. For these
reasons, the COST-231 Hata is included here. The basic path loss equation for urban areas
is

Lu = 46.3 + 33.9 log10 f − 13.82 log10 hb − ahm

+ (44.9− 6.55 log10 hb) log10 d+ cmdB
(4.13)

ahm = (1.1 log10 f − 0.7)hm − (1.56 log10 f − 0.8) (4.14)

where:

cm = 0 dB for medium sized city and suburban centers.
cm = 3 dB for metropolitan centers.
f = frequency in MHz.
d = distance from the Tx to the Rx in kilometers
hb = height of the Tx above ground in meters
hm = height of the Rx above ground in meters

The COST-231 Hata model has many of the same limitations for detailed system plan-
ning as the SUI models. Nonetheless, because of their simplicity, they are widely used for
system dimensioning and other generic system concept formulations.

Both of the mentioned empirical models, mentioned in sec. 4.2.1, are not suitable for our
propose architecture due to the reason that (4.5) in any position generated from different
frequency has high correlation and cannot be used to improve accuracy on our proposed
system. The estimated received signal strengths predicted from empirical models are very
rough. Thus, we use ray-tracing which is one of the physical models and perform experiments
to explain our proposed system.
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4.2.2 Ray-Tracing

Ray-tracing is one of the site-specific simulation models, which is widely used to investigate
the radio wave behavior in both indoor and outdoor environment. In recent years, a propa-
gation modeling approach known as ray-tracing has seen considerable interest. Ray-tracing
is a method based on combining geometric optics (GO), the uniform theory of diffraction
(UTD), and other scattering mechanisms, which can predict electromagnetic wave propaga-
tion. The notion of a ’ray’ is fundamental to ray-tracing, which is the same as explained
in (3.2.1). It arises in GO where EM energy is considered to be flowing outward from a
radiating source in ray tubes.

Ray-tracing itself is a long-used technique that can be traced back to Maxwell established
a connection between optics and electromagnetism in 1873. The current ray-tracing model
is based on Kouyoumjian and Pathak [62] who devised the UTD, which applied a Fresnel
integral to correct for the singularities at the shadow and reflection boundaries. Thus,
ray-tracing is applicable for dealing with a wide variety of high-frequency electromagnetic
problems in which can explain the contribution of our proposal. The ray-tracing has one
limitation that wavelength used in the simulation must be much smaller than the dimensions
of the physical features involved. Thus, Ray-tracing is a ’model’ provides useful results
especially new type of systems that are not conveniently available with empirical models.
The mechanisms involved in ray-tracing models are in the form of 5 propagation primitive’,
which are free-space propagation, specular reflection, diffraction, diffuse wall scattering and
wall transmission in combination.

The result is that each ray upon reaching the receiver has undergone a cascade of in-
teractions that determine its amplitude, phase, and time delay. The details of each of the
propagation primitives were discussed in section 1.4. An important assumption in the use
of ray-tracing, GO, and UTD, is that the physical dimensions of the scattering objects are
large compared to the wavelength. Using this assumption, the interaction of the propaga-
tion primitives with the rays can be considered separately. As mentioned, the amplitude and
phase of the EM field at the receiver represented by an arriving signal ray can be found by
considering the impact on the ray of all the interactions with the propagation environment
it has had in transit from the transmitter to the receiver. The field at the receiver is thus
given by

Er =
1

s′f

√
PTGTZ0

4π

[
Π
i
Ri

] [
Π
n
A (s′n, sn)Dn

] [
Π
l
Ascat,l

] [
Π
k
Atran,k

]
(4.15)

where:
Note that the diffraction coefficient and diffraction spatial attenuation factor are specific to
the path lengths into and away from the nth wedge from wherever the illuminating source and
onward receiving point or surface are located. If diffuse wall scattering or wall transmission
occur along the ray path, the additional attenuation factors shown as terms 4 and 5 of (4.15)
are included. Regarding the (4.15), estimated (4.5) in each position can be differed from
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s′f is the total ray trajectory length√
PTGTZ0

4π
is the free-space attenuation component where Zo is the plane wave free-space

impedance, PT transmitter power, and GT transmitting antenna gain
Ri is the reflection coefficient from section 1.4.1 for the i−th reflection on the ray

path (a complex number)

Dn is the diffraction coefficient from section 1.4.2 for the n−th diffraction wedge
on the ray path (a complex number)

A (s′n, sn) the spatial attenuation factor diffraction coefficient from section 1.4.2
Ascat,l is the scattering coefficient if scattering is included for objects in the model
Atran,k is the wall transmission coefficient if the model

frequency diversity, caused by wavelength property, reflection, diffraction, and transmission.
We proved our claim by performing experiment, of which will be deliberated in the next
section.

4.3 Proposed System

This chapter proposes a MRSS fingerprinting architecture, which employs based on frequency
diversity over the conventional RSS fingerprinting. By deploying frequency diversity on
RSS fingerprinting, higher achievable positioning accuracy can be realized, as a result of
the increment of RSS fingerprint resolution, and also the increment of correct estimation
probability in positioning phase. However, the improvements are arguably not only caused
by the effects of frequency diversity but also by the RSS of additional transmitters. Therefore,
in our experiment, we use transmitters that simultaneously transmit dual band signal, to
prove that positioning accuracy can be enhanced solely by the effect of frequency diversity.

Based on the previous researches, the conventional RSS fingerprinting method utilizing
only one frequency band of signal, the achievable accuracy have been reported in the range of
1.5 5 meter, depending on the experimental configuration [9][12][31][32]. In order to evaluate
the effectiveness of the proposed system, we performed experiment under the area of 103 m2.
The K-Nearest Neighbor (KNN) classifier is utilized in the positioning phase. The results
confirm that by deploying MRSS, achievable mean error distance (MED) approach closer to
the error distance lower bound compared with the single-band system.

4.3.1 Characteristic Between LOS and NLOS

As mentioned in the previous section we use frequency diversity from existing infrastructure
to enhance the fingerprinting resolution. In this section we discuss the limitation of proposal
architecture; we focus on proving that frequency diversity itself can enhance fingerprint-
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Figure 4.3: Frequency time diversity technique.

ing. Thus, we confine our studied environment as the transmitter that can simultaneously
transmit multiband signals for evaluating the impact of frequency diversity effect on RSS fin-
gerprinting resolution. The equation (4.15) shows that only free-space path loss itself cannot
alternate RSS level of each frequency band. However, the effects of reflection, diffraction,
transmission which are explain in section 1.4. We provide over analytical through the
following subsection.

Methodology

The objective of deploying multiband signal, frequency diversity, in RSS fingerprinting is to
enhance its database resolution. Wavelength has property to alter specular reflection points
in each frequency band. Dynamic shadowing [63] can cause the signal to be unperceivable
in a certain period of time. Hence, in the modeling, we utilize frequency time diversity
for the opportunistic deployment of multiband fingerprint system, as illustrated in Fig. 4.3.
In the following sections, methodologies and performance analysis used in training phase,
positioning phase, frequency correlation analysis and correct estimation probability analysis
will be discussed.

Training Phase

In training phase, frequency time diversity technique is deployed in order to cope with time
coherence of dynamic shadowing and wavelength property. The frequency time diversity
technique records all the RSSs from each frequency band during the measurement period.
Only the measurable RSSs from each frequency band are used to createMF for each position.

The F of each frequency band is stored separately, referred to multiband received signal
strength (MRSS) fingerprint, in order to enhance the MF resolution. Hence, the database
size of MRSS scheme is B times higher than single band RSS fingerprint.

4.3.2 KNN MRSS Fingerprinting

In positioning phase, mentioned in section 4.1.3, the closest distance of signal distance,
between S and MF, is calculated by Dist(·) function [9][31]. The NN classifier uses the MFi
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that has the shortest signal distance, compare to S, among the j neighboring points; MFj.

Dist (S,MFi) 6 Dist (S,MFj) , ∀j ̸= i (4.16)

We modified the generalized distance, defined in [32], by RSS of multi-band signal as an
additional value, as shown in (4.17). The N value is the number of access point, where B
denotes the number of frequency bands that are utilized.

Ll
p =

1

N

(
N∑
i=1

1

ωi

· 1
B

∣∣∣∣∣
B∑
j=1

1

ωj

((ρij − Sij)
p)

1/p

∣∣∣∣∣
p)1/p

(4.17)

In order to realize the innate data structure of experimental results, we used an unweighted
signal distance (ωi = 1 and ωj = 1). Furthermore, we illustrated achievable estimated error
distance, by utilizing Manhattan distance (p = 1) and Euclidean distance (p = 2) in signal
space for NN classifier in (4.16); from conventional method (singleband signal: B = 1)
and the proposed method (multi-band signal: B > 1). Positioning accuracy based on NN
classifier in muliband characteristics has not been studied. Thus, we study the achievable
accuracy from both Manhattan and Euclidean distances, in order to maximize the capability
of NN classifier.

In multiband fingerprint positioning phase, we use deterministic model such as NN and
KNN [14][31]. In KNN, where K > 2, those with the shortest signal distance are chosen;
the average coordinates of K points can be used as the estimated position. Intuitively, KNN
should provide higher accuracy, since the misclassification of the shortest signal distance
point can be occurred easily due to fluctuation of RSS at the receiver; as a result from
multi-path propagation. Hence, there is no reason to only pick the nearest one and abandon
other nearby points.

4.3.3 Frequency Correlation Analysis

The main objective of deploying frequency diversity on RSS fingerprinting method, denoted
as MRSS, is to increase fingerprint resolution. The resolution of fingerprint increased in
proportion to independence of measured RSSs, which can be proved by analyzing the pairwise
correlation coefficient of RSS between frequency bands at each fingerprint location.

The correlation coefficient (ρ) is a real number that falls in a range of 0 and 1. It is
calculated by

ρI,J =
cov (I, J)

σIσJ
=
E ((I − µI) (J − µJ))

σIσJ
(4.18)

where µI , and ρI are the mean value and standard deviation of variable I, respectively.
Likewise, µJ and µJ are mean value and standard deviation of variable J . If two signals are
independent to each other, the correlation coefficient will be 0. If two signals are correlated,
the correlation coefficient will approach 1 or −1, in the case of an increasing and decreasing
linear relationship, respectively.
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4.3.4 Correct Estimation Probability Analysis

The enhancement of accuracy is relevant to the increment of correct estimation probability
at each nearest position, denoted as NCEP. For the preliminary analysis, we modified correct
estimation probability, which is proposed in [64], to illustrate NCEP of our system model.

Let Ck,q
l = Dist

(
S,MFk,q

i

)
− Dist

(
S,MFk,q

l,j

)
be the comparison variable. The variable

Ck,q
l compares the signal distance, as shown in (4.17) ), between measured MRSS, as in

(4.5) of (a) the correct MRSS fingerprint location MFk,q
i and (b) the l−th incorrect MRSS

fingerprint location MFk,q
j . The index l runs from 1 to L excluding the correct location

denoted by the index from l to l + k. The index k is the order of nearest neighbor classifier
that runs from 1 to K, regarding K in KNN classifier. The index q shows sequence of nearest
position which runs from l to l + k. The number L corresponds to number of entries in
MRSS fingerprint location. Then, the probability of correct estimation probability at each
nearest position can be written as:

P k,q
c = P

{
Ck,q

1 6 0, ..., Ck,q
l−1 6 0, ...,

Ck,q
l+k 6 0, ..., Ck,q

L 6 0|q : l, .., l + k − 1
} (4.19)

Equation (4.19) is the probability of returning the correct location from KNN classifier for
the proposed MRSS fingerprinting based indoor location system when the correct positions
are ranging from l− 1 to l+ k and there are L fingerprint locations in the database entries.
Intuitively assuming perfect correct estimation probability, P k,q

c = 1 such that q = [l, l + k]
, the maximum value of K that provides highest achievable accuracy is 4. Furthermore, the
lower bound of achievable accuracies of each K is calculated by assuming that P k,q

c = 1, of
which the results are shown in latter section.

4.4 Experimental Setup

We made experiment in both LOS and NLOS environments at the University of Electro-
Communications and Keio University, respectively. The experiment in both environment,
we use dual band of IEEE802.11 a/b/g, of which both 2.4 and 5.2 GHz frequency bands are
simultaneously transmitted from the same Access Points (APs); likewise, dual band NEC
Aterm WL54SU2, is used as a receiver. The experimental configurations of LOS and NLOS
environments are illustrated in Fig. 4.4 and Fig. 4.5, respectively. Where 6 units of dual
bands APs (802.11a/b/g) are used as transmitters and Air Magnet Survey Pro (version 6)
is used for acquiring RSS values during training phase.
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Figure 4.4: Experimental site configuration at The University of Electro-Communications,
Choufu Campus, Advanced Wireless Communication Research Center (AWCC) building, 4th

floor; 6 APs was distributed in every room around experimental area.
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Figure 4.5: Experimental site configuration at Keio University, Yagami Campus, building 24,
3rd floor, Nakagawa laboratory; 6 APs was distributed in every room around experimental
area.
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4.4.1 LOS Environment

The objective of this experiment is to confirm our hypothesis discussed in section 4.3.1 that in
LOS environment, the obtained RSS of multi-frequency signals show high similarity between
each frequency band. The experiment were conduct with 126 fingerprint locations in the
area of 67.85 m2, shown as circle symbols in Fig. 4.4. RSS of both 2.4 and 5.2 GHz were
measured, sampling rate 150 msec, with attribute of 1 second per RSS sample. Fingerprint
location grid size is set to 0.5 × 0.5 m. The observation time at each fingerprint location is
set to 20 mins. Details of the experimental configuration are explained in Table 4.3. The
results that confirm our hypothesis are shown in the following section.

4.4.2 NLOS Environment

NLOS environment can be regarded as the most challenges for research on positioning, in
this research we use NLOS to increase the positioning accuracy. Experimental parameters
of the training phase are described in Table 4.4. The experiments were conducted with 49
fingerprint locations in the area of 103 m2, shown as circle symbols in Fig. 4.5. The most of
the experimental parameters are the same as used in LOS environment, except for the gird
size of fingerprint location which are 0.89 × 1.2 m. In order to demonstrate the effects of
deploying frequency diversity in RSS fingerprint, all the APs utilize the same dual channel of
Ch.2 and Ch.40. Terminal orientation is set toward north at every fingerprint locations. In
the positioning phase, we sampled RSSs from 12 positions shown as × symbols in Fig. 4.5,
terminal orientation is set heading toward north. The KNN classifier with both Manhattan
and Euclidean signal distances are utilized to illustrate the proposed system performance.
The parameters of experimental configuration are shown in Table 4.5. The S is measured 60
seconds from each sample position, window sizes (Wz) are varied from 1 second to 10 seconds
to show the impact of observation time in positioning phase over the achievable accuracy.
The results of the proposed method are shown in the following section.

4.5 Performance Evaluation

The evaluations of the proposed system are divided into 5 parts, which are the comparison
time series of RSS between 2.4 and 5 GHz frequency bands, illustration of LOS and NLOS
MRSS fingerprint in different view, frequency correlation, correct estimation probability and
effectiveness of proposed system, which is evaluated by mean error distance from estimated
position. The results of each case are elaborated through the following subsections.

4.5.1 RSS Time Series

The RSS from each AP shows the unique characteristic between frequency bands at each
position, which make MRSS fingerprint resolution enhanced. The enhancement contributed
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Table 4.3: Training Phase Experimental Parameters of LOS Environment

Parameters Quantity
Channel (B) Ch.2 (2.4 GHz),

Ch.40 (5 GHz)
Number of AP (N) 6 APs
Grid Size 0.5 × 0.5 meter
Fingerprint Location (l) 126 Positions
Measurement Time 20 mins/ position
Symbol Period 1 sec/symbol
Sampling Rate 150 msec
Terminal Orientation (o) North

Table 4.4: Training Phase Experimental Parameters of NLOS Environment

Parameters Quantity
Channel (B) Ch.2 (2.4 GHz),

Ch.40 (5 GHz)
Number of AP (N) 6 APs
Grid Size 0.89 × 1.20 meter
Fingerprint Location (l) 49 Positions
Measurement Time 20 mins/ position
Symbol Period 1 sec/symbol
Sampling Rate 150 msec
Terminal Orientation (o) North

Table 4.5: Positioning Phase Experimental Parameters of NLOS Environment

Parameters Quantity
Channel (B) Ch.2 (2.4 GHz),

Ch.40 (5 GHz)
Number of AP (N) 6 APs
Experimented Position 12 Positions
Measurement Time 60 sec/ position
Window Size (Wz) 1 − 10 sec/symbol
Sampling Rate 150 msec
Terminal Orientation (o) North
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Figure 4.6: Time series of MRSS of both frequency band (2.4 and 5 GHz) at position 11.
The x−axis shows the measured time in second. The y−axis shows received signal strength
in dBm.
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Figure 4.7: The received signal strength of multiband fingerprint from AP 02 (LOS environ-
ment). The x−axis and y−axis shows the location of experimental site in centimeter. The
z−axis shows the received signal strength level in dBm.

to wavelength property, reflection, diffraction and transmission, which causes the frequency
diversity. Figure 4.6 illustrates MRSS time series, of a location close to AP08, from MRSS
fingerprint entries. The results show that RSS from 2.4 GHz frequency band of some AP
has higher fluctuation than the RSS of 5 GHz frequency band. Moreover, RSS from 2.4 GHz
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frequency of AP08 band shows high fluctuation during human presence, which is caused by
EM wave transmission through human body; as described in section 1.4.3.

4.5.2 MRSS Fingerprint

Figure 4.8 shows the MF of AP 08 in NLOS environment at Keio University. Upper figure
illustrates MRSS fingerprint viewing toward southwest direction of the experimental site,
and lower figure illustrates MRSS fingerprint viewing toward south east. The signal from
AP08 has no line-of-sight to any positions in fingerprint location (l). Figure 4.8 shows the
average RSS level measured at each fingerprint location of 2.4 and 5.2 GHz bands. The
result shows that when radio wave transmitted through different material, attenuation of
each frequency band was substantially different. At some fingerprint locations, only RSS
of 5.2 GHz frequency band is receivable, as a result to wavelength property described in
section 1.4.

Furthermore, Fig. 4.8 shows that there are intersections between RSS fingerprints of each
frequency band. Thus, deploying frequency diversity on RSS fingerprint, MRSS, is able to
increase fingerprint resolution. On the other hand, Figure 4.7 shows theMF of AP 02 in LOS
environment at The University of Electro-Communications. The results show high similarity
between each frequency band.

4.5.3 Frequency Correlation

The proposed system, MRSS fingerprinting, working on the basis that frequency diversity
can improve fingerprint resolution. The resolution of fingerprint in section 4.3.3, increases
in proportion to degree of independence of measured RSSs. In this section, we analyze the
correlation between 2.4 and 5.2 GHz frequency bands, of which both are generated from the
same APs, among fingerprint locations by utilizing (4.18).

The fingerprint locations are classified into 3 groups as follows. Firstly, location 1 is
laboratory area, NLOS environment with high obstacle denoted by fingerprint locations 1 to
25. Secondly, location 2 is building hallway, NLOS environment with no obstacle, designated
as fingerprint locations 26 to 35. Lastly, fingerprint locations 36 to 49 are regarded as location
3 that is in the area of a conference room where two line-of-sights from AP02 exist.

Figure 4.9 illustrates frequency correlation coefficient among fingerprint locations created
from 6 units of dual-band AP. The results show that without LOS, all the entire fingerprint
locations show low frequency correlation between 2.4 and 5 GHz frequency band.

4.5.4 Correct Estimation Probability

The performance of indoor positioning systems is majorly evaluated by achievable accuracy
from positioning estimation. Positioning accuracy achieved from KNN method is relevant
to grid sizes of the fingerprint location and correct estimation probability at each nearest
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Figure 4.9: Frequency correlation among fingerprint locations, which created from 3 types
of area consisting of 49 locations.

position, NCEP, between MRSS fingerprint and instantaneous measured RSS in positioning
phase.

Intuitively achievable accuracy is increasing if grid sizes of fingerprint locations become
smaller. Nevertheless, with multi-path propagation and dynamic shadowing, the NCEP
became very low. This means that the nearest neighbor positions are misclassified into the
much further position, and error distance is increased. Thus, the higher the NCEP is, the
higher the achievable accuracy can become. In this section, correct estimation probability
between the proposed system (MRSS fingerprint), and the conventional single band RSS
fingerprint is calculated by (4.19).

Figures 4.10 and 4.11 illustrate NCEP (P k,q
c ) comparison among K-th nearest position

calculated by 4NN method, where k = 4 and q = l, , l + 3, incorporating with Manhattan
(L1) and Euclidean (L2) distance as in (4.17). X-axis shows window size (Wz) of average
RSS per sample (S) during positioning phase, as in (4.5). Y -axis shows correct estimation
probability of each K-th nearest position estimated by 4-NN classifier. The NCEP of 1st,
2nd, 3rd and 4th nearest positions are denoted as P 4,l

c , P 4,l+1
c , P 4,l+2

c and P 4,l+3
c , sequentially.
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Figure 4.10: Comparison of correct estimation probability at each nearest position, NCEP,
achieved by 4NN classifier utilizing Manhattan (L1) distance.

In Figs. 10, asterisk, circle, cross, triangle symbol represent correct estimation probability
of 1st, 2nd, 3rd and 4th nearest positions, respectively.

The results confirm that by deploying frequency diversity on single-band RSS finger-
print, denoted as MRSS fingerprint, the achievable NCEP at 1st and 2nd nearest positions
are significantly enhanced over both Manhattan and Euclidean distances. Besides, utilizing
Manhattan distance together with KNN method provides significant improvement, compar-
ing with the one achieved by Euclidean distance. The highest achievable NCEP is equal to
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Figure 4.11: Comparison of correct estimation probability at each nearest position, NCEP,
achieved by 4NN classifier utilizing Euclidean (L2) distance.

0.79, which shows enhancement over 67.8 percent comparing with single-band of 2.4 GHz,
and 28.6 percent in the case of 5.2 GHz band. Tables 4.6 and 4.7 show comparison of NCEP
improvement between conventional single-band RSS fingerprint system and the proposed
MRSS fingerprint system.
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Table 4.6: Correct Estimation Probability Enhancement at Each Nearest Position Achieved
by 4NN Classifier of L1: Manhattan Distance

Wz Percentage of Improvement ( L1: Manhattan Distance )
(sec) MRSS over IEEE802.11a (%) MRSS over IEEE802.11g (%)

P 4,1
C P 4,2

C P 4,3
C P 4,4

C P 4,1
C P 4,2

C P 4,3
C P 4,4

C

2 21.4 39.2 -7.4 -23.6 70.1 18.4 36.4 32.4
4 29.5 58.5 1.0 -16.5 64.8 32.1 45.2 22.6
6 28.6 66.7 -1.4 -17.7 67.8 34.6 38.5 10.9
8 35.5 67.6 6.7 -24.5 55.6 32.6 60.0 25.0
10 38.3 70.4 10.9 -23.3 54.8 24.3 70.0 10.0

Table 4.7: Correct Estimation Probability Enhancement at Each Nearest Position Achieved
by 4NN Classifier of L2: Euclidean Distance

Wz Percentage of Improvement ( L2: Euclidean Distance )
(sec) MRSS over IEEE802.11a (%) MRSS over IEEE802.11g (%)

P 4,1
C P 4,2

C P 4,3
C P 4,4

C P 4,1
C P 4,2

C P 4,3
C P 4,4

C

2 29.3 46.6 0.0 -11.9 30.8 23.2 6.8 7.2
4 43.1 58.8 -5.3 2.2 23.7 31.7 -20.0 17.9
6 38.9 78.3 7.1 -9.7 16.3 41.4 -3.2 -12.5
8 50.0 90.0 -9.1 7.4 25.0 35.7 -23.1 7.4
10 52.2 100 -15 5.0 25.0 33.3 -22.7 -8.7

4.5.5 Achievable Accuracy

In this section, we evaluate the effectiveness of multiband fingerprint by comparing to the
conventional single-band system Fig. 4.5 shows the experimental environment. The triangle
symbol shows the location of APs, the circles represent fingerprint location (L) in the training
phase and × symbol represents the experimental location in the positioning phase. We use
K-Nearest Neighbor (KNN) classifier to indicate the performance with mean error distance
(MED), of which signal distance are calculated by utilizing both Manhattan distance (L1)
and Euclidean distance (L2) as shown in (4.16) and (4.17). Figure 4.12 illustrates relationship
between positioning phase window size (Wz) and MED achieved from L1 and L2. In Fig. 4.12
the achievable MED among KNN methods are compared with error distance lower bound,
which is calculated from experimental position, as illustrated by × symbols in Fig. 4.5, and
KNN by assuming that NCEP = 1.

In both L1 and L2, achievable mean error distance of conventional methods (single-band
of both 2.4 and 5 GHz) decreased in inverse proportion to K-order of KNN method. The
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Figure 4.12: The mean error from L1 and L2, consequentially, comparison of single band
and multiband, among KNN methods. The x-axis shows Wz of the measured MRSS during
training phase.

proposed method MRSS fingerprint provides the lowest MED, as the result of increment of
achievable NCEP illustrated in Figs. 4.10 and 4.11. Our experimental configuration, 2NN
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Table 4.8: Achievable Accuracy Comparison Among Dist(L1): Manhattan Distance and
Algorithms.

Window Size Dist(L1): Manhattan Distance
(Wz = 10 sec) NN(cm) 2NN(cm) 3NN(cm) 4NN(cm)
Singleband 5.2 GHz 167.19 151.07 124.81 112.77

2.4 GHz 188.75 141.63 132.82 118.16
Multiband 5.2, 2.4 GHz 109.03 79.52 86.88 86.47
Mean Error Lower Bound 46.28 19.68 24.49 34.72

Table 4.9: Achievable Accuracy Comparison Among Dist(L2): Euclidean Distance and
Algorithms.

Window Size Dist(L2): Euclidean Distance
(Wz = 10 sec) NN(cm) 2NN(cm) 3NN(cm) 4NN(cm)
Singleband 5.2 GHz 359.41 429.04 440.87 434.13

2.4 GHz 288.53 285.32 275.69 271.32
Multiband 5.2, 2.4 GHz 253.56 243.32 251.83 254.99
Mean Error Lower Bound 46.28 19.68 24.49 34.72

classifier with both L1 and L2 provides the lowest MED, which matched our experimental
configuration shown in Fig. 4.5. In addition, the results confirm that the proposed system,
MRSS, provide estimated accuracy improvement over 50 % in the case of utilizing L1 and
over 10 % in the case of utilizing L2. Details are provided in Tables 4.8 and TB:Mean2. In
summary, Figs. 4.10, 4.11 and 4.12 show that achievable accuracy is increased in proportion
to NCEP. MED approaches mean error distance lower bound as NCEP at every positions
approaching 1, as shown in Tables 4.8 and 4.9.

The achievable MED is varied in different experimental configurations; such as the num-
ber of APs, and fingerprint location grid sizes; as reported in [9][12][31][32]. However, in
this subsystem, we proved that frequency diversity enhances positioning accuracy. In NLOS
environment, correlation between frequency bands are low, thus, the fingerprint resolution is
enhanced. During positioning phase, the increment of fingerprint resolution provides higher
NCEP, which increases in proportion to achievable accuracy.

4.6 Conclusion

We propose MRSS fingerprinting based indoor location subsystem, which deploy frequency
diversity over the conventional RSS fingerprint system. The advantage of fingerprinting
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approach is that transmitter locations are not required for positioning estimation; on the
other hand database of utilization area must be premeasured. Thus, with multi-frequency
band capable receiver such as cognitive radio terminal or dual-band WLAN receiver together
with fingerprinting approach, will be able to access to numerous frequency bands. Hence,
positioning estimation can be achieved without installing extra wireless infrastructure.

We proved that achievable accuracy can be enhanced as a result of frequency diversity
using dual band WLAN (2.4 and 5.2 GHz are simultaneously transmitted) transmitters from
the same locations. The experiments were conducted to confirm our hypothesis, in the area
of 103 m2 with 6 units of APs; as shown in Fig. 4.5.

The accuracy achieved from fingerprinting approach increased in proportion to its resolu-
tion. In order to enhance fingerprint resolution, multiband received signal strength, MRSS,
fingerprint, MF, were created by using both frequency and time diversity. The increment of
fingerprint resolution hypothesis was supported by frequency correlation analysis, provided
in section 6.3, which showed very low correlation between frequency bands among fingerprint
locations.

Effectiveness of the proposed system was evaluated by analyzing correct estimation prob-
ability at each nearest position, NCEP, and achievable accuracy estimated by Mean Error
Distance, MED. The MED varied with experimental sites and configurations, such as num-
ber of APs, fingerprint location grid sizes. On the other hand, NCEP is more generalized.
The results confirmed that by adding the effect frequency diversity at the nearest position,
NCEP of the proposed system increased over 50 %. In addition, estimated MED is decreased
in proportion with NCEP.

In conclusion, MRSS fingerprinting based indoor positioning system created from both
2.4 and 5.2 GHz. shows significant improvement over the conventional single-band RSS
fingerprint system. The higher accuracy contributes to the correct estimation between RSS
in positioning phase S, and MF in MRSS fingerprint entry.
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Chapter 5

Conclusion and Future Development

This dissertation has developed a solution architecture as a design tool and recommends
a set of design guidelines in order to accelerate the deployment process. The proposed
architect is developed based on eco-friendly approach, no extra infrastructure is introduced
in order not to create extra carbon footprint. Moreover, the operational and installation cost
can be minimized owing to our infrastructure less proposal. The architecture is well balance
between the accuracy, the location granularity, capacity, operational cost and complexity.
The proposed architecture has three subsystems, which are VLC based positioning system,
MRSS fingerprinting system and machine learning algorithms that use to enhance the two
preceding subsystems.

The VLC based positioning subsystem was investigated in chapters 2 and 3. The system-
atic studies on both empirical and analytical were used to analyze the VLC based positioning
system, and discover its unique properties. We define two properties, FOV Limit and Sen-
sitivity Limit, of which are the preliminary requirement to enable our proposed switching
estimated receiver position (SwERP) scheme. The results show more than 80% accuracy im-
provement over the conventional visible light identification system (VLID). The uniqueness
of this proposed subsystem is its low computation complexity and high accessibility; due to
the reason that only one transmitter is required for positioning estimation. In chapter 3, we
introduced two additional subsystems to fulfill SwERP scheme requirement.

Based on exhaustive measurements in chapter 4, we found out that MRSS random process
is non-stationary, the mean is more or less constant and could be used as the fingerprint
of a location. We found a great improvement by incorporating frequency diversity into
conventional RSS fingerprinting. From theoretical and empirical point of view, we proved
that MRSS can improve positioning accuracy over 50% compare to the conventional RSS
fingerprinting. MRSS fingerprinting can improve correct estimation probability of 1 NN up
to 80%, which is the key factor to the accuracy improvement. The greatest advantage of
MRSS fingerprinting subsystem is any existing infrastructure can be utilized as the sources
of signal.
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5.1 Contributions

This section list the major contribution of this thesis:

• The proposed architecture does not require any extra infrastructure. Therefore, invest-
ment and operational cost can be minimized to ensure the success of implementation.
Moreover, from this approach minimal carbon footprint is created from additional
location information server. Thus, we proved that the proposed architecture is an
eco-friendly solution.

• We made both theoretical and analytical studied to study the proposed systems char-
acteristics, which are based on our extensive measurement. We used the unique char-
acteristic of each studied subsystem to proposed positioning schemes that can greatly
enhance positioning accuracy. Moreover, both of the subsystems are compliment to
each other.

• We provided an example of a design guideline which will be useful for designing the
indoor positioning by identifying major parameters that contribute to the performance
of both indoor positioning subsystem.

• We introduced machine learning algorithms to ensure the lifetime evolution of the
proposed architecture. Machine learning algorithms are applied in many stages ranging
from analyzing the subsystems characteristic to positioning estimation. Furthermore,
both of the selected core subsystem technologies are designed based on daily life basis
infrastructures that provide illumination and communication.

5.2 Future Development of The Proposed Architecture

The research in this dissertation provides methodology for designing and implementation
of core system architecture for lifetime evolution indoor positioning system. The current
algorithms used in the proposed architecture for positioning estimation are not optimized.
The main purposes of the previously proposed algorithms are used to illustrate that the
proposed system can operate correctly as our objective. Thus, there are still great rooms for
accuracy improvement.

The propose solution architecture is still has limitations. Firstly, VLC based indoor po-
sitioning subsystem has an unavoidable communication barrier, owing to the visible light
property which cannot penetrate through opaque object. Thus, we introduce MRSS finger-
printing subsystem to compensate this lack of accessibility. Secondly, the proposed MRSS
fingerprinting subsystem also has disadvantage, of which is the requirement abundant man-
power during training phase. Both of the subsystem disadvantages can be resolved by using
VLC based positioning system to calibrate MRSS fingerprinting during training phase, as
shown in Fig. 5.1. However, fully extent investigation the mentioned method is required.
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Figure 5.1: The future posibility of the proposed indoor positioning architect block diagram,
VLC based positioning system is used to calibrate MRSS fingerprinting.
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