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Summary

In the present work we study the relation between forbidden induced subgraphs

and the resulting properties in large enough graph. More formally, we study the

following problem. Given a property P on graphs, find all the families of connected

graphs F such that every large enough F -free graph satisfies P . This problem has

been studied before for several properties in particular. For example, Hamiltonian

graphs, traceable graphs, graphs containing a 2-factor, pancyclic graphs, Hamilton-

connected graphs, cycle extendable graphs, graphs containing a perfect matching,

etc.

In this thesis we give a full characterization of all families of forbidden sub-

graphs for several classes of graphs: claw-free graphs, star-free graphs, graphs hav-

ing a perfect matching, graphs having a near perfect matching and t-tough graphs.

Concretely, for each of these classes, we give a complete characterization of all the

families of connected graphs F such that every large enough F -free graph is in the

desired class.
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Chapter 1

Introduction

In this chapter we give an introduction to the problems addressed in this thesis.

In Section 1.1 we do a brief introduction to the general topic of forbidden induced

subgraphs. In Section 1.2 we present some results on the subject found in previous

works. In Section 1.3 we describe the particular problems studied in this thesis and

present our main results.

1.1 The forbidden induced subgraph problem

Let G and H be two graphs. G is said to be H-free if G does not contain H as an

induced subgraph. Let F be a family of connected graphs. G is said to be F-free if

G is H-free for all H ∈ F . In this case, we say that F is forbidden in G.

The forbidden subgraph theory studies the relation between the family of for-

bidden subgraphs F and resulting properties in the graph G. In this theory, we

can think mainly of two problems. Given a family of graphs F , find the properties

that F -free graphs have. Or in the opposite direction, given some property, find the

families of graphs F such that the F -free graphs satisfy the desired property. In

this thesis, we concentrate in the later.

If we think of the simplest graphs that can be forbidden, we can start from the

smallest connected graphs, like P1, P2, P3 (the path on one, two and three vertices,

respectively). But P1-free graph, P2-free graphs and P3-graphs are not interesting.

There are no P1-free graphs. P2-free graphs are just edge-less graphs. And P3-free

graphs are just a collection of complete connected components. None of these classes

of graphs have any interesting structural property. Therefore, we will only consider

forbidden subgraphs with at least three edges.

There are three non-isomorphic connected graphs with three edges: K3, P4 and

K1,3. One of them, K1,3, appears in the theorem that might be considered the most

basic result in forbidden subgraph theory.
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Theorem 1.1 ([32],[24]). Every K1,3-free connected graph of even order has a perfect

matching.

This theorem shows a property of K1,3-free graphs. But, as we stated before,

we can ask the opposite question. That is, what other forbidden subgraphs imply

a perfect matching? In [30], the authors showed that K1,3 is essentially the only

forbidden subgraph implying a perfect matching, even when allowing a finite number

of exceptions.

Theorem 1.2 ([30]). Let H be a connected graph of order at least three. If there

exists a positive constant n0 such that every H-free connected graph of even order

at least n0 has a perfect matching, then H = K1,2 or H = K1,3.

These two theorems provide basic examples of the kind of results found in forbid-

den subgraph theory. But it is possible to consider several variations and restrictions.

For example, fixing or limiting the number of forbidden subgraphs, allowing a finite

number of exceptions, not allowing exceptions at all, considering only connected for-

bidden subgraphs, etc. In the following section we show several theorems including

some of these variations and restrictions.

In Section 1.3 and Chapter 5, we show and prove generalizations of Theorems

1.1 and 1.2 by allowing more than one forbidden subgraph.

1.2 Background

In this section we present some results on forbidden induced subgraphs found in

previous works.

When we state results concerning forbidden induced subgraphs, the following

definition is very useful to compare families of graphs. If F1 and F2 are two families

of graphs, we say that F1 ≤ F2 if for each H2 ∈ F2, there is an H1 ∈ F1 such that

H1 is an induced subgraph of H2. It is easy to see that the relation “≤” defines

a quasi-order (reflexive and transitive). Furthermore, if F1 ≤ F2 then any F1-free

graph is also an F2-free graph (see for example Lemma 3 of [18]).

A graph is said to be Hamiltonian if there is a cycle passing through all its

vertices. Such a cycle is called a Hamiltonian cycle. During the 1980’s, a number

of results were proved showing that forbidden some subgraphs implies the existence

of a Hamiltonian cycle in a 2-connected graph. The most basic and fundamental of

them is the following result.

Theorem 1.3 ([11]). Every 2-connected {K1,3, N}-free graph is Hamiltonian.

2



Where N = N1,1,1, being Ni,j,k the graph consisting of K3 and three vertex

disjoint paths of lengths i, j and k rooted at its vertices. Define also W = N2,1,0

and Zi = Ni,0,0.

Later, some additional results showing other forbidden pairs were proved.

Theorem 1.4 ([6]). Every 2-connected {K1,3, P6}-free graph is Hamiltonian.

Theorem 1.5 ([3]). Every 2-connected {K1,3,W}-free graph is Hamiltonian.

Finally, Bedrossian[3] showed that these are essentially all possible pairs.

Theorem 1.6 ([3]). Let R and S be connected graphs. Then every 2-connected

{R, S}-free graph is Hamiltonian if and only if R is an induced subgraph of K1,3 and

S is an induced subgraph of one of P6, N and W .

Faudree et al.[13] considered a variation allowing a finite number of exceptions.

Theorem 1.7 ([13]). Every 2-connected {K1,3, Z3}-free graph of order at least 10 is

Hamiltonian.

Theorem 1.8 ([13]). Let R and S be connected graphs. Then every 2-connected

{R, S}-free graph of order at least 10 is Hamiltonian if and only if R is an induced

subgraph of K1,3 and S is an induced subgraph of one of P6, N , W and Z3.

These results include all variations concerning a pair of forbidden subgraphs for

Hamiltonian graphs. Several other works show similar characterizations for triples

of forbidden subgraphs implying the existence of a Hamiltonian cycle in all graphs

([7, 14]), and in graphs of sufficiently large order ([16, 15]). See also [19] for a survey

on Hamiltonian graphs including some of these results.

A graph is said to be traceable if there is a path passing through all its vertices.

Such path is called a Hamiltonian path.

Theorem 1.9 ([11]). Every {K1,3, N}-free connected graph is traceable.

Theorem 1.9 shows an example of a pair of forbidden subgraph implying the ex-

istence of a Hamiltonian path. Faudree et al.[13] showed that such pair is essentially

the only one.

Theorem 1.10 ([13]). Let R and S be connected graphs. Then every {R, S}-free

connected graph is traceable if and only if {R, S} ≤ {K1,3, N}.

In [20, 21], the authors considered three forbidden subgraphs. In [22], they com-

pleted the characterization of triples of forbidden subgraphs implying the existence

of a Hamiltonian path in large enough graphs.
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We now present some other results connecting forbidden subgraphs and Hamil-

tonian properties like cycle extendability, pancyclability and Hamiltonian-connect-

edness.

A graph is said to be cycle extendable if any non-Hamiltonian cycle can be

extended to a cycle containing exactly one more vertex.

Theorem 1.11 ([13]). Let R and S be connected graphs.Then every 2-connected

{R, S}-free graph of order at least 10 is cycle extendable if and only if {R, S} ≤
{K1,3, Z2}.

A graph of order n is pancyclic if it contains a cycle of length i for each 3 ≤ i ≤ n.

Let L be the graph consisting of two vertex-disjoint copies of K3 and an edge joining

them.

Theorem 1.12 ([23]). Let R and S be connected graphs. Then every 3-connected

{R, S}-free graph is pancyclic if and only if R is an induced subgraph of K1,3 and S

is an induced subgraph of one of P7, L, N4,0,0, N3,1,0, N2,2,0 and N2,1,1.

A graph is said to be Hamiltonian-connected if there is a Hamiltonian path

between any pair of distinct vertices.

Theorem 1.13 ([31]). Every 3-connected {K1,3, N}-free is Hamiltonian-connected.

Theorem 1.14 ([4]). Every 3-connected {K1,3, L}-free is Hamiltonian-connected.

For both Hamiltonian graphs and traceable graphs, no results for forbidden fam-

ilies of size bigger than 3 are known. For Hamiltonian-connected graphs, there is not

even a characterization of the forbidden pairs. This suggest that in general finding

a complete characterization (without restrictions on the size of the family of for-

bidden subgraphs) is a difficult problem. However, in this thesis we show complete

characterization for several classes of graphs (see the next section for details).

1.3 Problems studied in this thesis

In this section we present and formally state the problems studied in this thesis,

along with the main results we obtained.

Every time we say that “some large enough graphs satisfy some property”, we

mean that the number of such graphs that do not satisfy the property is finite.
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Claw-free graphs

The graph K1,3 is also called the claw. A graph is claw-free if it does not contain

a K1,3 as an induced subgraph. Claw-free graphs have been widely studied in the

literature, as they are closely related to line graphs, and on the other side, there

are many interesting results in connection with matching theory and Hamiltonian

graphs theory. See [12] for a survey on claw-free graphs.

A 2-factor is a spanning subgraph such that every vertex has degree two. Let

δ(G) and ∆(G) denote the minimum and the maximum degree of G, respectively.

Consider the following theorem about graphs having a 2-factor (see Section 3.2

for graph definitions).

Theorem 1.15 ([1]). Let G be a connected graph with δ(G) ≥ 2 and ∆(G) ≥ 3.

(i) If G is {Z1,3, K1,3}-free then G has a 2-factor.

(ii) If G is {Z1,3, Y3,W
3
2 , K2,3}-free and |V (G)| ≥ 9 then G has a 2-factor.

Because Z1,3 is an induced subgraph of itself, and all three graphs Y3, W 3
2 and

K2,3 contain a K1,3 as an induced subgraph, then every {Z1,3, K1,3}-free graph is

also {Z1,3, Y3,W
3
2 , K2,3}-free. In this sense, we can say that (ii) is more general than

(i) in Theorem 1.15. But on the other hand, we have the following result.

Theorem 1.16 ([1]). Let G be a connected graph with δ(G) ≥ 2, ∆(G) ≥ 3 and

|V (G)| ≥ 9. If G is {Z1,3, Y3,W
3
2 , K2,3}-free, then G is also K1,3-free.

The interesting point about Theorem 1.16 is that even though no graph belong-

ing to the family H = {Z2,3, Y4,W
3
2 , K2,3} is an induced subgraph of K1,3, when

considering the H-free graphs under certain conditions, the graph K1,3 is also for-

bidden. The authors of [1] were interested in finding a family of forbidden subgraphs

implying a 2-factor that does not contain a star. But even though there is no star

in {Y4, Z2,3,W
3
2 , K2,3}, by Theorem 1.16 it is somehow implicitly forbidden. That is

why the authors of [1] called this phenomenon implicit forbiddance.

In this thesis, we further research the implicit forbiddance for K1,3. Concretely,

we look for other families of graphs that forbid K1,3 implicitly. We do not consider

the conditions on the minimum and maximum degree from Theorem 1.16 since

those are necessary conditions related to the problem studied in [1]. We can state

our problem as follows.

Problem 1.1. Characterize all the families of connected graphs F such that every

large enough F-free connected graph is K1,3-free.

In this thesis, we solve Problem 1.1. The solution is expressed in the following

theorem (see Section 3.2 for graph definitions).
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Theorem 1.17. Let F be a family of connected graphs. Then the following are

equivalent.

• Every large enough F-free connected graph is K1,3-free

• F ≤ Fm(l, q) for some m ≥ 1, l ≥ 4 and q ≥ 3,

where Fm(l, q) = {K1,l,W
3
q , Tq, Dq, Ym+2, Z1,q, . . . , Zm,q}.

Additionally, in Chapter 3 we show all the families of graphs that we get when

restricting the size of the family of forbidden subgraphs (Theorem 3.4). Concretely,

Theorem 3.4 solves the following problem.

Problem 1.2. Given k ≥ 1, characterize all the families of connected graphs F
such that |F| ≤ k and every large enough F-free connected graph is K1,3-free.

In Chapter 3 we show the proofs for Theorems 1.17 and 3.4.

Star-free graphs

A star is a graph of the form K1,t with t ≥ 3. In particular, K1,3 is a star. We

consider a natural extension of Problem 1.1 to star-free graphs.

Problem 1.3. Given t ≥ 3, characterize all the families of connected graphs F such

that every large enough F-free connected graph is K1,t-free.

In this thesis, we solve Problem 1.3 for all t ≥ 3. The solution is expressed in

the following theorem (see Section 4.2 for graph definitions).

Theorem 1.18. Let t ≥ 3 and F be a family of connected graphs. Then the following

are equivalent.

• Every large enough F-free connected graph is K1,t-free

• F ≤ F t
m(l, q) for some m ≥ 1, l ≥ 4 and q ≥ 3,

where F t
m(l, q) = {K1,l,W

t
q} ∪ {Y t

m+2, Z
t
1,q, . . . , Z

t
m,q} ∪ T t(q) ∪ Dt(q) ∪ YZ t(m, q).

Theorem 1.18 gives for each t ≥ 3, a complete characterization for the families of

forbidden subgraphs that imply the property of being K1,t-free. In other words, it

gives a characterization of the families of forbidden subgraphs that implicitly forbid

K1,t-free.

Theorem 1.18 is a generalization of Theorem 1.17. In particular, F3
m(l, q) =

Fm(l, q). We show the proof of Theorem 1.18 in Chapter 4.
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Graphs having a perfect matching

A perfect matching in a graph G is a set of disjoint edges covering all the vertices

of G. It is clear that having even order is a necessary condition for having a perfect

matching.

The following result was proved independently by Sumner [32] and Las Vergnas

[24].

Theorem 1.19 ([32],[24]). Every K1,3-free connected graph of even order has a

perfect matching.

Plummer et al.[30] showed that K1,3 is essentially the only graph with that

property.

Theorem 1.20 ([30]). Let H be a connected graph. If every large enough H-free

connected graph of even order has a perfect matching then H is an induced subgraph

of K1,3.

Fujita et al.[18] extended Theorem 1.20 by considering two forbidden subgraphs.

Theorem 1.21 ([18]). Let H1, H2 be a pair of connected graphs. If every large

enough {H1, H2}-free connected graph of even order has a perfect matching then one

of H1 and H2 is an induced subgraph of K1,3.

Ota et al.[27] continued this line of research and characterized the families of

forbidden subgraphs containing at most three graphs. (see to Section 5.2 for graph

definitions).

Theorem 1.22 ([27]). For every l ≥ 4 and r ≥ 3, there is an n0 = n0(l, r) such

that every {K1,l, P4, Z1,r}-free connected graph of even order at least n0 has a perfect

matching.

Theorem 1.23 ([27]). For every l ≥ 4, m ≥ 3 and r ≥ 3, there is an n0 = n0(l,m, r)

such that every {K1,l, Ym, Z
−
1,r}-free connected graph of even order at least n0 has a

perfect matching.

Theorem 1.24 ([27]). Let F be a family of connected graphs with |F| ≤ 3. If every

large enough F-free connected graph of even order has a perfect matching, then

• there is an H ∈ H such that H is an induced subgraph of K1,3, or

• there exist l ≥ 4 and r ≥ 3 such that F ≤ {K1,l, P4, Z1,r}, or

• there exist l ≥ 4, m ≥ 3 and r ≥ 3 such that F ≤ {K1,l, Ym, Z
−
1,r}.
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In this thesis, we complete this line of research started in the 1970’s by removing

the restriction on the size of the family and so characterizing all the families of for-

bidden subgraphs implying a perfect matching in large enough graphs. Concretely,

we solve the following problem.

Problem 1.4. Characterize all the families of connected graphs F such that every

large enough F-free connected graph of even order has a perfect matching.

The solution is expressed in the following theorem.

Theorem 1.25. Let F be a family of connected graphs. Then the following are

equivalent.

• Every large enough F-free connected graph of even order has a perfect match-

ing.

• F ≤ Fm(l, q) for some m ≥ 1, l ≥ 4 and q ≥ 3,

where Fm(l, q) = {K1,l, Ym+2,Wq, Z1,q, . . . , Zm,q}.

Additionally, in Chapter 5 we show all the families of graphs that we get when

restricting the size of the family of forbidden subgraphs (Theorem 5.8). Concretely,

Theorem 5.8 solves the following problem.

Problem 1.5. Given k ≥ 1, characterize all the families of connected graphs F
such that |F| ≤ k and every large enough F-free connected graph of even order has

a perfect matching.

In Chapter 5 we show the proofs for Theorems 1.25 and 5.8.

Graphs having a near perfect matching

A near perfect matching in a graph G is a set of disjoint edges covering all but one

vertex of G. It is clear that having odd order is a necessary condition for having a

near perfect matching.

Let Tn be the graph obtained by attaching 2 independent vertices to each end of

a path on n vertices. The following result was proved in [18].

Theorem 1.26 ([18]). Let F be a family of triangle-free connected graphs. Then

the following are equivalent.

• Every large enough F-free connected graph of odd order has a near perfect

matching.

• F ≤ {Tn : n ≥ 1}.

8



Theorem 1.26 is a partial solution to the following problem.

Problem 1.6. Characterize all the families of connected graphs F such that every

large enough F-free connected graph of odd order has a near perfect matching.

In this thesis we generalize Theorem 1.26 and give a complete answer to Problem

1.6. The solution is expressed in the following theorem (see Section 6.2 for graph

definitions).

Theorem 1.27 ([18]). Let F be a family of connected graphs. Then the following

are equivalent.

• Every large enough F-free connected graph of odd order has a near perfect

matching.

• F ≤ F(l, n,m, q) for some l ≥ 5, n ≥ 1, m ≥ 1 and q ≥ 3,

where F(l, n,m, q) = {K1,l}∪V(q)∪Z(m, q)∪T (n)∪Y(n, q)∪D(n,m, q)∪L(n,m, q)∪
W(n, q) ∪M(n, q) ∪ J (n, q).

We show the proof of Theorem 1.27 in Chapter 6.

T-tough graphs

Let t be a positive real number. We say that a connected graph G is t-tough if for

every cutset S of G, t ·ω(G− S) ≤ |S|, where ω(G− S) is the number of connected

components of G−S. The toughness of G is the maximum t for which G is t-tough.

See [2] for a survey on toughness.

Broersma[5] proposed to study the relation between forbidden subgraphs and

the resulting toughness of G. Toughness also has some relation to the other classes

of graphs studied in the present work as shown by the following theorems. Theorem

1.29 is an easy observation.

Theorem 1.28 ([9]). Every 1-tough graph with even order has a perfect matching.

Theorem 1.29. Every K1,3-free connected graph is 1
2
-tough. More generally, every

K1,l-free connected graph is 1
l−1

-tough.

Following the same ideas as in the classes of graphs previously mentioned, we

propose the following problem.

Problem 1.7. Given a positive real number t, characterize all the families of con-

nected graphs F such that every large enough F-free connected graph is t-tough.

9



In this thesis, we solve Problem 1.7 for every positive real number t. The solution

is expressed in the following two theorems (see Section 7.2 for graph definitions).

Theorem 1.30. Let 0 < t ≤ 1
2

and let F be a family of connected graphs. Then the

following are equivalent.

• Every large enough F-free connected graph is t-tough.

• F ≤ FA
n (l,m, q) for some l ≥ n+ 2, m ≥ 1 and q ≥ 3,

where n = b1
t
c and FA

n (l,m, r) = {K1,l, Y
n
m+2, Z

n
1,q, . . . , Z

n
m,q}.

Theorem 1.31. Let t > 1
2

and let F be a family of connected graphs. Then the

following are equivalent.

• Every large enough F-free connected graph is t-tough.

• F ≤ FB(l,m, q) for some l ≥ 3, m ≥ 4 and q ≥ 3,

where FB(l,m, r) = {K1,l, Pm, Zq}.

In Chapter 7 we show the proofs of Theorems 1.30 and 1.31.
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Chapter 2

Definitions and Preliminaries

In this chapter we give some basic definitions of Graph Theory that are used through-

out this thesis. For an introduction to Graph Theory, see [8].

2.1 Graphs and subgraphs

A graph is an ordered pair (V,E) where V is a non-empty finite set and E is a

set of unordered pairs of elements of V . The elements of V are called vertices and

elements of E, edges. If G = (V,E) is a graph, define V (G) = V and E(G) = E.

The order of a graph G is the size of V (G). The size of a graph G is the size of

E(G).

Let G1 and G2 be two graphs. A function f : V (G1)→ V (G2) is an isomorphism

if it is bijective and for every v1, v2 ∈ V (G1), v1v2 ∈ E(G1) if and only if f(v1)f(v2) ∈
E(G2). In such a case, we say that G1 and G2 are isomorphic and we write G1

∼= G2.

If G = (VG, EG) and H = (VH , EH) are two graphs, we say that H is a subgraph

of G if VH ⊆ VG and EH ⊆ EG. If G is a graph and V is a non-empty subset of

V (G), the subgraph of G induced by V is (V,E), where E is the subset of E(G)

whose elements contain only elements of V . Such a subgraph is denoted by G[V ].

If G and H are two graphs, we say that H is an induced subgraph of G if there is a

non-empty set V ⊆ V (G) such that G[V ] ∼= H. In such a case, we write H � G. If

H � G, we do not distinguish between H and the vertex set of G defining H.

Let G be a graph. If H is a graph, we say that G is H-free if H � G. In such a

case, we also say that H is forbidden in G. If F is a family of graphs, we say that

G is F -free if G is H-free for every H ∈ F . In such a case, we also say that F is

forbidden in G.

If G is a graph and V ⊂ V (G), the graph G − V is G[V (G) − V ]. A subgraph

H of a graph G is said to be spanning if V (H) = V (G).
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2.2 Paths, cycles and connectivity

Let G be a graph. A track in G is a sequence v1v2 · · · vk (k ≥ 1) such that for all

1 ≤ i ≤ k − 1, vivi+1 ∈ E(G). The length of a track v1v2 · · · vk is k − 1. A path is

a track whose vertices are pairwise distinct. The length of a path is the length of

the underlying track. If P = v1v2 · · · vk is a path in G, the vertices v1 and vk are

the ends of P . We also say that P is a path between v1 and vk. A cycle in G is a

track v1v2 · · · vk of length at least three such that v1 = vk and v2 · · · vk−1 are pairwise

distinct. The length of a cycle is the length of the underlying track.

Let G be a graph. A path P in G is said to be an induced path if there is no

edge of G between any two non-consecutive vertices of P . A chord in a cycle C of

G is an edge of G between two non-consecutive vertices of C. A cycle is said to be

chordless if it has no chords.

For n ≥ 1, denote by Pn and Cn the graphs such that V (Pn) = V (Cn) =

{v1, . . . , vn}, E(Pn) = {vivi+1 : 1 ≤ i ≤ n − 1} and E(Cn) = E(Pn) ∪ {vnv1}. The

graphs Pn and Cn are called the path and the cycle of order n, respectively.

Let G be a graph, and v, w ∈ V (G) be two vertices of G. If there is at least one

path in G between v and w, define the distance between v and w as the length of a

path between v and w of minimum length.

A graph is connected if there is a path between every pair of distinct vertices. If

k ≥ 1, a graph G is k-connected if |V (G)| ≥ k + 1 and for every V ⊆ V (G) with

|V | = k − 1, G− V is connected. The connectivity of a graph G is the maximum k

for which G is k-connected, and we denote it by κ(G). Notice that a graph of order

at least two is connected if and only if it is 1-connected.

The connected components of a graph G are the maximal connected subgraph of

G. Define ω(G) as the number of connected components of G. Notice that if G is

connected, then ω(G) = 1 and G itself is its unique connected component.

If G is a graph, a set V ⊂ V (G) is a cutset of G if G− V is not connected.

2.3 Neighborhood and vertex degree

Let G be a graph. Two vertices v1, v2 of G are adjacent if v1v2 ∈ E(G). If e = v1v2

is an edge of G, we say that e is incident with v1 and with v2, and that v1 and v2

are the ends of e. Two edges of G are disjoint if they do not share an end.

Let G be a graph. If v ∈ V (G), the neighborhood NG(v) of v is the set of vertices

adjacent with v. If v ∈ V (G) and i ≥ 0, define N i
G(v) as the set of vertices at

distance i from v. Notice that N0
G(v) = {v} and N1

G(v) = NG(v). If the graph G is

clear from the context, we write N(v) and N i(v) for NG(v) and N i
G(v), respectively.

12



Let G be a graph. The degree of a vertex v ∈ V (G) is the size of NG(v). The

minimum degree of G is the minimum degree over all the vertices of G, which is

denoted by δ(G). Define similarly the maximum degree, which is denoted by ∆(G).

For k ≥ 0, we say that a graph is k-regular if all its vertices have degree k. A

graph is just regular if all its vertices have the same degree.

2.4 Complete graphs and Ramsey numbers

A graph G is complete if every two distinct vertices of G are adjacent. The complete

graph of order n is denoted by Kn.

Let G be a graph. A clique of G is a non-empty set of pairwise adjacent vertices.

An independent set of G is a non-empty set of pairwise non-adjacent vertices of G.

Independent sets are also called stable sets.

For l, r ≥ 1, the Ramsey number R(l, r) is the minimum positive integer n such

that any graph of order at least n contains either an independent set of size l or a

clique of size r. The Ramsey number R(l, r) exists for every pair of positive integers

l and r (see for example Theorem 12.2 of [8]).

A graph G is said to be bipartite if there are two disjoint sets A,B ⊆ V (G) such

that A ∪ B = V (G) and both A and B are independent sets of G. In other words,

every edge of G has one end in A and the other one end in B. The sets A and B

are called the partite sets of G.

A graph is complete bipartite if it is bipartite and every vertex in one partite set

is adjacent to every vertex in the other partite set. For n,m ≥ 1, denote by Kn,m

the complete bipartite graph with partite sets of sizes n and m.

2.5 Families of graphs

A family of graphs F is said to be redundant if there are two different graphs

H1, H2 ∈ F such that H1 � H2.

When we study the families of forbidden subgraphs implying some property in

graphs, it is easy to see that we can restrict ourselves to considering only non-

redundant families, as the following proposition shows.

Proposition 2.1. Let F be a family of graphs. Let FR = { H1 ∈ F : ∃H2 ∈ F such

that H1 6= H2 and H1 � H2 } and F ′ = F − FR. Then F ′ is non-redundant and a

graph G is F-free if and only if G is F ′-free.

If F1 and F2 are two families of graphs, we say that F1 ≤ F2 if for each H2 ∈ F2,

there is an H1 ∈ F1 such that H1 is an induced subgraph of H2. It is easy to see
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that the relation “≤” defines a partial order in the set of non-redundant families of

graphs. Furthermore, if F1 ≤ F2 then any F1-free graph is also an F2-free graph

(see for example Lemma 3 of [18]).

2.6 Particular classes of graphs

The claw is the graph K1,3. A graph is claw-free if it is K1,3-free. See [12] for a

survey on claw-free graphs.

Let G be a graph. A matching in G is a non-empty set of disjoint edges of G.

A perfect matching of G is a matching of G covering all its vertices. A near perfect

matching of G is a matching of G covering all but one of its vertices. It is easy to

see that if G has a perfect matching (near perfect matching) then G has even (odd)

order. The deficiency of G is |V (G)|−2|M | where M is a maximum matching of G,

which we denote by def(G). From the definition of deficiency, it is clear that G has

a perfect matching (near perfect matching) if and only if def(G) = 0 (def(G) = 1).

If t is a real positive number, a connected graph G is said to be t-tough if for

every cutset S of G, t · ω(G − S) ≤ |S|. The toughness of G is the maximum t for

which G is t-tough, which it is denoted by τ(G). See [2] for a survey on toughness.

A graph is said to be Hamiltonian if there is a cycle passing through all its ver-

tices. Such a cycle is called a Hamiltonian cycle. A graph is said to be traceable

if there is a path passing through all its vertices. Such path is called a Hamilto-

nian path. It is easy to see that every Hamiltonian graph is 2-connected and every

traceable graph is connected.

There is a long standing conjecture relating toughness and Hamiltonicity.

Conjecture 2.1 ([9]). There is a positive real number t0 such that every t0-tough

graph is Hamiltonian.

For k ≥ 1, a k-factor of a graph G is a k-regular spanning subgraph of G. A

1-factor is the same as a perfect matching. A connected 2-factor is the same as a

Hamiltonian cycle.

2.7 Preliminaries

Let G be a graph and let S ⊆ V (G). For S ′ ⊆ S, define BS(S ′) = {v ∈ V (G) :

N(v) ∩ S = S ′}.
If we have two sets N,S ⊆ V (G), the set { N ∩ BS(S ′) : S ′ ⊆ S } gives a

“partition” of the vertices of N according to how they are connected to S. If the

size of each of those sets is bounded, we can bound the size of N as the following

proposition shows.

14



Proposition 2.2. Let G be a graph and N,S ⊆ V (G). If there is a constant k such

that for every S ′ ⊆ S, |N ∩BS(S ′)| ≤ k, then |N | ≤ 2|S| · k.

Proof. From the definition of BS(S ′), we have that N =
⋃
S′⊆S

(N ∩BS(S ′)), where

the union is disjoint. Then |N | =
∑
S′⊆S

|N ∩BS(S ′)| ≤ |{S ′ : S ′ ⊆ S}|·k = 2|S| ·k.

We use the definition of BS(S ′) and Proposition 2.2 in several proofs throughout

this thesis. Concretely, we use it in Chapters 3, 4, 5, 6 and 7.
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Chapter 3

Claw-free graphs

The graph K1,3 is also called the claw. A graph is claw-free if it does not contain

a K1,3 as an induced subgraph. Claw-free graphs have been widely studied in the

literature. See [12] for a survey on claw-free graphs.

In this chapter, we study the relation between claw-free graphs and forbidden

induced subgraphs. The main result in this chapter is Theorem 3.5, which shows

a characterization of all families of forbidden subgraphs that imply the property of

being claw-free in connected graphs of large enough order. All the new results we

prove in this chapter can be found in [17].

3.1 Introduction

If we have several families of forbidden subgraphs implying some given property, it

is important to compare them to understand which families lead to more general

results. Concretely, if we have two families of graphs F1 and F2, and every F1-free

graph is also F2-free, then we can say that F2 is more general, in the sense that a

result that states that all F2-free graphs satisfy some property is more general than

one that says that all F1-free graphs satisfy the same property.

To do such comparisons, one usually uses the relation “F1 ≤ F2” that we defined

in Section 1.2 (see also Section 2.5). But the authors of [1] showed that sometimes

such a comparison might not be enough. Consider the following theorem about

graphs having a 2-factor (see Section 3.2 for graph definitions). Remember that a

2-factor is a 2-regular spanning subgraph.

Theorem 3.1 ([1]). Let G be a connected graph with δ(G) ≥ 2 and ∆(G) ≥ 3.

(i) If G is {Z1,3, K1,3}-free then G has a 2-factor.

(ii) If G is {Z1,3, Y3,W
3
2 , K2,3}-free and |V (G)| ≥ 9 then G has a 2-factor.
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Because Z1,3 is an induced subgraph of it self, and all three graphs Y3, W 3
2 and

K2,3 contain a K1,3 as an induced subgraph, we can say that (ii) is more general

than (i). But on the other hand, we have the following result.

Theorem 3.2 ([1]). Let G be a connected graph with δ(G) ≥ 2 and ∆(G) ≥ 3. If

G is {Z1,3, Y3,W
3
2 , K2,3}-free and |V (G)| ≥ 9, then G is K1,3-free.

Theorem 3.2 says that {Z1,3, K1,3}-free graphs and {Z1,3, Y3,W
3
2 , K2,3}-free are

essentially (under some conditions) the same. This is not clear just by looking at

the graphs in the families.

Another interesting point about Theorem 3.2 is that even though no graph of the

familyH = {Z1,3, Y3,W
3
2 , K2,3} is an induced subgraph of K1,3, when considering the

H-free graphs under certain conditions, the graphK1,3 is also forbidden. The authors

of [1] were interested in finding a family of forbidden subgraphs implying a 2-factor

that does not contain a star. But even though there is no star in {Z1,3, Y3,W
3
2 , K2,3},

by Theorem 3.2 it is somehow implicitly forbidden. That is why the authors of [1]

called this phenomenon implicit forbiddance.

In the view of the previous results, in order to get more information about the

implicit relation between families of forbidden subgraphs, it is important to research

further this phenomenon. As a first step, we consider the case of K1,3-free graphs,

also in an effort to try to extend Theorem 3.2. We can state the problem in the

following way.

Problem 3.1. Characterize all the families of connected graphs F such that every

large enough F-free connected graph is K1,3-free.

In this chapter, we give a full answer to Problem 3.1. In Chapter 4, we do a

generalization to star-free graphs.

The rest of the chapter is organized as follows. In Section 3.2 we make all needed

definitions and present our main results. In Sections 3.3 and 3.4 we give the proofs

for those results. In Section 3.5, we show an application of our results. Finally, in

Section 3.6 we make some discussion and propose some open problems.

3.2 Definitions and main results

Define G as the set of all non-redundant families of connected graphs. Define H

as the set of families H ∈ G such that there is a constant n0 = n0(H) with the

property that all H-free connected graphs G with |V (G)| ≥ n0 are K1,3-free. Then,

our problem is reduced to finding all the elements in the set H.

To state our results we define the following graphs (see Figure 3.1).
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• Ym is a path on m vertices with two extra vertices attached to the first vertex

of the path. The last vertex of the path is called the tail of Ym.

• W h
q is the graph obtained by joining a Kq with h extra vertices.

• Tq is the graph obtained by identifying two degree one vertices of a claw with

the two “extra” vertices of a W2,q.

• T−q is Tq minus its only vertex of degree one.

• Dq is the graph obtained by attaching an extra vertex to a “non-added vertex”

of a W2,q.

• Z−m,r is the graph obtained by identifying a vertex of a Kr with the end vertex

of a path of order m+ 1.

• Zm,r is the graph obtained by identifying a vertex of a Kr with the tail of a

Ym.

l

m
Kq

h

K1,l Ym W h
q

Kq
Kq

Tq Dq

Kr

m

Kr

m

Z−m,r Zm,r

Figure 3.1: Some forbidden subgraphs
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Define the following families of graphs.

• HA
i (l, q, r) = {K1,l, Yi+2,W

2
q , Z1,r, . . . , Zi,r} (for i ≥ 1).

• HB
i (l,m, q, r) = {K1,l, Ym,W

2
q , Z1,r, . . . , Zi−1,r, Z

−
i,r} (for i ≥ 2).

• HC
i (l, q, r) = {K1,l, Yi+2,W

3
q , Dq, Tq, Z1,r, . . . , Zi,r} (for i ≥ 1).

• HD
i (l,m, q, r) = {K1,l, Ym,W

3
q , Dq, Tq, Z1,r, . . . , Zi−1,r, Z

−
i,r} (for i ≥ 3).

Define the following subsets of G.

• F1 = { H ∈ G : H ≤ {K1,3} }.

• F3 = { H ∈ G : H ≤ {K1,l, Ym, Kr} for some l ≥ 4, m ≥ 3, r ≥ 3}.

• F4 = { H ∈ G : H ≤ {K1,l, Ym,W
3
q , Z

−
1,r} for some l ≥ 4, m ≥ 3, q ≥ 2,

r ≥ 3}.

• F5 = { H ∈ G : H ≤ {K1,l, P4,W
3
q , Dq, Z1,r} for some l ≥ 4, q ≥ 2, r ≥ 3}.

• F6 = { H ∈ G : H ≤ {K1,l, Ym,W
3
q , Dq, Z1,r, Z

−
2,r} for some l ≥ 4, m ≥ 4,

q ≥ 2, r ≥ 3}.

• FA
i = { H ∈ G: H ≤ HA

i (l, q, r) for some l ≥ 4, q ≥ 2, r ≥ 3} (i ≥ 1).

• FB
i = { H ∈ G: H ≤ HB

i (l,m, q, r) for some l ≥ 4, m ≥ i + 3, q ≥ 2, r ≥ 3}
(i ≥ 2).

• FC
i = { H ∈ G: H ≤ HC

i (l, q, r) for some l ≥ 4, q ≥ 2, r ≥ 3} (i ≥ 1).

• FD
i = { H ∈ G : H ≤ HD

i (l,m, q, r) for some l ≥ 4, m ≥ i+ 3, q ≥ 2, r ≥ 3}
(i ≥ 3).

First, we show that the families in the sets F1, F3, F4, F5, F6, FA
i , FB

i , FC
i , FD

i

actually families of forbidden subgraphs that implicitly forbid K1,3.

Theorem 3.3. The following statements hold.

1. Fi ⊆ H for all i ∈ {1, 3, 4, 5, 6}.

2. FA
i ⊆ H for all i ≥ 1.

3. FB
i ⊆ H for all i ≥ 2.

4. FC
i ⊆ H for all i ≥ 1.

5. FD
i ⊆ H for all i ≥ 3.
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Then, we show that these families are exactly the maximal families of forbidden

subgraph when the size of the family is limited to some positive integer k.

Theorem 3.4. Let k ≥ 1 and let H ∈ H with |H| ≤ k. Then

• H ∈ Fi for some i ∈ {1, 3, 4, 5, 6} with i ≤ k or

• H ∈ FA
i for some 1 ≤ i ≤ k − 3 or

• H ∈ FB
i for some 2 ≤ i ≤ k − 3 or

• H ∈ FC
i for some 1 ≤ i ≤ k − 5 or

• H ∈ FD
i for some 3 ≤ i ≤ k − 5.

Finally, we prove that the families in FC
i give the characterization of families of

forbidden subgraphs that implicitly forbid K1,3. Theorem 3.5 is our main result in

this chapter.

Theorem 3.5. H ∈ H if and only if H ∈ FC
i for some i ≥ 1. That is, H =

⋃
i≥1

FC
i .

3.3 Proof of Theorems 3.3 and 3.5

First we show that it is enough to prove Theorem 3.3 only for FC
i (i ≥ 1).

Lemma 3.6. The following statements hold:

(1) F1 ⊆ FC
1 , F3 ⊆ F4, F4 ⊆ F6, F5 ⊆ FC

1 and F6 ⊆ FD
3 .

(2) Let i ≥ 1, then FA
i ⊆ FC

i .

(3) Let i ≥ 2, then FB
i ⊆ FA

j for some j ≥ 1.

(4) Let i ≥ 3, then FD
i ⊆ FC

j for some j ≥ 1.

Proof. Statements (1) and (2) are easy to verify.

Proof of (3): Let i ≥ 2 and H ∈ FB
i . Since H ≤ HB

i (l,m, q, r) for some l ≥ 4,

m ≥ i + 3, q ≥ 2 and r ≥ 3, we have that H ≤ {Ym} for some m ≥ i + 3. Since

Z−i,r � Zh,r for all h ≥ i and all r ≥ 3, then H ∈ FA
m−2.

Proof of (4): Let i ≥ 3 and H ∈ FD
i . Since H ≤ HD

i (l,m, q, r) for some l ≥ 4,

m ≥ i + 3, q ≥ 2 and r ≥ 3, we have that H ≤ {Ym} for some m ≥ i + 3. Since

Z−i,r � Zh,r for all h ≥ i and all r ≥ 3, then H ∈ FC
m−2.

Below we prove several lemmas that are the main components of the proof of The-

orem 3.3.
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Lemma 3.7. Let G be a connected graph with an induced K1,3 of center x0. If G is

Ym-free for some m ≥ 3 then Nm+1(x0) = ∅.

Proof. Let Y ⊆ V (G) with |Y | = 3 such that {x0} ∪ Y is an induced K1,3 in

G. Suppose that Nm+1(x0) 6= ∅. We will show that G contains a Ym, which is a

contradiction.

Let P = x0x1 · · ·xm+1 be an induced path of G with xi ∈ N i(x0) for all 0 ≤
i ≤ m+ 1. Notice that N j(x0) ∩ N(Y ) = ∅ for all 3 ≤ j ≤ m+ 1. Otherwise, an

element v ∈ N j(x0) ∩ N(Y ) would have a path of length 2 to x0 (passing through

some element of Y ), contradicting that v ∈ N j(x0). Then N(Y ) ∩ P ⊆ {x0, x1, x2}.
Let Y1 = N(x1) ∩ Y and Y2 = N(x2) ∩ Y . If |Y2| ≥ 2, then Y2 ∪ {x2, . . . , xm+1}

contains a Ym. If |Y2| = 1, then (Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xm−1} is a Ym.

Suppose now that |Y2| = 0. If |Y1| ≥ 2, then Y1 ∪ {x1, . . . , xm} contains a Ym. If

|Y1| ≤ 1, then (Y − Y1) ∪ {x0, . . . , xm−1} contains a Ym.

Lemma 3.8. Let G be a connected graph with an induced K1,3 of center x0. Suppose

that G is {K1,l, Z1,r, Dq,W
3
q }-free for some l ≥ 4, r ≥ 3 and q ≥ 2. Then |N(x0)| <

8 ·R(l,max(r, q)).

Proof. Let Y ⊆ V (G) with |Y | = 3, such that {x0}∪Y is an induced K1,3 in G. Let

Y ′ ⊆ Y . We will show that |N(x) ∩ BY (Y ′)| < R(l,max(r, q)), and since |Y | = 3,

by Proposition 2.2 we get that |N(x0)| ≤ 23 ·R(l,max(r, q)).

If |Y ′| ≤ 1, then |Y − Y ′| ≥ 2. Then |N(x0)∩BY (Y ′)| < R(l, r), since otherwise

(Y − Y ′) ∪ {x0} ∪ (N(x0) ∩BY (Y ′)) contains a Z1,r or a K1,l.

If |Y ′| = 2, then |Y − Y ′| = 1. Then |N(x0)∩BY (Y ′)| < R(l, q), since otherwise

Y ′ ∪ (Y − Y ′) ∪ {x0} ∪ (N(x0) ∩BY (Y ′)) contains a Dq or a K1,l.

If |Y ′| = 3, then |N(x0)∩BY (Y ′)| < R(l, q), since otherwise Y ′∪(N(x0)∩BY (Y ′))

contains a W 3
q or a K1,l.

Lemma 3.9. Let G be a connected graph with an induced K1,3 of center x0. Suppose

that G is {K1,l, Z1,r, Z2,r,W
3
q , Tq}-free for some l ≥ 4, r ≥ 3 and q ≥ 2. Then

|N2(x0)| < 8 ·R(l,max(r, q)) · |N(x0)|.

Proof. Let Y ⊆ V (G) with |Y | = 3 such that {x0}∪ Y is an induced K1,3 in G. Let

x1 ∈ N(x0). Let Y ′ ⊆ Y . Call N = N2(x0) ∩N(x1). By Proposition 2.2, it suffices

show that |N ∩BY (Y ′)| < R(l,max(r, q)).

If |Y ′| = 1, then |Y − Y ′| = 2. Then |N ∩ BY (Y ′)| < R(l, r), since otherwise

(Y − Y ′) ∪ {x0} ∪ Y ′ ∪ (N ∩BY (Y ′)) contains a Z2,r or a K1,l.

If |Y ′| = 2, then |Y − Y ′| = 1. Then |N ∩ BY (Y ′)| < R(l, q), since otherwise

(Y − Y ′) ∪ {x0} ∪ Y ′ ∪ (N ∩BY (Y ′)) contains a Tq or a K1,l.

If |Y ′| = 3, then |N ∩ BY (Y ′)| < R(l, q), since otherwise Y ′ ∪ (N ∩ BY (Y ′))

contains a W 3
q or a K1,l.
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Suppose now that |Y ′| = 0, that is N∩BY (Y ′)∩N(Y ) = ∅. Notice that if x1 ∈ Y ,

then N ∩BY (Y ′) = ∅. Then we may suppose that x1 /∈ Y . Let Y1 = Y ∩N(x1).

If |Y1| ≥ 2, then |N ∩BY (Y ′)| < R(l, r), since otherwise Y1∪{x1}∪(N ∩BY (Y ′))

contains a Z1,r or a K1,l.

If |Y1| ≤ 1, then |Y − Y1| ≥ 2. Then |N ∩ BY (Y ′)| < R(l, r), since otherwise

(Y − Y1) ∪ {x0, x1} ∪ (N ∩BY (Y ′)) contains a Z2,r or a K1,l.

Lemma 3.10. Let G be a connected graph with an induced K1,3 of center x0. Let

i ≥ 2 and suppose that G is {K1,l, Zi−1,r, Zi,r, Zi+1,r}-free for some l ≥ 4 and r ≥ 3.

Then |N i+1(x0)| < R(l, r) · |N i(x0)|.

Proof. Let Y ⊆ V (G) with |Y | = 3 such that {x0}∪ Y is an induced K1,3 in G. Let

xi ∈ N i(x0) and let P = x0x1 · · · xi be an induced path with xj ∈ N j(x0) for all

0 ≤ j ≤ i. Let N = N i+1(x0) ∩N(xi). We will show that |N | < R(l, r).

Let Y1 = Y ∩ N(x1) and Y2 = Y ∩ N(x2). As in the proof of Lemma 3.7,

N(Y ) ∩ P ⊆ {x0, x1, x2}.
If |Y2| ≥ 2, then |N | < R(l, r), since otherwise Y2 ∪ {x2, . . . , xi} ∪ N contains a

Zi−1,r or a K1,l. If |Y2| = 1, then |Y − Y2| = 2. Then |N | < R(l, r), since otherwise

(Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xi} ∪N contains a Zi+1,r or a K1,l.

Suppose now that |Y2| = 0, that is N(x2) ∩ Y = ∅.
If |Y1| ≥ 2, then |N | < R(l, r), since otherwise Y1 ∪ {x1, . . . , xi} ∪ N contains a

Zi,r or a K1,l. If |Y1| ≤ 1, then |Y − Y1| ≥ 2. Then |N | < R(l, r), since otherwise

(Y − Y1) ∪ {x0, . . . , xi} ∪N contains a Zi+1,r or a K1,l.

We show now the proof of Theorem 3.3.

Proof of Theorem 3.3. By Lemma 3.6, it is enough to show that FC
i ⊆ H for

all i ≥ 1. Let m ≥ 1 and H ∈ FC
m. Let l ≥ 4, q ≥ 2 and r ≥ 3 such that

H ≤ HC
m(l, q, r).

Let G be a H-free connected graph with an induced K1,3 of center x. We will

show that |V (G)| is bounded by a function depending only on l,m, q and r.

Note that since G is Ym+2-free, G is also Zi,r-free for all i ≥ m+ 1. Hence, G is

Zi,r-free for all i ≥ 1. Thus, G satisfies all the conditions of Lemmas 3.7, 3.8, 3.9

and 3.10.

By Lemma 3.7, Nm+3(x) = ∅. Then we only need to show that |N i(x)| is

bounded for all 1 ≤ i ≤ m + 2. By Lemmas 3.8 and 3.9, |N(x)| and |N2(x)| are

bounded.

By Lemma 3.10, |N i+1(x)| < R(l, r) · |N i(x)| for 2 ≤ i ≤ m + 1. Using an

inductive argument, we get that for all 3 ≤ i ≤ m+ 2, |N i(x)| < R(l, r)i−2 · |N2(x)|.
By Lemmas 3.8 and 3.9, we conclude that for all 3 ≤ i ≤ m+2, |N i(x)| < R(l, r)i−2 ·
82 ·R(l,max(r, q))2.
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We finish this section by showing the proof of Theorem 3.5, our main theorem in

this chapter.

Proof of Theorem 3.5. By Theorem 3.3, we already know that for i ≥ 1, every

family of graphs in FC
i is also in H.

Let H ∈ H. Then there is a positive integer n0 such that every H-free connected

graph of order at least n0 is claw-free. Let n be an integer such that n ≥ max(n0, 4).

Consider the family H′ = HC
n (n, n, n). All the graphs in H′ are connected graphs

of order at least n0 containing an induced claw. Then it must be that no graph of H′

is H-free. In other words, for each H ′ ∈ H′, there is an H ∈ H such that H � H ′.

This is exactly the definition of H ≤ H′. Since H′ ∈ FC
n , we conclude that H is also

in FC
n .

3.4 Proof of Theorem 3.4

First, we prove two lemmas that deal with the inductive part of the proof of Theorem

3.4.

Lemma 3.11. Let k ≥ 4 and let H ∈ H with |H| ≤ k. Suppose that H � {K1,3},
H /∈ FA

j for all 1 ≤ j ≤ k − 3 and H /∈ FB
j for all 2 ≤ j ≤ k − 3. Suppose also that

there are graphs B1, B2, B3, H1 ∈ H such that

• B1 = K1,l for some l ≥ 4.

• B2 = Pm+1 or B2 = Ym for some m ≥ 3.

• B3 = W 2
q for some q ≥ 2.

• H1 = Z1,r1 for some r1 ≥ 3.

Then there are graphs H2, . . . , Hk−3 in H and integers r2, . . . , rk−3 such that for all

2 ≤ i ≤ k − 3, Hi = Zi,ri and ri ≥ 3. Additionally, m ≥ k.

Proof. We prove by induction on i that there exists a graph Hi ∈ H with Hi = Zi,ri

for some ri ≥ 3.

Let 2 ≤ i ≤ k − 3 and suppose that there are graphs H1, . . . , Hi−1 in H such

that Hj = Zj,rj for some rj ≥ 3 and all 1 ≤ j ≤ i− 1. We will prove that there is a

graph Hi ∈ H such that Hi = Zi,ri for some ri ≥ 3.

Let r′ = max(r1, . . . , ri−1). SinceH /∈ FA
i−1 andH ≤ {K1,l,W

2
q , Z1,r′ , . . . , Zi−1,r′},

then H � {Yi+1}. In particular, B2 = Pm+1 or B2 = Ym for some m ≥ i+ 2.

Since H /∈ FB
i and H ≤ {K1,l, Ym,W

2
q , Z1,r′ , . . . , Zi−1,r′}, then H � {Z−i,r} for all

r ≥ 3.
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Since H ∈ H, there is a positive integer n0 = n0(H) such that every H-free

connected graph of order at least n0 is claw-free. Let n = max(n0, 3).

Consider G = Zi,n. Since G contains an induced claw, G must contain some

graph in H as an induced subgraph. Since G contains neither K1,4, Pi+3 nor W 2
2

then Bj � G for all j ∈ {1, 2, 3}. Furthermore, since Zj,3 � G for all 1 ≤ j ≤ i− 1,

then Hj � G for all 1 ≤ j ≤ i − 1. Then there must be some other graph Hi ∈ H
such that Hi � G.

Since Hi � K1,3, Hi � Yi+1 and that Hi � Z−i,r for all r ≥ 3, then Hi = Zi,ri for

some ri ≥ 3. Notice that if ri = 2, then it would contradict that Hi � Yi+1.

This concludes the inductive proof. We now prove that m ≥ k. Let i = k − 3.

Let r = max(r1, . . . , ri). If H ≤ {Yi+2}, then H ≤ {K1,l, Yi+2,W
2
q , Z1,r, . . . , Zi,r},

and hence H ≤ HA
i (l, q, r) (with i = k − 3), a contradiction. We conclude that

H � {Yi+2} = {Yk−1} and so B2 = Pm+1 or B2 = Ym for some m ≥ k.

Lemma 3.12. Let k ≥ 7 and let H ∈ H with |H| ≤ k. Suppose that H � {K1,3},
H /∈ FC

j for all 1 ≤ j ≤ k − 5 and H /∈ FD
j for all 3 ≤ j ≤ k − 5. Suppose also that

there are graphs B1, . . . , B5, H1, H2 ∈ H such that

• B1 = K1,l for some l ≥ 4.

• B2 = Pm+1 or B2 = Ym for some m ≥ 3.

• B3 = W 3
q1

for some q1 ≥ 2.

• B4 = Dq2 for some q2 ≥ 2.

• B5 = T−q3 or B5 = Tq3 for some q3 ≥ 1 and

• H1 = Z1,r1 for some r1 ≥ 3.

• H2 = Z2,r1 for some r2 ≥ 3.

Then there are graphs H3, . . . , Hk−5 in H and integers r3, . . . , rk−5 such that for all

3 ≤ i ≤ k − 5, Hi = Zi,ri and ri ≥ 3. Additionally, m ≥ k − 2.

Proof. The proof of this lemma is essentially the same as the one of Lemma 3.11.

Let 3 ≤ i ≤ k − 5 and suppose that there are graphs H1, . . . , Hi−1 in H such

that Hj = Zj,rj for some rj ≥ 3 and all 1 ≤ j ≤ i− 1. We will prove that there is a

graph Hi ∈ H such that Hi = Zi,ri for some ri ≥ 3.

Let r′ = max(r1, . . . , ri−1) and q = max(q1, q2, q3). Since H /∈ FC
i−1 and H ≤

{K1,l,W
3
q , Dq, Tq, Z1,r′ , . . . , Zi−1,r′}, then H � {Yi+1}. In particular, B2 = Pm+1 or

B2 = Ym for some m ≥ i+ 2.

Since H /∈ FD
i and H ≤ {K1,l, Ym,W

3
q , Dq, Tq, Z1,r′ , . . . , Zi−1,r′}, then H � {Z−i,r}

for all r ≥ 3.
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Let n0 be as in Lemma 3.11. Let n = max(n0, 3). Consider G = Zi,n. Since

G contains neither K1,4, Pi+3, W 3
2 , D2, T−1 then Bj � G for all j ∈ {1, 2, 3, 4, 5}.

Furthermore, since Zj,3 � G for all 1 ≤ j ≤ i− 1, then Hj � G for all 1 ≤ j ≤ i− 1.

Then there must be some other graph Hi ∈ H such that Hi � G.

Since Hi � K1,3, Hi � Yi+1 and that Hi � Z−i,r for all r ≥ 3, then Hi = Zi,ri for

some ri ≥ 3. Notice that if ri = 2, then it would contradict that Hi � Yi+1.

This concludes the inductive proof.

We now prove that m ≥ k−2. Let i = k−5. Let r = max(r1, . . . , ri). IfH ≤ {Yi+2},
then H ≤ {K1,l, Yi+2,W

3
q , Dq, Tq, Z1,r, . . . , Zi,r}, and hence H ≤ HC

i (l, q, r) (with

i = k − 5), a contradiction. We conclude that H � {Yi+2} = {Yk−3} and so

B2 = Pm+1 or B2 = Ym for some m ≥ k − 2.

Proof of Theorem 3.4. Suppose that H ∈ H and |H| ≤ k. Contrary to the

theorem, suppose that

• H /∈ Fi for all i ∈ {1, 3, 4, 5, 6} with i ≤ k,

• H /∈ FA
i for all 1 ≤ i ≤ k − 3,

• H /∈ FB
i for all 2 ≤ i ≤ k − 3,

• H /∈ FC
i for all 1 ≤ i ≤ k − 5 and

• H /∈ FD
i for all 3 ≤ i ≤ k − 5.

Since H ∈ H, there is a positive integer n0 = n0(H) such that every H-free

connected graph of order at least n0 is claw-free. Let n = max(n0, 3). We will

consider different connected graphs G of order at least n containing an induced

claw. Then for each of such graphs G there will be some H ∈ H such that H � G.

Consider G = K1,n. Then there is a graph B1 ∈ H such that B1 � G. Since

H /∈ F1, then H � {K1,3}, and so B1 � K1,3. We conclude that

• B1 = K1,l for some l ≥ 4.

Consider G = Yn. Since G contains no K1,4, then B1 � G. Then k ≥ 2 and

there is a graph B2 ∈ H such that B2 � G. Since B2 � K1,3 then

• B2 = Pm+1 or B2 = Ym for some m ≥ 3.

Consider G = W 3
n . Since G contains neither K1,4 nor P4, then B1 � G and

B2 � G. Then k ≥ 3 and there is a graph B3 ∈ H such that B3 � G. Since H /∈ F3,

then H � {Kr} for all r ≥ 3. Since B3 � K1,3 and B3 � Kr for all r ≥ 3, then

• B3 = W 2
q1

or B3 = W 3
q1

for some q1 ≥ 2.
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Consider G = Z1,n. Since G contains neither K1,4, P4 nor W 2
2 , then Bi � G

for all i ∈ {1, 2, 3}. Then k ≥ 4 and there is a graph H1 ∈ H such that H1 � G

(the name H1 will be better understand later in the proof). Since H /∈ F4, then

H � {Z−1,r} for all r ≥ 3. Since H1 � K1,3 and H1 � Z−1,r for all r ≥ 3, then

• H1 = Z1,r1 for some r1 ≥ 3.

Case 1 : H ≤ {W 2
q } for some q ≥ 2.

SinceH ≤ {W 2
q } for some q ≥ 2 then there is a graph B′ inH such that B′ � W 2

q

for some q ≥ 2. Notice it may be that B′ = B3 or not. Since B′ � K1,3 and B′ � Kr

for all r ≥ 3, then B′ = W 2
q for some q ≥ 2.

By Lemma 3.11, there are graphs H2, . . . , Hk−3 in H such that Hi = Zi,ri for

some ri ≥ 3 and all 2 ≤ i ≤ k−3. From the same lemma, we have that m ≥ k and so

B2 = Pm+1 or B2 = Ym for some m ≥ k. Notice that {B1, B2, B
′, H1, . . . , Hk−3} ⊆

H. Since |H| ≤ k, then B′ = B3 and H has no other graphs, namely, H =

{B1, B2, B3, H1, . . . , Hk−3}.
Consider G = Zk−2,n. Since G contains neither K1,4, Pk+1 nor W 2

2 then Bi � G

for all i ∈ {1, 2, 3}. Furthermore, since Zi,3 � G for all 1 ≤ i ≤ k − 3, then Hi � G

for all 1 ≤ i ≤ k − 3. Then G contains no graph of H, which is a contradiction.

Case 2 : H � {W2,q} for all q ≥ 2.

Since H � {W 2
q } for all q ≥ 2, then

• B3 = W 3
q1

for some q1 ≥ 2.

Consider G = Dn. Since G contains neither K1,4, P4, W 3
2 nor Z1,3, then Bi � G

for all i ∈ {1, 2, 3} and H1 � G. Then k ≥ 5 and there is a graph B4 ∈ H such

that B4 � G. Since B4 � K1,3, B4 � Kr for all r ≥ 3, B4 � W 2
q for all q ≥ 2 and

B4 � Z−1,r for all r ≥ 3, then

• B4 = Dq2 for some q2 ≥ 2.

Since H /∈ F5, then H � {P4}. Then B2 = Pm for some m ≥ 5, or B2 = Ym for

some m ≥ 3.

Consider G = Tn. Since G contains neither K1,4, P5, Y3, W 3
2 , D2 nor Z1,3, then

Bi � G for all 1 ≤ i ≤ 4 and H1 � G. Then k ≥ 6 and there is a graph B5 ∈ H
such that B5 � G. Since H /∈ F6, then H � {Z−2,r} for all r ≥ 3. Since B5 � K1,3,

B5 � W 2
q for all q ≥ 2, and that B5 � Z−j,r for j ∈ {1, 2} and all r ≥ 3, then

• B5 = T−q3 or B5 = Tq3 for some q3 ≥ 1.
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Suppose that H ≤ {Y3}. Since H ≤ {K1,l, Y3,W
3
q1
, Dq2 , Tq3 , Z1,r1}, then H ≤

HC
1 (l,max(q1, q2, q3), r1), a contradiction (since 1 ≤ k − 5). Then we may suppose

that H � {Y3} and so B2 = Pm+1 or B2 = Ym for some m ≥ 4.

Consider G = Z2,n. Since G contains neither K1,4, P5, W 3
2 , D2, T−1 nor Z1,3,

then Bi � G for all i ∈ {1, 2, 3, 4, 5} and H1 � G. Then k ≥ 7 and there is a graph

H2 ∈ H such that H2 � G. Since H2 � K1,3, H2 � Y3 and H2 � Z−j,r for j ∈ {1, 2}
and all r ≥ 3, then

• H2 = Z2,r2 for some r2 ≥ 3.

By Lemma 3.12, there are graphs H1 . . . Hk−5 in H such that Hi = Zi,ri for

some ri ≥ 3 and all 1 ≤ i ≤ k − 5. From the same lemma, we have that

m ≥ k − 2 and so B2 = Pm+1 or B2 = Ym for some m ≥ k − 2. Notice that

{B1, . . . , B5, H1, . . . , Hk−5} ⊆ H. Since |H| ≤ k, then H has no other graphs,

namely, H = {B1, . . . , B5, H1, . . . , Hk−5}.
Consider G = Zk−4,n. Since G contains neither K1,4, Pk−1, W 3

2 , D2 nor T−1 then

Bi � G for all i ∈ {1, 2, 3, 4, 5}. Furthermore, since Zi,3 � G for all 1 ≤ i ≤ k − 5,

then Hi � G for all 1 ≤ i ≤ k − 5. Then G contains no graph of H, which is a

contradiction.

3.5 Applications

In this section we show an application of Theorem 3.5. In particular we show a family

of forbidden subgraphs implying traceability in large enough connected graphs.

Let N be the graph obtained by adding a pendant vertex to each vertex of a

triangle (see Figure 3.2). The graph N is often called “net”. Consider the following

Theorem.

Theorem 3.13 ([13]). Let R and S be connected graphs. Then every {R, S}-free

connected graph has a Hamiltonian path if and only if {R, S} ≤ {K1,3, N}.

Figure 3.2: The graph N

We use now Theorem 3.5 to prove a variation of Theorem 3.13. We remove the

limit on the number of forbidden subgraphs and replace it with the condition that

the graph N is among the forbidden subgraphs.
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Theorem 3.14. Let i ≥ 1 and H ∈ FC
i with N ∈ H. Then there is an integer n ≥ 1

such that every H-free connected graph G with |V (G)| ≥ n has a Hamiltonian path.

Proof. Let i ≥ 1 and H ∈ FC
i with N ∈ H. By Theorem 3.5, we know that every

H-free connected graph G with large enough order is K1,3-free. Because N ∈ H,

then by Theorem 3.13, every H-free connected graph G with large enough order has

a Hamiltonian path.

Theorem 3.14 is actually a case of implicit forbiddance, that we discussed in

Section 3.1. Even though that, so far there was no result on forbidden subgraphs

implying a Hamilton path with families of large or infinite size. So, we think the

result is interesting by itself.

3.6 Conclusions and open problems

The characterization we were looking for is given by Theorem 3.5. We extend this

characterization to star-free graphs in Chapter 4.

Regarding the characterization family HC
i (l, q, r), notice that it is not necessary

that the parameters “r” of all the Zm,r are the same. In other words, we could have

r1, r2 and so on. But we think that doing so would make the proof of Theorem 3.3

more difficult to understand and it does not add real value to the result.

Theorem 3.4 characterizes all the families of forbidden subgraphs for claw-free

graphs when restricting the size of the family. In the characterization there are

four “irregular” families (F3, F4, F5 and F6) before the four infinite “regular” series

(FA
i , FB

i , FC
i and FD

i ). We call them irregular because there is no easy way to see a

pattern that describes them. They also include graphs that are claw-free, which are

the result of the intersection of graphs that are not claw-free. These graphs become

necessary because of the restriction in the size of the family. After F6, the families

“stabilize” and appear the four infinite series.

When searching for forbidden subgraphs implying some property P on graphs,

it makes sense to study only forbidden subgraphs that imply P on graphs that

satisfy some condition, usually related to the necessary conditions for satisfying P .

For example, in the case of graphs having a 2-factor, like in the Theorem 3.1, G

should have minimum degree at least 2 and maximum degree at least 3. Minimum

degree at least 2 is a necessary condition for having a 2-factor; maximum degree at

least 3 is to avoid the trivial case of G being a cycle. Another example is the case

of Hamiltonian graphs, which have a necessary condition of being 2-connected, as

studied for example in [20, 7].

Usual necessary conditions in the literature (Hamilton cycle, Hamilton-connect-

ed[4], 2-factor) appear to be connectivity and minimum degree conditions. When
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studying properties with such necessary conditions, Theorem 3.5 might not be useful

to understand if a star is being implicitly forbidden or not. To try to find generaliza-

tions of Theorem 3.5 that can also be used in these cases, we propose the following

two problems.

Problem 3.2. Let k ≥ 1. Characterize all the families of connected graphs H
satisfying the following property. Every large enough k-connected H-free graph is

claw-free.

In this chapter we were able to resolve Problem 3.2 for the case k = 1.

Problem 3.3. Let d ≥ 2. Characterize all the families of connected graphs H
satisfying the following property. Every large enough H-free connected graph with

minimum degree at least d is claw-free.

Even a combination of Problems 3.2 and 3.3 is possible.
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Chapter 4

Star-free graphs

In this chapter, we study the relation between star-free graphs and forbidden induced

subgraphs. The main result in this chapter is Theorem 4.1, which shows for each t ≥
3, a characterization of all families of forbidden subgraphs that imply the property

of being K1,t-free in connected graphs of large enough order. This is a generalization

to the some of the results found Chapter 3. All the new results we prove in this

chapter can be found in [17].

4.1 Introduction

In this chapter we further research the phenomenon of implicit forbiddance that we

described and studied in Chapter 3. Concretely, we extend our target class from

claw-free graphs to star-free graphs, studying the implicit forbiddance for the latter.

Our problem can be stated as follows.

Problem 4.1. Given t ≥ 3, characterize all the families of connected graphs F such

that every large enough F-free connected graph is K1,t-free.

Problem 4.1 is an extension of Problem 3.1. In this chapter, we solve Problem

4.1 for every t ≥ 3.

The rest of the chapter is organized as follows. In Section 4.2, we make all

needed definitions and present our main results. In Section 4.3, we give the proofs

for those results. Finally, in Section 4.4 we make some discussion, propose some

open problems and comment on the cases t = 1 and t = 2 of Problem 4.1.

4.2 Definitions and main results

Define G as the set of all non-redundant families of connected graphs. Let t ≥ 3 and

define H(t) as the set of families H ∈ G such that there is a constant n0 = n0(t,H)
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with the property that allH-free connected graphs G with |V (G)| ≥ n0 are K1,t-free.

Then, our problem is reduced to finding all the elements in the set H(t).

Let t ≥ 2. To state our results we define the following graphs (see Figure 4.1).

• Y t
m is a path on m vertices with t−1 extra vertices attached to the first vertex

of the path. The last vertex of the path is called the tail of Y t
m. (m ≥ 1)

• Y t
s,m is the graph obtained by joining s degree one vertices of a K1,t with the

first vertex of the path on m vertices. The last vertex of the path is called the

tail of Y t
s,m. (m ≥ 1, 1 ≤ s ≤ t)

• Ŷ t
s,m is the graph obtained by joining s degree one vertices of a K1,t with the

first vertex of the path on m vertices and adding the edge between the center

of the K1,t and the first vertex of the path. The last vertex of the path is

called the tail of Ŷ t
s,m. (m ≥ 1, 1 ≤ s ≤ t)

• W t
q is the graph obtained by completely joining a Kq with t independent

vertices. (q ≥ 1)

• T t
s,q is the graph obtained by joining s degree one vertices of a K1,t with all

the vertices of a Kq. (q ≥ 1, 1 ≤ s ≤ t)

• Dt
s,q is the graph obtained by joining s degree one vertices and the center of a

K1,t with all the vertices of a Kq. (q ≥ 1, 0 ≤ s ≤ t)

• Zt
m,r, Z

t
s,m,r and Ẑt

s,m,r are the graphs obtained by identifying a vertex of a Kr

with the tail of a Y t
m, Y

t
s,m and Ŷ t

s,m, respectively. (m ≥ 1, r ≥ 1, 1 ≤ s ≤ t)

For t ≥ 3, define the following families of graphs.

• T t(q) = { T t
s,q: 2 ≤ s ≤ t− 1 }.

• Dt(q) = { Dt
s,q: 2 ≤ s ≤ t− 1 }.

• Y t(m) = { Y t
s,m: 2 ≤ s ≤ t− 2 }.

• Z t(m, r) = { Zt
s,m,r: 2 ≤ s ≤ t− 2 }.

• Ŷ t(m) = { Ŷ t
s,m: 2 ≤ s ≤ t− 2 }.

• Ẑ t(m, r) = { Ẑt
s,m,r: 2 ≤ s ≤ t− 2 }.

• YZ t(m, r) = Y t(m+ 2)∪Z t(1, r)∪ . . .∪Z t(m, r)∪Ŷ t(m+ 2)∪Ẑ t(1, r)∪ . . .∪
Ẑ t(m, r).
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Figure 4.1: Some forbidden subgraphs

• Ht(m, l, q, r) = {K1,l,W
t
q}∪{Y t

m+2, Z
t
1,r, . . . , Z

t
m,r}∪T t(q)∪Dt(q)∪YZ t(m, r).

Notice that for the case t = 3, Y t(m), Z t(m, r), Ŷ t(m) and Ẑ t(m, r) are empty

and both T t(q) and Dt(q) have only one element.

For t ≥ 3, define the following subset of G.
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• F(t) = { H ∈ G: H ≤ Ht(m, l, q, r) for some m ≥ 1, l ≥ t+ 1, q ≥ 2, r ≥ 3}.

Our main result in this chapter is the following theorem. It gives the characterization

of families of forbidden subgraphs for star-free graphs we described in Section 4.1.

Theorem 4.1. Let t ≥ 3, then H(t) = F(t).

Theorem 4.1 is a generalization of Theorem 3.5. Concretely, Theorem 3.5 is the

case t = 3 of Theorem 4.1.

4.3 Proof of Theorem 4.1

First, we will prove the following theorem that shows that forbidding some family

of F(t) is enough to imply that the graph is star-free provided it is large enough.

Theorem 4.2. Let t ≥ 3. Then F(t) ⊆ H(t).

Before giving the proof, we would like to comment on non-redundancy of the

family Ht(m, l, q, r). It is not difficult to check that the family Ht(m, l, q, r) is non-

redundant for the parameters used in the definition of F(t) (m ≥ 1, l ≥ t+ 1, q ≥ 2,

r ≥ 3). These conditions were chosen so that Ht(m, l, q, r) is not redundant nor it

contains any induced subgraph of K1,t. Moreover, reducing by 1 any of the constants

in the conditions would make Ht(m, l, q, r) either redundant or contain an induced

subgraph of K1,t. For example, if q = 1 then for all m ≥ 1 and all 1 ≤ s ≤ t we

have that T t
s,q � Y t

s,m and T t
s,q � Zt

s,m; additionally W t
q is a K1,t.

We divide the proof of Theorem 4.2 into several lemmas that we state and prove

bellow.

Lemma 4.3 is a generalization of Lemma 3.7.

Lemma 4.3. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0. If

G is ({Y t
m} ∪ Y t(m) ∪ Ŷ t(m))-free for some m ≥ 3, then Nm+1(x0) = ∅.

Proof. Let Y ⊆ V (G) with |Y | = t such that {x0} ∪ Y is an induced K1,t in G.

Suppose that Nm+1(x0) 6= ∅. We will show that G contains a Y t
m, some graph of

Y t(m) or some graph of Ŷ t(m), which is a contradiction.

Let k = m+ 1 and let P = x0x1 · · ·xk be an induced path of G with xi ∈ N i(x0)

for all 0 ≤ i ≤ k. Notice that N j(x0) ∩N(Y ) = ∅ for all 3 ≤ j ≤ k. Otherwise, an

element v ∈ N j(x0) ∩ N(Y ) would have a path of length 2 to x0 (passing through

some element of Y ), contradicting that v ∈ N j(x0). Then N(Y ) ∩ P ⊆ {x0, x1, x2}.
Let Y1 = N(x1)∩Y and Y2 = N(x2)∩Y . If |Y2| ≥ t−1, then Y2∪{x2, . . . , xm+1}

contains a Y t
m. If 2 ≤ |Y2| ≤ t− 2, then (Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xm+1} is a

Y t
s,m, where s = |Y2|. If |Y2| = 1, then (Y −Y2)∪{x0}∪Y2 ∪{x2, . . . , xm−1} is a Y t

m.
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Suppose now that |Y2| = 0, that is N(x2) ∩ Y = ∅. If |Y1| ≥ t − 1, then

Y1 ∪ {x1, . . . , xm} contains a Y t
m. If 2 ≤ |Y1| ≤ t − 2, then (Y − Y1) ∪ {x0} ∪ Y1 ∪

{x1, . . . , xm} is a Ŷ t
s,m, where s = |Y1|. If |Y1| ≤ 1, then (Y − Y1) ∪ {x0, . . . , xm−1}

contains a Y t
m.

Lemma 4.4. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0.

Suppose that G is ({K1,l, Z
t
1,r,W

t
q} ∪ Dt(q))-free for some l ≥ t + 1, r ≥ 3, q ≥ 2.

Then |N(x0)| < 2t ·R(l,max(r, q)).

Proof. Let Y ⊆ V (G) with |Y | = t such that {x0} ∪ Y is an induced K1,t in G. Let

Y ′ ⊆ Y . We will show that |N(x0) ∩ BY (Y ′)| < R(l,max(r, q)), and since |Y | = t,

by Proposition 2.2 we get that |N(x0)| < 2t ·R(l,max(r, q)).

If |Y ′| ≤ 1, then |Y − Y ′| ≥ t − 1 and so |N(x0) ∩ BY (Y ′)| < R(l, r), since

otherwise (Y − Y ′) ∪ {x0} ∪ (N(x0) ∩BY (Y ′)) contains a Zt
1,r or a K1,l.

If 2 ≤ |Y ′| ≤ t − 1, then |N(x0) ∩ BY (Y ′)| < R(l, q), since otherwise Y ′ ∪ (Y −
Y ′) ∪ {x0} ∪ (N(x0) ∩BY (Y ′)) contains a Dt

s,q or a K1,l, where s = |Y ′|.
If |Y ′| = t, then |N(x0)∩BY (Y ′)| < R(l, q), since otherwise Y ′∪(N(x0)∩BY (Y ′))

contains a W t
q or a K1,l.

Lemma 4.5. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0.

Suppose that G is ({K1,l, Z
t
1,r, Z

t
2,r,W

t
q} ∪ Ẑ t(1, r) ∪ T t(q))-free for some l ≥ t + 1,

r ≥ 3, q ≥ 2. Then |N2(x0)| < 2t ·R(l,max(r, q)) · |N(x0)|.

Proof. Let Y ⊆ V (G) with |Y | = t such that {x0} ∪ Y is an induced K1,t in G. Let

x1 ∈ N(x0). Let Y ′ ⊆ Y . Let N = N2(x0) ∩N(x1). By Proposition 2.2, it suffices

to show that |N ∩BY (Y ′)| < R(l,max(r, q)).

If |Y ′| = 1, then |Y − Y ′| = t− 1 and so |N ∩BY (Y ′)| < R(l, r), since otherwise

(Y − Y ′) ∪ {x0} ∪ Y ′ ∪ (N ∩BY (Y ′)) contains a Zt
2,r or a K1,l.

If 2 ≤ |Y ′| ≤ t − 1, then |N ∩ BY (Y ′)| < R(l, q), since otherwise (Y − Y ′) ∪
{x0} ∪ Y ′ ∪ (N ∩BY (Y ′)) contains a T t

s,q or a K1,l, where s = |Y ′|.
If |Y ′| = t, then |N ∩ BY (Y ′)| < R(l, q), since otherwise Y ′ ∪ (N ∩ BY (Y ′))

contains a W t
q or a K1,l.

Suppose now that |Y ′| = 0, that is N∩BY (Y ′)∩N(Y ) = ∅. Notice that if x1 ∈ Y ,

then N ∩BY (Y ′) = ∅. Then we may suppose that x1 /∈ Y . Let Y1 = Y ∩N(x1).

If |Y1| ≥ t−1, then |N∩BY (Y ′)| < R(l, r), since otherwise Y1∪{x1}∪(N∩BY (Y ′))

contains a Zt
1,r or a K1,l.

If 2 ≤ |Y1| ≤ t−2, then |N ∩BY (Y ′)| < R(l, r), since otherwise (Y −Y1)∪{x0}∪
Y1 ∪ {x1} ∪ (N ∩BY (Y ′)) contains a Ẑt

s,1,r or a K1,l, where s = |Y1|.
If |Y1| ≤ 1, then |Y − Y1| ≥ t− 1 and so |N ∩BY (Y ′)| < R(l, r), since otherwise

(Y − Y1) ∪ {x0, x1} ∪ (N ∩BY (Y ′)) contains a Zt
2,r or a K1,l.
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Lemma 4.6 is a generalization of Lemma 3.10.

Lemma 4.6. Let t ≥ 3 and let G be a graph with an induced K1,t of center x0. Let

i ≥ 2 and suppose that G is ({K1,l, Z
t
i−1,r, Z

t
i,r, Z

t
i+1,r} ∪ Z t(i − 1, r) ∪ Ẑ t(i, r))-free

for some l ≥ t+ 1 and r ≥ 3. Then |N i+1(x0)| < R(l, r) · |N i(x0)|.

Proof. Let Y ⊆ V (G) with |Y | = t such that {x0} ∪ Y is an induced K1,t in G.

Let xi ∈ N i(x) and let P = x0x1 · · ·xi be an induced path with xj ∈ N j(x) for all

0 ≤ j ≤ i. Let N = N i+1(x0) ∩N(xi). It suffices to show that |N | < R(l, r).

Let Y1 = Y ∩ N(x1) and Y2 = Y ∩ N(x2). As in the proof of Lemma 4.3,

N(Y ) ∩ P ⊆ {x0, x1, x2}.
If |Y2| ≥ t− 1, then |N | < R(l, r), since otherwise Y2 ∪ {x2, . . . , xi} ∪N contains

a Zt
i−1,r or a K1,l.

If 2 ≤ |Y2| ≤ t − 2, then |N | < R(l, r), since otherwise (Y − Y2) ∪ {x0} ∪ Y2 ∪
{x2, . . . , xi} ∪N contains a Zt

s,i−1,r or a K1,l, where s = |Y2|.
If |Y2| = 1, then |N | < R(l, r), since otherwise (Y −Y2)∪{x0}∪Y2∪{x2, . . . , xi}∪

N contains a Zt
i+1,r or a K1,l.

Suppose now that |Y2| = 0, that is N(x2) ∩ Y = ∅.
If |Y1| ≥ t− 1, then |N | < R(l, r), since otherwise Y1 ∪ {x1, . . . , xi} ∪N contains

a Zt
i,r or a K1,l.

If 2 ≤ |Y1| ≤ t − 2, then |N | < R(l, r), since otherwise (Y − Y1) ∪ {x0} ∪ Y1 ∪
{x1, . . . , xi} ∪N contains a Ẑt

s,i,r or a K1,l, where s = |Y1|.
If |Y1| ≤ 1, then |Y −Y1| ≥ t−1 and so |N | < R(l, r), since otherwise (Y −Y1)∪

{x0, . . . , xi} ∪N contains a Zt
i+1,r or a K1,l.

We use the above lemmas to prove Theorem 4.2.

Proof of Theorem 4.2. Let H ∈ F(t). Let m ≥ 1, l ≥ t+ 1, q ≥ 2 and r ≥ 3 such

that H ≤ Ht(m, l, q, r).

Let G be an H-free connected graph. Suppose that there is an induced K1,t of

center x. We will show that |V (G)| is bounded by a function depending only on

t, l,m, q and r.

Notice that since G is Y t
m+2-free, then G is Zt

i,r-free for all i ≥ m + 1. Since we

also know that G is Zt
i,r-free for all 1 ≤ i ≤ m, we conclude that G is Zt

i,r-free for

all i ≥ 1. Using a similar argument, we have that G is Z t(i, r)-free and Ẑ t(i, r)-free

for all i ≥ 1. Thus, G satisfies all the conditions of Lemmas 4.3, 4.4, 4.5 and 4.6.

By Lemma 4.3, Nm+1(x) = ∅. Then we only need to show that |N i(x)| is bounded

for all 1 ≤ i ≤ m. By Lemmas 4.4 and 4.5, |N(x)| and |N2(x)| are bounded. By

Lemma 4.6, |N i+1(x)| < R(l, r) · |N i(x)| for all 2 ≤ i ≤ m − 1. Using an inductive

argument we get that |N i(x)| < R(l, r)i−2 · |N2(x)| for all 3 ≤ i ≤ m. We conclude

that |N i(x)| < R(l, r)m−2 · |N2(x)| for all 3 ≤ i ≤ m.
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Finally, we prove our main theorem.

Proof of Theorem 4.1. Let t ≥ 3. By Theorem 4.2, we already know that every

family of graphs in F(t) is also in H(t). It remains to show that every family of

graphs in H(t) is also in F(t).

Let H ∈ H(t). Then there is a positive integer n0 such that every H-free

connected graph of order at least n0 is K1,t-free. Let n be an integer such that

n ≥ max(n0, t+ 1).

Consider the family H′ = Ht(n, n, n, n). All the graphs in H′ are connected

graphs of order at least n0 containing an induced K1,t. Then it must be that no

graph of H′ is H-free. In other words, for each H ′ ∈ H′, there is an H ∈ H such

that H � H ′. But this is exactly the definition of H ≤ H′. Then since H′ is in F(t),

we conclude that H is also in F(t).

4.4 Conclusions

The characterization we were looking for is given by Theorem 4.1.

We have solved the problem of characterizing H(t) for any t ≥ 3, but it is also

possible to consider t = 1 and t = 2. It is not difficult to see that F(t) is also the

solution for t = 1 and t = 2. In these cases, the corresponding families H1(m, l, q, r)

and H2(m, l, q, r) after removing redundant graphs are as follows.

• H1(m, l, q, r) = {K1,l, Kq, Pm}

• H2(m, l, q, r) = {K1,l,W
2
q , Y

2
m, Z

2
1,r, . . . , Z

2
m−2,r}

The case t = 1 is an easy proposition that can also be found in [10, Proposition

9.4.1].

It is also possible to consider restricting the size of the families of forbidden

subgraphs for K1,t-free graphs for t ≥ 4. We think that a complete characterization

of such families may be difficult and very long. In particular, we think that there

might be many “irregular” families and many “regular” infinite series of families.

In this thesis we considered connected graphs with no degree or connectivity

conditions. For the same reasons as we explained in Section 3.6, we suggest to

consider graphs with higher connectivity or with some minimum degree condition.

Problem 4.2. Let t ≥ 3 and k ≥ 1. Characterize all the families of connected

graphs H satisfying the following property. Every large enough k-connected H-free

graph is K1,t-free.

In this chapter we were able to resolve Problem 4.2 for the case k = 1.
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Problem 4.3. Let t ≥ 3 and d ≥ 2. Characterize all the families of connected

graphs H satisfying the following property. Every large enough H-free connected

graph with minimum degree at least d is K1,t-free.

Even a combination of Problems 4.2 and 4.3 is possible.
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Chapter 5

Perfect Matchings

In this chapter, we study the relation between perfect matchings and forbidden

induced subgraphs. The main result in this chapter is Theorem 5.9, which shows a

characterization of all families of forbidden subgraphs implying a perfect matching

in graphs of large enough even order. All the new results we prove in this chapter

can be found in [28].

5.1 Introduction

The following result was proved independently by Sumner [32] and Las Vergnas [24].

Theorem 5.1 ([32],[24]). Every connected K1,3-free graph of even order has a perfect

matching.

Plummer et al.[30] showed that K1,3 is essentially the only graph with that

property.

Theorem 5.2 ([30]). Let H be a connected graph. If there exists a positive constant

n0 such that every connected H-free graph of even order at least n0 has a perfect

matching, then H � K1,3.

Fujita et at.[18] extended Theorem 5.2 by considering two forbidden subgraphs.

Theorem 5.3 ([18]). Let H1, H2 be a pair of connected graphs. If there exists a

positive constant n0 such that every connected {H1, H2}-free graph of even order at

least n0 has a perfect matching, then H1 � K1,3 or H2 � K1,3.

In the view of these results, one can go further and consider the following more

general problem. Characterize all the families of connected graphs F such that every

large enough F -free connected graph of even order has a perfect matching.
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By Theorem 5.3, we can observe that when considering a family F of two forbid-

den subgraphs, one of the graphs in F is an induced subgraph of K1,3 and the other

one is redundant, as it was pointed out in [27]. In this sense, even if we consider two

forbidden subgraphs, K1,3 is still essentially the only forbidden subgraph implying

a perfect matching.

Ota et al.[27] continued this line of research and considered families of forbidden

subgraphs of size 3. Their results show that there are families that do not contain

an induced subgraph of K1,3 when one considers at least three forbidden subgraphs

(see Section 5.2 for graph definitions).

Theorem 5.4 ([27]). For every l ≥ 4 and r ≥ 3, there is an n0 = n0(l, r) such

that every connected {K1,l, P4, Z1,r}-free graph of even order at least n0 has a perfect

matching.

Theorem 5.5 ([27]). For every l ≥ 4, m ≥ 3 and r ≥ 3, there is an n0 = n0(l,m, r)

such that every connected {K1,l, Ym, Z
−
1,r}-free graph of even order at least n0 has a

perfect matching.

In [27], it was shown that these are essentially all the families of forbidden sub-

graphs of size at most 3.

Theorem 5.6 ([27]). Let H be a family of connected graphs with |F| ≤ 3. If there

exists a positive constant n0 such that every connected H-free graph of even order at

least n0 has a perfect matching, then

• there is an H ∈ H such that H � K1,3, or

• there exist l ≥ 4 and r ≥ 3 such that F ≤ {K1,l, P4, Z1,r}, or

• there exist l ≥ 4, m ≥ 3 and r ≥ 3 such that F ≤ {K1,l, Ym, Z
−
1,r}.

In this chapter, we complete the characterization by finding all the families of

forbidden subgraphs implying a perfect matching in graphs of large enough even

order. The rest of the chapter is organized of follows. In Section 5.2 we make all

needed definitions and present the main results. In Sections 5.3 and 5.4 we give the

proofs for our results. Finally, in Section 5.5 we make some discussion and propose

some open problems.

5.2 Definitions and main results

Define G as the set of all non-redundant families of connected graphs. Define H

as the set of families F ∈ G such that there is a constant n0 = n0(F) with the
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property that all F -free connected graphs of even order at least n0 have a perfect

matching. Then, our problem is reduced to finding all the elements in the set H.

With the previous definitions, Theorems 5.2 and 5.3 say that If H ∈ H and

|H| ≤ 2 then H ≤ {K1,3}.

To state our results we define the following graphs (see Figure 5.1)

• Ym is a path on m vertices with two extra vertices attached to the first vertex

of the path. The last vertex of the path is called the tail of Ym. Notice that

Y1 is isomorphic to P3 and the tail of Y1 is the middle vertex of P3.

• Let {v1, . . . , vq} be the vertices of a Kq. Wq,t is the graph obtained by adding

2 extra vertices which are adjacent to every vertex {v1, . . . , vq} and then at-

taching one pendant vertex to each vertex of {v1, . . . , vt} (q ≥ t). Define also

Wq = Wq,q.

• W−
q,t is the graph obtained by attaching one pendant vertex to t different

vertices of a Kq (q ≥ t).

• Z−m,r is the graph obtained by identifying a vertex of a Kr with the end vertex

of a Pn.

• Zm,r is the graph obtained by identifying a vertex of a Kr with the tail of a

Ym.

l

m

Kq

K1,l Ym Wq

Kr

m

Kr

m

Z−m,r Zm,r

Figure 5.1: Some forbidden subgraphs
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Define the following families of graphs.

• HA
i (l, q, r) = {K1,l, Yi+2,Wq, Z1,r, . . . , Zi,r} (for i ≥ 1).

• HB
i (l,m, q, r) = {K1,l, Ym,Wq, Z1,r, . . . , Zi−1,r, Z

−
i,r} (for i ≥ 2).

Notice that the size of both HA
i (l, q, r) and HB

i (l,m, q, r) is i+ 3.

Define the following subsets of G.

• H1 = { H ∈ G : H ≤ {K1,3} }.

• H2 = { H ∈ G : H ≤ {K1,l, P4, Z1,r} for some l ≥ 4, r ≥ 3}.

• H3 = { H ∈ G : H ≤ {K1,l, Ym, Z
−
1,r} for some l ≥ 4, m ≥ 3 and r ≥ 3}.

• HA
i = { H ∈ G : H ≤ HA

i (l, q, r) for some l ≥ 4, q ≥ 2 and r ≥ 3} (i ≥ 1).

• HB
i = { H ∈ G : H ≤ HB

i (l,m, q, r) for some l ≥ 4, m ≥ i + 3, q ≥ 2 and

r ≥ 3} (i ≥ 2).

With these notation and definitions, Theorem 5.4 says that H2 ⊆ H and Theo-

rem 5.5 says that H3 ⊆ H. Also, Theorem 5.6 says that if H ∈ H and |H| ≤ 3 then

H ∈ H1 ∪H2 ∪H3.

Main Results

Our main results in this chapter are the following three theorems. First we show

that the new families from the sets HA
i and HB

i imply a perfect matching.

Theorem 5.7. For every i ≥ 1, HA
i ⊆ H and for every i ≥ 2, HB

i ⊆ H.

Next, we show that these two families are exactly the maximal families when the

size of the family of forbidden subgraphs is limited to some positive integer k.

Theorem 5.8. Let k ≥ 1 be an integer and H ∈ H with |H| ≤ k. Then

• H ∈ Hi for some i ∈ {1, 2, 3} and 1 ≤ k ≤ 3 or

• H ∈ HA
i for some 1 ≤ i ≤ k − 3 or

• H ∈ HB
i for some 2 ≤ i ≤ k − 3.

Finally and to complete the characterization, we need to show that there are no

infinite family in H that is not already considered by the families in HA
i and in HB

i .

Furthermore, we show that it is enough to consider only the families in HA
i . We

prove this fact in the following theorem.

Theorem 5.9. H ∈ H if and only if H ∈ HA
i for some i ≥ 1.
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Definitions

For our proofs we need the following definitions and theorems.

For a graph G, let co(G) be the number of odd components of G. We use the

following Tutte’s Theorem [33] as our main tool in the proofs (see also Theorem 9.5

of [8]).

Theorem 5.10 ([33]). A graph G has a perfect matching if and only if for every

S ⊆ V (G), co(G− S) ≤ |S|.

A set S ⊆ V (G) not satisfying the inequality in Theorem 5.10 is called a Tutte

set. A Tutte set S is said to be minimal if it does not contain any proper Tutte set.

Let S be a Tutte set, x ∈ S and X ⊆ S. Define

• CS(x) = {C: C is a component of G− S such that NG(x) ∩ V (C) 6= ∅ }

• CS(X) =
⋃
x∈X

CS(x)

Because S is usually clear from the context, we write C(x) and C(S) instead of CS(x)

and CS(X), respectively.

5.3 Proof of Theorem 5.7

First we prove a few lemmas. Lemmas 5.11 and 5.12 were proven in [27] as part of

the proof of Theorem 1. We prove them again here for completeness.

Lemma 5.11. Let G be a connected graph of even order and S ⊆ V (G) a minimal

Tutte set. Then for every non-empty subset X ⊆ S, |C(X)| ≥ |X|+ 2.

Proof. By the definition of Tutte set, co(G−S) ≥ |S|+ 1. But since |V (G)| is even,

then co(G− S) ≥ |S|+ 2.

Let S ′ = S −X. By minimality of S, co(G − S ′) ≤ |S ′|. Since each component

of G− S not in C(X) is a component of G− S ′, then C(S)− C(X) ⊆ C(S ′) and so

co(G− S)− |C(X)| ≤ co(G− S ′). Then we have that

|S|+ 2− |C(X)| ≤ co(G− S)− |C(X)| ≤ co(G− S ′) ≤ |S ′| = |S| − |X|

We conclude that |C(X)| ≥ |X|+ 2.

Lemma 5.12. Let l ≥ 4 and let G be a K1,l-free connected graph of even order and

S ⊆ V (G) a minimal Tutte set. Then for every non-empty set A ⊆ S, there is a

component C0 ∈ C(A) such that |NG(C0) ∩ A| ≤ l − 2.

Proof. Let k be the number of adjacencies (x,C) with x ∈ A and C ∈ C(A). Clearly,
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k =
∑
x∈A

|C(x)| and k =
∑

C∈C(A)

|NG(C) ∩ A|.

Suppose that for all components C ∈ C(A), |NG(C) ∩ A| ≥ l − 1. By Lemma

5.11, |C(A)| ≥ |A| + 2. Then
∑

C∈C(A)

|NG(C) ∩ A| ≥ (l − 1) · (|A|+ 2), and so k ≥

(l − 1) · (|A|+ 2).

On the other hand, since G is K1,l-free then |C(x)| ≤ l − 1 for all x ∈ A. But

then
∑
x∈A

|C(x)| ≤ (l − 1) · |A|, and so k ≤ (l − 1) · |A|, a contradiction.

Lemma 5.13. Let G be a connected graph of even order and S ⊆ V (G) a minimal

Tutte set. Suppose that G is {K1,l, Z1,r}-free for some l ≥ 4 and r ≥ 3. Let q ≥ 2

and let A ⊆ S be a clique with |A| ≥ (l − 2) · q + r. Suppose that there are two

vertices y1 ∈ D1 and y2 ∈ D2 for two different components D1, D2 ∈ C(A) such that

N(y1) ∩ A = N(y2) ∩ A = A. Then G contains an induced Wq.

Proof. We will prove by induction that there are q vertices v1, . . . , vq in q different

components C1, . . . , Cq of C(A)− {D1, D2} and q vertices a1, . . . , aq of A such that

viaj ∈ E(G) if and only if i = j. Then the set {y1, y2, a1, . . . , aq, v1, . . . , vq} will

induce a Wq in G.

To so do, we find components C1, . . . , Cq in such a way that they satisfy the

following condition. If for 1 ≤ i ≤ q + 1 we define Ai = A−
i−1⋃
j=1

(A ∩N(Cj)), then

for all 1 ≤ i ≤ q, Ci ∈ C(Ai) and |Ai ∩N(Ci)| ≤ l − 2.

Let 1 ≤ i ≤ q and suppose that we have found C1, . . . , Ci−1. We find Ci in the

following way. Since

|Ai| = |A| −

∣∣∣∣∣
i−1⋃
j=1

(A ∩N(Cj))

∣∣∣∣∣ ≥ (l − 2) · q + r − (l − 2) · (i− 1) ≥ l − 2 + r

then Ai is not empty. Then by Lemma 5.12, there is a component Ci ∈ C(Ai)

such that |Ai ∩ N(Ci)| ≤ l − 2. By the way Ai is defined, N(Cj) ∩ Ai = ∅ for

all 1 ≤ j ≤ i − 1 and so Ci /∈ {C1, . . . , Ci−1}. If Ci = D1 then y1 ∈ Ci and so

|Ai| = |N(y1)∩Ai| ≤ |N(Ci)∩Ai| ≤ l− 2, contradicting that |Ai| ≥ l− 2 + r. Then

Ci 6= D1 and similarly we get that Ci 6= D2. Thus, we have found the required Ci.

For 1 ≤ i ≤ q, choose ai ∈ Ai ∩N(Ci) and vi ∈ Ci ∩N(ai).

Let 1 ≤ i ≤ q, we will prove that ai /∈ N(vj) for all 1 ≤ j ≤ q with j 6= i. Since

for all 1 ≤ j ≤ i− 1, Ai ∩N(Cj) = ∅ then ai /∈ N(vj) for all 1 ≤ j ≤ i− 1. Suppose

that ai ∈ N(vj) for some i+ 1 ≤ j ≤ q. Since

|Aq+1| = |A| −

∣∣∣∣∣
q⋃

j=1

(A ∩N(Cj))

∣∣∣∣∣ ≥ (l − 2) · q + r − (l − 2) · q = r
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and Aq+1 ∩ N(vj) = Aq+1 ∩ N(vi) = ∅ then Aq+1 ∪ {aj} ∪ {vi, vj} contains a Z1,r

which is a contradiction.

Thus, we have proved that the set {y1, y2, a1, . . . , aq, v1, . . . , vq} induces a Wq.

Now we prove the main theorem of this section.

Proof of Theorem 5.7. We first show that for all i ≥ 2 and H ∈ HB
i , there is some

m ≥ 1 such that H ∈ HA
m. This implies that it is enough to show that HA

i ⊆ H for

all i ≥ 1.

Let i ≥ 2 and H ∈ HB
i . Then H ≤ {K1,l, Ym,Wq, Z2,r, . . . , Zi−1,r, Z

−
i,r} for some

l ≥ 4, m ≥ i + 3, q ≥ 2 and r ≥ 3. Since Zi,r � Z+
h,r for all h ≥ i and r ≥ 3, then

H ∈ HA
m−2.

Let i ≥ 1 and H ∈ HA
i . Let l ≥ 4, q ≥ 2, and r ≥ 3 such that H ≤ HA

i (l, q, r).

Let G be a connected H-free graph of even order with no perfect matching. We will

show that |V (G)| is bounded by a function depending only on i, l, q, r.

By Theorem 5.10, G has a Tutte set S ⊆ V (G). We may assume that S is chosen

to be minimal. Since G is connected, then S 6= ∅. Let x ∈ S. By Lemma 5.11,

there are three different components C1, C2, C3 ∈ C(x). Let yi ∈ (Ci ∩ NG(x)) for

i ∈ {1, 2, 3}. Let Y = {y1, y2, y3}. Notice that {x} ∪ Y is a claw in G.

Claim 5.7.1. |N(x)| ≤ 8 ·R(l, (l − 2) · q + r)

Proof. Let Y ′ ⊆ Y . Since {x}∪(N(x)∩BY (Y ′)) contains noK1,l, thenN(x)∩BY (Y ′)

contains no independent set of size at least l. Let N be the largest clique in N(x)∩
BY (Y ′). If we show that |N | < (l−2)·q+r, then |N(x)∩BY (Y ′)| < R(l, (l−2)·q+r),

and since |Y | = 3, by Proposition 2.2 we get that |N(x)| ≤ 23 ·R(l, (l − 2) · q + r).

If |Y ′| ≤ 1, then |Y −Y ′| ≥ 2. Then |N | < r, since otherwise (Y −Y ′)∪{x}∪N
contains a Z1,r.

If |Y ′| ≥ 2, then at least two vertices of Y are adjacent to all the vertices of N .

Since the elements of Y are in different components and |Y ′| ≥ 2, then it must be

that N ⊆ S. Then by Lemma 5.13, |N | < (l − 2) · q + r.

Notice that since G is Zm,r-free for all 1 ≤ m ≤ i and G is Yi+2-free, then G is

Zm,r-free for all m ≥ 1.

Claim 5.7.2. |N2(x)| ≤ |N(x)| · 8 ·R(l, (l − 2) · q + r)

Proof. Let x1 ∈ N(x). We will show that |N2(x) ∩N(x1)| ≤ 8 ·R(l, (l − 2) · q + r).

Let Y1 = N(x1) ∩ Y and Y ′ ⊆ Y . Let N ′ = N2(x) ∩ N(x1) ∩ BY (Y ′). Since

{x1} ∪ N ′ contains no K1,l, then N ′ contains no independent set of size at least

l. Let N be the largest clique in N ′. If we show that |N | < (l − 2) · q + r, then
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|N ′| < R(l, (l − 2) · q + r), and since |Y | = 3, by Proposition 2.2 we get that

|N2(x) ∩N(x1)| ≤ 23 ·R(l, (l − 2) · q + r).

If |Y ′| = 1, then |Y−Y ′| = 2. Then |N | < r, since otherwise (Y−Y ′)∪{x}∪Y ′∪N
contains a Z2,r. If |Y ′| ≥ 2, then we get that |N | < (l − 2) · q + r in the same way

as Claim 5.7.1.

Suppose now that |Y ′| = 0, that is N ∩N(Y ) = ∅.
If |Y1| ≥ 2, then |N | < r since otherwise Y1∪{x1}∪N contains a Z1,r. If |Y1| ≤ 1,

then |Y −Y1| ≥ 2. Then |N | < r since otherwise (Y −Y1)∪{x}∪{x1}∪N contains

a Z2,r.

Let m ≥ 2. Since G is {Zm,r, Zm+1,r, Zm+2,r}-free, then by Lemma 3.10 we have

that |Nm+1(x)| < R(l, r) · |Nm(x)|. By an inductive argument we get that for all

m ≥ 3, |Nm(x)| < R(l, r)m−2 · |N2(x)|. Then by Claims 5.7.1 and 5.7.2, we have

that for all m ≥ 3, |Nm(x)| < R(l, r)m−2 · 8 ·R(l, (l− 2) · q+ r) · 8 ·R(l, (l− 2) · q+ r)

= 64 ·R(l, r)m−2 ·R(l, (l − 2) · q + r)2.

Additionally, since G is Yi+2-free then by Lemma 3.7, N i+3(x) = ∅. It follows

that |V (G)| < (i+ 2) · 64 ·R(l, r)i ·R(l, (l − 2) · q + r)2 + 1.

5.4 Proof of Theorems 5.8 and 5.9

In this section we prove the other two main results of this chapter.

Proof of Theorem 5.8. Suppose that H ∈ H and |H| ≤ k. Since H ∈ H, there is

a positive integer n0 such that every H-free connected graph of even order at least

n0 has a perfect matching. Let n be an odd integer such that n ≥ max(n0, 4).

Contrary to the theorem, suppose that H /∈ Hi for all 1 ≤ i ≤ 3, H /∈ HA
i for all

1 ≤ i ≤ k − 3 and H /∈ HB
i for all 2 ≤ i ≤ k − 3. Since H /∈ Hi for all 1 ≤ i ≤ 3,

then by Theorem 5.6, k ≥ 4.

We will consider several connected graphs G of even order at least n containing

no perfect matching. Then for each of such graphs G there will be some H ∈ H
such that H � G.

Consider G = K1,n. Then there is a graph H1 ∈ H such that H1 � G. All

connected subgraphs of G are stars. Since H /∈ H1, then H � {K1,3}, and so

H1 � K1,3. We conclude that

• H1 = K1,l for some l ≥ 4.

Consider G = Yn. Since G contains no K1,4 then H1 � G. Then there is a graph

H2 ∈ H such that H2 � G. Since H2 � K1,3 then

• H2 = Pm for some m ≥ 4 or H2 = Ym for some m ≥ 4.
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Since H /∈ H3, then H � {Z−1,r} for all r ≥ 3.

Consider G = Z1,n+1. Since G contains neither K1,4 nor P4 then H1 � G and

H2 � G. Then there is a graph H4 ∈ H such that H4 � G (H3 will be used later).

Since H4 � K1,3 and H4 � Z−1,r for all r ≥ 3, then

• H4 = Z1,r1 for some r1 ≥ 3 (Notice that Z1,2 = K1,3).

Since H /∈ H2, then H � {P4}. Then H2 = Pm for some m ≥ 5, or H2 = Ym for

some m ≥ 4.

Consider G = Wn. Since G contains neither K1,4, P5, Y4 nor Z1,3, then H1 � G,

H2 � G and H4 � G. Then there is a graph H3 ∈ H such that H3 � G. Since

H3 � K1,3, H3 � P4 and H3 � Z−1,r for all r ≥ 3, then

• H3 = W−
q,t for some q ≥ 3 and t ≥ 2 with q ≥ t, or H3 = Wq,t for some q ≥ 2

and t ≥ 0 with q ≥ t.

Claim 5.8.1. There are graphs H4, . . . , Hk in H and integers r1, . . . , rk−3 such that

for all 4 ≤ i ≤ k, Hi = Zi−3,ri−3
and ri−3 ≥ 3. In particular |H| = k

Proof. The proof is by induction on i. We have already showed the base case i = 4.

We prove now the inductive case. If k = 4 there is nothing to prove. Suppose

that k ≥ 5 and let 5 ≤ i ≤ k. Suppose that we have already proved that there are

graphs H4, . . . , Hi−1 in H such that for all 4 ≤ j ≤ i − 1, Hj � Z+
j−3,rj−3

for some

rj−3 ≥ 3. We will prove that there is a graph Hi ∈ H such that Hi = Zi−3,ri−3
for

some ri−3 ≥ 3.

Let r′ = max(r1, . . . , ri−4). Since 1 ≤ i− 4 ≤ k − 4, then H /∈ HA
i−4. Then since

H ≤ {K1,l,Wq, Z1,r′ , . . . , Zi−4,r′}, H � {Yi−2}. In particular, H2 = Pm for some

m ≥ i− 1 or H2 = Ym for some m ≥ i− 1. Since 2 ≤ i− 3 ≤ k− 3, then H /∈ HB
i−3.

Then since H ≤ {K1,l, Ym,Wq, Z1,r′ , . . . , Zi−4,r′}, H � {Zi−3,r} for all r ≥ 3.

If i−3 is even, considerG = Zi−3,n and if i−3 is odd, considerG = Zi−3,n+1. Since

G contains neither K1,4, Pi,W
−
3,2 nor W2,0 and that Zj−3,3 � G for all 4 ≤ j ≤ i− 1,

then G contains no Hj for all 1 ≤ j ≤ i − 1. Then there is a graph Hi ∈ H such

that Hi � G. Since Hi � Yi−2 and Hi � Zi−3,r for all r ≥ 3, then Hi = Zi−3,ri−3
for

some ri−3 ≥ 3 (Notice that Zi−3,2 contains a Yi−2).

Let r = max(r1, . . . , rk−3).

Suppose first thatH ≤ {Yk−1}. Since |H| = k, then there must be some 1 ≤ i ≤ k

such that Hi � Yk. But the only graph for which that is possible is H2. Then

H2 = Pm with m ≤ k − 1 or H2 = Ym with m ≤ k − 1 and so H2 � Yk−1. We

conclude that H ≤ HA
k−3(l, q, r) and so H ∈ HA

k−3.

Suppose now that H � {Yk−1}. Then H2 = Pm for some m ≥ k or H2 = Ym for

some m ≥ k.
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If k − 2 is even, consider G = Zk−2,n and if k − 2 is odd, consider G = Zk−2,n+1.

Since G contains neither K1,4, Pk+1,W
−
3,2 nor W2,0 and that Zj−3,3 � G for all

4 ≤ j ≤ k, then G contains no Hj for all 1 ≤ j ≤ k. We conclude that G is H-free,

a contradiction.

Proof of Theorem 5.9. By Theorem 5.7, we already know that for i ≥ 1, every

family of graphs H in HA
i is also in H.

Let H ∈ H. Then there is a positive integer n0 such that every H-free connected

graph of even order at least n0 has a perfect matching. Let n be an odd integer such

that n ≥ max(n0, 4).

Consider the following family of graphs. H′ = { K1,n, Yn+2,Wn } ∪ { Zm,n: m

is even and 1 ≤ m ≤ n} ∪ { Zm,n+1: m is odd and 1 ≤ m ≤ n }. Notice that

H′ ≤ HA
n (n, n, n+ 1) and so H′ ∈ HA

n .

Since n is odd, all the graph in H′ are connected graph of even order at least

n0. Furthermore, none of them have a perfect matching. Then it must be that no

graph of H′ is H-free. In other words, for each H2 ∈ H′, there is an H1 ∈ H such

that H1 � H2. We conclude that H ≤ H′. But since H′ is in HA
n then H is also in

HA
n .

5.5 Conclusions and open problems

The characterization we were looking for is given by Theorem 5.9. It is interesting

to notice that by this result, every infinite family in H has a finite subfamily that is

enough to imply a perfect matching (under the assumptions of connectedness and

large enough even order). This fact might be surprising but it is easily explained as

follows.

The graph that is needed to bound the diameter of the graph G (N i+3(x) = ∅
near the end of Theorem 5.7), in this case Yi, has the property that Yi � Yi+1. This

implies that it is not necessary to forbid Ym for all m greater than some integer m0,

but it is enough to forbid Ym just for one value of m. This phenomenon does not

happens for example when considering the problem for near perfect matchings, as

we showed in Chapter 6. In that case, the family that characterize the corresponding

set H has an infinite number of graphs and any proper subfamily is not enough to

imply that the graph has a near perfect matching .

Regarding the characterization family HA
i (l, q, r), notice that it is not necessary

that the parameters “r” of all the Zm,r are the same. In other words, we could have

r1, r2 and so on. But we think that doing so would make the proof of Theorem 5.7

more difficult to understand and it does not add real value to the result.
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About the characterization itself, may be it is interesting to notice that there is

only one set of families of size 4, namely HA
2 . For size 3, there are two sets: H2 and

H3. And for all other sizes i ≥ 5, there are also two sets: HA
i−2 and HB

i−2.

In this chapter we considered connected graphs with no degree conditions. But

it is also possible to consider graphs with higher connectivity or with some minimum

degree condition. In this line of research, we propose the following problems.

Problem 5.1. Let k ≥ 1. Characterize all the families of connected graphs H
satisfying the following property. Every H-free k-connected graph of large enough

even order has a perfect matching.

In this chapter we were able to resolve Problem 5.1 for the case k = 1.

Problem 5.2. Let d ≥ 3. Characterize all the families of connected graphs H
satisfying the following property. Every H-free connected graph of large enough even

order and minimum degree at least d has a perfect matching.

Even a combination of Problems 5.1 and 5.2 is possible.
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Chapter 6

Near Perfect Matchings

In this chapter, we study the relation between near perfect matchings and forbidden

induced subgraphs. The main result in this chapter is Theorem 6.5, which shows

a characterization of all families of forbidden subgraphs implying a near perfect

matching in graphs of large enough odd order. All the new results we prove in this

chapter can be found in [26].

6.1 Introduction

Fujita et al.[18] studied the relation between forbidden induced subgraphs and the

resulting deficiency.

Let Tn be the graph obtained by attaching 2 independent vertices to each end of

a path on n vertices. For d ≥ 0, let Td = {K1,3+d} ∪ { Tn: n ≥ 2 }.

Theorem 6.1 ([18]). Let d ≥ 0. Then every Td-free connected graph G with

|V (G)| ≡ d (mod 2) satisfies def(G) ≤ d.

In the same paper, the authors also proved that for the near perfect matching

case (d = 1), the family Td is essentially the only family with that property when

forbidding only triangle-free graphs. In other words, they proved the following

theorem.

Theorem 6.2 ([18]). Let F be a family of triangle-free connected graphs. If there

exists a positive constant n0 such that every F-free graph of odd order at least n0

has a near perfect matching, then F ≤ T1.

In this chapter, we complete this line of research by characterizing all families

of connected graphs F such that every large enough F -free graph of odd order has

a near perfect matching (without any restriction on the graphs of F). Our main

result of this chapter is Theorem 6.5 that we state in Section 6.3.

51



The rest of the chapter is organized as follows. In Section 6.2, we give some

definitions and cite some useful known results. In Section 6.3, we define several

graphs and families of graphs and state our results. In Section 6.4, we give the

proofs for our results. Finally, in Section 6.5, we make some final remarks.

6.2 Definitions and useful results

Define G as the set of all non-redundant families of connected graphs. Define H

as the set of families F ∈ G such that there is a constant n0 = n0(F) with the

property that all F -free connected graphs G of odd order with |V (G)| ≥ n0 have a

near perfect matching. Clearly, our problem is reduced to finding all the elements

in the set H.

With the previous definitions, Theorem 6.2 says that If F ∈ H and every graph

in F is triangle-tree then F ≤ T1.

Let G be a graph. An odd component of G is a connected component of G of

odd order. Let co(G) be the number of odd components of G. We use the following

theorem from Berge (see Theorem 3.1.14 of [25]) as our main tool in the proofs.

Theorem 6.3 ([25]). Let G be a graph. Then def(G) = max
S⊆V (G)

(co(G− S)− |S|).

The formula in Theorem 6.3 is called the Tutte-Berge Formula. Theorem 6.3

can be rewritten for the case of near perfect matching as follows.

Theorem 6.4. A graph G of odd order has a near perfect matching if and only if

for every set S ⊆ V (G), co(G− S) ≤ |S|+ 1.

A set S ⊆ V (G) not satisfying the inequality in Theorem 6.4 is a Tutte set. A

Tutte set S is said to be minimal if for every S ′ ⊂ S, S ′ is not a Tutte set. Given a

Tutte set S, for each x ∈ S define

CS(x) = {C: C is a component of G− S such that NG(x) ∩ V (C) 6= ∅ }.

Because S is usually clear from the context, we write C(x) instead of CS(x). For a

subset X ⊆ S, define

• C(X) =
⋃

x∈X C(x)

• Co(X) = the set of odd components in C(X)

Let G be a connected graph. If v, w ∈ V (G) and H ⊆ V (G), let dist(v, w) be

the distance from v to w, and dist(H, v) = min
w∈H

dist(v, w).
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6.3 Graphs and Families

In this section, we define the graphs and families of graphs necessary to state our

results. At the end of this section we state Theorem 6.5 that is our main result of

this chapter.

In the drawings of the graphs we define in this section, the white vertices are a

minimal Tutte set for the corresponding graph. We give more detail about this in

Section 6.4.

First, we define some auxiliary graphs that we use later to define the graphs and

families we need.

• As,q is the graph obtained by joining a set {w1, . . . , ws} of s independent

vertices with a Kq, and then attaching one pendant vertex to each vertex of

the Kq. The vertices w1, . . . , ws are called the heads of As,q.

• Bm,q is the graph obtained by identifying the last vertex of a Pm with a vertex

of a Kq. The first vertex of the Pm is called the head of Bm,q.

• CA
n is an induced path p1 . . . pn.

• CB
n1,n2

is an induced path p1 . . . pn1+n2 and a vertex z adjacent only to pn1 and

pn1+1.

• CC
n1,n2

is an induced path p1 . . . pn1+n2+1 and a vertex z adjacent only to pn1 ,

pn1+1 and pn1+2.

• CD
n1,n2

is an induced path p1 . . . pn1+n2−1 and a vertex z adjacent only to pn1 .

• CE
n1,n2

is an induced path p1 . . . pn1+n2+1 and a vertex z adjacent only to pn1

and pn1+2.

If C ∈ {CA
n , C

B
n1,n2

, CC
n1,n2

, CD
n1,n2

, CE
n1,n2
} is a subgraph of a graph G in which two

vertices x1 and x2 of G are the ends of the path in C, then we call C a connector

between x1 and x2. If C is a connector other than CA
n , then z is called the balancer

of C. A connector is said to be odd if it has an odd number of vertices. We say

that CA
n , CB

n1,n2
, CC

n1,n2
, CD

n1,n2
, CE

n1,n2
are connectors of type A, B, C, D and E,

respectively.

We define now the graphs and families we need to state our results. The families

with a “hat” on top are defined only to be used later in our proofs. We divide the

graphs in “types”, which is indicated by the letter we use to define them. In the

definitions, n̄, m̄ and q̄ are positive integers.
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Type “Z” graphs:

• Z1
m,q is the graph obtained by adding three pendant vertices to the head of a

Bm,q.

• Z2
m,q is the graph obtained by putting together a K1,4 and a Bm,q of head x,

and adding an edge between x and two degree one vertices of the K1,4.

• Z3
m,q is the graph obtained by adding the edge between x and the center of the

K1,4 in a Z2
m,q.

• Z(m̄, q̄) =
3⋃

i=1

({Zi
1,q̄, Z

i
2,q̄, . . . , Z

i
m̄,q̄, Z

i
m̄+2,1}).

• Ẑ(q̄) =
3⋃

i=1

({Zi
m,q̄ : m ≥ 1}).

Kq

m

Kq

m

Kq

m

Z1
m,q Z2

m,q Z3
m,q

Type “V ” graphs:

• V 1
q is the graph obtained by identifying the heads w1 and w2 of a A2,q with

two degree one vertices of a K1,4.

• V 2
q is the graph obtained by identifying the heads w1, w2 and w3 of a A3,q with

two degree one vertices and the center of a K1,4.

• V 3
q is A3,q.

• V 4
q is the graph obtained by putting together a A3,q of heads w1, w2, w3 and

two extra vertices z1 and z2 and adding the edges w1w2, w1z1 and w1z2.

• V(q) = {V 1
q , V

2
q , V

3
q , V

4
q }

Kq Kq Kq Kq

V 1
q V 2

q V 3
q V 4

q
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Type “T” graphs:

• Let TA
n , TB

n1,n2
and TC

n1,n2
be the graphs obtained by adding two pendant ver-

tices ya1 , y
b
1 to one end of a CA

n , a CB
n1,n2

or a CC
n1,n2

, respectively, and two

pendant vertices ya2 , y
b
2 to the other end. Notice that TA

n = Tn.

• T A(n̄) = { TA
n : n is odd and n ≥ n̄+ 1 }

• T B(n̄) = { TB
n1,n2

: n1 + n2 is even, n1, n2 ≥ 1 and n1 + n2 ≥ n̄+ 1 }

• T C(n̄) = { TC
n1,n2

: n1 + n2 is odd, n1, n2 ≥ 1 and n1 + n2 ≥ n̄+ 1 }

• T (n̄) = T A(n̄) ∪ T B(n̄) ∪ T C(n̄)

n n1 n2 n1 n2

TA
n TB

n1,n2
TC
n1,n2

Type “Y ” graphs:

• Y 1
n1,n2,q

is the graph obtained by joining all the vertices of a Kq with the last

vertex of a Pn1 and with the last vertex of a Pn2 , and adding two pendant

vertices to the first vertex of the Pn1 and two pendant vertices to the first

vertex of the Pn2 .

• Y 2
n1,n2,q

is the graph obtained by adding the edge between the last vertex of

the Pn1 and the last vertex of the Pn2 in a Y 1
n1,n2,q

.

• Y1(n̄, q̄) = {Y 1
n1,n2,q̄

: n1, n2 ≥ 1 and n1 + n2 + 1 ≤ n̄ }.

• Y2(n̄, q̄) = {Y 2
n1,n2,q̄

: n1, n2 ≥ 1 and n1 + n2 ≤ n̄ }.

• Y(n̄, q̄) = Y1(n̄, q̄) ∪ Y2(n̄, q̄)

• Ŷ(q̄) = { Y 1
n1,n2,q̄

: n1, n2 ≥ 1 } ∪ { Y 2
n1,n2,q̄

: n1, n2 ≥ 1 }.

n1

Kq

n2 n1

Kq

n2

Y 1
n1,n2,q

Y 2
n1,n2,q
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Type “D” graphs:

• D1
n1,n2,m,q is the graph obtained by identifying the pn1 of the path of the con-

nector in a TA
n1+n2−1 and the head of a Bm,q.

• D2
n1,n2,m,q is the graph obtained by identifying the balancer z of the connector

in a TB
n1,n2

and the head of a Bm,q.

• D1(n̄, m̄, q̄) = { D1
n1,n2,1,q̄

, D1
n1,n2,2,q̄

, . . . , D1
n1,n2,m̄,q̄, D

1
n1,n2,m̄+2,1: n1, n2 are

even, n1, n2 ≥ 2, n1 ≤ n2 and n1 + n2 − 1 ≤ n̄ }.

• D2(n̄, m̄, q̄) = { D2
n1,n2,1,q̄

, D2
n1,n2,2,q̄

, . . . , D2
n1,n2,m̄,q̄, D

2
n1,n2,m̄+2,1 : n1 + n2 ≤ n̄

and n1, n2 ≥ 1}.

• D(n̄, m̄, q̄) = D1(n̄, m̄, q̄) ∪ D2(n̄, m̄, q̄)

• D̂(q̄) = { D1
n1,n2,m,q̄, D

2
n1,n2,m,q̄ : n1, n2 ≥ 1 and m ≥ 1 }.

n1 n2

Kq

m

n1 n2

Kq

m

D1
n1,n2,m,q D2

n1,n2,m,q

Type “L” graphs:

• L1A
n,m,q, L

1B
n1,n2,m,q, L

1C
n1,n2,m,q, L

1D
n1,n2,m,q and L1E

n1,n2,m,q are the graphs obtained

by identifying the head of a Bm,q and the pn of a CA
n , a CB

n1,n2
, a CC

n1,n2
, a

CD
n1,n2

and a CE
n1,n2

(respectively) and adding a pendant vertex to pn and two

pendant vertices to p1.

• L2A
n,m,q, L

2B
n1,n2,m,q, L

2C
n1,n2,m,q, L

2D
n1,n2,m,q and L2E

n1,n2,m,q are the graphs obtained by

putting together a Bm,q of head x and a CA
n , a CB

n1,n2
, a CC

n1,n2
, a CD

n1,n2
and a

CE
n1,n2

(respectively) of ends p1 and pn, adding two vertices z1 and z2, adding

the edges xz1, xz2, pnz1, pnz2 and adding two pendant vertices to p1.

• L3A
n,m,q, L

3B
n1,n2,m,q, L

3C
n1,n2,m,q, L

3D
n1,n2,m,q and L3E

n1,n2,m,q are the graphs obtained by

adding the edge xpn in a L2A
n,m,q, in a L2B

n1,n2,m,q, in a L2C
n1,n2,m,q, in a L2D

n1,n2,m,q

and in a L2E
n1,n2,m,q (respectively).

• LiA(n̄, m̄, q̄) = { LiA
n,1,q̄, L

iA
n,2,q̄, . . . , LiA

n,m̄,q̄, L
iA
n,m̄+2,1: n is odd, 3 ≤ n ≤ n̄ }.
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• LiB(n̄, m̄, q̄) = { LiB
n1,n2,1,q̄

, LiB
n1,n2,2,q̄

, . . . , LiB
n1,n2,m̄,q̄, L

iB
n1,n2,m̄+2,1: n1+n2 is even,

n1 + n2 ≤ n̄ and n1, n2 ≥ 1}.

• LiC(n̄, m̄, q̄) = { LiC
n1,n2,1,q̄

, LiC
n1,n2,2,q̄

, . . . , LiC
n1,n2,m̄,q̄, L

iC
n1,n2,m̄+2,1: n1 +n2 is odd,

n1 + n2 ≤ n̄ and n1, n2 ≥ 1}.

• L(n̄, m̄, q̄) =
3⋃

i=1

(LiA(n̄, m̄, q̄) ∪ LiB(n̄, m̄, q̄) ∪ LiC(n̄, m̄, q̄)).

• L̂(q̄) =
3⋃

i=1

({LiA
n,m,q̄: n is odd, n,m ≥ 1} ∪ {LiB

n1,n2,m,q̄: n1 + n2 is even and

n1, n2,m ≥ 1} ∪ {LiC
n1,n2,m,q̄, L

iD
n1,n2,m,q̄, L

iE
n1,n2,m,q̄: n1+n2 is odd and n1, n2,m ≥

1 }).

Kq

mn

Kq

mn2n1

Kq

mn2n1

L1A
n,m,q L1B

n1,n2,m,q L1C
n1,n2,m,q

Kq

mn

Kq

mn2n1

Kq

mn2n1

L2A
n,m,q L2B

n1,n2,m,q L2C
n1,n2,m,q

Kq

mn

Kq

mn2n1

Kq

mn2n1

L3A
n,m,q L3B

n1,n2,m,q L3C
n1,n2,m,q

Type “W” graphs:

• W 1A
n,q , W 1B

n1,n2,q
, W 1C

n1,n2,q
, W 1D

n1,n2,q
and W 1E

n1,n2,q
are the graphs obtained by put-

ting together a A2,q of heads w1, w2 and a CA
n , a CB

n1,n2
, a CC

n1,n2
, a CD

n1,n2
and

a CE
n1,n2

(respectively) of ends p1, pn, adding the edges w1pn and w2pn and

adding two pendant vertices to p1.

• W 2A
n,q , W 2B

n1,n2,q
, W 2C

n1,n2,q
, W 2D

n1,n2,q
and W 2E

n1,n2,q
are the graphs obtained by iden-

tifying the w2 of a A3,q of heads w1, w2, w3 and the pn of a CA
n , a CB

n1,n2
, a

CC
n1,n2

, a CD
n1,n2

and a CE
n1,n2

(respectively) of ends p1, pn, adding the edges

w1pn and w3pn and adding two pendant vertices to p1.
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• W iA(n̄, q̄) = { W iA
n,q̄: n is odd, 3 ≤ n ≤ n̄ }.

• W iB(n̄, q̄) = { W iB
n1,n2,q̄

: n1 + n2 is even, n1 + n2 ≤ n̄ and n1, n2 ≥ 1 }.

• W iC(n̄, q̄) = { W iC
n1,n2,q̄

: n1 + n2 is odd, n1 + n2 ≤ n̄ and n1, n2 ≥ 1 }.

• W(n̄, q̄) =
2⋃

i=1

(W iA(n̄, q̄) ∪W iB(n̄, q̄) ∪W iC(n̄, q̄)).

• Ŵ(q̄) =
2⋃

i=1

({W iA
n,q̄: n is odd and n ≥ 1} ∪ {W iB

n1,n2,q̄
: n1 + n2 is even and

n1, n2 ≥ 1} ∪ {W iC
n1,n2,q̄

, W iD
n1,n2,q̄

, W iE
n1,n2,q̄

: n1 + n2 is odd and n1, n2 ≥ 1 }).

Kq

n

Kq

n2n1

Kq

n2n1

W 1A
n,q W 1B

n1,n2,q
W 1C

n1,n2,q

Kq

n

Kq

n2n1

Kq

n2n1

W 2A
n,q W 2B

n1,n2,q
W 2C

n1,n2,q

Type “M” graphs:

• MA
n,q, M

B
n1,n2,q

, MC
n1,n2,q

, MD
n1,n2,q

and ME
n1,n2,q

are the graphs obtained by iden-

tifying the w2 of a A2,q of heads w1, w2 and the pn of a CA
n , a CB

n1,n2
, a CC

n1,n2
,

a CD
n1,n2

and a CE
n1,n2

(respectively) of ends p1, pn and adding two pendant

vertices to p1.

• MA(n̄, q̄) = { MA
n,q̄: n is even, 3 ≤ n+ 1 ≤ n̄ }.

• MB(n̄, q̄) = { MB
n1,n2,q̄

: n1 + n2 is odd, n1 + n2 + 1 ≤ n̄ and n1, n2 ≥ 1 }.

• MC(n̄, q̄) = { MC
n1,n2,q̄

: n1 + n2 is even, n1 + n2 + 1 ≤ n̄ and n1, n2 ≥ 1 }.

• M(n̄, q̄) = MA(n̄, q̄) ∪MB(n̄, q̄) ∪MC(n̄, q̄).

• M̂(q̄) = {MA
n,q̄: n is even and n ≥ 2} ∪ {MB

n1,n2,q̄
: n1+n2 is odd and n1, n2 ≥ 1}

∪ {MC
n1,n2,q̄

, M iD
n1,n2,q̄

, M iE
n1,n2,q̄

: n1 + n2 is even and n1, n2 ≥ 1 }.
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Kq

n
Kq

n2n1

Kq

n2n1

MA
n,q MB

n1,n2,q
MC

n1,n2,q

Type “J” graphs:

• J1
n,q is the graph obtained by identifying the w3 of a A3,q of heads w1, w2, w3

and the pn of a CA
n of ends p1, pn, adding the edge w2w3 and adding two

pendant vertices to p1.

• J2
n,q is the graph obtained by putting together a A3,q of heads w1, w2, w3 and

a CA
n of ends p1, pn, adding the edges w2w3, w2pn and w3pn and adding two

pendant vertices to p1.

• J 1(n̄, q̄) = { J1
n,q̄: n is odd, 4 ≤ n+ 1 ≤ n̄ }.

• J 2(n̄, q̄) = { J2
n,q̄: n is even, 3 ≤ n+ 1 ≤ n̄ }.

• J (n̄, q̄) = J 1(n̄, q̄) ∪ J 2(n̄, q̄).

• Ĵ (q̄) = { J1
n,q̄: n is odd, n ≥ 1 } ∪ { J2

n,q̄: n is even, n ≥ 2 }.

Kq

n
Kq

n

J1
n,q J2

n,q

Now, we are ready to define the family of graph characterizing the set H and state

the main theorem of this chapter. Let l,n,m and q be positive integers.

• F(l, n,m, q) = {K1,l}∪V(q)∪Z(m, q)∪T (n)∪Y(n, q)∪D(n,m, q)∪L(n,m, q)∪
W(n, q) ∪M(n, q) ∪ J (n, q).

Theorem 6.5. Let F ∈ G be a non-redundant family of connected graphs. Then

F ∈ H if and only if F ≤ F(l, n,m, q) for some l ≥ 5, n ≥ 1, m ≥ 1 and q ≥ 3.

Theorem 6.5 is our main result of this chapter. We prove it in the next section.

We define two additional families that will be used during the proof of Theorem 6.5.

Let l,m and q be positive integers.
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• FA(l,m, q) = {K1,l} ∪ {V 1
q , V

2
q , V

3
q } ∪ Z(m, q).

• F̂(q) = Ẑ(q) ∪ Ŷ(q) ∪ D̂(q) ∪ L̂(q) ∪ Ŵ(q) ∪ M̂(q) ∪ Ĵ (q).

6.4 Proof of Theorem 6.5

In this section we prove Theorem 6.5. We divide the proof of Theorem 6.5 in the

following two theorems.

Theorem 6.6. Let G be a connected graph of odd order. Suppose that there is a

minimal Tutte set S ⊆ V (G), such that there is a vertex x ∈ S with |Co(x)| ≥ 4.

Suppose that G is FA(l,m, q)-free for some l ≥ 5,m ≥ 1 and q ≥ 3. Then |V (G)| is

bounded by a function depending only on l,m and q.

Theorem 6.7. Let G be a connected graph of odd order. Suppose that there is a

minimal Tutte set S ⊆ V (G) such that for every x ∈ S, |Co(x)| ≤ 3. Suppose that G

is F(l, n,m, q)-free for some l ≥ 5, n ≥ 1,m ≥ 1 and q ≥ 3. Then |V (G)| is bounded

by a function depending only on l, n,m and q.

Theorems 6.6 and 6.7 are proved later in this section. We present now the proof

of Theorem 6.5 assuming Theorems 6.6 and 6.7.

Proof of Theorem 6.5. Let F ∈ G be a non-redundant family of connected

graphs.

Suppose that F ≤ F(l, n,m, q) for some l ≥ 5, n ≥ 1,m ≥ 1 and q ≥ 3. Let G

be a F -free connected graph of odd order. Suppose that G does not have a near

perfect matching. By Theorem 6.4, G has a Tutte set S. Take S to be minimal.

Then by Theorems 6.6 and 6.7, |V (G)| is bounded by a function depending only on

l, n,m and q. We conclude that F ∈ H.

Suppose now that F ∈ H. Then there is a positive integer n0 such that every

F -free connected graph of odd order at least n0 has a near perfect matching. Let n

be an integer such that n ≥ max(n0, 5).

Consider the family F1 = F(n, n, n, n). We construct another family of graphs F2

as follows. First, add to F2 all the graphs of F1 that have an odd number of vertices.

It is easy to check that the graphs of type “V”, “T”, “W”, “M” and “J” that are

in F1 have an odd number of vertices, and so are also in F2. Modify graphs of type

“Z”, “Y”, “D” and “L” that are in F1 and do not have an odd number of vertices by

adding 1 to the parameter q in those graphs that the parameter q is at least 3, and

adding 1 to the parameter m in those graphs that the parameter q is 1, and add all

of them to F2. Notice that the family F2 satisfies F2 ≤ F(n, n, n+ 1, n+ 1).
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By the way F2 was constructed, all the graphs in F2 are connected graph of odd

order at least n0. In the drawings of Section 6.3, we showed a minimal Tutte set

for each graph. It is not difficult to check that all the components that remain after

removing the Tutte set S have odd order and satisfy co(G − S) ≥ |S| + 3. We can

conclude then that none of the graphs in F2 has a near perfect matching.

Then it must be that no graph of F2 is F -free. In other words, for each H2 ∈ F2,

there is an H ∈ F such that H � H2. We conclude that F ≤ F2. But since

F2 ≤ F(n, n, n+ 1, n+ 1) then F ≤ F(n, n, n+ 1, n+ 1). This completes the “only

if” part of the proof.

Auxiliary Lemmas

In this section, we prove some auxiliary lemmas that we use later in the proofs of

Theorems 6.6 and 6.7.

Lemma 6.8. Let G be a connected graph of odd order. Suppose that there is a

minimal Tutte set S ⊆ V (G). Then for every nonempty subset X ⊆ S, |Co(X)| ≥
|X|+ 2.

Proof. By definition of Tutte set, co(G−S) ≥ |S|+2. But since |V (G)| is odd, then

co(G− S) ≥ |S|+ 3.

Let S ′ = S−X. By minimality of S, co(G−S ′) ≤ |S ′|+1. Since each component

of G−S not in C(X) is a component of G−S ′, then co(G−S)−|Co(X)| ≤ co(G−S ′).
Then we have that

|S|+ 3− |Co(X)| ≤ co(G− S)− |Co(X)| ≤ co(G− S ′) ≤ |S ′|+ 1 = |S| − |X|+ 1.

We conclude that |Co(X)| ≥ |X|+ 2.

Lemma 6.9. Let G be a connected graph of odd order. Suppose that there is a

minimal Tutte set S ⊆ V (G). If G is K1,l-free for some l ≥ 4 then for every

nonempty set A ⊆ S, there is a component C ∈ C(A) such that |N(C) ∩A| ≤ l− 2.

Proof. Let k be the number of pairs (x,C) with x ∈ A, C ∈ C(A) and C ∈ C(x).

Clearly,

k =
∑
x∈A

|C(x)| and k =
∑

C∈C(A)

|N(C) ∩ A|.

Suppose that for all components C ∈ C(A), |N(C) ∩ A| ≥ l − 1. By Lemma

6.8, |C(A)| ≥ |A| + 2. Then
∑

C∈C(A)

|N(C) ∩ A| ≥ (l − 1) · (|A|+ 2), and so k ≥

(l − 1) · (|A|+ 2).

On the other hand, since G is K1,l-free then |C(x)| ≤ l−1 for all x ∈ A. But then

we have that
∑
x∈A

|C(x)| ≤ (l − 1) · |A|, and so k ≤ (l − 1) · |A|, a contradiction.
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Lemma 6.10. Let G be a connected graph of odd order. Suppose that there is a

minimal Tutte set S ⊆ V (G). Suppose that G is {K1,l, Z
1
1,r, Z

1
2,r}-free for some l ≥ 5

and r ≥ 3. Let A ⊆ S be a clique, and Z ⊆ G − S and X ⊆ S − A be two sets of

vertices. Suppose that one of the following is true:

(i) X = ∅.

(ii) X = {x} and there are three pairwise non-adjacent vertices z1, z2, z3 ∈ Z ∩
N(x). Also N(x) ∩ A = N(z1) ∩ A = N(z2) ∩ A = ∅ and A ⊆ N(z3).

(iii) X = {x} and there are two non-adjacent vertices z1, z2 ∈ Z ∩ N(x). Also

N(z1) ∩ A = N(z2) ∩ A = ∅ and A ⊆ N(x).

(iv) For every x ∈ X, |C(x)| = 3 and x is adjacent to three vertices of Z that are

in three different components of G− S.

Let q ≥ 3 and suppose that |A| ≥ (2q + |Z|) · (l − 2) + r.

Then there are q vertices y1, . . . , yq in q different components of C(A) and q

different vertices a1, . . . , aq of A such that

• yiaj ∈ E(G) if and only if i = j and

• yi /∈ N(Z) ∪N(X) for all 1 ≤ i ≤ q.

Proof. Let m be the number of components of G − S that meet the vertices of Z.

Clearly m ≤ |Z|.
First, we construct a sequence A1 ⊇ . . . ⊇ A2q+m+1 of subsets of A such that

there are distinct components D1, . . . , D2q+m of G−S with the property that for all

1 ≤ i ≤ 2q +m, Di ∈ C(Ai) and N(Di) ∩ Ai+1 = ∅.
The construction is by induction. Let A1 = A. For 1 ≤ i ≤ 2q + m, suppose

that we have constructed A1, . . . , Ai and D1, . . . , Di−1. By Lemma 6.9 there is a

component C ∈ C(Ai) such that |N(C) ∩ Ai| ≤ l − 2. Take Di = C and Ai+1 =

Ai −N(Di). Since |Ai+1| = |Ai| − |N(Di) ∩ Ai| ≥ |Ai| − (l − 2), we have that

|A2q+1| ≥ |A1| − (2q +m) · (l − 2) = (2q + |Z|) · (l − 2) + r − (2q +m) · (l − 2) ≥ r.

Among the components D1, . . . , D2q+m, at most m of them meet Z. Choose

Di1 , . . . , Di2q so that i1 ≤ i2 ≤ . . . ≤ i2q and they do not meet Z.

For 1 ≤ j ≤ 2q, choose yj ∈ Dij and aj ∈ N(yj) ∩ Aij . Since Di1 , . . . , Di2q do

not meet Z, then yj /∈ N(Z) for all 1 ≤ j ≤ 2q.

Suppose there is a 1 ≤ j ≤ 2q such that yj ∈ NG(x) for some x ∈ X. If

condition (i) of the lemma holds, no such x exists. If condition (ii) holds, then

{z1, z2, yj, x, z3} ∪ A2q+1 contains a Z1
2,r which is a contradiction. If condition (iii)
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holds, then {z1, z2, yj, x}∪A2q+1 contains a Z1
1,r which is a contradiction. If condition

(iv) holds, since Dij ∈ C(x), then |C(x)| ≥ 4 which is a contradiction. Then yj /∈
N(X) for all 1 ≤ j ≤ 2q.

For 1 ≤ j ≤ 2q, define Yj = N(aj) ∩ {y1, . . . , y2q}. Since yj ∈ Yj, then |Yj| ≥ 1

for all 1 ≤ j ≤ 2q. Suppose there is a 1 ≤ j ≤ 2q such that |Yj| ≥ 3. Then

Yj ∪ {aj} ∪A2q+1 contains a Z1
1,r which is a contradiction. We conclude that for all

1 ≤ j ≤ 2q, 1 ≤ |Yj| ≤ 2. Then there is a way to choose q different pairs (aj, yj)

from {(a1, y1) . . . (a2q, y2q)} satisfying the conditions required by the lemma.

Lemma 6.11. Let G be a connected graph. If G is F(l̄, n̄, m̄, q̄)-free for some l̄ ≥ 5,

n̄ ≥ 1, m̄ ≥ 1 and q̄ ≥ 3, then G is also F̂(q̄)-free.

Proof. Let G be an F(l̄, n̄, m̄, q̄)-free connected graph for given integers l̄ ≥ 5, n̄ ≥ 1,

m̄ ≥ 1 and q̄ ≥ 3. We will show that G is F̂(q̄)-free.

Let i ∈ {1, 2, 3} and m ≥ 1. Consider Z = Zi
m,q̄. If 1 ≤ m ≤ m̄, then

Z ∈ Z(m̄, q̄). If m ≥ m̄ + 1, since q̄ ≥ 2 then Z contains a Zi
m̄+2,1 ∈ Z(m̄, q̄). We

conclude that G is Ẑ(q̄)-free.

Let n1, n2 ≥ 1. Consider Y = Y 1
n1,n2,q̄

. If n1 + n2 + 1 ≤ n̄, then Y ∈ Y(n̄, q̄).

Suppose that n1 +n2 +1 ≥ n̄+1. If n1 +n2 +1 is odd, since q̄ ≥ 1 then Y contains a

TA
n1+n2+1 ∈ T (n̄). If n1 +n2 +1 is even, since q̄ ≥ 2 then Y contains a TC

n1,n2
∈ T (n̄).

Let n1, n2 ≥ 1. Consider Y = Y 2
n1,n2,q̄

. If n1 +n2 ≤ n̄, then Y ∈ Y(n̄, q̄). Suppose

that n1 +n2 ≥ n̄+1. If n1 +n2 is odd, then Y contains a TA
n1+n2

∈ T (n̄). If n1 +n2 is

even, since q̄ ≥ 1 then Y contains a TB
n1+n2

∈ T (n̄). We conclude that G is Ŷ(q̄)-free.

Let n1, n2 ≥ 1 and m ≥ 1. Consider D1 = D1
n1,n2,m,q̄. Suppose first that at least

one of n1, n2 is odd. By symmetry, we may suppose that n1 is odd. If n1 ≥ n̄ + 1,

then D1 contains a TA
n1
∈ T (q̄). If n1 = 1, then D1 contains a Z1

m,q̄ ∈ Ẑ(q̄). Since

n1 is odd, then n1 6= 2. Suppose that 3 ≤ n1 ≤ n̄. If 1 ≤ m ≤ m̄, then D1 contains

a L1A
n1,m,q̄ ∈ L(n̄, m̄, q̄). If m ≥ m̄ + 1, then D1 contains a L1A

n1,m̄+2,1 ∈ L(n̄, m̄, q̄).

Suppose now that both n1, n2 are even. Then n1, n2 ≥ 2. If n1 +n2−1 ≥ n̄+1, since

n1 +n2− 1 is odd then D1 contains a TA
n1+n2−1 ∈ T (n̄). Suppose that n1 +n2− 1 ≤

n̄. If 1 ≤ m ≤ m̄, then D1 ∈ D1(n̄, m̄, q̄). If m ≥ m̄ + 1, then D1 contains a

D1
n1,n2,m̄+2,1 ∈ D1(n̄, m̄, q̄).

Let n1, n2 ≥ 1 and m ≥ 1. Consider D2 = D2
n1,n2,m,q̄. Suppose first that

n1 + n2 ≥ n̄+ 1. If n1 + n2 is odd, D2 contains a TA
n1+n2

∈ T (n̄). If n1 + n2 is even,

D2 contains a TB
n1+n2

∈ T (n̄). Suppose now that n1 + n2 ≤ n̄. If 1 ≤ m ≤ m̄, then

D2 ∈ D2(n̄, m̄, q̄). If m ≥ m̄+ 1, then D2 contains a D2
n1,n2,m̄+2,1 ∈ D2(n̄, m̄, q̄). We

conclude that G is D̂(q̄)-free.

Let i ∈ {1, 2, 3}, n ≥ 1 and m ≥ 1, with n odd. Consider LA = LiA
n,m,q̄. If

n ≥ n̄ + 1, then LA contains a TA
n ∈ T (n̄). If n ≤ n̄, then LA ∈ LiA(n̄, m̄, q̄) or LA
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contains a LiA
n,m̄+2,1 ∈ LiA(n̄, m̄, q̄).

Let i ∈ {1, 2, 3}, n1, n2 ≥ 1 and m ≥ 1, with n1 + n2 even. Consider LB =

LiB
n1,n2,m,q̄. If n1 + n2 ≥ n̄ + 1, then LB contains a TB

n1,n2
∈ T (n̄). If n1 + n2 ≤ n̄,

then LB ∈ LiB(n̄, m̄, q̄) or LB contains a LiB
n,m̄+2,1 ∈ LiB(n̄, m̄, q̄).

Let i ∈ {1, 2, 3}, n1, n2 ≥ 1 and m ≥ 1, with n1 + n2 odd. Consider LC =

LiC
n1,n2,m,q̄. If n1 + n2 ≥ n̄ + 1, then LC contains a TC

n1,n2
∈ T (n̄). If n1 + n2 ≤ n̄,

then LC ∈ LiC(n̄, m̄, q̄) or LC contains a LiC
n,m̄+2,1 ∈ LiC(n̄, m̄, q̄).

Let i ∈ {1, 2, 3}, n1, n2 ≥ 1 and m ≥ 1, with n1 + n2 odd. Consider LiD =

LiD
n1,n2,m,q̄ and LiE = LiE

n1,n2,m,q̄. Since n1 + n2 is odd then one of n1, n2 is odd. If

n2 = 1, then both LiD and LiE contain a Zi
m,q̄ ∈ Ẑ(q̄). If n2 is odd and n2 ≥ 3, then

both LiD and LiE contain a LiA
n2,m,q̄, which we have considered earlier. If n1 = 1,

then LiD contains a graph of type “Z1” and LiE contains a graph of type “Z2”,

which we considered earlier. If n1 is odd and n1 ≥ 3, then LiD contains a graph

of type “L1A” and LiE contains a graph of type “L2A”, which we have considered

earlier. We conclude that G is L̂(q̄)-free.

Let i ∈ {1, 2} and n ≥ 1, with n odd. Consider WA = W iA
n,q̄. If n ≥ n̄ + 1, then

WA contains a TA
n ∈ T (n̄). If n ≤ n̄, then WA ∈ W iA(n̄, q̄).

Let i ∈ {1, 2} and n1, n2 ≥ 1, with n1 + n2 even. Consider WB = W iB
n1,n2,q̄

.

If n1 + n2 ≥ n̄ + 1, then WB contains a TB
n1,n2

∈ T (n̄). If n1 + n2 ≤ n̄, then

WB ∈ W iB(n̄, q̄).

Let i ∈ {1, 2} and n1, n2 ≥ 1, with n1 + n2 odd. Consider WC = W iC
n1,n2,q̄

.

If n1 + n2 ≥ n̄ + 1, then WC contains a TC
n1,n2

∈ T (n̄). If n1 + n2 ≤ n̄, then

WC ∈ W iC(n̄, q̄).

Let i ∈ {1, 2} and n1, n2 ≥ 1, with n1 + n2 odd. Consider W iD = W iD
n1,n2,q̄

and

W iE = W iE
n1,n2,q̄

. Since n1 + n2 is odd then one of n1, n2 is odd. If n2 = 1, then both

W iD and W iE contain a V i
q̄ ∈ V(q̄). If n2 is odd and n2 ≥ 3, then both W iD and

W iE contain a W iA
n2,q̄

, which we have considered earlier. If n1 = 1, then W iD contains

a graph of type “Z1” and W iE contains a graph of type “Z2”, which we considered

earlier. If n1 is odd and n1 ≥ 3, then W iD contains a graph of type “L1A” and W iE

contains a graph of type “L2A”, which we considered earlier. We conclude that G is

Ŵ(q̄)-free.

Let n ≥ 2, with n even. Consider MA = MA
n,q̄. If n + 1 ≥ n̄ + 1, then MA

contains a TA
n+1 ∈ T (n̄). If 3 ≤ n+ 1 ≤ n̄, then MA ∈MA(n̄, q̄).

Let n1, n2 ≥ 1, with n1 +n2 odd. Consider MB = MB
n1,n2,q̄

. If n1 +n2 +1 ≥ n̄+1,

then MB contains a TB
n1,n2+1 ∈ T (n̄). If n1 + n2 + 1 ≤ n̄, then MB ∈MB(n̄, q̄).

Let n1, n2 ≥ 1, with n1 +n2 even. Consider MC = MC
n1,n2,q̄

. If n1 +n2 +1 ≥ n̄+1,

then MC contains a TC
n1,n2+1 ∈ T (n̄). If n1 + n2 ≤ n̄, then MC ∈MC(n̄, q̄).

Let n1, n2 ≥ 1, with n1 + n2 even. Consider MD = MD
n1,n2,q̄

and ME = ME
n1,n2,q̄

.
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If n2 is even (and so n2 ≥ 2), then both MD and ME contain a MA
n2,q̄

. Suppose

that n2 is odd. Since n1 + n2 is even, then n1 is odd. If n1 = 1, then MD contains

a Z1
n2,q̄
∈ Ẑ(q̄) and ME contains a Z2

n2,q̄
∈ Ẑ(q̄). If n1 ≥ 3, then MD contains a

L1A
n1,n2,q̄

∈ L̂(q̄) and ME contains a L2A
n1,n2,q̄

∈ L̂(q̄). We conclude that G is M̂(q̄)-free.

Let n ≥ 1, with n odd. Consider J1 = J1
n,q̄. If n + 1 ≥ n̄ + 1, then J1 contains

a TB
n,1 ∈ T (n̄). If 4 ≤ n + 1 ≤ n̄, then J1 ∈ J 1(n̄, q̄). If n = 1, then J1 contains a

V 4
q̄ ∈ V(q̄).

Let n ≥ 2, with n even. Consider J2 = J2
n,q̄. If n + 1 ≥ n̄ + 1, then J2 contains

a TC
n,1 ∈ T (n̄). If 3 ≤ n+ 1 ≤ n̄, then J2 ∈ J 2(n̄, q̄).

Proof of Theorem 6.6

In this section we present the proof of Theorem 6.6.

Proof of Theorem 6.6. Let G be a connected graph of odd order and S ⊆ V (G)

a minimal Tutte set. Suppose that G is FA(l,m, q)-free for some l ≥ 5,m ≥ 1 and

q ≥ 3.

Let x0 ∈ S with |Co(x0)| ≥ 4. Let C1, . . . , C4 be four different components in

Co(x0). For 1 ≤ i ≤ 4, let yi ∈ Ci ∩NG(x). Let Y = {y1, . . . , y4}.
Define the function f(z) = (2q + z) · (l − 2) + q. Let k = f(4).

Claim 6.6.1. |N(x0)| < 24 ·R(l, k).

Proof. Let Y ′ ⊆ Y and let N = N(x0) ∩ BY (Y ′). By Proposition 2.2 it is enough

to show that |N | < R(l, k). Since {x0} ∪ N contains no K1,l then N contains no

independent set of size l. We will show that N contains no clique of size k. Let A

be a clique of N .

Since the elements of Y are in different components of G − S, if |Y ′| ≥ 2 then

A ⊆ S.

If |Y ′| ≥ 3 then |A| < f(3) < k, since otherwise Y ′ ∪ A could be extended to a

V 3
q by Lemma 6.10 (condition (i)). If |Y ′| = 2 then |A| < f(4) = k, since otherwise

Y ∪{x0}∪A could be extended to a V 2
q by Lemma 6.10 (condition (iii)). If |Y ′| ≤ 1,

since (Y − Y ′) ∪ {x0} ∪ A contains no Z1
1,r, then |A| < q < k.

Claim 6.6.2. |N2(x0)| < 24 ·R(l, k) · |N(x0)|

Proof. Let x1 ∈ N(x0). We will show that |N2(x0) ∩N(x1)| < 24 ·R(l, k).

Let Y ′ ⊆ Y . Let N = N2(x0)∩N(x1)∩BY (Y ′). By Proposition 2.2 it is enough

to show that |N | < R(l, k). Since {x1} ∪ N contains no K1,l then N contains no
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independent set of size l. We will show that N contains no clique of size k. Let A

be a clique of N .

As in Claim 6.6.1, if |Y ′| ≥ 2 then A ⊆ S.

If |Y ′| ≥ 3 then |A| < f(3) < k, since otherwise Y ′ ∪ A could be extended to a

V 3
q by Lemma 6.10 (condition (i)). If |Y ′| = 2 then |A| < f(4) = k, since otherwise

Y ∪{x0}∪A could be extended to a V 1
q by Lemma 6.10 (condition (ii)). If |Y ′| = 1,

since (Y − {y1}) ∪ {x0, y1} ∪ A (with y1 ∈ Y ′) contains no Z1
2,q, then |A| < q < k.

Suppose now that |Y ′| = 0. Let Y1 = Y ∩N(x1). If |Y1| ≥ 3, since Y1 ∪ {x1} ∪A
contains no Z1

1,q, then |A| < q < k. If |Y1| = 2, since Y ∪ {x0, x1} ∪ A contains no

Z3
1,q, then |A| < q < k. If |Y1| ≤ 1, since (Y − Y1) ∪ {x0, x1} ∪ A contains no Z1

2,q,

then |A| < q < k.

Claim 6.6.3. Let i ≥ 3. Then |N i(x0)| < R(l, q) · |N i−1(x0)|.

Proof. Let P = x0 . . . xi−1 be an induced path such that xj ∈ N j(x) for all 0 ≤ j ≤
i− 1. Let N = N(xi−1) ∩N i(x0). We will show that |N | < R(l, q).

Since {xi−1} ∪ N contains no K1,l then N contains no independent set of size

l. We will show that N contains no clique of size q. Let A be a clique of N and

suppose that then |A| ≥ q.

As in Lemma 6.11, since G is Z(m, q)-free, then G is also Ẑ(q)-free.

Since P is an induced path, N(xj) ∩ Y = ∅ for all 3 ≤ j ≤ i − 1. Let Y1 =

N(x1) ∩ Y and Y2 = N(x2) ∩ Y . Also, N(A) ∩ Y = ∅.
If |Y2| ≥ 3 then Y2 ∪ {x2, . . . , xi−1} ∪ A contains a Z1

i−2,q. If |Y2| = 2 then

(Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xi−1} ∪ A contains a Z2
i−2,q. If |Y2| = 1, then

(Y − Y2) ∪ {x0} ∪ Y2 ∪ {x2, . . . , xi−1} ∪ A contains a Z1
i,q.

Suppose now that |Y2| = 0. If |Y1| ≥ 3, then Y1 ∪ {x1, . . . , xi−1} ∪ A contains a

Z1
i−1,q. If |Y1| = 2, then (Y − Y1) ∪ {x0} ∪ Y1 ∪ {x1, . . . , xi−1} ∪A contains a Z3

i−1,q.

If |Y1| ≤ 1, then (Y − Y1) ∪ {x0, x1, . . . , xi−1} ∪ A contains a Z1
i,q.

Claim 6.6.4. Nm+3(x0) = ∅.

Proof. Suppose that Nm+3(x0) 6= ∅. Let P = x0, . . . xm+3 an induced path such that

xj ∈ N j(x) for all 0 ≤ j ≤ m + 3. Since P is an induced path, N(xj) ∩ Y = ∅ for

all 3 ≤ j ≤ m+ 3. Let Y1 = N(x1) ∩ Y and Y2 = N(x2) ∩ Y .

If |Y2| ≥ 3, then Y2 ∪ {x2, . . . , xm+3} contains a Z1
m+2,1. If |Y2| = 2, then (Y −

Y2)∪{x0}∪Y2 ∪{x2, . . . , xm+3} is a Z2
m+2,1. If |Y2| = 1, then (Y − Y2)∪{x0}∪Y2 ∪

{x2, . . . , xm+1} is a Z1
m+2,1.

Suppose now that |Y2| = 0. If |Y1| ≥ 3, then Y1 ∪ {x1, . . . , xm+2} contains a

Z1
m+2,1. If |Y1| = 2, then (Y − Y1) ∪ {x0} ∪ Y1 ∪ {x1, . . . , xm+2} is a Z3

m+2,1. If

|Y1| ≤ 1, then (Y − Y1) ∪ {x0, x1, . . . , xm+1} contains a Z1
m+2,1.
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Using the above claims we will show that |N i(x0)| is bounded for all i ≥ 1 and

that N i(x0) = ∅ for some i ≥ 1.

By Claims 6.6.1 and 6.6.2, we have that |N1(x0)| and |N2(x0)| are bounded. By

Claim 6.6.4, Nm+3(x0) = ∅. It remains to show that |N i(x0)| is bounded for all

i ≥ 3.

By Claim 6.6.3, |N i(x0)| < R(l, q) · |N i−1(x0)| for all i ≥ 3. Using an inductive

argument, we can show that |N i(x0)| < R(l, q)i−2 · |N2(x0)| for all i ≥ 3. By Claims

6.6.1 and 6.6.2, we get that |N i(x0)| < R(l, q)i−2 · R(l, k)2 for all i ≥ 3. By Claim

6.6.4, we get that |N i(x0)| < R(l, q)m+1 ·R(l, k)2 for all i ≥ 3.

Proof of Theorem 6.7

In this section we present the proof of Theorem 6.7. First, we prove a lemma to

find a starting structure. In proof of the Theorem 6.7 itself, we use this structure to

divide the vertices of the graph into sets according to the distance to the structure.

Lemma 6.12. Let G be a connected graph of odd order and S ⊆ V (G) a minimal

Tutte set. Suppose that for every x ∈ S, |Co(x)| ≤ 3. Suppose that G is F(l̄, n̄, m̄, q̄)-

free for some l̄ ≥ 5, n̄ ≥ 1, m̄ ≥ 1 and q̄ ≥ 3. Then there are two different vertices

x1, x2 ∈ S such that |Co(x1)∩Co(x2)| = 1. Also, there is an odd connector C between

x1 and x2 such that C − {x1, x2} ⊆ D, with D ∈ Co(x1) ∩ Co(x2), satisfying:

• if C is a CA
n then n is odd and 3 ≤ n ≤ n̄,

• if C is a CB
n1,n2

then n1 + n2 is even and n1 + n2 ≤ n̄,

• if C is a CC
n1,n2

then n1 + n2 is odd and n1 + n2 ≤ n̄ and

• If C is a CD
n1,n2

or a CE
n1,n2

, then n1 + n2 is odd. Also, if n1 is odd and n2 is

even then 1 ≤ n1 ≤ n̄ and 2 ≤ n2 ≤ m̄, and if n2 is odd and n1 is even then

1 ≤ n2 ≤ n̄ and 2 ≤ n1 ≤ m̄.

Proof. As in Lemma 6.8, we have that |Co(S)| ≥ |S| + 3. Since |Co(x)| ≤ 3 for all

x ∈ S, by Lemma 6.8 we get that |Co(x)| = 3 for all x ∈ S.

Claim 6.12.1. There are two different vertices x1, x2 ∈ S such that |Co(x1) ∩
Co(x2)| = 1.

Proof. Suppose that for all x1, x2 ∈ S, |Co(x1) ∩ Co(x2)| 6= 1. Let x1 ∈ S and let

S ′ = S − {x1}. Suppose that for any x ∈ S ′, |Co(x)− Co(x1)| ≤ 1. Then,

|Co(S)| = |Co(x1)|+
∑
x∈S′
|Co(x)− Co(x1)| ≤ |Co(x1)|+ |S ′| = 3 + |S| − 1 = |S|+ 2.
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And so |Co(S)| ≤ |S|+ 2, which is a contradiction. We conclude that there are two

different vertices x1, x2 ∈ S such that |Co(x1) ∩ Co(x2)| ≤ 1.

Suppose that |Co(x1) ∩ Co(x2)| = 0. Let G′ be the bipartite graph with vertex

set V (G′) = S ∪ C(S) and edge set E(G′) = {(x,C): x ∈ S and C ∈ C(x) }.
Suppose that G′ is not connected. Since G is connected, then S can be parti-

tioned in two nonempty sets S1, S2 such that Co(S1) ∩ Co(S2) = ∅. By the mini-

mality of S, we have that |Co(S1)| ≤ |S1| + 1 and |Co(S2)| ≤ |S2| + 1. But then,

|Co(S)| = |Co(S1)|+ |Co(S2)| ≤ |S1|+ 1 + |S2|+ 1 = |S|+ 2, which is a contradiction.

We conclude that G′ is connected.

Let P = z1 · · · zk be a shortest path from x1 to x2 in G′(x1 = z1, x2 = zk). Since

G′ is bipartite, the vertices of P alternate between S and C(S). Let C1, C2, C3 ∈
Co(x1) three different components. We may suppose that z2 = C1. Since |Co(x1) ∩
Co(x2)| = 0, then z3 6= x2. Notice that z3 ∈ S and C1 ∈ Co(z3). We may suppose

that |Co(x1) ∩ Co(z3)| ≥ 2. Hence we may suppose that C2 ∈ Co(z3).

Consider z4 and z5. Notice that z5 ∈ S and z5 might be x2. Since z4 ∈ Co(z3) ∩
Co(z5) then we may suppose that |Co(z3) ∩ Co(z5)| ≥ 2. Hence at least one of

C1 or C2 is in Co(z5). This contradicts the minimality of P . We conclude that

|Co(x1) ∩ Co(x2)| = 1.

Let x1, x2 ∈ S be two different vertices with |Co(x1) ∩ Co(x2)| = 1. Let D ∈
Co(x1) ∩ Co(x2) be a component of G− S.

Claim 6.12.2. There is an odd connector C between x1 and x2 such that C −
{x1, x2} ⊆ D.

Proof. Suppose first that x1 and x2 are adjacent. Let z ∈ D∩N(x1). If zx2 ∈ E(G)

then {x1, x2, z} is a CB
1,1. If zx2 /∈ E(G) then {x1, x2, z} is a CD

1,2.

Suppose now that x1 and x2 are not adjacent. Let P = p1 · · · pn be a shortest

path between x1 and x2 in D ∪ {x1, x2} with p1 = x1 and p2 = x2. If n is odd then

P is CA
n . If n is even, since |D| is odd, then D − P 6= ∅. Then there is some vertex

z ∈ D − P such that N(z) ∩ (P − {p1, pk}) 6= ∅.
Let d = min{i : pi ∈ N(z)} and d′ = max{i : pi ∈ N(z)}. Since P is the shortest

path between x1 and x2 in D ∪ {x1, x2}, then d ≤ d′ ≤ d + 2. Let n1 = d and

n2 = n− d′+ 1. If d′ = d then P ∪{z} is CD
n1,n2

. If d′ = d+ 1 then P ∪{z} is CB
n1,n2

.

If d′ = d+ 2 and pd+1 ∈ N(z) then P ∪ {z} is CC
n1,n2

. If d′ = d+ 2 and pd+1 /∈ N(z)

then P ∪ {z} is CE
n1,n2

.

Let C be an odd connector between x1 and x2 with C − {x1, x2} ⊆ D. Let

p1 . . . pn be named as in Claim 6.12.2. If C is not of type A, let z be the balancer of

C.
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Let Ca
1 , C

b
1 ∈ Co(x1)− Co(x2) and Ca

2 , C
b
2 ∈ Co(x2)− Co(x1) four different compo-

nents of G− S. Let ya1 ∈ V (Ca
1 ) ∩N(x1), yb1 ∈ V (Cb

1) ∩N(x1), ya2 ∈ V (Ca
2 ) ∩N(x2)

and yb2 ∈ V (Cb
2) ∩N(x2). Let H = {ya1 , yb1} ∪ C ∪ {ya2 , yb2}.

If C is a CA
n , since C is an odd connector then n is odd, since x1 6= x2 then n ≥ 3,

and since H /∈ T A(n̄) then n ≤ n̄. If C is a CB
n1,n2

, since C is an odd connector then

n1 + n2 is even, and since H /∈ T B(n̄) then n1 + n2 ≤ n̄. If C is a CC
n1,n2

, since C is

an odd connector then n1 + n2 is odd, and since H /∈ T C(n̄) then n1 + n2 ≤ n̄.

Suppose that C is a CD
n1,n2

or a CE
n1,n2

. Since C is an odd connector then n1 +n2

is odd. Suppose that n1 is odd and n2 is even. Since {ya1 , yb1} ∪ {p1, . . . , pn1} ∪
{z, pn1+1} /∈ T A(n̄) then n1 ≤ n̄. If C is a CD

n1,n2
, since H − {y2

b} is not a L1A
n1,m̄+2,1

then n2 +1 < m̄+2 and so n2 ≤ m̄. If C is a CE
n1,n2

, since H−{y2
b} is not a L2A

n1,m̄+2,1

then n2 + 1 < m̄+ 2 and so n2 ≤ m̄. We conclude that n1 ≤ n̄ and n2 ≤ m̄. If n2 is

odd and n1 is even, in the same way we get that n2 ≤ n̄ and n1 ≤ m̄.

We present now the proof of Theorem 6.7.

Proof of Theorem 6.7. Let G be a connected graph of odd order and S ⊆ V (G)

a minimal Tutte set. Suppose that for every x ∈ S, |Co(x)| ≤ 3. Suppose that G is

F(l̄, n̄, m̄, q̄)-free. By Lemma 6.11, G is also F̂(q̄)-free. We will prove that |V (G)|
is bounded by a function depending only on l̄, n̄, m̄ and q̄.

Let the following elements be as in the statement and proof of Lemma 6.12.

• x1, x2 ∈ S with |Co(x1) ∩ Co(x2)| = 1

• D ∈ Co(x1) ∩ Co(x2)

• C be an odd connector between x1 and x2 C − {x1, x2} ⊆ D

• x1 = p1 . . . pn = x2 the induced path in C

• If C is not of type A, let z be the balancer of C.

• Ca
1 , C

b
1 ∈ Co(x1)− Co(x2) and Ca

2 , C
b
2 ∈ Co(x2)− Co(x1)

• ya1 ∈ V (Ca
1 ) ∩ N(x1), yb1 ∈ V (Cb

1) ∩ N(x1), ya2 ∈ V (Ca
2 ) ∩ N(x2) and yb2 ∈

V (Cb
2) ∩N(x2).

Notice that C is of type A if and only if n is odd.

Additionally, let yc1 ∈ V (D)∩N(x1) and yc2 ∈ V (D)∩N(x2). Notice that yc1 and

yc2 might be the same vertex, and that one or both of them might be part of the

connector C.

Let H = {ya1 , yb1, yc1} ∪ C ∪ {ya2 , yb2, yc2}. Define f(z) = (2q̄ + z) · (l − 2) + q̄. We

will prove that:
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(i) |N0(H)| ≤ n̄+ m̄+ 8

(ii) |N1(H)| < 2|H| ·R(l̄, k), where k = f(n+ 3)

(iii) |N i(H)| < R(l̄, q̄) · |N i−1(H)| for all 2 ≤ i ≤ m̄+ 1

(iv) N m̄+2(H) = ∅

By proving (i), (ii), (iii) and (iv) and using a similar argument to the one used at

the end of the proof of Theorem 6.6, we can show that |N i(H)| is bounded for every

i ≥ 0 and that N m̄+2(H) = ∅, which is enough to prove the theorem. Notice that

k = f(n+ 3) ≤ f(|H|) = f(|N0(H)|).

By Lemma 6.12, |N0(H)| = |H| ≤ n̄ + m̄ + 8 (the worst case is when C is of

type E). Hence, (i) is true. For the rest of the proof, fix i ≥ 1.

If i = 1, let H ′ ⊆ H with H ′ 6= ∅ and let N1 = BH(H ′) ∩N1(H). We will prove

that |N1| < R(l̄, k), which implies (ii) by Proposition 2.2.

If i ≥ 2, let z1, . . . , zi−1 an induced path, with zj ∈ N j(H) for all 1 ≤ j ≤ i−1 and

let Ni = N(zi−1) ∩N i(H). We will prove that if 2 ≤ i ≤ m̄+ 1 then |Ni| < R(l̄, q),

and that if i ≥ m̄+ 2 then Ni = ∅, which implies (iii) and (iv), respectively.

Let y ∈ H ′ (remember that H ′ 6= ∅). Since N1 ∪ {y} does not contain a K1,l̄,

then N1 contains no independent set of size l̄. If 2 ≤ i ≤ m̄ + 1, since Ni ∪ {zi−1}
does not contain a K1,l̄, then Ni contains no independent set of size l̄. Let Ki be a

clique in Ni. We will show that if i = 1 then |K1| < k and that if 2 ≤ i ≤ m̄ + 1

then |Ki| < q̄.

In the rest of the proof, we will show that

(v) if i = 1 then |K1| < k, if 2 ≤ i ≤ m̄ + 1 then |Ki| < q̄ and if i ≥ m̄ + 2 then

Ni = ∅.

To do so, for i = 1 we will divide into cases according to what vertices of H are in

H ′ and so how K1 is connected to H; for i ≥ 2 we will divide into cases according

to what vertices of H are in N(z1) and so how z1 is connected to H. Because the

division into cases is exactly the same for all three i = 1, 2 ≤ i ≤ m̄ + 1 and

i ≥ m̄+ 2, we will consider them simultaneously.

In order to do it, we define two auxiliary sets R and Ai as follows. If i = 1,

let R = H ′ and Ai = Ki. If 2 ≤ i ≤ m + 1, let R = N(z1) ∩ H and Ai =

{z1, . . . , zi−1} ∪Ki. If i ≥ m̄ + 2, let R = N(z1) ∩ H and Ai = {z1, . . . zi−1} ∪ Ni.

According to what vertices of H are in R we can know how K1 is connected to H

(if i = 1) and how z1 is connected to H (if i ≥ 2). For each case, we will use some

vertices of H and put them together with Ai to find some graph from F(l̄, n̄, m̄, q̄)

or from F̂(q̄).
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When we apply Lemma 6.10, we will say that some subgraph of G can be ex-

tended to some graph from F(l̄, n̄, m̄, q̄) or from F̂(q̄), without explicitly writing

that we are using Lemma 6.10. All the applications use condition (iv) of Lemma

6.10, except when we extend to V 3
q̄ , that we use condition (i). Lemma 6.10 is only

applied when i = 1. Before applying it, we will always show that A1 ⊆ S and use A1

as the set A of Lemma 6.10. The value k = f(n+3) corresponds to the applications

of Lemma 6.10 to {ya1 , yb1} ∪C ∪ {ya2 , yb2} ∪A1, that contains at most n+ 3 elements

of G− S, and is the induced subgraph of G with the largest amount of elements of

G− S to which we will apply the Lemma.

Let Y = {ya1 , yb1, ya2 , yb2} and P = {p1, . . . , pn}. We divide the proof into four

claims, according to the size of R ∩ Y .

Claim 6.7.1. If there are three pairwise non-adjacent vertices y1, y2, y3 of H that are

in at least two different components of G− S and such that yi ∈ R for i ∈ {1, 2, 3},
then (v) holds. In particular, if |R ∩ Y | ≥ 3 then (v) holds.

Proof. If i = 1, since y1, y2, y3 are in at least two different components of G− S, Ai

is connected to more than one component of G − S and so Ai ⊆ S, allowing us to

apply Lemma 6.10.

Consider Vi = Ai ∪ {y1, y2, y3}. If i = 1 and |K1| > f(3), Vi can be extended to

a V 3
q̄ . If 2 ≤ i ≤ m + 1 and |Ki| ≥ q̄, then Vi contains a Z1

i−1,q̄. If i ≥ m̄ + 2, then

Vi contains a Z1
m̄+2,1.

Claim 6.7.2. If |R ∩ Y | = 2 then (v) holds.

Proof. If i = 1, since |R∩Y | = 2 then Ai is connected to more than one component

of G− S and so Ai ⊆ S, allowing us to apply Lemma 6.10.

Suppose first that |R ∩ {ya1 , yb1}| = |R ∩ {ya2 , yb2}| = 1. By symmetry, we may

suppose that R ∩ Y = {ya1 , ya2}. By Claim 6.7.1, we may assume that yc1 /∈ R.

Suppose that (v) does not hold. That is, if i = 1 then |K1| ≥ k = f(n + 4), if

2 ≤ i ≤ m̄+ 1 then |Ki| ≥ q and if i ≥ m̄+ 2 then Ni 6= ∅.
Consider Vi = {ya1 , yb1, yc1, x1, y

a
2} ∪ Ai. If x1 ∈ R, then Vi can be extended to a

V 4
q̄ , or Vi contains a L1B

1,1,i−1,q̄, or Vi contains a L1B
1,1,m̄+2,1 (depending on i). If x1 /∈ R,

then Vi can be extended to a MA
2,q̄, or Vi contains a L1A

3,i−1,q̄, or Vi contains a L1A
3,m̄+2,1

(depending on i).

Suppose now that |R ∩ {ya1 , yb1}| = 2 or |R ∩ {ya2 , yb2}| = 2. By symmetry,

we may suppose that R ∩ Y = {ya2 , yb2}. By Claim 6.7.1, we may assume that

((P − {x1, x2}) ∪ {yc1}) ∩R = ∅.
If x1 ∈ R, then {ya1 , yb1, yc1, x1} ∪Ai contains a Z1

i,q̄ or a Z1
m̄+2,q̄ (depending on i).

Suppose that x1 /∈ R.
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Consider Vi = {ya1 , yb1} ∪ C ∪ {ya2 , yb2} ∪ Ai. Suppose that x2 ∈ R. If i = 1,

depending on the type of C, Vi can be extended to a W 2A
n,q̄ , W 2B

n1,n2,q̄
, W 2C

n1,n2,q̄
, W 2D

n1,n2,q̄

or W 2E
n1,n2,q̄

. If i ≥ 2, depending on the type of C, Vi contains an L3A
n,i−1,q̄, L

3B
n1,n2,i−1,q̄,

L3C
n1,n2,i−1,q̄, L

3D
n1,n2,i−1,q̄ or L3E

n1,n2,i−1,q̄ or the corresponding graphs with m = m̄ + 2

and q = 1 if i ≥ m̄+ 2.

Suppose that x2 /∈ R. If i = 1, depending on the type of C, Vi can be extended

to a W 1A
n,q̄ , W 1B

n1,n2,q̄
, W 1C

n1,n2,q̄
, W 1D

n1,n2,q̄
or W 1E

n1,n2,q̄
. If i ≥ 2, depending on the type

of C, Vi contains a L2A
n,i−1,q̄, L

2B
n1,n2,i−1,q̄, L

2C
n1,n2,i−1,q̄, L

2D
n1,n2,i−1,q̄ or L2E

n1,n2,i−1,q̄ or the

corresponding graphs with m = m̄+ 2 and q = 1 if i ≥ m̄+ 2.

Claim 6.7.3. Suppose |R ∩ Y | = 0. If 1 ≤ i ≤ m̄ + 1 then |Ki| < q̄. If i ≥ m̄ + 1

then Ni = ∅. In particular, (v) holds.

Proof. Suppose that Ni 6= ∅ and that |Ki| ≥ q̄.

Suppose that |R ∩ P | = 1 and let 1 ≤ d ≤ n such that pd ∈ R. Then

{ya1 , yb1, p1, . . . , pn, y
a
2 , y

b
2} ∪ Ai contains a D1

d,n−d+1,i,q̄ or a D1
d,n−d+1,m̄+2,1 (depending

on i).

Suppose that |R ∩ P | ≥ 2. Let d = min{i : pi ∈ R} and d′ = max{i : pi ∈ R}.
Clearly, d′ ≥ d+1. If d′ = d+1, consider Vi = {ya1 , yb1, p1, . . . , pn, y

a
2 , y

b
2}∪Ai. If i = 1,

Vi contains a Y 2
d,n−d,q̄. If 2 ≤ i ≤ m+1, Vi contains a D2

d,n−d,i−1,q̄. If i ≥ m+2, Vi con-

tains aD2
d,n−d,m̄+2,1. If d′ ≥ d+2, consider Vi = {ya1 , yb1, p1, . . . , pd, pd′ , . . . , pn, y

a
2 , y

b
2}∪

Ai. If i = 1, Vi contains a Y 1
d,n−d′+1,q̄. If 2 ≤ i ≤ m+ 1, Vi contains a D1

d,n−d′+1,i−1,q̄.

If i ≥ m+ 2, Vi contains a D1
d,n−d′+1,m̄+2,1.

We may suppose that |R∩P | = 0. Suppose that C is not of type A and that z ∈
R. If C is a CB

n1,n2
, then {ya1 , yb1, p1, . . . , pn, y

a
2 , y

b
2}∪{z}∪Ai contains a D2

n1,n2,i,q̄
or a

D2
n1,n2,m̄+2,1. If C is a CC

n1,n2
or a CE

n1,n2
, then {ya1 , yb1, p1, . . . , pn1 , pn1+2, . . . , pn, y

a
2 , y

b
2}

∪ {z} ∪ Ai contains a D1
n1+1,n2+1,i,q̄ or a D1

n1+1,n2+1,m̄+2,1. If C is a CD
n1,n2

then

{ya1 , yb1, p1, . . . , pn, y
a
2 , y

b
2} ∪ {z} ∪ Ai contains a D1

n1,n2,i+1,q̄ or a D1
n1,n2,m̄+2,q̄.

We may suppose that C is of type A or that z /∈ R. Since R 6= ∅ then R ∩
{yc1, yc2} 6= ∅. Suppose that yc1 ∈ R. If yc1 ∈ C then we have already consider all the

cases where yc1 ∈ R. If yc1 /∈ C, then p2 6= yc1 and {ya1 , yb1, p2, p1, y
c
1} ∪ Ai contains a

Z1
i+1,q̄ or a Z1

m̄+2,1. Similarly, if yc2 ∈ R.

Claim 6.7.4. If |R ∩ Y | = 1 then (v) holds.

Proof. By symmetry, we may suppose that R ∩ Y = {ya2}. If i = 1 and R ∩ (H −
{x1, x2, y

a
2}) 6= ∅ then Ai is connected to more than one component of G−S and so

Ai ⊆ S, allowing as to apply Lemma 6.10.

Suppose that (v) does not hold. That is, if i = 1 then |K1| ≥ k = f(n + 3), if

2 ≤ i ≤ m̄+ 1 then |Ki| ≥ q and if i ≥ m̄+ 2 then Ni 6= ∅.
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Suppose that x1 ∈ R. If yc1 ∈ R, consider Vi = {ya1 , yb1, yc1, x1, y
a
2} ∪ Ai. If i = 1,

Vi can be extended to a V 4
q̄ . If 2 ≤ i ≤ m̄+ 1, Vi contains a L1B

1,1,i−1,q̄. If i ≥ m̄+ 2,

Vi contains a L1B
1,1,m̄+2,1. If yc1 /∈ R, then {ya1 , yb1, yc1, x1} ∪ Ai contains a contains a

Z1
i,q̄ or a Z1

m̄+2,1. We may suppose that x1 /∈ R.

Start supposing that R ∩ (C − {x1, x2}) 6= ∅. By Claim 6.7.1, we may suppose

that R does not contain two non-adjacent vertices of C − {x1, x2}.
Suppose first that either C is not of type A and z /∈ R or C is of type A. Suppose

that |R∩(P −{x1, x2})| = 1 and let 2 ≤ d ≤ n−1 such that pd ∈ R∩(P −{x1, x2}).
If d is even, then {ya1 , yb1, p1, . . . , pd, y

a
2}∪Ai can be extended to a MA

d,q̄ or contains a

L1A
d+1,i−1,q̄ or a L1A

d+1,m̄+2,1 (depending on i). Suppose then that d is odd. If d ≤ n−2,

then pd+1 6= x2 and so {ya1 , yb1, p1, . . . , pd, pd+1} ∪ Ai contains a L1A
d,i,q̄ or a L1A

d,m̄+2,1.

Suppose then that d = n−1. Since d is odd, then n is even and C is not of type A. If C

is not CD
n,1, then N(z)∩ (P −x2) 6= ∅. Consider Vi = {ya1 , yb1, p1, . . . , pn−1, z, y

a
2}∪Ai.

If i = 1, then Vi can be extended to some graph of type MB, MC , MD or ME

(depending on how z is connected to P − x2). If i ≥ 2, then Vi contains some graph

of type L1B, L1C , L1D or L1E (depending on how z is connected to P −x2). Suppose

then that C is CD
n,1 and consider Vi = {ya1 , yb1, p1, . . . , pn, y

b
2, z} ∪Ai. If x2 ∈ R, then

Vi contains a Y 2
n−1,1,q̄ or a D2

n−1,1,i−1,q̄ or a D2
n−1,1,m̄+2,1. If x2 /∈ R, then Vi contains

a D1
n−1,2,i,q̄ or a D1

n−1,2,m̄+2,1.

Suppose that |R ∩ (P − {x1, x2})| ≥ 2. Since R does not contains two non-

adjacent vertices of C−{x1, x2}, then we may suppose that |R∩ (P −{x1, x2})| = 2

and that there is a 2 ≤ d ≤ n − 2 such that pd, pd+1 ∈ R. If d is even, then

{ya1 , yb1, p1, . . . , pd, y
a
2} ∪ Ai can be extended to a MA

d,q̄ or contains a L1A
d+1,i−1,q̄ or a

L1A
d+1,m̄+2,1. If d is odd, then {ya1 , yb1, p1, . . . , pd, pd+1, y

a
2} ∪ Ai can be extended to a

J1
d−1,q̄ or contains a L1B

d,1,i−1,q̄ or a L1B
d,1,m̄+2,1.

Suppose now that C is not of type A and that z ∈ R. Since R does not contains

two non-adjacent vertices of C − {x1, x2}, then (R ∩ (P − {x1, x2})) ⊆ N(z). Since

C is not of type A, then n is even. Let 1 ≤ d ≤ n be the smallest integer such that

z ∈ N(pd). Suppose that d = n and consider Vi = {ya1 , yb1, p1, . . . , pn, y
a
2 , y

b
2, z} ∪ Ai.

If x2 ∈ R, then Vi can be extended to a W 2D
n,1,q̄ or contains a L3D

n,1,i−1,q̄ or a L3D
n,1,m̄+2,1.

If x2 /∈ R, then Vi can be extended to a W 1D
n,1,q̄ or contains a L2D

n,1,i−1,q̄ or a L2D
n,1,m̄+2,1.

We may suppose then that 1 ≤ d ≤ n− 1.

Suppose that d is odd and consider Vi = {ya1 , yb1, p1, . . . , pd, z, y
a
2}∪Ai. If pd ∈ R,

then Vi can be extended to a J1
d,q̄ or contains a L1B

d,1,i−1,q̄ or a L1B
d,1,m̄+2,1. If pd /∈ R,

then Vi can be extended to a MA
d+1,q̄ or contains a L1A

d+2,i−1,q̄ or a L1A
d+2,m̄+2,1. We may

suppose then that d is even. If d = n−1 then n is odd and so C is of type A, a contra-

diction. Then d ≤ n−2 and so pd+1 6= x2. If pd ∈ R, then {ya1 , yb1, p1, . . . , pd, y
a
2}∪Ai

can be extended to a MA
d,q̄ or contains a L1A

d+1,i−1,q̄ or a L1A
d+1,m̄+2,1. Suppose then that
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pd /∈ R. If pd+1z /∈ E(G) then pd+1 /∈ R, and so {ya1 , yb1, p1, . . . pd, pd+1, z, y
a
2}∪Ai can

be extended to a MD
d,2,q̄ or contains a L1D

d,3,i−1,q̄ or a L1D
d,3,m̄+2,1. We may suppose then

that pd+1z ∈ E(G). Consider Vi = {ya1 , yb1, p1, . . . , pd, pd+1, z, y
a
2} ∪ Ai. If pd+1 ∈ R,

then Vi can be extended to a J2
d,q̄ or contains a L1C

d,1,i−1,q̄ or a L1C
d,1,m̄+2,1. If pd+1 /∈ R,

then Vi can be extended to a MB
d,1,q̄ or contains a L1B

d,2,i−1,q̄ or a L1B
d,2,m̄+2,1.

We may suppose now that R ∩ (C − {x1, x2}) = ∅. If x2 /∈ R, depending on the

type of C, {ya1 , yb1, p1, . . . , pn, y
a
2 , y

b
2} ∪ Ai contains a L1A

n,i+1,q̄, L
1B
n1,n2,i+1,q̄, L

1C
n1,n2,i+1,q̄,

L1D
n1,n2,i+1,q̄ or L1E

n1,n2,i+1,q̄ or the corresponding graphs with m = m̄ + 2 and q = 1

(if i ≥ m̄ + 2). If x2 ∈ R, depending on the type of C, {ya1 , yb1, p1, . . . , pn, y
b
2} ∪ Ai

contains a L1A
n,i,q̄, L

1B
n1,n2,i,q̄

, L1C
n1,n2,i,q̄

, L1D
n1,n2,i,q̄

or L1E
n1,n2,i,q̄

or the corresponding graphs

with m = m̄+ 2 and q = 1 if i ≥ m̄+ 2.

By the discussion done before, proving Claims 6.7.1, 6.7.2, 6.7.3 and 6.7.4 com-

pletes the proof of the theorem.

6.5 Final Remarks

In this chapter we considered the problem of characterizing the families of forbidden

induced subgraphs that imply a near perfect matching in large enough connected

graphs. We were able to characterize all such families and the characterization is

given by Theorem 6.5 with the family F(l, n,m, q). In particular, Theorem 6.5

extends the previous result given in [18], that is Theorem 6.1.

Even though we did not mention it before, it is important to notice that the

family F(l, n,m, q) itself is part of H. To see this, one needs to check that the

family F(l, n,m, q) is non-redundant. A complete and detailed proof of this fact

would be tedious, would take several pages, and it is not essential. However, it

is easy to check by looking at the “subfamilies” composing F(l, n,m, q) and the

conditions given to the parameters in the definition of those subfamilies. Part of

the proof of the non-redundancy of F(l, n,m, q) is actually included in the proof of

Lemma 6.11.

Nevertheless, we would like to remark that this is an important fact in our result,

since the F(l, n,m, q) could be replaced in Theorem 6.5 by some other redundant

family that includes F(l, n,m, q) without changing the truth of Theorem 6.5. For

example, F(n) = { G: G is a connected graph of odd order with no near perfect

matching and |V (G)| ≥ n } is such a family. Proving Theorem 6.5 with F(n) is of

course no meaningful result.

In Chapter 5, we did a similar characterization for graphs with perfect matchings.

There are two big differences between the results. The first is that the families for

near perfect matchings are much more complicated. Actually, the characterization

74



for perfect matchings uses only 2 types of graphs (Z1
m,q and V 3

q , see Section 6.3 for

definitions), compared to 34 types we use in our characterization. The second is that

for perfect matchings it is enough to consider finite families, but for near perfect

matching it is necessary to consider also infinite families (the family F(l, n,m, q)

defined in section Section 6.3 contains infinite many graphs).

Also, as we considered perfect matchings and near perfect matchings, it seems

natural to consider the same problem for graphs of higher deficiency.

Problem 6.1. Giver d ≥ 0, characterize all the families of connected graphs F
such that every large enough F-free connected graph G with |V (G)| ≡ d (mod 2)

has deficiency d.

In this thesis we solved Problem 6.1 for d = 0, 1. We think that the higher the

deficiency, the more complicated the families of forbidden subgraphs will be. We

leave the characterization of forbidden families for graphs of deficiency higher that

1 as an open problem.
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Chapter 7

Toughness

In this chapter, we study the relation between toughness and forbidden induced

subgraphs. The main result in this chapter is Theorem 7.2, which shows for each t >

0, a characterization of all families of forbidden subgraphs that imply the property

of being t-tough in connected graphs of large enough order. All the new results we

prove in this chapter can be found in [29].

7.1 Introduction

Let G be a connected graph. Broersma[5] proposed to study the relation between

forbidden subgraphs in G and the resulting toughness of G. Consider the following

problem.

Problem 7.1. Let t be a positive real number. Characterize the families of connected

graphs F such that every connected F-free graph is t-tough.

If the problem is stated this way, it is easy to see that the family F(n) = {K1,n+1}
(with n = b1

t
c) is essentially the only answer, as the following proposition shows.

Proposition 7.1. Let t > 0 and let F be a family of connected graphs. Then every

connected F-free is t-tough if and only if F ≤ {K1,n+1}, where n = b1
t
c.

Proof. The only if part is a consequence of the fact that K1,n+1 itself is not t-tough.

For the if part, we need to show that every connected K1,n+1-free graph is t-tough.

For 1 ≤ t ≤ 1
2
, it is a consequence of Lemma 7.7. For t > 1

2
, we have n = 1 and so

K1,n+1 = P3, which implies that the K1,n+1-free graphs are complete graphs.

We consider then allowing a finite number of exceptions. In other words, we

study the following problem.

Problem 7.2. Let t be a positive real number. Characterize the families of connected

graphs F such that every large enough connected F-free graph is t-tough.
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In this chapter, we solve Problem 7.2. The answer is expressed in Theorem 7.2,

that we state in the following section.

The rest of this chapter is organized as follows. In Section 7.2, we make all

needed definitions and present our main results. In Section 7.3, we give the proofs

for the case t > 1
2
. In Section 7.4, we give the proofs for the case 0 ≤ t ≤ 1

2
.

Finally, in Section 7.5, we make some analysis of our results and propose some open

problems.

7.2 Definitions and main results

Define G as the set of all non-redundant families of connected graphs. Let t > 0.

Define H(t) as the set of families F ∈ G such that there is a constant n0 = n0(t,F)

with the property that all F -free connected graphs G with |V (G)| ≥ n0 are t-tough.

The answer to Problem 7.2 is reduced to finding all the elements in the set H(t).

Define the following graphs (See Figure 7.1).

• Y n
m is the graph obtained from identifying the center of a K1,n with the first

vertex of a path on m vertices. The last vertex of the path is called the tail of

the Y n
m.

• Zn
m,r is the graph obtained by identifying one vertex of a Kr with the tail of a

Y n
m.

m

n Kr

m

n

Y n
m Zn

m,r

Figure 7.1: Some forbidden subgraphs

Define the following families of graphs:

• Let FA(m, l, r) = {K1,l, Pm, Z
1
1,r}.

• Let FB
n (m, l, r) = {K1,l, Y

n
m+2, Z

n
1,r, . . . , Z

n
m,r}.

Define the following subsets of G:

• Let FA = { F ∈ G: F ≤ FA(m, l, r) for some m ≥ 4, l ≥ 3 and r ≥ 3 }.

• Let FB
n = { F ∈ G: F ≤ FB

n (m, l, r) for some m ≥ 1, l ≥ n+ 2 and r ≥ 3 }.
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Our main result in this chapter and the answer to Problem 7.2 is the following

theorem.

Theorem 7.2. Let t be a positive real number. Then,

• If t > 1
2
, H(t) = FA.

• If 0 < t ≤ 1
2
, H(t) = FB

n , where n = b1
t
c.

In the rest of this section we give some definitions we need for our proofs.

Let G be a connected graph. If v, w ∈ V (G), we write v ∼ w when vw ∈ E(G).

If S ⊆ V (G) is a cutset of G and x ∈ S, define

CS(x) = { C : C is a component of G− S such that N(x) ∩ V (C) 6= ∅ }.

For X ⊆ S, define CS(X) =
⋃

x∈X CS(x). If there is no ambiguity about the set S,

we write C(x) instead of CS(x).

Let G be a connected graph. If 0 < t ≤ 1, it is easy to see that the cutset

condition is not needed in the definition of t-tough. That is, G is t-tough if for every

non-empty set S ⊆ V (G), it holds that t ·w(G−S) ≤ |S|. In accordance to this, we

make the following non-standard but useful definition. A non-empty set S ⊆ V (G)

is a t-tough cut if w(G− S) > 1
t
|S|. A t-tough cut S ⊆ V (G) is a minimal t-tough

cut if for every S ′ ⊂ S, S ′ is not a t-tough cut.

Let S ⊆ V (G) be a t-tough cut, x ∈ S and let D ⊆ CS(x) be a set of components.

A set A ⊆ V (G) is a selection for x from D if A ⊆ N(x) and for every C ∈
D, |A∩ V (C)| = 1. In other words, A is made by taking exactly one vertex of N(x)

from each C ∈ D. A set A ⊆ V (G) is a selection for x if A is selection for x from

CS(x).

The following is a direct corollary of Hall’s marriage Theorem (see Theorem 9.4

of [8] or Corollary 1.1.4 of [25]). We use it later in Section 7.4.

Theorem 7.3. Let G be a bipartite graph with partite sets X and Y with X =

{x1, . . . xk}. Suppose that for all X ′ ⊆ X, |N(X ′)| ≥ n|X ′|. Then there are pairwise

disjoint subsets Y1, . . . , Yk of Y such that for all 1 ≤ i ≤ k, Yi ⊆ N(xi) and |Yi| = n.

7.3 Case t > 1
2

Theorem 7.4. Let t > 1
2
. Then FA ⊆ H(t).

Proof. Let F ∈ FA. Let m ≥ 4, l ≥ 3 and r ≥ 3 such that F ≤ FA(m, l, r). Let

G be a connected F -free graph. Suppose that G is not t-tough. We will show that

|V (G)| is bounded by a function depending only on t, m, l and r.
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Since G is not t-tough, there is a cutset S ⊆ V (G) such that |S| < t ·w(G− S).

We may suppose that S is minimal under inclusion.

Claim 7.4.1. There is a vertex y ∈ N(S)− S such that |N(y) ∩ S| < l · t.

Proof. Suppose on the contrary that for all y ∈ N(S)− S, |N(y) ∩ S| ≥ l · t.
Let k be the number of pairs (x,C) with x ∈ S and C ∈ C(x). Clearly,

k =
∑
x∈S

|C(x)| and k =
∑

C∈C(S)

|N(C) ∩ S|.

Since G is K1,l-free then |C(x)| < l for all x ∈ S. Then, we have that

k =
∑
x∈S

|C(x)| < l · |S| < l · t · w(G− S).

Let C ∈ C(S) and let y ∈ V (C) ∩N(S). Then |N(C) ∩ S| ≥ |N(y) ∩ S| ≥ l · t.
We conclude that |N(C) ∩ S| ≥ l · t for all C ∈ C(S). Then, we have that

k =
∑

C∈C(S)

|N(C) ∩ S| ≥ l · t · |C(S)| = l · t · w(G− S),

a contradiction, completing the proof.

Let y1 be a vertex in N(S) − S as in Claim 7.4.1 and let x0 ∈ S ∩ N(y1). Let

C1 ∈ C(x0) such that y1 ∈ C1.

We show now that |C(x0)| ≥ 2. Since S is a cutset, then |C(S)| = w(G−S) ≥ 2.

If |S| = 1, then |C(x0)| = |C(S)| ≥ 2. Suppose then that |S| ≥ 2. If |C(x0)| ≤ 1,

then since G is connected S ′ = S−{x0} is still a cutset with w(G−S ′) ≥ w(G−S).

Then t · w(G− S ′) ≥ t · w(G− S) > |S| > |S ′|. This contradicts the minimality of

S. We conclude that |C(x0)| ≥ 2.

Thus, there is a component C2 ∈ C(x0) with C2 6= C1. Let y2 ∈ N(x0) ∩ V (C2).

Since G is Pm-free then Nm−1(x0) = ∅. Then it suffices to show that N i(x0) is

bounded for all 1 ≤ i ≤ m− 2.

First, we show that |N(x0)| < 2 · R(l, r) + t · l. Since {x0} ∪ N(x0) has no K1,l

then N(x0) has no independent set of size l. Since {y1, x0} ∪ (N(x0)−N(y1)) does

not contain a Z1
1,r then N(x0) − N(y1) does not contain a clique of size r. In the

same way, |N(x0) − N(y2)| does not contain a clique of size r. Then we have that

|(N(x0)−N(y1)) ∪ (N(x0)−N(y2))| < 2 ·R(l, r)

Let X = N(x0) ∩N(y1) ∩N(y2). Since y1 and y2 are in different components of

G− S, X has neighbors in more than one component of G− S and so X ⊆ S. By

the way y1 was chosen, |X| < l · t. We conclude that |N(x0)| < 2 ·R(l, r) + t · l.
Let i ≥ 1. We show that |N i+1(x0)| < R(l, r) · |N i(x0)|. Let xi ∈ N i(x0). It is

enough to show that |N(xi)∩N i+1(x0)| < R(l, r). Since {xi}∪(N(xi)∩N i+1(x0)) has

no K1,l then N(xi)∩N i+1(x0) has no independent set of size l. Let xi−1 ∈ N i−1(x0).
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Notice that if i = 1 then xi−1 = x0. Since {xi−1, xi} ∪ (N(xi) ∩N i+1(x0)) does not

contain a Z1
1,r then N(xi)∩N i+1(x0) does not contain a clique of size r. We conclude

that |N(xi) ∩N i+1(x0)| < R(l, r).

Using an inductive argument, we get that for all i ≥ 0

|N i(x0)| < R(l, r)i−1 · |N(x0)| < R(l, r)i−1 · (2 ·R(l, r) + t · l).

Since Nm−1(x0) = ∅, then |N i(x0)| < Rm−2(l, r) · (2 · R(l, r) + t · l) for all

1 ≤ i ≤ m− 2.

Theorem 7.5. Let t > 1
2
. Then H(t) ⊆ FA.

Proof. Let F ∈ H(t). Then there is a positive integer n0 such that every F -free

connected graph of order at least n0 is t-tough. Let n1 be an integer such that

n1 ≥ max(n0, 3).

Consider the family F ′ = FA(n1, n1, n1). K1,n1 has toughness 1
n1
< 1

2
. Pn1 has

toughness 1
2
. Z1

1,n1
has toughness 1

2
. Thus, all the graphs in F ′ have toughness at

most 1
2

and so none of them is t-tough.

Since n1 ≥ n0 then all the graphs in F ′ are connected graphs of order at least

n0. Then it must be that no graph of F ′ is F -free. In other words, for each graph

H ′ ∈ F ′, there is a graph H ∈ F such that H � H ′. This is exactly the definition

of F ≤ F ′. Then since F ′ is in FA, we conclude that F is also in FA.

7.4 Case 0 < t ≤ 1
2

Theorem 7.6. Let 0 < t ≤ 1
2
. Then FB

n ⊆ H(t), where n = b1
t
c.

We divide the proof of this theorem in several lemmas that we state and prove

bellow.

Lemma 7.7. Let G be a connected graph. Let 0 < t ≤ 1, and S be a minimal t-tough

cut. Then |CS(X)| > 1
t
|X| for all nonempty X ⊆ S. In particular, |CS(x)| > 1

t
for

all x ∈ S.

Proof. By the definition of t-tough cut, w(G− S) > 1
t
|S|. Let S ′ = S −X. By the

minimality of S, w(G− S ′) ≤ 1
t
|S ′|.

Since each component of G − S not in CS(X) is a component of G − S ′, then

CS(S) − CS(X) ⊆ CS′(S ′) and so w(G − S) − |CS(X)| ≤ w(G − S ′). Then we have

that

1

t
|S| − |CS(X)| < w(G− S)− |CS(X)| ≤ w(G− S ′) ≤ 1

t
|S ′| = 1

t
(|S| − |X|)

Then, we conclude that |CS(X)| > 1
t
|X|.
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Lemma 7.8. Let G be a connected graph. Let n ≥ 2, 0 < t ≤ 1
n

, S be a minimal

t-tough cut and x0 ∈ S. If G is Y n
m-free for some m ≥ 1, then Nm′(x0) = ∅, where

m′ = 2 ·max(n,m+ 1) +m.

Proof. Suppose that Nm′(x) 6= ∅. Let P = x0 · · ·xm′ be a path such that xi ∈
N i(x0). Notice that P is an induced path. If v ∈ P with v = xi, we use the notation

v+j = xi+j and v−j = xi−j.

Let q = max(n,m+ 1). We construct a subsequence v1, . . . , vq of x0, . . . , xm′ and

sets A1, . . . , Aq satisfying the following properties:

(i) vi ∈ S for all 1 ≤ i ≤ q,

(ii) vi+1 is either v+1
i or v+2

i for all 1 ≤ i ≤ q − 1,

(iii) Ai is a selection for vi for all 1 ≤ i ≤ q and

(iv) |Ai − Ai+1| ≤ n− 1 for all 1 ≤ i ≤ q − 1.

We do the construction by induction. Choose v1 = x0 and let A1 be any selection

for x0. Let 1 ≤ i < q and suppose we have chosen v1, . . . , vi and A1, . . . , Ai. We

choose vi+1 and Ai+1 in the following way.

Note that by condition (ii), if vi = xh then h ≤ 2i− 2 ≤ 2q − 4. Thus, we have

that m′ = 2q +m > h+m, and hence v+j
i exists for all 1 ≤ j ≤ m.

For all j ≥ 3, since the distance between vi and v+j
i is j then N(vi)∩N(v+j

i ) = ∅
and so Ai ∩N(v+j

i ) = ∅. Let Y1 = Ai ∩N(v+1
i ) and Y2 = Ai ∩N(v+2

i ).

Suppose |Y2| = 1 and let y ∈ Y2. We have that y ∼ vi, y ∼ v+2
i and y � v+j

i

for all 3 ≤ j ≤ m− 1. Since y and the vertices of Ai are in different components of

G − S, then N(y) ∩ Ai = ∅. By Lemma 7.7, |Ai| > 1
t
≥ n and so |Ai − {y}| ≥ n.

Since the vertices of Ai are in different components, Ai − {y} is an independent

set. But then, (Ai − {y}) ∪ {vi, y, v+2
i , v+3

i , . . . , v+m−1
i } contains a Y n

m which is a

contradiction.

Suppose now that |Y2| = 0 and |Y1| ≤ 1. We have that (Ai − Y1) ∩N(v+1
i ) = ∅.

Since |Ai| ≥ n+1 then |Ai−Y1| ≥ n. But then, (Ai−Y1) ∪ {vi, v+1
i , v+2

i , . . . , v+m−1
i }

contains a Y n
m which is a contradiction. Then, we have that either |Y2| ≥ 2, or

|Y2| = 0 and |Y1| ≥ 2.

If |Y2| ≥ 2, then v+2
i has neighbors in more than one component of G − S and

so v+2
i ∈ S. Choose vi+1 = v+2

i and let Ai+1 be any selection for v+2
i such that

Y2 ⊆ Ai+1. Let y ∈ Y2. In a similar way to the case |Y2| = 1, since (Ai − Ai+1) ∪
{vi, y, v+2

i , v+3
i , . . . , v+m−1

i } does not contain a Y n
m then |Ai − Ai+1| ≤ n− 1.

If |Y2| = 0 and |Y1| ≥ 2, then v+1
i ∈ S. Choose vi+1 = v+1

i and let Ai+1 be any

selection for v+1
i such that Y1 ⊆ Ai+1. Since (Ai − Ai+1) ∪ {vi, v+1

i , v+2
i , . . . , v+m−1

i }
does not contain a Y n

m then |Ai − Ai+1| ≤ n− 1.

82



Claim 7.8.1. |Aq| ≤ 2(n− 1).

Proof. As before, for j ≥ 3 we have that Aq ∩N(v−jq ) = ∅.
Suppose first that Aq ∩N(v−2

q ) 6= ∅ and let y ∈ Aq ∩N(v−2
q ).

Since (Aq − N(v−2
q )) ∪ {vq, y, v−2

q , . . . v
−(m−1)
q } does not contain a Y m

n , then |Aq −
N(v−2

q )| ≤ n − 1. Since (Aq ∩ N(v−2
q )) ∪ {v−2

q , . . . , v
−(m+1)
q } does not contain a

Y m
n , then |Aq ∩ N(v−2

q )| ≤ n − 1. Then |Aq| = |Aq − N(v−2
q )| + |Aq ∩ N(v−2

q )| ≤
(n− 1) + (n− 1) = 2(n− 1).

Suppose now that Aq ∩N(v−2
q ) = ∅.

Since (Aq−N(v−1
q ))∪{vq, v−1

q , v−2
q , . . . , v

−(m−1)
q } does not contain a Y m

n , then |Aq−
N(v−1

q )| ≤ n − 1. Since (Aq ∩ N(v−1
q )) ∪ {v−1

q , v−2
q , . . . , v−mq } does not contain a

Y m
n , then |Aq ∩ N(v−1

q )| ≤ n − 1. Then |Aq| = |Aq − N(v−1
q )| + |Aq ∩ N(v−1

q )| ≤
(n− 1) + (n− 1) = 2(n− 1).

By Lemma 7.7, we have that

|A1 ∪ · · · ∪ Aq| ≥ |CS(v1) ∪ · · · ∪ CS(vq)| = |CS(v1, . . . , vq)| > n · q.

On the other hand, we have that

|A1 ∪ · · · ∪ Aq| = |A1 −
q⋃

i=2

Ai|+ |A2 −
q⋃

i=3

Ai|+ · · ·+ |Aq−1 − Aq|+ |Aq| ≤

|A1−A2|+|A2−A3|+· · ·+|Aq−1−Aq|+|Aq| ≤ (n−1)(q−1)+2(n−1) = (n−1)(q+1).

Then we have that (n − 1)(q + 1) > n · q. Then, we get that q < n − 1, which

contradicts the way q was taken (q = max(n,m+ 1)).

Lemma 7.9. Let G be a connected graph. Let n ≥ 2, 0 < t ≤ 1
n

, S be a minimal

t-tough cut. Let X ⊆ S be a clique. If G is {K1,l, Z
n
1,r}-free for some r ≥ 3 and

some l ≥ n+ 2, then |X| < l(r − 1).

Proof. Let Y = C(X). For each x ∈ X let Yx = C(x).

Claim 7.9.1. For each x ∈ X there is a set Yx ⊆ V (G) that is a selection for x

from some set Y ′x ⊆ Yx such that |Yx| = n, and so that for all x1, x2 ∈ X (x1 6= x2),

Y ′x1
∩ Y ′x2

= ∅.

Proof. Let G′ be the bipartite graph with vertex set V (G′) = X ∪ Y and edge set

E(G′) = {(x,C) : x ∈ X, C ∈ Yx}.
Since X ⊆ S, by Lemma 7.7, for all X ′ ⊆ X, |NG′(X

′)| = |C(X ′)| > n|X ′|.
Then, by applying Theorem 7.3 to G′, for each x ∈ X there is a set Y ′x ⊆ Yx such

that |Y ′x| = n and so that for all x1, x2 ∈ X (x1 6= x2), Y ′x1
∩ Y ′x2

= ∅.
For each x ∈ X, let Yx ⊆ V (G) be a selection for x from Y ′x. Then, the claim

follows.
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Let x ∈ X. If |X −N(Yx)| ≥ r− 1 then Yx ∪ {x} ∪ (X −N(Yx)) contains a Zn
1,r

which is a contradiction. Then for all x ∈ X, |X −N(Yx)| < r − 1.

We may suppose that |X| ≥ l. Let x1, . . . , xl ∈ X. If there is a vertex x ∈
X −

⋃l
i=1(X − N(Yxi

)) then for all 1 ≤ i ≤ l, N(x) ∩ Yxi
6= ∅. Since the Yxi

’s are

selections from pairwise disjoint Y ′xi
’s, then N(x)∪

⋃l
i=1 Yxi

contains a K1,l, which is a

contradiction. Then X =
⋃l

i=1(X−N(Yxi
)). But then |X| = |

⋃l
i=1(X−N(Yxi

))| <
l(r − 1).

Lemma 7.10. Let G be a connected graph. Let n ≥ 2, 0 < t ≤ 1
n

, S be a minimal

t-tough cut and x0 ∈ S. Let X ⊆ N(x0) be a clique. If G is Zn
1,r-free for some r ≥ 3,

then |X| < q where q = r(l + 1).

Proof. Let X1 = X − S and X2 = X ∩ S. By Lemma 7.9, |X2| < l(r − 1). We will

show that |X1| < r and so |X| = |X1|+ |X2| < r + l(r − 1) < r(l + 1) = q.

Let Y0 be a selection for x0. By Lemma 7.7, |Y0| ≥ n + 1. Let Y be any subset

of Y0 with |Y | = n+ 1.

Since X1 ∩ S = ∅, then there is a component C of G− S such that X1 ⊆ V (C).

Let Y ′ = Y ∩ V (C). Then |Y ′| ≤ 1 and so |Y − Y ′| ≥ n. Since X1 ⊆ V (C) then

there are no edges between Y − Y ′ and X1. Then since (Y − Y ′) ∪ {x0} ∪X1 does

not contain a Zn
1,r it must be that X1 < r.

Lemma 7.11. Let G be a connected graph. Let n ≥ 2, 0 < t ≤ 1
n

, S be a minimal

t-tough cut, x0 ∈ S. Let x1 ∈ N(x0) and let X ⊆ N(x1) ∩N2(x0) be a clique. If G

is {Zn
1,r, Z

n
2,r}-free for some r ≥ 3, then |X| < q where q = r(l + 1).

Proof. If x1 ∈ S, then by Lemma 7.10, |X| < r(l + 1). Then we may suppose that

x1 /∈ S.

Let X1 = X −S and X2 = N ∩S. By Lemma 7.9, |X2| < l(r− 1). We will show

that |X1| < r and so |X| = |X1|+ |X2| < r + l(r − 1) < r(l + 1) = q.

Let Y0 be a selection for x0. By lemma 7.7, |Y0| ≥ n + 1. Let Y be any subset

of Y0 with |Y | = n+ 1.

Since X1 ∩ S = ∅, then there is a component C of G− S such that X1 ⊆ V (C).

We may suppose that x1 ∈ V (C). Let Y ′ = Y ∩ V (C). Then |Y ′| ≤ 1 and so

|Y − Y ′| ≥ n. Furthermore, since x1 ∈ V (C) there are no edges between x1 and

Y − Y ′ and since X1 ⊆ V (C), no edges between X1 and Y − Y ′. But then, since

(Y − Y ′) ∪ {x0, x1} ∪X1 does not contain a Zn
2,r, |X1| < r.

Lemma 7.12. Let G be a connected graph. Let n ≥ 2, 0 < t ≤ 1
n

, S be a minimal

t-tough cut, x0 ∈ S and i ≥ 0. If G is {K1,l, Z
n
1,r, . . . , Z

n
i+1,r}-free for some r ≥ 3

and some l ≥ n+ 2, then |N i+1(x0)| < |N i(x0)| ·R(l, q) where q = r(l + 1).
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Proof. Let xi ∈ N i(x0). Notice that if i = 0 then xi = x0. We will show that

|N(xi) ∩N i+1(x0)| < R(l, q).

Since {xi} ∪ (N(xi) ∩N i+1(x0)) does not contain a K1,l, then N(xi) ∩N i+1(x0)

does not contain an independent set of size at least l. Let X ⊆ N(xi)∩N i+1(x0) be a

clique. We will show that |X| < q and so we can conclude that |N(xi)∩N i+1(x0)| <
R(l, q).

Let P = x0 · · ·xi be a path from x0 to xi such that for all 0 ≤ j ≤ i, xj ∈ N j(x0).

Notice that P is an induced path.

Let k = max { j: 0 ≤ j ≤ i and xj ∈ S}. Since x0 ∈ S, such an index k exists.

If k = i or k = i − 1 then the result follows from Lemma 7.10 and Lemma 7.11,

respectively (take xk as the x0 in the corresponding lemma).

Suppose that k ≤ i−2. Let Y be a selection for xk. By Lemma 7.7, |Y | ≥ n+ 1.

Let P ′ be the subpath of P going from xk to xi. Then P ′ is a shortest path from xk

to xi, and hence |N(Y ) ∩ P | ⊆ {xk, xk+1, xk+2}. Furthermore, |N(Y ) ∩X| = ∅.
Let Y1 = Y ∩ N(xk+1) and Y2 = Y ∩ N(xk+2). By the way k was chosen, none

of xk+1 and xk+2 is in S and so |Y1| ≤ 1 and |Y2| ≤ 1.

Suppose that |Y2| = 1 and let y ∈ Y2. Since (Y − {y}) ∪ {xk, y, xk+2, . . . , xi} ∪
X does not contain a Zn

i−k+1,r then |X| < r < r(l + 1) = q. Then, we may suppose

that |Y2| = 0.

Since |Y1| ≤ 1, then |Y −Y1| ≥ n. Then, since (Y −Y1) ∪ {xk, xk+1, xk+2, . . . , xi}
∪ X does not contain a Zn

i−k+1,r we have that |X| < r < q.

We use the above lemmas to prove Theorem 7.6.

Proof of Theorem 7.6. Let F ∈ FB
n . Let m ≥ 1, l ≥ n + 2, and r ≥ 3 such that

F ≤ FB
n (m, l, r).

Let G be an F -free connected graph. Suppose that G is not t-tough. We will

show that |V (G)| is bounded by a function depending only on t, l,m and r.

Since G is not t-tough, G has a t-tough cut. We may suppose that S is a minimal

t-tough cut. Let x0 ∈ S.

Notice that since G is Y n
m+2-free, then G is Zn

i,r-free for all i ≥ m + 1. Since

we also know that G is Zn
i,r-free for all 1 ≤ i ≤ m, we conclude that G is Zn

i,r-free

for all i ≥ 1. Notice also that since n = b1
t
c, then t ≤ 1

n
. Then G satisfies all the

conditions of Lemmas 7.8 and 7.12.

Let m′ = 2 · max(n,m + 1) + m. By Lemma 7.8, Nm′(x0) = ∅. Then we only

need to show that N i(x0) is bounded for all 1 ≤ i ≤ m′ − 1.

Let q = r(l + 1). By Lemma 7.12, |N i+1(x0)| < R(l, q) · |N i(x0)| for all i ≥ 0.

Using an inductive argument we get that |N i(x0)| < R(l, q)i−1 for all i ≥ 1. Since

Nm′(x0) = ∅, we conclude that |N i(x0)| < R(l, q)m
′−2 for all 1 ≤ i ≤ m′ − 1.
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Theorem 7.13. Let 0 < t ≤ 1
2
. Then H(t) ⊆ FB

n , where n = b1
t
c.

Proof. Let F ∈ H(t). Then there is a positive integer n0 such that every F -free

connected graph of order at least n0 is t-tough. Let n1 be an integer such that

n1 ≥ max(n0, n+ 2).

Consider the family F ′ = Fn(n1, n1, n1). Notice that F ′ ∈ FB
n . K1,n1 has

toughness 1
n1

< 1
n+1

. Y n
n1+2 has toughness 1

n+1
. Zn

m,n1
has toughness 1

n+1
for all

1 ≤ m ≤ n1. Thus, all the graphs in F ′ have toughness at most 1
n+1

. Since n = b1
t
c,

then t > 1
n+1

and so no graph of F ′ is t-tough.

In the same way as in Theorem 7.5, we get that F is in FB
n .

7.5 Discussion

The characterization of forbidden induced subgraphs for toughness is given by The-

orem 7.2, which is a direct consequence of Theorems 7.4, 7.5, 7.6 and 7.13.

It is not difficult to check that for every n ≥ 2, the family FB
n (m, l, r) is non-

redundant for the constants used in the condition of the definition of FB
n (m ≥ 1, l ≥

n+2, r ≥ 3). Moreover, reducing by 1 any of these constants would make FB
n (m, l, r)

redundant. In the same way, FA(m, l, r) is non-redundant for the constants used

in the definition of FA (m ≥ 4, l ≥ 3, r ≥ 3) and reducing by 1 any of the

constants would make it redundant. On the other hand, increasing the constants in

the definitions of either FA or FB
n would not change the truth of Theorem 7.2. In

this sense, we can say that the constants in the definition of both FA and FB
n are

optimal for Theorem 7.2.

It is easy to see that the proof for Theorem 7.6 can be extended without any

change from 0 < t ≤ 1
2

to 0 < t ≤ 1, since for 1
2
< t ≤ 1, the condition of cutset

for the set S is still not necessary in the definition of t-tough. Also, FA(m, l, r) ≤
FB

1 (m, l, r) for all m ≥ 1, l ≥ n + 2 and r ≥ 3. Using these two observations, the

case 1
2
< t ≤ 1 of Theorem 7.4 can be proved by using Theorem 7.6. Thus, we have

shown two different proofs for 1
2
< t ≤ 1. Nevertheless, notice that FB

n (m, l, r) is

redundant for n = 1.

Even though for the case 0 < t ≤ 1
2

the resulting family of forbidden subgraphs

depends on t, for the case t > 1
2
, it does not. We comment now on a possible expla-

nation for this. It is well known that d2te-connectivity is a necessary condition for

t-toughness. Since in Problem 7.2 we are imposing a condition of only 1-connectivity

on G, the lack of connectivity must be compensated by forbidding very small graphs

in G. Actually, even the forbidden subgraphs for t-toughness with t close to 1
2

hap-

pen to be so small that they are enough for all t > 1
2
, and they don’t need to be

changed.
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Moreover, the proof of Theorem 7.4, can be easily adapted to show that the

connectivity of a FA(m, l, r)-free graph goes to infinity when the size of the graph

goes to infinity. The adaptation consists mainly in taking the set S to be a minimal

cutset of G and showing that the size of S is constant with respect to the size of G.

Consequently, to find out more about the case t > 1
2
, we propose the following

problem.

Problem 7.3. Let t be a positive real number. Characterize the connected graph

families F such that every large enough d2te-connected F-free graph is t-tough.

Since for all 0 < t ≤ 1
2
, d2te = 1, we have solved Problem 7.3 for all 0 < t ≤ 1

2
.

Even though it might be an interesting problem, we think that for any t > 1
2
, the

families for Problem 7.3 are quite complicated and giving a full characterization

might be very difficult.
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