AL Tt (T5)

DT TV r— g BT A
PEREHLH O fR & JRIKIZERHIZ B3 D F4E

2011 )%

BEEFR BN PR B B TP e

%

= 1R



Jogooooooooooon
Jooooboooooooooogon

O oon

Ooon

goggbobbobbobbbouodooooooooobobbboobboboog
gbboobuobooobogobodgboooobbbuoobbbooboobg
gbogboboobogoboobuogboobboobooboobbooboo
gbogobobooboobboobuoobbooboobboobuoobbon
gogbbbbbbotbouooooooobbbbooooooobobobboougo
ggbbobubbuoooobbbouoooobbbooobobbod

gogobobbobouooooooobbobbouoooobboboboboogo
gogobobbobboudoooooboobboouoooobobobbouogd
gbooobooboobbuooboobobooboobbooboobbon
gogobbbbbooooooobobbbbbouoooooobbobbbboadao
goobobbobbbouooooobbbbbouoooooobbobobboagd
gogobobbobbbodoooooobbbobbbuoooooobbobbogo
gobbuogdgbbbgobobbuooobbooobobboooobbuooobod
2000000000000 b00o0o b0bbooboobobOooboobbooobo
ggobobbbbbbotbodoooodoobbbbboooooobbobobooaao
goggobbbbbouodgooooooobbbobobbboabbboougo
gobboboooobbbuooobobobuooobobbuooobboooboboboo
gogobobbobbbuoogoooobbobobboouooooobobboogd
goboooogd

gogoobbbbbbotuoooooooobbbbbbboobbboododaad
ggobbbbbbuoooooobbbbbooooooobbobbbougo
goobobbobobobodooooooboboboobobboooooobbobboago
gobobooobouurLObDoobobuobDooboboooobboboboon
0000000000000 D00000000000000 Apached OO OO0
gboobgoboobon



ggobbbbouooooobobbbbbodoooooobbbboadao
gbboogboboobuodgbboboobuooboboobuooboobbobooo
gbogbobobbobbogbogboobboobbobboobbobboba
gdgoooooobobboobobobbbooddoooooobobbobobooogd
gbogoobooboobbuoobuoobbooboobboobuoobbon
gobbuodgbboodgbbboobobbuooobbuooobbooobbood
gogobobbobbobouooooobobbbobboouooooobbbobbodad
gogobobbobbouooooooobboobboouoooobbobbboogo
goooo
gboobbooboobboobuoobbooboobboobboonobo
ggobbbbbbuooooobobbbbbouooooobbobbbboadao
gogobobbobbobuoooooobbbbbbouooooooobbbboogd
goobobbobbbouoooooobobboobobboouooooobboboobobodad
gogoobboobbbbodgoooobobbbbuoooooobbobbougd
gogoboboogoboboooobbobooaon
gogobbbbbouodooooobobbbbboooooobbbbbodadao
gogobbbobbbuooooobbbbbuouooooobbobbougo
gogoobbobboboouoooobbbboouoooobbobboago
goobobbobbouoogoobbbobbbodooogobbobboogd
gogoooboboobbbobobbbotbodoooooobboobobbooogd
gogoobbbbdobbbbbbbtbodoooooobbbbbbbodadao
goggobbbbbbbboduooooooobobbobobbbbbboodgg
ggbbobuoooobbbooogboobuooooboobuooooboo
gbogboodgbubobobobbobbobbooboogbogbobo
RUBISOOODOOOO0OODDOOOOOODODOO0ODODODOOOO0ODODDOOOOO
gbobooboobooboboboboboboboobooboobioobboonon
gogobobbbbobuodooooobbbbbouooooobobbbobbuadoo
gboboboboboboobJavad D00 O0OOODLOOOODOOOOOOOO0



Research for Detection and Diagnosis of Performance

Anomalies in Web Applications

Satoshi Iwata

Abstract

Today, responsive services such as stock trading and online banking are becoming
to be provided via web applications. However, they are not dependable enough and
so, performance anomalies, such as increase of response time or decrease of server
throughput, are often reported. It is required to recover a faulty system as quick as
possible with early detection and diagnosis of anomalies, to prevent the service from
getting severe damage.

Although several methods have been proposed to achieve the goal, none of them
have fulfilled both of two major requirements. Not only should detection and diagnosis
be done effectively, a method should be deployed easily to a target system. If not so,
practical use of a method is hindered.

We propose a method which fulfills both requirements. Our method observes pro-
cessing times with the granularity of request types, which can be differentiated via URL.
As modern server software usually has a function to log URL and processing time
of each request, our method can be applied easily to existing systems. For example,
Apache web server has the functionality. Moreover, our method is effective to deter-
mine root causes, since we can narrow down root causes to components which have
been used to process faulty request types.

To effectively detect and diagnose anomalies with coarse-grained monitoring, we
take an advantage of statistical analysis. We applhtrol chartsand monitor process-
ing times. Control charts enable us to detect anomalies without being confused by nat-
ural fluctuations in processing time. Control charts compare current data to data which
has been gathered during past normal operation. If control charts detect statistical dif-
ferences between two distributions of data, they raise a warning. In our method, control
charts monitor four types of statistics, i.e., average, maximum, median, and minimum
of requests’ processing time.



When several request types are simultaneously detected as faulty, we have to de-
termine if their root causes are the same or not. Our method automates this task by clus-
tering them based on the similarity in deviations from the non-anomalous distribution
of measurements. Our clustering method involves three steps. First, we distifioa-
mance anomaly signatufeom the processing time of requests. A performance anomaly
signature characterizes how the “distribution” of the processing time has changed after
an anomaly has occurred. Second, we calculatesitihdarity in the signatures. The
similarity is a scalar that represents the degree to which two signatures, i.e., two bar
graphs, overlap each other. Finally, we cluster anomalies based on the similarities. If
two or more anomalies are clustered together, this implies that they are affected by the
same root cause.

The results from case studies, which were conducted using an auction prototype
RUBIS are encouraging. The increases of processing times were around 100 millisec-
onds when our method detected anomalies. Afterwards, guided by the results of our
clustering method, we determined suspicious components, such as server software, Java

classes, or methods in a Java class.



	Dr_ronbun_cover_iwata.pdf
	thesis_abstract

