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Preface

With the development of modern society, digital signal processing has become increasingly

important because it is changing our daily lives in many ways. In the field of digital signal

processing, human-machine interfaces are regarded as a key topic. Among the various

applications of human-machine interfaces, speech information is very useful. We often

encounter questions such as "Where is the speech source?" and "Can we obtain the desired

speech from many simultaneous speeches?". The former is known as the direction-of-arrival

(DOA) problem, while the latter is known as the blind source separation (BSS) problem, for

which a sensor array technique is essential.

In this dissertation, several approaches to blind source separation and DOA estimation

using a microphone array are described. In this study, without knowledge of source local-

ization, active time or mixing process (blind), a pair of microphones is used to estimate the

source directions and separate multiple speech signals even when the number of sources is

two or more.

1. Speaker localization and source separation by Principal Component Analysis

(PCA) and harmonic structure

In conventional methods data are treated as a whole in the time-frequency domain, and

the difference between time frames is not distinguished. However, these methods suffer

from low separation performance when the sources are closely located.

Since the ratio of the principal eigenvalues obtained by principal component analysis

(PCA) indicates the degree of data spread around the first principal axis, in the author’s

approach, using the mathematical tool of PCA to analyze the phase difference versus fre-

quency distribution data in a single time frame, The observated time frames are classified

according to the activity pattern of multiple source frames to non-source active (NSA),

single-source active (SSA) and double-source active (DSA) frames. SSA frames are used

for DOA estimation. A new separation algorithm is explored for use in DSA frames. De-

pending on the frequency band, two methods are combined to obtain the separated signals

in DSA frames: a DOA-based method and a harmonic-structure-based method.
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2. Reliable cell selection

The common-sense approach that the use of reliable data guarantees reliable results is

adopted. The problem is how to check the reliability of data from the observation. In the

author’s approach, the consistency with neighborhood data is utilized and cells are selected

using a newly defined reliability index. The reliability index of a T-F cell’s phase difference

exploits the consistency of the time difference of arrival (TDOA) in the local window of the

underlying cell. The consistency of the TDOA in a window is evaluated using the variance

of the TDOAs for all T-F cells in the window.

3. Use of kernel density estimator for DOA estimation

A model of the propagation of the statistical error between the estimated phase dif-

ference and the consequent DOA is introduced. The model leads to a probability density

function (PDF) of the DOA, then the DOA estimation problem is reduced to finding the

most probable points for the DOA. Finally, the kernel density estimator is applied to se-

lected cells to calculate the PDF and estimate the source direction.

Some experiments were performed to evaluate the proposed methods. The results show

that the proposed source separation method is superior to the conventional method, and the

proposed DOA estimation method outperforms other methods in terms of both accuracy

in the case of real observed data and robustness in the case of simulation with additional

diffused noise.
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Chapter 1

Introduction

1.1 General background

With the explosive growth of digital communications and digital media, digital signal pro-

cessing is more important than ever [3] [4]. Digital signal processing is concerned with

the representation of discrete time signals by a sequence of numbers or symbols and the

processing of these signals [5]. It has many applications such as audio and speech signal

processing, sonar and radar signal processing, sensor array processing, digital image pro-

cessing, signal processing for communications, the control of systems, biomedical signal

processing, and seismic data processing [6].

Some of the most important applications of digital processing techniques have been in

the area of speech processing. In fact, much of the theoretical background of digital signal

processing has been derived from studies on speech. Digital processing has been applied to

a wide range of problems in speech including speech recognition, speech synthesis, speech

source separation, and speech source direction estimation.

Speech recognition, also known as automatic speech recognition or computer speech

recognition, is a means of recognizing speech without targeting a single speaker. The first

speech recognizer appeared in 1952 and consisted of a device that recognized single spoken

digits [7]. For the past fifty years, speech recognition research has been characterized by the

steady accumulation of small incremental improvements. There has also been a continued

trend of focusing on increasingly difficult tasks owing to both progress in speech recognition

performance and the availability of faster computers.

Speech synthesis is the artificial production of human speech. A computer system used

for this purpose is called a speech synthesizer and can be implemented in software or hard-

ware [8]. Speech synthesis has long been a vital auxiliary technology and its application is
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significant and widespread. Its longest application has been in the use of screen readers for

people with visual impairment, but text-to-speech systems are now commonly used by peo-

ple with dyslexia and other reading difficulties as well as by pre-literate children. Stephen

Hawking is one of the most famous people using speech synthesis to communicate.

Speech source separation and speech source direction estimation, which are the focal

points of the research reported in this thesis, are introduced in the following sections.

1.2 Blind source separation and source direction estimation

The speech source separation problem is to determine the original signals when several

speech signals have been mixed together. A typical example is the "cocktail party problem",

where a number of people are talking simultaneously in a room (such as at a cocktail party),

and one is trying to follow one of the discussions. Although the human brain can handle

this sort of auditory source separation problem, it is a very tricky problem in speech signal

processing.

It is well documented that listeners with hearing loss have greater difficulty in under-

standing speech with background noise. Modern hearing aids improve the audibility of

a speech signal and the comfort of noisy speech. However, the ability of hearing aids to

improve the intelligibility of noisy speech is rather limited [9] [10]. Because of the ever-

present nature of background noise, it is very important for hearing aid research to develop

speech separation methods that have the potential to enhance speech intelligibility in noise.

In general, numerous mixed signals exist in real environments, including desired sig-

nals, undesired signals, and noise signals. The purposes of multiple speech signal process-

ing are to localize and separate mixed signals, enhance target signals, reduce noise signals,

and cancel echo. There are several types of separation problems based on various classifi-

cation methods, some of which are shown in Tab. 1.1.

Blind source separation (BSS) is a typical speech source separation problem, in which

the aim is to obtain the separated signals without any a priori information, such as the source

position, mixing process, environment, and so forth. The use of BSS in the development

of effective acoustic communication channels between humans and machines is widely ac-

cepted. Source direction estimation is the major means of acquiring a speaker’s location.

Because the relative positions between the speaker and the microphones are different in

each situation, locating and tracking the direction of the source are required. At the same

time, source direction estimation can also provide useful information for BSS. BSS and di-

rection estimation are widely applied in our daily lives. In the following, some examples of
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Table 1.1: Classification of separation problems

Criterion Classification Remarks

Number of sensors
Monaural

Multiple sensors Array processing

Echo
Echoic Real mixture

Anechoic Approximated mixing process

Mixture model
Convolutive Delay and intensity differences

Instantaneous Intensity difference

Source location
Moving Short time interval

Stationary Fixed position

Number of sources Overdetermined number of sources< number of sensors

and sensors Underdetermined number of sources> number of sensors

Sensor configuration
Known

Unknown

Representations
Time-frequency domain

Time domain

Nature of sources
Sparseness in T-F domain

Statistical independence

application are given.

Video conference system

A video conference system (Fig. 1.1) is a set of interactive telecommunication tech-

nologies which allows two or more locations to interact via simultaneous two-way video

and audio transmissions. When multiple speakers utter simultaneously, a separation system

is used to obtain the desired speaker’s voice. At the same time, camera manipulation is

necessary as well as acoustic processing to capture the active speaker’s face properly. For

this purpose, speaker direction estimation is also essential.

Hands-free system

The term "hands-free system" describes equipment that can be used without the use of

the hands, for example, via voice commands, or in a wider sense, equipment which requires

only limited use of the hands so that the hands can be employed for another task such as

driving.



1. Introduction
1.3. Main contributions of this research 4

Figure 1.1: Video conference [1]

For instance, in a driving hands-free system (Fig. 1.2), the signals received by the cell

phone or GPS navigation system in the car are not only the driver’ voice, but also the noise

from the engine or from the environment. Separating the driver’s voice from other signals is

very helpful for speech recognition. This type of system is convenient and safe for drivers.

1.3 Main contributions of this research

This dissertation focuses on the BSS and direction estimation problems. The key features

of the problems and the methods in this thesis that are mainly considered and/or utilized are

as follows:

• Only the data from a pair of omnidirectional microphones are used.

• Analysis is based on time-frequency (T-F) sparseness of speech signals.

• It is possible to solve underdetermined cases in which the number of sources is greater

than the number of sensors.

• Basic data for processing are treated in phase difference versus frequency (PD-F)

space.

• The distance between microphones is sufficiently small to avoid spatial aliasing,

where the typical settings are a distance of 4 cm between sensors and a sampling

frequency of 8 kHz.
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Figure 1.2: Hands-free system [2]

The main contributions of this dissertation are as follows.

1. Speaker localization and source separation using principal component analysis

and harmonic structure

The approach in this dissertation is based on the framewise analysis of the PD-F data

plot. First, the PD-F distribution is investigated by principal component analysis (PCA) at

individual time frames, and a set of single-source active frames is selected. The ratio of the

principal eigenvalues for this set is used as a confidence measure for accurately estimating

the source direction. Second, the separation of multiple-source active frames is developed.

Because the source location attributes are not reliable for separation in the low-frequency

band, initially separated signals in the medium-frequency band are obtained in accordance

with the directions estimated in the first step. Then, to cluster the remaining T-F cells in the

low-frequency band, the harmonic structures observed in the spectrograms of the initially

separated individual sources are associated with the frequency components of the mixed

signals.

2. Reliable cell selection

In this approach, a novel cell selection method based on a reliability index is proposed.

This idea is originated from an observation derived from the following assumption: when a

single source appears in a given set of T-F windows, the time differences of arrival (TDOAs)

should take almost the same values in the windows, and these values are considered to be

reliable. The selected cells are solely utilized for direction of arrival (DOA) estimation.
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3. DOA estimation using kernel density estimator

A statistical model relating the phase difference and direction angle is constructed. By

employing this model and the sparseness in the T-F domain, the DOA estimation problem

is reduced to obtaining the local peaks of the probability density function of the DOA.

The final stage is to estimate the source direction using the kernel density estimator. This

approach can be applied in underdetermined cases in which there are three sources but

only two sensors. Experimental results show that this approach has the advantages of high

direction angle resolution and robustness against noise.

4. Methodological difference between the proposed and conventional approaches

The conventional T-F masking methods use the attenuation between received signals

and the delay as the features. Unlike the conventional methods, the PD-F distribution is uti-

lized as the feature. The significant difference is that the new feature contains the frequency

axis. Based on this novelty, frame-by-frame approach is proposed in Chapter 3. From phase

difference error distribution, the DOA error distribution can be derived, and its relationship

is used for the kernel density estimator in Chapter 4.

1.4 Overview of dissertation

This dissertation is organized as follows.

In Chapter 2, the foundations of speech signal processing using a microphone array are

summarized. First, the foundation of speech signal processing are introduced in Sec. 2.2.

T-F analysis, one of the most useful methods for speech signal processing, is described in

Sec. 2.3. Speech signal processing using a microphone array is outlined in Sec. 2.4. The

latter part of Chapter 2 focuses on the applications of speech signal processing: BSS in Sec.

2.6 and DOA estimation in Sec. 2.8. The typical BSS method of T-F masking is discussed

in Sec. 2.7.

In Chapter 3, a T-F domain masking method for separating stereophonic audio mixtures

is proposed. The approach is based on the framewise analysis of the PD-F data plot and

the harmonic structure in the low-frequency band. In Sec. 3.3, the BSS problem and T-F

masking method are reviewed briefly. Sec. 3.4 discusses the proposed method in detail. In

Sec. 3.8, some experiments that were performed to verify the proposed method are reported.

Sec. 3.9 gives a summary of this chapter.

Chapter 4 addresses DOA estimation methods. The DOA information is introduced in

Sec. 4.2. Sec. 4.3 describes DOA estimation by Hough transform. The proposed novel cell

selection is discussed in Sec. 4.4. Then the DOA error distribution model is builted in Sec.
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4.5. Finally, the source directions are estimated by the kernel density estimator in Sec. 4.6.

Sec. 4.7 and Sec. 4.8 are the experiments. Sec. 4.9 is the summary.

Finally, Chapter 5 concludes the dissertation.



Chapter 2

Foundations of speech signal processing

using microphone array

2.1 Introduction

The first part of this chapter mainly introduces the foundations of speech signal processing

using a microphone array. First, the foundations of speech signal processing are reviewed

in Sec. 2.2. Time-frequency (T-F) analysis on which the proposed methods are based is

explained in Sec. 2.3. Then in Sec. 2.4, the signal processing using a microphone array

is discussed. Many speech signal processing methods have been proposed that employ a

microphone array. In Sec. 2.6 and Sec. 2.8, the blind source separation (BSS) and direction

of arrival (DOA) problems are introduced and previous approaches are explained. Sec. 2.9

is a summary of this chapter.

2.2 Foundations of speech signal processing

Speech communication is one of the basic and most essential capabilities possessed by

human beings. Speech can be considered to be the most important method through which

people can convey information without the use of tools. Although we passively receive

more stimuli from outside through the eyes than through the ears, mutually communication

is almost entirely through speech.

Speech conveys several types of information including linguistic information that indi-

cates the meaning the speaker wishes to impart, individual information representing who is

speaking, and emotional information depicting the emotion of the speaker. Needless to say,

the first type of information is the most important.
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The basic unit for constructing a sentence is the word, and each word is composed of

syllables. Each syllable consists of phonemes, which can be classified as vowels or conso-

nants. The number of vowels and consonants depends on the language or the classification,

but broadly speaking, English has 12 vowels and 24 consonants, whereas Japanese has 5

vowels and 20 consonants [11]. The speech production process involves three subprocesses:

source generation, articulation, and radiation.

The mechanism of vocal vibration is very complicated. In principle, however, the

Bernoulli effect [12] associated with the airflow and the stability produced by the elasticity

of the muscles draw the vocal cords toward each other. When the vocal cords are strongly

strained and the pressure of the air rising from the lungs is high, the open-and-close pe-

riod becomes short and the pitch of the sound source becomes high. Conversely, a low

air pressure produces a lower-pitched sound. This vocal cord vibration period is called the

fundamental period and its reciprocal is called the fundamental frequency.

Statistical analysis of the temporal variation in the fundamental frequency during con-

versational speech for a large number of speakers indicates that the mean and standard

deviation for female voices are roughly twice those for male voices [13]. The fundamental

frequency distribution of speakers on a logarithmic frequency scale can be approximated by

two normal distribution functions which correspond to male and female voices. The mean

and standard deviation for male voices are 125 and 20.5 Hz, respectively, whereas those for

female voices are two times larger.

Frequency analysis of the temporal pattern of the fundamental frequency, in which silent

periods are smoothly connected, shows that the frequency of temporal variation is less than

10 Hz/s. This implies that the rate of temporal variation in the fundamental frequency is

relatively low.

Among the various types of information contained in speech, the features in the tempo-

ral, spectral, and spatial signal domains are the three most important features. An example

of a speech signal is shown in Fig. 2.1. It is clear that the power of the speech is concen-

trated in a number of time intervals and that the power in the other intervals is almost zero.

In a certain sense, voice activity detection is directly related to temporal features.

The spectrogram is a three-dimensional (3D) plot illustrating how the frequency spec-

trum varies with time. A spectrogram of the speech signal in Fig. 2.1 is shown in Fig. 2.2.

The vertical axis represents the frequency and the horizontal axis represents time. The third

dimension is given by the color of the plot and indicates the power at a particular T-F point.

Specifically, the color of the plot is proportional to the logarithm of the power.



2. Foundations of speech signal processing using microphone array
2.2. Foundations of speech signal processing 10

0 1 2 3 4 5
−20

−10

0

10

20

30

Time (s)

A
m

pl
itu

de

Figure 2.1: Example of speech signal (male speaking the Japanese sentence "Chotto osoi
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Figure 2.2: Spectrogram of speech signal in Fig. 2.1
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The third feature of speech information is the spatial feature, which is closely related to

the speaker direction and speaker localization.

2.3 Time-frequency analysis

The most basic requirement in the analysis of speech is to convert an analogue speech signal

into a digital format, in which it is represented by a sequence of numbers. To convert the

signal, sampling is necessary.

Sampling is the process of obtaining values of the analogue signal at discrete intervals

of timeT, whereT is known as the sample period. The number of samples per second or

the sampling frequencyfs in Hz is equal to the reciprocal of the sample period, that is,

fs = 1/T.

The sampling frequency that should be used in a given situation is determined by

Nyquist’s sampling theorem, which states that if the highest-frequency component present

in the signal isfh Hz, then the sampling frequency must be at least twice this value, that is,

fs ≥ 2 fh, (2.1)

in order that the signal may be properly reconstructed from the digital samples. If fewer

samples are used, then a phenomenon known as aliasing occurs, where a signal of a certain

frequency may appear as a lower frequency upon reconstruction. If aliasing occurs in a

complex signal such as speech, unwanted frequency components are inserted, which distort

the signal.

Speech signals received by a microphone array are signals that are sampled so that

their spectral features can be analyzed by carrying out a discrete Fourier transform [14]

[15]. The Fourier transform is a mathematical operation that decomposes a signal into

its constituent frequencies. Thus, the time-varying features of the Fourier transform of a

musical chord are a mathematical representation of the amplitudes of the individual notes

that comprise the chord. The original signal depends on time and is therefore called the

time-domain representation, whereas the Fourier transform depends on frequency and is

called the frequency-domain representation of the signal.

The use of a Fourier transform for the analysis of a speech signal has two major draw-

backs: one is the computation cost, the other is that the temporal information of the speech

signal is lost. A signal as a function of time may be considered as a representation with

perfect time resolution. In contrast, the magnitude of the Fourier transform of the signal
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may be considered as a representation with perfect spectral resolution but with no time in-

formation because the magnitude of the Fourier transform conveys frequency content but

fails to convey the time at which different events occur in the signal.

The T-F method provides a bridge between these two representations in that it provides

some temporal information and some spectral information simultaneously. Thus, it is useful

for the representation and analysis of signals containing multiple time-varying frequencies.

The short-time Fourier transform (STFT) [16] is an effective means of transferring the signal

from the time domain to T-F domain for analysis. In this section, a brief overview of the

STFT and T-F analysis is given.

2.3.1 Short-time Fourier transform

The STFT is a Fourier-related transform used to determine the sinusoidal frequency and

phase content of local sections of a signal as it changes over time. Simply, in the continuous-

time case, the function to be transformed is multiplied by a window function that is nonzero

for only a short period of time. The Fourier transform (a one-dimensional (1D) function) of

the resulting signal, which is taken as the window, is slid along the time axis, resulting in a

2D representation of the signal. Mathematically, the STFT is written as

S T FT{x(t)} ≡ X(τ, ω) =
∫ ∞
−∞

x(t)win(t − τ)e− jωtdt, (2.2)

wherewin(t) is the window function, which is commonly a rectangular Hanning or Ham-

ming window centered around zero, andx(t) is the signal to be transformed.X(τ, ω) is the

Fourier transform ofx(t)win(t − τ), which is a complex function representing the phase and

magnitude of the signal over time and frequency,τ is the time axis, andω is the frequency

axis.

In the discrete time case, the data to be transformed can be broken up into frames (which

usually overlap each other to reduce artifacts at the boundary). Each frame is Fourier-

transformed, and the complex-valued result is added to a matrix that records the magnitude

and phase for each point in time and frequency. This can be expressed as

S T FT{x[n]} ≡ X[k, l] =
N−1∑
n=0

x[n]win[n− k]e− j2πnl/N 0 ≤ l < N, (2.3)

with signalx[n] and windowwin[n]. The square of the magnitude of the STFT yields the

spectrogram of the function:

spectrogram{x(t)} ≡ |X[k, l]|2. (2.4)
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The STFT has a fixed resolution. The width of the windowing function is related to

how the signal is represented. It determines whether there is a good frequency resolu-

tion (frequency components close together can be separated) or good time resolution (the

time at which frequencies change). A wide window gives a better frequency resolution but

poor time resolution. A narrower window gives a good time resolution but poor frequency

resolution. STFT with such windows are called narrowband and wideband transforms, re-

spectively.

Window type

The role of the window in the STFT is to avoid the distortion that occurs at both ends

of segmented signals and alters the spectra of signals. Thus, it is necessary to discuss the

selection of the window used in the STFT. Three typical windows used for speech signal

processing are introduced here.

Rectangular

win[n] =

 1 0≤ n ≤ N − 1

0 otherwise
(2.5)

Hanning

win[n] =

 1
2(1− cos 2πn

N−1) 0 ≤ n ≤ N − 1

0 otherwise
(2.6)

Hamming

win[n] =

 0.54− 0.46 cos2πn
N−1 0 ≤ n ≤ N − 1

0 otherwise
(2.7)

The rectangular window quarries the target signal without weighting. This window does

not modify the original signal, but the discontinuities at the end of the extracted frame have

an undesirable effect on the spectrum. The Hanning and Hamming windows suppress this

effect by eliminating the discontinuities in their temporal features.

The main lobe of both the Hamming and Hanning windows is twice as wide as that

of the rectangular window, but the attenuation is much greater than that of the rectangular

window. The secondary lobe of the Hanning window is 31 dB below the main lobe, whereas

for the Hamming window it is 44 dB below the main lobe. On the other hand, the attenuation

of the Hanning window decays with frequency rather rapidly, which is not the case for the

Hamming window, whose attenuation remains approximately constant for all frequencies.

Inverse STFT
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The time-domain output signaly(n) is obtained by the inverse operation of the STFT:

y[n] =
∑

k

wins[n− k]
L−1∑
l=0

X[k, l]e− j2πnl/N, (2.8)

wherewins[n − k] is a synthesis window that is nonzero only in theL-sample interval.

To realize a perfect reconstruction, the analysis and synthesis windows should satisfy the

condition

∑
k

wins[n− k]win[n− k] = 1 (2.9)

for any timen. This condition is satisfied by pairing a Hamming window forwin[n− k] and

a rectangular window forwins[n − k]. A synthesis window that tapers smoothly to zero at

each end is also preferred in terms of mitigating the edge effect. In such a case, the above

condition is satisfied, for instance, by using a square-root version of a Hamming window

for bothwin[n− k] andwins[n− k].

2.3.2 Harmonic structure

The fundamental distinction between sound types in speech is the voiced/voiceless distinc-

tion. Voiced sounds, including vowels, have a roughly regular pattern in their time and fre-

quency structure that voiceless sounds. Voiced sounds typically contain more energy [17].

When the vocal folds vibrate during phoneme articulation, the phoneme is considered

to be voiced; otherwise it is unvoiced. Vowels are voiced throughout their duration. The

distinct vowel timbres are created by using the tongue and lips to shape the main oral res-

onance cavity in different ways. The vocal folds vibrate at various rates, from as low as 80

Hz for a large man to as high as 300 Hz for a woman or small child. The rate of cycling

(opening and closing) of the vocal folds in the larynx during the phonation of voiced sounds

is called the fundamental frequency. After the application of the STFT, the spectrum of a

vowel has a harmonic structure. An example of such a spectrum is shown in Fig. 2.3.

2.4 Microphone array signal processing

A microphone array consists of a set of microphones positioned such that the spatial infor-

mation is accurately captured. The main objective of microphone array signal processing is

to estimate some parameters or to extract some signals of interest, depending on the appli-
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Figure 2.3: Spectrum of a vowel. The peaks are the harmonics of the vowel, while the

fundamental frequency is approximately 297 Hz.

cation, by using the spatiotemporal and frequency information available at the output of the

microphone array.

Depending on the nature of the application, the geometry of the microphone array may

play an important role in the formulation of processing algorithms. For example, in source

localization, the array geometry must be known to localize a source properly; moreover,

sometimes a regular geometry will even simplify the problem of estimation, which is why

uniform linear and circular arrays are often used [18]. Although these two geometries cur-

rently dominate the market more sophisticated 3D spherical arrays are becomingly increas-

ingly widespread as they can capture the sound field better [19]. However, in some other

crucial problems such as noise reduction and source separation, the geometry of the array

may have little importance, depending on the algorithm. In this case, the system can be

considered as a multiple microphone system instead of a microphone array.

The problems encountered in microphone arrays may appear easy to tackle because sim-

ilar problems in narrowband antenna arrays have been tackled for a long time. However, this

is misleading deceiving because microphone arrays work differently from antenna arrays,

which are used for applications such as radar and sonar, for the following reasons [20]:

a) Speech is a wideband signal.

b) The reverberation of a room is high.
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c) The environment and signals are highly nonstationary.

d) Noise can have the same spectral characteristics as the desired speech signal.

e) The number of sensors is usually restricted.

Because of these reasons, it is not surprising that for some problems, many existing algo-

rithms do not perform well.

The main problems that have the potential to be solved using microphone arrays are as

follows.

a) Noise reduction

b) Echo reduction

c) Dereverberation

d) Localization of a single source

e) Estimation of the number of sources

f) Source separation (Chapter 3)

g) Localization of multiple sources (Chapter 4)

2.5 Source mixing model

2.5.1 Instantaneous mixture

In instantaneous mixing,N unknown source signalssi , 1 ≤ i ≤ N, are combined to yieldM

measured sensor signalsxm, 1 ≤ m≤ M,

xm(τ) =
N∑

i=1

amisi(τ), (2.10)

whereami are the coefficients of the linear time-invariant mixing system represented by an

M × N matrix.

The goal of BSS for instantaneous mixtures is to adjust the coefficients of theN × M

separation or demixing matrix such that

yi(τ) =
M∑

m=1

bim(τ)xm(τ) (2.11)

contains an estimate of a single original source.
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2.5.2 Convolutive mixture

Let s1, s2, . . . , sN beN source signals. The observationxmi at microphonem that originates

only from sourcei is described by the convolutive model

xmi(τ) =
P∑

l=0

hmi(l)si(τ − l), (2.12)

whereτ represents the discrete time (a multiple ofτs = 1/ fs with fs being the sampling

frequency) andhmi is the impulse response from sourcei to microphonem modeled with

P + 1 samples. A situation where theN sources are simultaneously active is considered.

Hence, the observationxm at microphonem is modeled by the convolutive mixture model

as follows.

xm(τ) =
N∑

i=1

xmi(τ) =
N∑

i=1

P∑
l=0

hmi(l)si(τ − l) (2.13)

The convolutive mixture model is shown in Fig. 2.4.

Figure 2.4: Convolutive mixture model.

The goal is to obtain separate signalsy1, y2, . . . , yN, each of which corresponds to one

of the source signalss1, s2, . . . , sN. The task should be performed with onlyM observed

mixturesx1, x2, . . . , xM, and without information on the sourcessi or the impulse response

hmi.

First, each of the time-domain microphone observationsxm(t) is converted into frequency-

domain time-series signalsXm[k, l] by an STFT with anL-sample frame and itsS-sample

shift:
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Xm[k, l] ←
∑
τ

xm(τ)win(τ + kS)e− j 2πl
L τ, (2.14)

for all discrete frequencies binl, and for frame indexk. Herewin(τ) is the analysis window,

such as a Hanning window.

If the frame sizeL is sufficiently long to cover the main part of the impulse responsehmi,

the convolutive model can be approximated as an instantaneous model at each frequency:

Xmi[k, l] = Hmi[l]Si [k, l], (2.15)

whereHmi[l] is the frequency response from sourcei to microphonem, andSi [k, l] are

the frequency-domain time-series signals ofsi(τ). Consequently, the convolutive mixture

model can be treated as an instantaneous mixture model:

Xm[k, l] =
N∑

i=1

Xmi[k, l] =
N∑

i=1

Hmi[l]Si [k, l]. (2.16)

2.5.3 Evaluation of separation performance

The separation performance ofi-th source is evaluated in terms of the signal-to-interference

ratio (SIR) improvement, which is defined as

S IR improvement= OutputS IRi − InputS IRi , (2.17)

where

InputS IRi = 10 log10

∑
τ |
∑

l hJi(l)si(τ − l)|2∑
τ

∑
n,i |
∑

l hJn(l)sn(τ − l)|2 (dB) (2.18)

OutputS IRi = 10 log10

∑
τ |yii (τ)|2∑

τ |
∑

n,i yin(τ)|2 (dB). (2.19)

HereJ ∈ 1, · · · ,M is the index of a selected reference sensor, andyin(τ) is the component

of sn(τ) that appears at outputyi(τ): yi(τ) =
∑N

n=1 yin(τ).

2.6 Blind source separation

We are surrounded by sounds. A noisy environment makes it difficult to understand desired

speech and to converse easily. This makes it important to be able to separate and extract

a target speech signal from noisy observations to enable both human-machine and human-

human communication.
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The technique for estimating individual source components from their mixtures at mul-

tiple sensors is known as BSS. The estimation is performed blindly, i.e., without possessing

information about the mixing of the sources, such as the source location and its active time

periods.

One well-recognized BSS application is the separation of audio sources that have been

mixed and then captured by multiple microphones in a real room environment. A simple

flow of BSS using a microphone array is shown in Fig. 2.5. The signals received by the

microphones are mixed signals. Then, using the separation system, the separated signals

are derived.

Figure 2.5: Blind source separation using microphone array

The difficulty of BSS lies in the fact that the mixed system is not simply instantaneous

but convolutive, with delay and reflections. Such a mixing situation is generally modeled

using the impulse responses from the sound sources to the microphones. In a practical room

situation, such impulse responses can have thousands of taps even with an 8 kHz sampling

rate, and this makes the convolutive problem difficult to solve.

Another challenge in BSS is to determine the number of sources, especially when there

are more sources than sensors, because the mixing matrix is not invertible. Thus, the demix-

ing method involving the estimation of the inverse mixing matrix does not work. At the

same time, the reverberation and noise under real acoustic conditions make the received

mixed data ambiguous.

Many methods have been proposed to resolve BSS problems involving speech signals.

Among them, the most widely applied approaches are

1. the independent-component-analysis (ICA)-based approach [21]
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2. the sparseness of source signals in the T-F-domain-based approach [22–25].

ICA relies on the statistical independence of speech signals and performs well even

under a reverberant condition. However, it has difficulty in solving underdetermined cases

in which the number of sources is greater than the number of sensors. The sparseness-

based methods are applied to observed signals transformed from the time domain to the

T-F domain by an STFT and use the sparse representation of speech in the T-F domain [26].

They are valid even in underdetermined cases. One sparseness-based approach is to estimate

the mixing matrix at the first stage of the separation process [27]. The other approach

utilizes a T-F binary mask. This group of methods is based on an assumption known as

the W-disjoint orthogonality (WDO) of speech signals [22]. That is, although the observed

signal is a mixture of several sources, its T-F cell contains at most one of the components of

a source signal. A similar but weaker assumption than that of WDO has been proposed and

used for the BSS problem [28] [29].

2.6.1 Independent component analysis

ICA is a statistical method for extracting mutually independent sources from their mixtures,

and it relies on the statistical independence of speech signals. If the sources are to be

separated blindly, they should have some distinct characteristics, such as non-Gaussianity,

nonstationarity, or nonwhiteness. ICA, which is sometimes regarded as synonymous with

BSS, relies on non-Gaussianity. Many textbooks have been published on BSS and ICA [30–

33]. In this section the mathematical nortations of variables are followed by the reference

[33], thus there are different symbols used in other sections.

In the frequency domain, the signals observed by microphones can be modeled using

a T-F representation computed by an STFT. According to the convolutive model for the

observed mixture, each T-F component can be considered as a linear combination of the

T-F components of the original source signals. In matrix notation, one can write

X(t, f ) = H( f )S(t, f ), (2.20)

whereX(t, f ) are the observed mixtures,S(t, f ) are the original signals,t is the time instant

at which each frequency is evaluated with the shift of the time frame,f is the frequency bin

index, andH( f ) is the mixing matrix. A complex-valued ICA is applied to the time series

of each frequency. Then the original components can be retrieved by computing a demixing

matrix W( f ), which is an estimate of the matrixH−1( f ) up to scaling and permutation

ambiguities:
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Ŝ(t, f ) = A( f )P( f )W( f )X(t, f ), (2.21)

whereA( f ) andP( f ) are a complex-valued scaling matrix and a permutation matrix, respec-

tively.

Many ICA algorithms for calculating the separation matrixW have been reported [30–

33]. Although the source separation algorithms are different, their principles can be sum-

marized by the following four approaches:

1. The most popular approach exploits some measure of signal independence, non-

Gaussianity, or sparseness as the cost function. When the original sources are assumed to

be statistically independent without a temporal structure, higher-order statistics are essential

(implicitly or explicitly) to solve the BSS problem. In such a case, the method does not

allow more than one Gaussian source.

2. If the sources have temporal structures, then each source has a nonvanishing temporal

correlation and less restrictive conditions than statistical independence can be used, namely,

second-order statistics are sufficient to estimate the mixing matrix and sources. Several

methods have been developed along this line. Note that these methods based on second-

order statistics methods do not allow the separation of sources with identical power spectra

or independent and identically distributed sources.

3. The third approach exploits nonstationarity properties and second-order statistics.

Mainly, we are interested in second-order nonstationarity in the sense that source variances

vary in time. Nonstationarity was first considered by Matsuoka et al. [34], and it was shown

that a simple decorrelation technique is able to perform the BSS task. In contrast to other ap-

proaches, nonstationarity-information-based methods allow the separation of colored Gaus-

sian sources with identical power spectra. However, they do not allow the separation of

sources with identical nonstationarity properties. There have been some studies on nonsta-

tionary source separation [35–37].

4. The fourth approach exploits the various diversities of signals, typically time, fre-

quency (spectral or "time coherence") and/or T-F diversities, or more generally, joint space-

time-frequency diversity.

Although ICA is a good method for speech separation, the permutation ambiguity of an

ICA solution is a serious problem. The ambiguities should be aligned suitably so that the

separated frequency components that originate from the same source are grouped together.

Various approaches have been proposed to solve the permutation problem. [38, 39, 39]

by making the separation matrixW smooth in the frequency domain. This can be realized
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simply by windowing the separation filters in the time domain. However, this operation

makes the separation matrixW different from the ICA solution and generally degrades the

separation performance. In [40–42] information related to the source location is estimated,

such as the DOA or time difference of arrival (TDOA). The beamforming approach analyzes

the directivity patterns formed by the separation matrixW to identify the DOA of each

source. However, analysis of the directivity patterns is only practically possible for a two-

source case and becomes intractable when there are more sources. [43] [44] exploit the

dependence of separated signals across frequencies. The advantage is that they are less

affected by the mixing system under unfavorable conditions such as severe reverberations

or closely located sources.

2.7 Time-frequency masking

The T-F masking method is an important technique for speech source separation [45]. Usu-

ally the received signals in the time domain are transfered to the T-F domain by an STFT.

Then, on the basis of the features contained in the T-F domain, a T-F mask is designed that

can be used to obtain the separated signals. Finally, the separated signals in a waveform

representation are synthesized from the T-F representation by an inverse STFT.

The degenerate unmixing estimation technique (DUET) [22], sound source Segregation

based on estimation incident Angle of each Frequency component of Input signals Acquired

by multiple microphones (SAFIA) [23] and [46] are typical conventional approaches essen-

tially based on the WDO assumption [47] [48], which means that although the observed

signal is a mixture of several sources, its T-F cell contains at most one of the components

of a source signal. These geometric parameters of the sources are estimated using the phase

difference and intensity difference between two sensor observations. If the WDO assump-

tion holds and these parameters are accurately estimated, the histogram in terms of the

frequency-normalized phase difference, or time arrival delay, and the attenuation ratio at

the mixed T-F cells from clusters corresponding to individual sources. Then, the essential

problem in the separation becomes the development of a clustering algorithm. The prelimi-

nary clustering method adopted in Refs. [22] and [46] is to first find the peaks corresponding

to the sources in the histogram, then each T-F cell in the mixed signal is associated with one

peak depending on the distance in the cell’s feature space. Finally, the reconstruction of

the source signals is performed by masking the STFT-domain spectrogram of a mixture.

In subsequent studies, the kernel density method and a maximum-likelihood (ML)-based

method were proposed to enable real-time operation [49] . In addition, thek-means algo-
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rithm or hierarchical clustering has been applied to realize automatic and simplified sepa-

ration [24] [25]. The method called Multiple sENsor dUET (MENUET) [24] applies the

k-means algorithm to a vector space of the signal level ratio and the frequency-normalized

phase difference with appropriately weighted terms to ensure effective clustering. Gener-

ally, k-means clustering is performed by minimizing a cost function in the spatial feature

space. The optimization problem has been solved by developing an efficient iterative update

algorithm. In another study [25], thek-means algorithm was also applied for an arbitrary

sensor array configuration, even one with a greater distance between sensors at which spatial

aliasing may occur.

2.7.1 DUET

The DUET [22] is a well-known method of solving the BSS problem by T-F masking. In

this section, the DUET is outlined. The method is valid when sources exhibit WDO, that

is, when the supports of the windowed Fourier transform of the signals in the mixture are

disjoint. For anechoic mixtures of attenuated and delayed sources, the method allows one

to estimate the mixing parameters by clustering relative attenuation-delay pairs extracted

from the ratios of the T-F representations of the mixtures. The estimates of the mixing

parameters are then used to partition the T-F representation of one mixture to recover the

original sources. The technique is valid even in the case when the number of sources is

larger than the number of mixtures.

The DUET separates degenerate mixtures by partitioning the T-F representation of one

of the mixtures. In other words, the DUET assumes that the sources are already ’separate’

in the sense that, in the T-F plane, the sources are disjoint. The ’demixing’ process is then

simply the partitioning of the T-F plane. Although the assumption of disjointness may

appear unreasonable for simultaneous speech, it is approximately true in the sense that the

T-F points that contain significant contributions to the average energy of the mixture are

very likely to be dominated by a contribution from only one source. In other words, two

people rarely produce the same frequency at the same time.

Consider mixtures ofN source signals,i = 1, · · · ,N, being received at a pair of mi-

crophones, where only the direct path is allowed. The two anechoic mixtures can thus be

expressed as

x1(τ) =
N∑

i=1

si(τ), (2.22)
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x2(τ) =
N∑

i=1

hi si(τ − δi), (2.23)

whereN is the number of sources,δi is the difference in the arrival time between the sensors,

andhi is a relative attenuation factor corresponding to the ratio of the attenuations of the

paths between the sources and sensors.

Two functionssi(τ) andsj(τ) are called W-disjoint orthogonal if, for a given windowing

function win(τ), the supports of the windowed Fourier transforms ofsi(τ) and sj(τ) are

disjoint. The windowed Fourier transform ofsj(t) is Ŝi [k, l]. The WDO assumption can be

stated concisely as

Ŝi [k, l]Ŝ j [k, l] = 0,∀k, l, ∀i , j. (2.24)

This assumption is the mathematical idealization of the condition that every T-F point in

the mixture with significant energy is dominated by the contribution of one source. WDO

is crucial to the DUET because it allows the separation of a mixture into its component

sources using a binary mask. An example of the WDO property is shown in Fig. 2.6.

The assumption of anechoic mixing allows the mixing equations (2.22) and (2.23) in

the T-F domain to be written as

X̂1[k, l]

X̂2[k, l]

 =
 1 · · · 1

h1e− j 2πl
L δ1 · · · hNe− j 2πl

L δN



Ŝ1[k, l]
...

ŜN[k, l]

 (2.25)

Because of the assumption of WDO, at most one source is active at every [k, l], and the

mixing process can be described as

for each[k, l],

X̂1[k, l]

X̂2[k, l]

 =
 1

hie− j 2πl
L δi

 Ŝi [k, l] for some i. (2.26)

The main observation that the DUET leverages is that the ratio of the T-F representations of

the mixtures does not depend on the source components but only on the mixing parameters

associated with the active source component:

∀[k, l] ∈ Ωi ,
X̂2[k, l]

X̂1[k, l]
= hie

− j 2πl
L δi , (2.27)

where

Ωi := {[k, l] : Ŝi [k, l] , 0}. (2.28)
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Figure 2.6: Example of WDO property.s1 is a male source located at 0◦ ands2 is a female

source located at 50◦.
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The local attenuation estimator ˜α[k, l] of the mixing parameters and the local delay

estimator̃δ[k, l] associated with each T-F point can be calculated as

α̃[k, l] := |X̂2[k, l]/X̂1[k, l]|, (2.29)

δ̃[k, l] := (− L
2πl

)∠(X̂2[k, l]/X̂1[k, l]). (2.30)

The set of points that contribute to a given location in the histogram is defined by

I (α, δ) := {[k, l]|α̃[k, l] − α| < ∆α, |δ̃[k, l] − δ| < ∆δ}, (2.31)

where∆α and∆δ are the smoothing resolution widths. The 2D smoothed weighted his-

togram is constructed as

H(α, δ) :=
∑

k

∑
l

|X̂1[k, l]X̂2[k, l]|plq, [k, l] ∈ I (α, δ), (2.32)

wherep andq are parameters, andN peaks corresponding to theN sources are clearly vis-

ible in the histogram. Given the histogram peak centers ˜αi , δ̃i , i = 1, · · · ,N, the symmetric

attenuation is converted back to the attenuation via

ãi =
α̃i +

√
α̃2

i + 4

2
, (2.33)

with a peak assigned to each T-F point via

J[k, l] := arg min
j

|ã je− jδ̃ j
2πl
L X̂1[k, l] − X̂2[k, l]|2

1+ ã2
j

. (2.34)

Then each T-F point is assigned to an estimate of the mixing parameter via

Mi [k, l] :=


1, if J[k, l] = i

0, otherwise.
(2.35)

Mi is used to separateŝSi from the mixture via

Ŝi [k, l] = Mi [k, l]X̂1[k, l]. (2.36)

The sources can be reconstructed from their T-F domain by converting them back into the

time domain.
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The DUET algorithm is summarized as follows:

1. Construct T-F representationsX̂1[k, l] andX̂2[k, l] from mixturesx1(τ) andx2(τ), respec-

tively.

2. Calculate (| X̂2[k,l]
X̂1[k,l]

| − | X̂1[k,l]
X̂2[k,l]

|, −L
2πl∠(

X̂2[k,l]
X̂1[k,l]

)).

3. Construct a 2D smoothed weighted histogram using (2.32).

4. Locate the peaks and peak centers that determine the estimates of the mixing parameter.

5. Construct T-F binary masks for each peak center using (2.35).

6. Apply each mask to the appropriately aligned mixtures using (2.36).

7. Convert each estimated source T-F representation back into the time domain.

To measure the WDO of a given mask, two criteria, the preserved-signal ratio (PSR)

and the SIR, are introduced.

PS RM :=
∥Mi [k, l]Ŝi [k, l]∥2

∥Ŝi [k, l]∥2
(2.37)

S IRM :=
∥Mi [k, l]Ŝi [k, l]∥2

∥Mi [k, l]Ŷi [k, l]∥2
(2.38)

Here,yi(τ) is the sum of the sources interfering with theith source.

yi(τ) :=
N∑

j=1,i, j

sj(τ) (2.39)

Then,PS RM andS IRM are combined into a single measure of WDO,WDOM:

WDOM :=
∥Mi [k, l]Ŝi [k, l]∥2 − ∥Mi [k, l]Ŷi [k, l]∥2

∥Ŝi [k, l]∥2
(2.40)

= PS RM −
PS RM

S IRM
.

WDOM = 1 implies that maskM perfectly separates theith source from the mixture.

2.7.2 MENUET

Similar to the DUET, Araki et al. proposed the binary mask approach MENUET [24],

which employs thek-means clustering algorithm. The novel feature of this method is that

it utilizes the level ratios and phase differences between multiple observations. To realize

level ratio and phase difference variances of a comparable level, they proposed a method

of weighting the phase term used for clustering. Moreover, their method does not require
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sensor location information. This allows freely arranged multiple sensors to be employed.

Therefore, the method can separate signals that are distributed two- or three-dimensionally.

Feature extraction

If the sourcesSi [k, l] are sufficiently sparse, separation can be realized by accumulating

the T-F points [k, l] where only one signalsi is estimated to be dominant. To estimate such

T-F points, some featuresΘ[k, l] are calculated using the frequency-domain observation

signalsX̂[k, l].

The novel feature employed in MENUET is expressed as

Θ[k, l] = [ΘL[k, l],ΘP[k, l]]T , (2.41)

where

ΘL[k, l] =

[
|X̂1[k, l]|
A[k, l]

, · · · , |X̂M[k, l]|
A[k, l]

]
(2.42)

is the observation-level information,

ΘP[k, l] =

[
1
α1l′

arg

[
X̂1[k, l]

X̂J[k, l]

]
, · · · , 1

αM l′
arg

[
X̂M[k, l]

X̂J[k, l]

]]
(2.43)

is the phase difference information,l′ = 2πl
L , A[k, l] =

√
ΣM

m=1|X̂m[k, l]|2, J is the index of

one of the sensors, andαm(m = 1, · · · ,M) is a positive weighting constant. By changing

αm, the weights for the level ratio and the normalized phase difference information of the

observed signals can be controlled. A larger value increases the weight of the level ratio

and a smaller value emphasizes the phase difference.

Clustering

The featuresΘ[k, l] are grouped intoN clustersC1, · · · ,CN, whereN is the number

of possible sources. In MENUET, thek-means clustering algorithm is used with a given

number of sourcesN. The clustering criterion is to minimize the sumξ of the Euclidean

distances (EDs) between cluster members and their centroidci ,

ξ =

N∑
i=1

ξi , (2.44)

where

ξi =
∑

Θ[k,l]∈Ci

∥Θ[k, l] − ci∥2. (2.45)

After setting an appropriate initial centroidci(i = 1, · · · ,N), ξ can be minimized by the

following iterative updates:

Ci = {Θ[k, l]|i = arg min
i
∥Θ[k, l] − ci∥2} (2.46)
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ci ← E[Θ[k, l]]Θ∈Ci , (2.47)

whereE[·]Θ∈Ci is a mean operator for the members of clusterCi . If the featureΘ[k, l] is

suitably chosen, each cluster corresponds to an individual source.

Mask design

Next, the separated signalsYi [k, l] are estimated on the basis of the clustering results. A

T-F domain binary mask is designed as follows that extracts the T-F points of each cluster

Mi [k, l] =


1, Θ[k, l] ∈ Ci

0, otherwise.
(2.48)

Then, applying the binary mask as above to one of the observationsX̂J[k, l], the separated

signals can be obtained as

Yi [k, l] = Mi [k, l]X̂J[k, l], (2.49)

whereJ is a selected sensor index. Finally, by employing an inverse STFT (ISTFT), the

separated signals are obtained in the time domain.

2.8 DOA estimation

A major function of microphone array signal processing is the estimation of the location

from which a source signal originates. Depending on the distance between the source and

the array relative to the array size, this estimation problem can be divided into two subprob-

lems, i.e., DOA estimation and source localization.

DOA estimation deals with the case where the source is in the array’s far-field. In this

situation, the source radiates a plane wave with a waveform that propagates through the

nondispersive medium of air. The normal to the wavefront makes an angleθ with the line

joining the sensors in the linear array, and the signal received at each microphone is a time-

delayed version of the signal at a reference sensor. In other words, the DOA estimation

problem is the same as the so-called TDOA estimation in the far-field case.

Although the incident angle can be estimated using two or more sensors, the distance

between the sound source and the microphone array is difficult to determine if the source

is in the array’s far-field. However, if the source is located in the near-field, it becomes

possible to estimate not only the angle from which the wave ray reaches each sensor but

also the distance between the source and each microphone. A problem is called source
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localization. All the information regarding the source position relative to the array can be

determined using the triangulation rule once the TDOA information is available. This basic

triangulation process forms the foundation for most source localization techniques.

Regardless of whether the source is located in the far-field or near-field, the most fun-

damental step in obtaining information on the source origin is that of estimating the TDOA

between different microphones. This estimation problem would be an easy task if the re-

ceived signals were merely a delayed and scaled version of each other. In reality, however,

the source signal is generally immersed in ambient noise since we live in an environment

where the existence of noise is inevitable. Furthermore, each observation signal is reflected

from boundaries and objects. This multipath propagation effect introduces echoes and spec-

tral distortion into the observation signal, termed as reverberation, which severely deterio-

rates the source signals. In addition, the source may also move, resulting in a changing time

delay. All these factors make DOA estimation and source localization a complicated and

challenging problem.

A large number of DOA estimation methods have been proposed [50] [51]. Typical

array-processing approaches are as follows.

1. The generalized cross-correlation (GCC) method [52].

2. Signal subspace approaches to determine the spatial covariance matrix of observed

signals [53].

3. Multiple-source localization methods based on clustering in the T-F decomposition

space known as histogram mapping [46] (DUET [22], DEMIXb [29] and others [54]).

4. ICA-based approaches [55] [56].

Their features of these methods are summarized in Tab. 2.1.

Table 2.1: Summary of typical DOA estimation methods

Typical DOA estimation methods Features

Generalized cross-correlation (GCC) Single-source model

Signal subspace (MUSIC et al.) Number of sensors> Number of sources

Time-frequency sparseness Unlimited sources

Independent component analysis (ICA)Number of sensors≥ Number of sources
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2.8.1 Generalized cross-correlation method

The most widely used approach for estimating DOA/TDOA using a pair of microphones is

the GCC algorithm [52]. It estimates the delay time that maximizes the cross-correlation

function between the filtered outputs of the signals acquired at the microphones. Among the

many variations of the GCC method, the phase transform (PHAT) method [57] is closely

related to the time-frequency sparseness method. The PHAT method exploits the fact that

the TDOA information is conveyed in the phase, therefore, the generalized cross-spectrum

in the PHAT method is given by a delay operator component by neglecting the amplitude

characteristic. Although GCC methods are usually successfully employed and are also com-

putationally efficient, they basically employ a single-source model.

Among the four major methods of speaker direction estimation, the time-delay-estimation-

based method possesses a significant computational advantage over the other methods, and

it is used in many speaker direction estimation systems. The time delay estimation method

has a two-step procedure. First, it estimates the time arrival difference between the signals

relative to a pair of spatially separated microphones. Using these values in combination

with the known microphone positions, the direction of the sound source is estimated.

Suppose that a plane sound wave is received by a pair of microphones. If the time arrival

differenceτs is estimated, the sound source directionθs is given by

θs = sin−1(cτs/d) (2.50)

wherec is the sound velocity andd is the distance between microphones. For the estimation

of τs the GCC function is the most popular method defined as

R(τ) =
∫ ∞
−∞
Ψ(ω)Gx0x1(ω)ejωτdω, (2.51)

whereGx0x1(ω) is the cross spectrum of the received signalsx0(t) andx1(t) and is given by

Gx0x1(ω) = X0(ω)X∗1(ω). (2.52)

Ψ(ω) is a frequency weighting filter and∗ denotes the complex conjugate. By searching for

the value ofτs that gives the largest peak ofR(τ), the speaker direction can be estimated.

Since accurate and robust time delay estimation is the key to effective direction estima-

tion in this area, several frequency-weighting filtersΨ(ω) are selected for use in the GCC

function. There are two main interfering sources that degrade the estimation performance,

which are nondirectional background noise and the multipath channel due to room rever-

beration. To cope with the former type of interference, an ML-based function has been
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proposed [52]. Because this weighting function is based on the signal-to-noise (SNR) ratio

at each frequency, it is appropriate for reducing the effects of spatially uncorrelated white

noise. However, in the case of room reverberation, these ML-based methods exhibit severe

performance degradation.

In contrast, the basic approach to dealing with multipath channel distortions is to make

the GCC function more robust by deemphasizing the frequency weightings. The PHAT,

given by

ΨPHAT(ω) =
1

|X0(ω)X∗1(ω)| =
1

|Gx0x1(ω)| , (2.53)

is one of the weighting functions that has received considerable attention. By placing equal

emphasis on each frequency component, the resulting peak in the GCC-PHAT function that

corresponds to the dominant delay can be clearly observed. Although the GCC-PHAT func-

tion is effective for reducing the degradation due to the multipath channel, it emphasizes the

components of the spectrum with a poor SNR, particularly in the case of low reverberation.

Furthermore, other approaches for selecting the frequency-weighting function in ad-

verse environments are available. Brandstein et al. utilized a criterion based on a speech-

specific harmonic structure in the Fourier spectrum [58].

2.8.2 MUSIC

The second category of conventional DOA estimation algorithms is based on subspace anal-

ysis exploiting a statistical narrowband array model [59] [60]. MUltiple SIgnal Classifica-

tion (MUSIC) is a typical method categorized into the subspace approach. It is an algorithm

used for frequency estimation [61] and emitter location [53]. Schmidt was the first to cor-

rectly exploit the measurement model in the case of sensor arrays of arbitrary form, and he

accomplished this by first deriving a complete geometric solution in the absence of noise,

then cleverly extending the geometric concepts to obtain a reasonable approximate solution

in the presence of noise. The resulting algorithm was named MUSIC and has been widely

studied. For broadband signals such as speech, several frequency-domain approaches have

been proposed. Among them, the coherent signal subspace method [62] is effective. How-

ever, subspace-based approaches with two microphones must overcome two drawbacks, one

of which is the limited precision of DOA estimation, and the other is that it is unable to deal

with underdetermined cases.

The broadband formulation of MUSIC algorithm is derived based on the eigenvalue

decomposition of the spatial correlation matrix. The noise eigenvectors are used for calcu-
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lating the MUSIC cost function and its peak points will correspond to the true TDOA.

2.8.3 Time-frequency clustering method

The third category of the DOA estimation algorithms closely related to the BSS approaches

are based on the source sparseness assumption, known as WDO, and its weaker condi-

tion TIme-Frequency Ratio Of Mixtures (TIFROM) [28] [29]. These conditions are crucial

properties of speech signals used to solve the DOA for underdetermined multiple sources.

The BSS approach associated with these assumptions is a group of T-F masking frame-

works, such as the classical methods of the DUET [22] and SAFIA [23] and the recent

approaches of TIFROM [28] and MENUET [24]. The assumption of WDO implies that

the mixed sources have essentially disjoint T-F supports, i.e., only one source is dominant

in a T-F cell of the mixtures. The representative methods are the DUET [22], and oth-

ers [46] [54]. The common approach of these methods is to estimate information about

each source and use it to identify the attribute of each T-F cell. The clustered T-F cells that

belong to one of the sources are used for the separation and DOA estimation of individual

sources. In DUET-like methods [46] [54] [63] as well as SAFIA [23], the delay time or the

frequency-normalized ratio of the frequency-domain observations at each T-F point is used

to compute the TDOA. To obtain a global estimate of the mixing parameters (attenuation

ratio and delay) from these local individual estimates, DUET-like methods use a weighted

smoothed histogram. An alternative DOA estimation method proposed by Araki et al. [54],

especially in the context of BSS, estimates the DOA as the centroid of each cluster of nor-

malized observation vectors corresponding to an individual source. Note that their method

can deal with arbitrary sensor configurations including 3D arrangements.

TIFROM [28] exploits a weaker assumption than WDO as follows. In the neighborhood

of some T-F cells, only one source essentially contributes to the mixture. These T-F points

provide a robust local estimation of the DOA corresponding to each source direction on

the basis of the TIFROM concept, the Direction Estimation of Mixing matrIX (DEMIX)

[29] algorithm introduces a statistical model to exploit a local confidence measure to detect

the regions where robust mixing information is available. This algorithm is also based on

a clustering algorithm that gives more weight to more reliable T-F regions according to

the introduced confidence measure. However, the computational cost of DEMIX is high

owing to the performance of principal component analysis for every local scatter plot of

observation vectors at individual T-F points.

Araki et al. proposed a DOA estimation method for underdetermined cases involving
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T-F decomposition [54]. Their method is based on the normalization and clustering of the

observation vectors. Letqi be the 3D vector of a unit norm representing the direction of

sourcesi . The location of sensorj is given by the 3D vectord j . The sensor observations

arex(t, f ). Using the azimuthθi and elevationϕi , the DOAqi can be written as

qi = [cosθi cosϕi , sinθi cosϕi , sinϕi ]
T . (2.54)

An anechoic model is assumed, that is, the frequency responseh ji ( f ) is expressed solely

interms of the time delayτ ji = dT
j qi/c with respect to the origin:

h ji ( f ) ≈ exp[j2π f dT
j qi/c], (2.55)

wherec is the propagation velocity of the signals.

In the first step, Araki et al. applied unit-norm normalization to all observation vectors

x(t, f ),

x(t, f )← x(t, f )/∥x(t, f )∥. (2.56)

Then, in the clustering step, the normalized vectorsx(t, f ) are clustered intoN clusters

C1, · · · ,CN. The clustering criterion is to minimize the sumζ of the squared distances

between the cluster members and their centroid:

ζ =

M∑
k=1

ζk, ζk =
∑

x(t, f )∈Ck

∥x(t, f ) − ck∥2. (2.57)

After setting appropriate initial centroidsck (k = 1, · · · ,N), this ζ can be minimized by

thek-means clustering algorithm with a given number of sourcesN. Because each cluster

corresponds to an individual source, centroidck represents the geometry of the sourcesk as

arg[{ck} j ] = 2πc−1(d j − dJ)Tqk, (2.58)

whereJ is the reference sensor.

2.8.4 ICA-based method

The fourth category is related to the use of frequency-domain independent component anal-

ysis (ICA) for the BSS problem. This is because the demixing matrix obtained by the ICA

algorithm contains a propagation model of the sources. The idea of Sawada et al. [55] has re-

cently been generalized to a state coherence transform (SCT) approach by Nesta et al. [56].
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Their method, which is based on a cumulative SCT, achieves joint multipath TDOA estima-

tion using an SCT without being affected by spatial aliasing. Although the cumulative SCT

method for a stereophonic sensor can be applied to the underdetermined DOA estimation

problem, it is necessary to detect independent time blocks where only two sources are dom-

inant prior to the application of ICA demixing. Therefore, the application of an ICA-based

approach is basically limited to cases where the number of sources is equal to the number

of microphones.

Nesta et al. proposed a method for TDOA estimation based on frequency-domain ICA

and the SCT [56]. ICA is performed and the obtained demixing matrices are used to gen-

erate observations of the propagation model of the sources and estimate the DOA by the

SCT. The explanation and the notation of the following ICA approach is based on the refer-

ence [56].

In the ideal case, neglecting reverberation, we can assume the sources to be under free-

field conditions. Thus, the signals observed at the microphones can be considered to be the

sum of delayed and scaled versions of the original source signals depending on the relative

position of the sources to the microphones. For the case of two channels, in the frequency

domain each mixing matrix can be modeled as

H( f ) =

|h11( f )|e− jϕ11( f ) |h12( f )|e− jϕ12( f )

|h21( f )|e− jϕ21( f ) |h22( f )|e− jϕ22( f )

 (2.59)

ϕiq( f ) = 2π fs f δiq/L, (2.60)

whereδiq is the propagation time from theqth source to theith microphone,fs is the sam-

pling frequency, andL is the window length. The elements of each row of the demixing

matrixW( f ) = H−1( f ) can be directly used to obtain the observations of the ideal propaga-

tion model. These are expressed for the two sources as the ratios computed as follows:

r1( f ) = −w12( f )
w11( f )

, r2( f ) = −w22( f )
w21( f )

. (2.61)

Such ratios are scaling-invariant and their phase is expected to vary linearly with the fre-

quency, depending on the TDOAs of the sources. Neglecting wave attenuation, the ideal

propagation model of each source can be represented as

c(t, f ) = e− j2π fs f δ/L, (2.62)
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whereδ is the TDOA of the source. Thus, for each frequency, an observation of the ideal

propagation model can be obtained by normalizing the ratiosr i( f ) by their magnitude:

r̄ i( f ) =
r i( f )
∥r i( f )∥ . (2.63)

A joint multiple TDOA estimation can be performed by using an SCT which is formulated

as follows:

SCT(δ) =
∑

t

N∑
i=1

[
1− g(

∥c(t, f ) − r̄ i( f )∥
2

)

]
, (2.64)

whereN is the number of observed states for each frequency andg(·) is a function of the

Euclidean distance. They selected the nonlinear function

g(x) = tanh(α · x) (2.65)

whereα is chosen according to the distance between the microphones.

Finally, the peaks of the SCT envelope that correspond to the TDOAs and source direc-

tions are extracted.

2.9 Summary

This chapter introduces the foundations of speech signal processing using a microphone

array. In Sec. 2.2, the foundations of speech signal processing were explained. Then in Sec.

2.4, microphone array signal processing was discussed. In Sec. 2.3 it was shown that T-F

analysis can represent speech signal features in the temporal and spectral domains. In the

second half of the chapter, two applications of speech signal processing using a microphone

array were explained: BSS in Sec. 2.6 and DOA estimation in Sec. 2.8. Some conventional

methods and recent studies were also mentioned.



Chapter 3

Speaker localization and source separation

using PCA and harmonic structure

3.1 Introduction

This chapter describes the proposed method for speaker localization and source separation

using principal component analysis (PCA) and the harmonic structure. An overview of

the prosed method and its advantages is given in Sec. 3.2. In Sec. 3.3, the blind source

separation (BSS) problem and time-frequency (T-F) masking method are reviewed briefly.

From Sec. 3.4 the proposed method is discussed in detail. In Sec. 3.8, some experiments

performed to verify the proposed method are reported. Sec. 3.9 is a summary.

3.2 Overview

3.2.1 Phase difference versus frequency distribution

This study focuses on the T-F binary masking approach using a pair of microphones [64–

66]. As the T-F cell features depend on the spatial location of the sources, framewise,

namely, time-sequential PD-F data are exploited here. Since the conventionally utilized

features associated with the time delay at each T-F cell can be estimated by the frequency

normalization of PD-F data, the proposed method disregards the other conventional features

of the signal level and the attenuation ratio between two sensors. This is because the sensor

distance in the setup is smaller than half the minimum wavelength of interest to avoid the

spatial aliasing assumed in many studies [22] [24]. Actually, the setup is a pair of typical

microphones with 4 cm spacing and 8 kHz sampling frequency. Under these conditions, the

signal level difference between observations should be very small. Therefore, the attenua-
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tion ratio is less distinctive than the phase difference. That is, the attenuation ratio would

not be effective for clustering. This has been observed in many actual two-dimensional (2D)

histograms of the attenuation ratio and delay [22] [24]. As in Refs. [23] and [25], a setup

with a large distant sensor array violating the nonaliasing condition can be used, but the

separation algorithm for such a setup would be complex. For example, in Ref. [25], the

clustering procedure is divided into two steps, one of which is applicable to the nonaliasing

or low-frequency band and the other is applicable to the remaining aliasing at frequency

band.

On the other hand, the PD-F plot itself is not new. It has appeared in several papers,

such as in Ref. [25]. However, to the author’s knowledge, the mathematical analysis of the

plot and the idea of using it in a frame-by-frame manner have not been reported so far. The

advantages of using the time-frame PD-F distribution are as follows.

• The PD-F data that can be reliably estimated is located along a specific line through

the origin; thus, the PD-F plot directly illustrates the tendency of the PD estimation

error and gives an intuitive insight into the dependence of PD error distribution on the

frequency.

• By observing the variance of PD-F data at a specific frame, it can be determined

whether or not a single source is active at that time.

To be more precise, PCA is applied to the 2D PD-F data space at each frame, and the ratio of

the two principal eigenvalues is used to determine the source activity in a frame-by-frame

manner, namely, to determine whether a single source is active or multiple sources are

simultaneously active. The obtained source activity condition in each frame is effectively

used for source direction estimation and separation, as described in a later section.

The feature of the PD estimation error in the proposed approach is significantly different

from that in the delay-histogram approach. In particular, for real-life acoustic data, the

delay estimation error in the low-frequency band tends to be very large. In fact, owing to

the frequency normalization of the estimated PD, the estimated delay in low-frequency bins

tends to be an outlier, even for a comparable phase estimation error over the whole frequency

range. Therefore, the delay histogram for real data will have a long-tailed distribution.

Additionally, the number of data within a few frames is too small to obtain accurate peaks

for the delay histogram.

Among the proposed features of the T-F cells, the attenuation ratio and its modifications

do not exhibit any distinctive differences for closely located microphones. In the experimen-

tal setup in this study, the distance between the microphones is 4 cm to avoid spatial aliasing
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for the 8 kHz sampling rate. Thus, the features associated with the signal level difference are

disregarded. On the other hand, although T-F masking solely based on the delay histogram is

effective, it gives rise to highly misestimated delay data in the low-frequency band [67–70].

The clustering using the delay causes the results to exhibit low performance. Here frame-

wise PD-F data are employed to classify each time frame into three cases associated with

the number of active sources. In this stage, the estimated PD is adopted without applying

frequency normalization. The second step is to perform clustering for two frequency bands.

In the high-frequency band, the PD-F data plot for one frame is divided into two clusters by

determining a separation line through the origin. Namely, this initial separation adopts the

delay between sensors as the feature at each frame without the application of peak finding

or thek-means algorithm. Although the delay is essentially used as the separation feature,

its frame-by-frame usage is crucial in this study. The separation in the low-frequency band

utilizes the speaker’s harmonic structure with nonspatial features. The spectrogram in this

band is integrated with the results of initial separation in the high-frequency band.

3.2.2 Harmonic structure as a means of separation

In addition to source location attributes, such as the above-mentioned delay and attenuation

ratio, sound source attributes such as harmonic structure are also useful for segregation

[71] [72]. Early separation approaches using the harmonic structure [72] are applied to

monaural mixture signals. The first process is to estimate the fundamental frequency (f0) of

each speaker, then the local frequency spectrum components that are assigned to a speaker

are selected according to their harmonic relation with the estimatedf0. In essence, the

harmonic-structure-based approach is valid for vowels and vowel-like sound intervals.

In this study, the harmonic structure is utilized as a means of restrictive separation in the

low-frequency band where the attributes of the source location are less reliable for charac-

terizing each T-F cell. In Ref. [71], both the harmonic structure and the source direction are

exploited for clustering. The main difference between the proposed method and previous

approaches is that the harmonic structure of a monaural signal in the low-frequency band is

related to that of the initially separated signals by means of T-F masking.

3.2.3 Advantages

In this study, the PD-F distribution at each frame is first investigated by applying PCA

to classify the PD-F data in one frame into three cases: a) non-source active (NSA), b)
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single-source active (SSA1), and c) double-source active (DSA). Since the ratio of the prin-

cipal eigenvalues in PCA indicates the degree of data spread around the first principal axis,

it is utilized to detect SSA frames. Next, the selected SSA frames are used to estimate

source directions. From these directions, the active source at each SSA frame is identified.

This means that all T-F cell components in an SSA frame are associated with the identified

source. The third step is to seperate the DSA frames via two substeps. The first clustering

step is performed in a high-frequency band, denoted byBhigh, in which the PD estimation

error is relatively small; therefore, PD-F data are much more reliable. In this clustering

procedure, the delay value is adopted as the cell’s feature. For the T-F cells in the remaining

low-frequency band, or the complement ofBhigh, denoted byBlow, a harmonic structure re-

lationship between the initially separated spectrogram inBhigh and the spectrogram inBlow

is effectively used.

The novel features of this study are summarized as follows.

1. Framewise PD-F analysis is used to detect the SSA frame by means of PCA. The

results are used to accurately estimate source directions by introducing a novel relia-

bility degree.

2. To seperate the DSA frames, the relationship between the harmonic structures of

initially separated source signals and the mixed signals in the low-frequency band is

exploited.

3.3 BSS problem

3.3.1 Observation model

The mixing model in a discrete time domain and its transformed T-F domain description

are described here. All discrete time signals are sampled versions of analog signals with

sampling frequencyfs[Hz]. SupposeN source signalss1(τ) , s2(τ) ,· · · ,sN(τ) are mixed by

time-invariant convolution and the observed signalsx1(τ) , x2(τ) ,· · · ,xM(τ) at M sensors

are described as

xm(τ) =
N∑

i=1

∑
l

hmi(l)si(τ − l) (3.1)

wherehmi(l) represents the impulse response from thei-th source to them-th sensor . Signal

transformation to the T-F domain is performed as follows. Observed signalsxm(τ) (m =
1The term "SSA" means that the PD-F distribution at the frame appears to result from a single directional

source.
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1 ∼ M) are converted into T-F domain signalsXm[k, l] by L-point windowed STFT. That is,

Xm[k, l] can be written as

Xm[k, l] =
L/2−1∑

r=−L/2

xm(r + kS)win(r)e− j 2πl
L r ,

k = 0 ∼ K, l = 0 ∼ L
2

(3.2)

wherewin(r) is a window, andS is the window shift length. Here, a half-window-size

overlapping transformation is applied, namely,S = L
2 in (3.2). In addition, STFT without

zero-padding is applied. Then the transformed T-F mixture model of Eq. (3.1) is described

by the instantaneous mixtures at each time frame indexk and frequency binl.

Xm[k, l] =
N∑

i=1

Hmi[l]Si [k, l] (3.3)

Here,Hmi[l] is the frequency response (DFT) ofhmi(τ), andSi [k, l] is the T-F domain rep-

resentation of thei-th source signalsi(τ).

An anechoic mixing model is adopted as used in Ref. [22]. In this model, the source sig-

nals to recover are alternatively redefined as the observed signals at the first sensor. Namely,

the following mixing model in the T-F domain is henceforth discussed in this paper.

X1[k, l] =
N∑

i=1

Si [k, l] (3.4)

Xm[k, l] =
N∑

i=1

Hmi[l]Si [k, l] (m= 2, · · · ,M) (3.5)

whereSi [k, l] is the i-th source signal observed at the first sensor location, andHmi[l] (m=

2, · · · ,M) eventually represents the DFT domain operation of the subsample delay of the

i-th source signal, which is caused between them-th sensor and the first sensor. In a later

discussion and experiments in this study, the cases of two sources (N=2) and two sensors

(M=2) are considered without loss of generality.

3.3.2 WDO in T-F masking

The assumption on which the proposed separation algorithm is based is WDO. This property

being satisfied between source signals is commonly assumed in the T-F masking algorithm,

and it is approximately satisfied for speech signals. The WDO means that sources have dis-

joint T-F supports. This inherently stems from the sparseness of the T-F domain component
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distribution of speech signals. The definition and its use in separation for the two-source

and two-sensor case are described as follows.

Consider two source signalssi(τ) (i = 1,2), and define the T-F supportsΩi of their T-F

domain representationsSi [k, l] by

Ωi :=
{
[k, l]|Si [k, l] , 0

}
i = 1, 2 (3.6)

In practice, the above nonzero condition is replaced by|Si [k, l]| < ewheree is a sufficiently

small positive value. Then, the WDO assumption between two source signalss1(τ) and

s2(τ) can be represented by

Ω1 ∩Ω2 = ϕ (empty set) (3.7)

The following null component domain, denoted byΩN, is also introduced.

ΩN = Ω1 ∪Ω2, · ; complementary set (3.8)

Therefore, the WDO stipulated that the T-F domain representation of the mixed signal

X1[k, l], given by Eq. (3.4), can be decomposed into the following three parts with no

overlap.

X1(k, l) =


S1[k, l] [k, l] ∈ Ω1

S2[k, l] [k, l] ∈ Ω2

0 [k, l] ∈ ΩN

(3.9)

The T-F binary masking separation utilizes the above disjoint separation assumption. Its

essential process is to separate the support ofX1[k, l] into two subregionsΩ1 andΩ2, and

to obtainS1[k, l] andS2[k.l] shown in Eq. (3.9). In order to perform this separation, a pair

of X1[k, l] andX2[k, l] is used to introduce the spatial feature of the T-F cell at [k, l], and the

clustering process is performed in the estimated feature space.

The above clustering resultsΩi generate the separation masks,Mi [k, l], as the binary

functions defined in the T-F domain.

Mi [k, l] =

 1 [k, l] ∈ Ωi

0 otherwise.
(i = 1, 2) (3.10)

The final stage of the separation process is to obtain time-domain-separated signals ˆsi(τ)

(i = 1, 2) by applying the inverse STFT to

Ŝi [k, l] = Mi [k, l]X1[k, l] (i = 1, 2) (3.11)
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3.3.3 Clustering feature

As stated in the previous section, the objective of the separation algorithm is to classify

T-F cells composing the support ofX1[k, l] into eitherΩ1 or Ω2. Therefore, the first pro-

cess is to introduce the appropriate feature of the T-F cell at [k, l] by utilizing X1[k, l] and

X2[k, l]. Commonly used features are the signal level or attenuation ratio and the frequency-

normalized PD betweenX1[k, l] andX2[k, l]. Features conventionally used in the clustering

are summarized in Ref. [24], and these are evaluated from the separation performance point

of view. The basic features associated with the attenuation ratioα and the delayδ between

sensors are respectively defined as

α =
|X1[k, l]|
|X2[k, l]| (3.12)

δ[k, l] =
L

2π fsl
ϕ[k, l] (3.13)

whereϕ[k, l] is the PD betweenX1[k, l] andX2[k, l], as defined by

ϕ[k, l] = ∠X1[k, l] − ∠X2[k, l] (3.14)

One example of the phase difference versus frequency data plot is shown in Fig. 3.1.
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Figure 3.1: Example of phase difference versus frequency data plot. The mixture condition

is a male sources1 located at 0◦ and a female sources2 located at 50◦.
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3.4 PD-F distribution data

In thek-th frame, the PD-F data is defined as a collection of two-dimensional vectors.

{ l

ϕ[k, l]

 , l = 0 ∼ L
2

}
(3.15)

Figure 3.2 illustrates an example of the time series of the PD-F data plot.

Before discussing the proposed method in detail, four frequency bands are introduced

as follows. According to the low-frequency limit in human voice signals, the proposed

separation process is applied to the following range:

Bf ull := {l|l1 < l < L/2} (3.16)

where l1 = ⌊( f1 · L/ fs)⌋, ⌊ ⌋ is the Gauss floor function, andf1 is the analog frequency,

which is set to 80 Hz in this study. In the above full frequency range, the following three

frequency intervals, denotedBhigh, Blow, andBmid are defined below.

Bhigh := {l|l2 < l < L/2} (3.17)

Here, l2 = ⌊( f2 · L/ fs)⌋, and f2 is set at 400 Hz empirically. For source signals from any

direction, PD in the frequency range lower thanl2 becomes too small to determine source

direction exactly. The first part of the proposed PD-based separation algorithm is applied to

T-F cells in theBhigh range. The attribute of T-F cells used for clustering in the frequency

range lower thanl2 should adopt other features that are not associated with source location,

such as delay and attenuation ratio. Therefore, the third frequency range is introduced as

Blow := {l|l1 < l < l2} (3.18)

For the separation of T-F cells inBlow, we the utilize harmonic relationship between the

spectrum|X1[k, l]| in Blow and the spectra of initially separated signals in the relatively low

part of theBhigh range, denoted byBmid. Therefore the following range for estimating

fundamental frequency is introduced.

Bmid := {l|l2 < l < l3} (3.19)

Here, l3 = ⌊( f3 · L/ fs)⌋, and f3 is set at 1 kHz in the method. Using this interval, the

fundamental frequency is estimated in order to employ the harmonic structure relation with

the spectrum inBlow. The various frequency band is shown in Fig. 3.3. The detailed

algorithm will be given later.
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(a) Received signals.
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(b) NSA frame wherek1 = 4.
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(c) SSA frame wherek2 = 19.
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(d) SSA frame wherek3 = 24.
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(e) DSA frame wherek4 = 35.

Figure 3.2: Sequence of PD-F distribution. The mixture condition is a male sources1

located at 4◦ and a female sources2 located at 51◦.



3. Speaker localization and source separation using PCA and harmonic structure
3.4. PD-F distribution data 46

Figure 3.3: Various frequency band

The normalized PD-F data set at thek-th frame, denoted byPk, is manipulated hereafter

for simplifying the analysis:

Pk ,

pk(l) =

 p1
k(l)

p2
k(l)

 =
 l/( L

2)

ϕ[k, l]/π

 , l ∈ Bhigh

 (3.20)

For normalized PD-F, the gradientβ[k, l] is defined as

β[k, l] =
ϕ[k, l]/π

l/( L
2)
=

L
2π
· ϕ[k, l]

l
(3.21)

3.4.1 Outline of the method

The proposed method requires the following two assumptions.

(A1) Although the received signals are mixture signals, for each sourcesi(τ), there exist

some time frames in the T-F domain where onlysi(τ) is active. These frames can be used

to detect the source direction ofsi(τ).

(A2) Since this research mainly focuses on the source separation algorithm, the noise level

is assumed to be sufficiently low with respect to the level of the sources. Therefore, its noise

robustness is not concerned, like other BSS separation studies.

The outline of the proposed method is shown in Fig. 3.4 and summarized as follows.

(1) NSA frame detection: local power at a frame is used to determine whether the frame

may be classified as NSA or Source Active (SA).

(2) PCA is applied to the PD-F plot of each SA frame, and the principal eigenvalue ratio is

used to separate individual SA frames into SSA and DSA.

(3) Source directions are estimated by some selected reliable SSA frames. Then, the results

can determine whether either of the source signals is active at each SSA frame.
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(4) The separation algorithm with two subseparation steps is applied to each DSA frame

using PD-F scattered plots.

(5) Integrating the above separation processes, two supports,Ω1 andΩ2 are obtained. The

masksM1[k, l] andM2[k, l] are generated by Eq. (3.10), and finally, separated source signals

are estimated.

Figure 3.4: System flow

3.5 Non-source active (NSA)

(A2) stipulates that environmental noise power would be sufficiently small. Under this

assumption, the average power at one frame is utilized to indicate the possible presence of

speech in the frame. Thus, the preliminary threshold operation of frame power, known as a

basic voice activity detection algorithm, is valid.
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The average local power of framek is defined as

E(k) :=
1

L/2+ 1

L
2∑

l=0

|X1[k, l]|2 (3.22)

NSA is judged by

i f E(k) < Th1, then k-th frame∈ NS A (3.23)

In this study,Th1 is determined beforehand by a pre-experiment during no utterance.

Th1 = E0 + 2σE (3.24)

E0 is the average noise power, andσE is the standard deviation.

E0 =
1
N

N∑
k=1

E(k) k ∈ NS A (3.25)

σE =

√√√
1
N

N∑
k=1

(E(k) − E0)2 k ∈ NS A (3.26)

3.6 Single source active (SSA)

As observed from the typical PD-F distribution of the SSA frame in Fig. 3.2 (c)(d), whether

the given frame is in the SSA state or not would be reflected in a scattering feature along

a constant gradient line, and the gradient indicates the source direction. The relationship

between the gradientβ in a normalized PD-F plane defined in Eq. (3.20) and the source

directionθ (as shown in Fig. 3.4) is

β = fs ·
d
c

sinθ (3.27)

The following will describe (i) how to identify the SSA frame, and (ii) how to use SSA

frames to estimate source directions.

Because the PD estimation in low-power-level T-F components is unreliable, the subset

P̃k of Pk are defined as

P̃k =
{
pk(l) |

|X1[k, l]|2
B(k)

> Th2
}

(3.28)

B(k) =
2
L

L/2−1∑
y=0

|X1[k, y]|2 (3.29)
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Th2 is set to 0.05 empirically.

PCA is applied toP̃k by computing the following 2× 2 principal component covariance

matrix�k:

�k :=
1

L/2− l0

L/2−1∑
l=l0

pk(l)p
⊤
k (l)

=

 R11(k) R12(k)

R21(k) R22(k)

 (3.30)

Denoting the eigenvalues of the covariance matrix of�k by λ1(k) andλ2(k) (assume

λ1(k) ≥ λ2(k) without loss of generality), their corresponding eigenvectors are represented,

respectively, as

e1(k) :=

 cosβ(k)

sinβ(k)

 (3.31)

e2(k) :=

 cosγ(k)

sinγ(k)

 (3.32)

whereβ(k) andγ(k) (rad.) are the gradients of the principal axes in thek-th frame. Theoret-

ically, |β(k)| ≤ 1 is satisfied, soβ(k) is redefined if|β(k)| > 1:

β(k) =


β(k), |β(k)| ≤ 1

1, β(k) > 1

−1, β(k) < −1

(3.33)

From Eq. (3.27), source directionθ(k) with respect toβ(k) is given by

θ(k) = sin−1[β(k)/( fs ·
d
c

)] (3.34)

Next, the ratio of the principal eigenvalue defined by

r(k) :=
λ2(k)
λ1(k)

(3.35)

is introduced to determine the SSA frame from others. If the PD-F data in thek-th time

frame are distributed solely along the first principle axis and not along the second axis,r(k)
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(a)k = 19,λ1 = 0.055,λ2 = 0.003,r = 0.064,β = 0.72

(b) k = 24,λ1 = 0.099,λ2 = 0.014,r = 0.140,β = 0.02

(c) k = 35,λ1 = 0.092,λ2 = 0.057,r = 0.618,β = 0.39

Figure 3.5: A set of examples applying PCA to several PD-F distribution frames. The

mixture condition is the same as in Fig. 3.2.
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Figure 3.6: One result of eigenvaule ratio
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is small. Therefore, the frame will be classified into SSA. A set of examples applying PCA

to several PD-F distribution frames is shown in Fig. 3.5. One result of eigenvaule ratio is

shown in Fig. 3.6.

For each SSA frame, theθ(k) obtained by Eq. (3.34) indicates the direction of the source

that is active at the frame. These observations lead to the following steps for estimating the

source directions and identifying the active source at every SSA frame.

(1) The following criterion is applied to determine whether thek-frame is SSA.

r(k) < ThS S A (3.36)

Later,ThS S Ais determined to be 0.3 experimentally. A set of the frame indices satisfying

the condition

T := {k|r(k) < ThS S A} (3.37)

is defined.

(2) The SSA frames cannot be in a single frame, but in several continuous frames. LetT j

( j ∈ J) be a time interval in T corresponding to thej-th SSA period, and define the smallest

eigenvalue ratio in eachT j by taking

r j := min
k∈T j

r(k) (3.38)

and its source direction isθ j calculated by Eq. (3.34).

(3) The first source directionθ1 is provided by the minimumr j in j ∈ J.

θ1 = θu, u = arg min
j∈J

r j (3.39)

(4) The other source directionθ2 is determined as the directionθz which has the next smallest

r j ( j , u, j ∈ J). That is,

θ2 = θz, z= arg min
j,u

r j (3.40)

(5) Identify the active source at each SSA time frame, and classify all T-F cells as eitherΩ1

orΩ2 as follows:

 i f |θ(k) − θ1| ≤ |θ(k) − θ2| k ∈ T, { [k, l] | ∀l} ∈ Ω1

otherwise k∈ T, { [k, l] | ∀l} ∈ Ω2

(3.41)
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3.7 Double source active (DSA)

Now the set of DSA frames satisfying the conditionr(k) > ThS S A is considered in this

section. The problem that must be solved is the clustering of the PD-F data in the DSA

frame into two sets. In theory, when two sources are active simultaneously and the WDO

assumption holds, accurately estimated PD-F data fall along two lines through the origin.

The gradients of these lines correspond toθ1 andθ2. However, in practical circumstances,

the PD-F data distribution is more or less spread around these lines because of phase estima-

tion error. Assuming independent identically distributed (i.i.d.) estimation error, clustering

of the PD-F data in the low-frequency band is inherently difficult. This means that the T-F

cell feature corresponding to the spatial location of sources is not suitable for source sepa-

ration in the low-frequency band. On the basis of the experimental results obtained with the

microphone array setup, the low-frequency band is set asBlow.

The first separation process in the DSA frame is the initial separation in theBhigh band

accomplished by applying the nearest neighbor approach between the PD-F data and the

lines corresponding to the directionsθ1 andθ2 obtained. Next, the separation inBlow utilizes

the harmonic structure relationship between the spectrum of observationX1[k, l] in Blow and

the spectra of initially separated signals inBhigh. Finally, by integrating the initial separation

masks inBhigh andBlow, signals in the DSA frame are separated. One example of separation

strategy in DOA frame is shown in Fig. 3.7.

3.7.1 Initial separation

The source directions have been estimated asθ1 andθ2, and their corresponding gradients

in the normalized PD-F plane areβ1 andβ2 defined in Eq. (3.27). All the points in these

two lines can be expressed as

ϕn(l) = βn · l (n = 1,2) (3.42)

In thek-th frame, the nearest neighbor method gives the binary maskM̃i [k, l] in Bhigh, which

is defined as

M̃i [k, l] =

 1, i f i = arg min
n
|ϕ[k, l] − ϕn(l)|, l ∈ Bhigh

0, otherwise
(3.43)

Therefore, the separated individual signalsS̃i [k, l] (i = 1,2) are represented by

S̃i [k, l] = M̃i [k, l]X1[k, l], l ∈ Bhigh (3.44)
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Figure 3.7: One example of separation strategy in DOA frame where time framek = 35.

The mixture condition is the same as in Fig. 3.2.

3.7.2 Local maximum inBmid

The final task in the separation process is to generate individual masks applied on the T-F

cells in theBlow range. In this final separation process, the observed amplitude spectrum

given by|X1[k, l]| with l ∈ Blow is compared with the initially separated spectraS̃1[k, l] and

S̃2[k, l] with l ∈ Bmid in terms of harmonic relationships.

First, with the help of local maximum frequencies of|S̃i [k, l]|, the harmonic structure in

Bmid is estimated for each separation spectra. Smoothing with the 5-point running average

is applied for interpolation.

Vi [k, l] =
1
5

2∑
j=−2

|S̃i [k, l + j]|, l ∈ Bmid (3.45)

The local maximum frequencies ofVi [k, l] which satisfy the following two conditions

are selected.

(1) Relative sufficient amplitude, where

|Vi [k, l]|
max

y
|Vi [k, y]| > ThV (3.46)

In later experiments,ThV = 0.2 is adopted.

(2) The amplitude is maximum among the amplitude values at several adjacent frequency
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bins. Because the fundamental frequency of the human voice is greater than 80 Hz,

l >

⌊
L
fs
· 80

⌋
= 10 (3.47)

which means that it is only possible to have one harmonic frequency within at least 10

adjacent bins.

Under these conditions, the frequency bins of local maxima are obtained. The obtained

local maximum frequencies of|S̃i [k, l]| are denoted asbi1(k),bi2(k), · · · , andqi(k) denotes

the number of local maxima inBmid.

3.7.3 Harmonics estimation

The distance between adjacent local maxima∆di(k) is defined as

∆di(k) = bi2(k) − bi1(k), qi(k) ≥ 2 (3.48)

Whenqi(k) = 0 or 1, let consider that there are no harmonic characteristics in the source

S̃i [k, l] at framek. The estimated harmonicsgin(k) in Blow is

gin(k) = bi1(k) − ∆di(k) · n (3.49)

where n = 1, 2, 3, · · · , gin(k) ∈ Blow, andgin(k) means the harmonic structure of sourcei at

framek.

There is a special situation in which bothq1(k) andq2(k) = 0 or 1. In this case, the

harmonics is set to be the same as in the last previous frame as follows:

gin(k) = gin(k− y) (3.50)

for the frames with the smallesty > 0 satisfyingqi(k− y) ≥ 2 andk− y ∈DSA.

One example of harmonics estimation is shown in Fig. 3.8 (a). The local maxima of the

initial separated signal|S̃1[k, l]| are:b11(18)= 53, b12(18)= 70. Then the location of local

maxima and their distance are used to estimate the harmonic structure in low-frequency

band, and the estimated harmonicsgin(k) are: g11(18) = 36,g12(18) = 19. Compared with

the source signal in Fig. 3.8 (b), the estimated harmonics are almost the same as source

signal.

3.7.4 Mask generation

Assume that the bandwidth of each harmonic inBlow is the same, and use 5 adjacent cells

(i.e., 40 Hz) as the bandwidth in the T-F domain. The mask inBlow is defined as
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(a) Initial separated signal
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(b) Source signal

Figure 3.8: One example of harmonics estimation. The mixture condition is: a male source

at 4◦ and a female source at 40◦. The above signal is that of the male source. The time

framek is 18.
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M̄i [k, l] =


1, i f gin(k) − 2 < l < gin(k) + 2 and

qi(k) ≥ 2, l ∈ Blow, n = 1,2,3, · · ·
0, otherwise

(3.51)

The final mask is represented by

Mi [k, l] = M̃i [k, l] + M̄i [k, l] (3.52)

The separated signal is obtained as shown in Eq. (3.11).

3.8 Experiments

3.8.1 Experimental conditions

Some experiments are performed in a conference room to evaluate the proposed methods.

The experimental environment is shown in Fig. 3.9. The experimental setup is shown in Fig.

3.10, and the experimental parameters are shown in Table 3.1. The experimental parameters

are determined by the following reasons: the sampling frequency and the windows length

determine the frequency resolution. Proper frequency resolution will concentrate the speech

signal power spectrum on specific frequency components and minimize the degree of fre-

quency component overlap between two speech signals. According to some researchers’

investigation [23], a suitable frequency resolution is about 10 Hz. In this study, the sam-

pling frequency is 8 kHz, and the windows length is 1024, so the frequency resolution is

about 8 Hz. In order to avoid spatial aliasing, the delay between two microphones must be

less than a sample. While the sampling frequency is 8 kHz, the maximum distance between

two microphone is 4.25 cm, so the distance between microphones is set to 4 cm.

The speaker used in the experiments is SONY speaker system model NO. SRP-S320.

The microphone is SONY electret condenser microphone ECM-77B. The Acoustic Society

of Japan (ASJ) continuous speech corpus is used for research as the source signal. The

mixture signals are combinations of the same sex or opposite sex from 10 male and 10

female sources, such as male & male, female & female, and male & female.

Note that a pair of microphones detects the signals where the sources are at the half-side

with respect to the array axis, because the signals from the symmetrical positions of the axis

are the same at the sensors. Thus the source direction range is 180◦. The condition of the

minimum difference in the source direction angle is 10◦. This condition is a result of the
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limiting ability of the directivity resolution of the setup. One source is placed at the broad

side (0◦) and the location of the other source is varied from 0◦ to 80◦ at intervals of 10◦.

Figure 3.9: Experimental environment

Table 3.1: Experiment parameters

Source Signal Speeches of 5 s

Sampling Frequency 8 kHz

Sound Velocity 340 m/s

Window Hamming

STFT Frame Length 1024

Frame Overlap 512

3.8.2 Experimental results

The separation algorithm is based on the DOA estimation in SSA. the DOA estimation

results are evaluated by estimation errorθerror, which is defined as

θerror = |θ − θtrue| (3.53)
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Figure 3.10: Experimental setup

whereθ is the estimated source direction, andθtrue is the true source direction. The DOA

estimation results are shown in Fig. 3.11. It can be observed that the proposed method can

properly detect the source direction. At the position of large source direction, the estimation

error increases because of the low resolution near endfire (90◦).

Fig. 3.12 shows the average SIR improvement results of the proposed and conventional

delay-histogram methods. It is obvious that the proposed method exceeds the conventional

method.

The effective separation of the proposed method is brought by integrating results of

NSA, SSA, and DSA. Among them, the primary component is DSA separation, because it

has many time frames, and contains a high power value that can influence the result to a

large extent. The proposed method can match the component to the corresponding source

on the basis of harmonic structure, but conventional method cannot. One example is shown

in Fig. 3.13. The next contribution is obtained by SSA separation, which cannot improve

the separation as well as DSA, but provides very important DOA information. The average

improvement ratio for different types of time frames is shown in Tab. 3.2.

The accuracy of detecting SSA in this experiment is checked. Tab. 3.3 shows the

results. The total number of SSA frames is estimated manually, and 75% of those frames

are correctly detected by the proposed method. To the remaining 25% frames, which are

undetected because of phase estimation error, the separation algorithm is applied. Tab. 3.4
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Figure 3.11: DOA estimation results in SSA

Table 3.2: Average improvement ratio

SIR improvement (dB) ratio

Total 6.22 100%

By NSA frame 0.58 9.3%

By SSA frame 1.36 21.9%

By DSA frame 4.28 68.8%

demonstrates the performance of harmonic structure detection in our approach. The rate

of successfully detecting harmonic structure inBmid relative to the DSA frames with vowel

and/or vowel-like frames is shown. The initial separation ability will actually influence

the estimation accuracy. One example of failure harmonics estimation caused by initial

separation is shown in Fig. 3.14. The initial separation missed two harmonics inBmid,

so the proposed method cannot detect correct local maximum, and give wrong harmonics

estimation inBlow.

3.9 Summary

A new time–frequency masking method was proposed for separating mixed speech signals

utilizing phase difference versus frequency data in a frame-by-frame manner. The first
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Figure 3.12: Experimental results: The error bar shows the standard deviation.

Table 3.3: SSA identification accuracy rate

Total number of SSA frames 101

Correct identification by proposed method 75

Accuracy rate 74.2%

contribution of this study is the theory on stereophonic cases for estimating source directions

by introducing a confidence measure at each time frame. The second contribution is the use

of harmonic structure of initially separated signals appearing in the middle-frequency band

through the consistency checking with the mixture spectrogram in the low-frequency band.

The experiments were performed and the proposed method was evaluated by comparison

with the conventional separation algorithm utilizing the delay feature. It was shown that

enhancement was achieved.

Since the proposed separation method basically operates at each frame, the BSS prob-

Table 3.4: Harmonics estimation accuracy rate

Total number of DSA frames with harmonics 258

Correct estimation by proposed method 173

Accuracy rate 67.1%
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(a) Source signal
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(b) Separated signal by conventional method
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(c) Separated signal by proposed method

Figure 3.13: Comparison of separation results: The conditions of the mixture signal are: a

male source at 0◦ and a female source at 60◦. The above source signal is that of the male

source.
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(a) Initial separated signal
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(b) Source signal

Figure 3.14: One example of failure harmonics estimation caused by initial separation. The

mixture condition is: a male source at 14◦ and a female source at 50◦. The above signal is

that of the male source. The time framek = 28.



3. Speaker localization and source separation using PCA and harmonic structure
3.9. Summary 64

lems for moving sources will be of interest in future studies. We compare our method to

the previous one in which the delay or direction parameter is used without causing spa-

tial aliasing. Therefore, the directional resolution is limited by small-distance sensor pairs.

The comparison of the proposed method and the conventional methods on the basis of non-

directional information, such as attenuation or harmonics, is another future issue.



Chapter 4

DOA estimation

4.1 Introduction

The underlying direction of arrival (DOA) estimation problems addressed in this chapter

are listed as follows:

a) The use of a pair of microphones (doublet).

b) Multiple simultaneously uttered speech signal sources under the assumption

that the number of sources is known a priori.

c) Underdetermined cases, where the sources outnumber the sensors.

d) The intersensor distance is bounded so as to avoid spatial aliasing. For in-

stance, 4 cm spacing for an 8 kHz sampling rate.

As the doublet or stereophonic sensor investigated in this paper is the simplest array

sensor system, its array processing capability is obviously limited. Nevertheless, the study

of how to improve the accuracy of a DOA estimator implemented in a doublet is meaningful

because any complex array configuration can be considered as a combination of doublets.

In addition, an effective method for doublets could be generalized to more complicated

multiple-doublet systems [54] [73].

As stated in b), the DOA estimation problem considered here deals with estimating the

DOA of multiple speech signals uttered simultaneously. The same framework is commonly

used in blind source separation (BSS) which means that the separation problem of speech

mixtures can be solved by only considering observations at microphones. Therefore, obtain-

ing an accurate DOA in the case of multiple sources is closely related to the BSS problem.

The underdetermined situation c) means that the proposed method should be applicable to
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cases where the number of sources can exceed the number of sensors. This condition is im-

portant when dealing with practical audio conditions and has been the main focus of recent

BSS approaches [22–25,29,46,54–56,63,73].

Two novel DOA estimation methods are proposed involving (1) the Hough transform

[74] and (2) reliability index and kernel density estimation [75–78]. The first method applies

the Hough transform to the phase difference (PD) versus frequency (PD-F) distribution of

received mixed signals and estimates the DOA. By introducing the bandwidth in the Hough

parameter space, the errors in the real data are considered, and the stability and accuracy

of DOA estimation are guaranteed. This approach can also be regarded as an attempt to

combine sounds and images.

The DOA estimation using the reliability index and kernel density estimation is based

on the following three novel approaches.

1) Inspired by the ideas of TIme-Frequency Ratio Of Mixtures (TIFROM)-like

assumptions, a novel reliability index is introduced. Then, the selected cells

with higher reliability are solely utilized for DOA estimation.

2) A statistical error propagation model relating PD estimation and the conse-

quent DOA is introduced. The model leads to a probability density function

(PDF) of the DOA, and then the DOA estimation problem is reduced to finding

the most probable points of the PDF.

3) The final DOAs are determined using the kernel density estimator by utiliz-

ing a proposed bandwidth control strategy.

Comparing the proposed method with DEMIX, the proposed method utilizes the PD

and its frequency-normalized quantity, i.e., the TDOA between sensors is used instead of

using the steering vectors in DEMIX. The PD is focused by eliminating the amplitude factor

of the steering parameter as in generalized cross-correlation phase transform (GCC-PHAT).

The reliability or confidence measure of a time-frequency (T-F) cell’s PD is used to exploit

the consistency of the TDOA in the local window of the underlying cell. This idea was

derived from the following assumption: when a single source occurs in a given set of T-F

windows, TDOAs should take almost the same values in the windows and these values are

considered to be reliable. The consistency of the TDOA in a window is evaluated by using

the variance of the TDOAs for whole T-F cells in the window.

The second investigation based on the introduced statistical error propagation model

shows that the DOA estimation problem can be altered to obtain the local maxima or peaks



4. DOA estimation
4.2. DOA information 67

of a DOA PDF generated by an assumed error distribution in the PD. The use of kernel

density estimation is the third novel point.

Starting from the time order, the DOA estimation method using the Hough transform

is first proposed, then the method using the reliability index and kernel density estimator is

proposed. Compared with the former method, cell selection using the reliability index and

the DOA error distribution model in the second method is more novel and effective. This is

why the second method is mainly discussed in this chapter, especially in the experimental

part. However, some advantages of DOA estimation using the Hough transform should also

be noted, for example, its outstanding performance in dealing with spatial aliasing.

4.2 DOA information

The observation model is the same as that in Chapter 3. When an anechoic model without

a signal level difference between sensors is assumed, and the first sensor (m = 1) is used

as the reference, according to the Eq. (2.16) and WDO assumption Eq. (2.24), the ratio

between two received signalsXm[k, l] is

X2[k, l]
X1[k, l]

=
H2n[l]
H1n[l]

= exp[j
2π fsl

L
· d

c
sinθ], (4.1)

whered is the distance between the sensors,c is the sound velocity, andθ is the source

direction.θ = 0 corresponds to the broadside direction. Using

Xm[k, l] = |Xm[k, l]|exp[j∠Xm[k, l]] , (4.2)

then the PDϕ[k, l] between two observationsXm[k, l] (m= 1, 2) is defined by

ϕ[k, l] = ∠X2[k, l] − ∠X1[k, l]. (4.3)

Finally,

ϕ[k, l] =
2π fsld

Lc
sinθ = ∆ωTl sinθ, (4.4)

whereT = d
c is the maximum delay time between sensors and∆ω = 2π fs

L is the unit

frequency width inL-point short-time Fourier transform (STFT) analysis. From Eq. (4.1),

the TDOA normalized byT, denoted byδ[k, l], can be obtained by the following frequency

normalization.

δ[k, l] = sinθ =
ϕ[k, l]
T∆ωl

(4.5)
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4.3 DOA estimation using delay histogram and Hough trans-

form

4.3.1 Delay histogram

A conventional method of DOA estimation based on T-F clustering methods is the delay-

histogram algorithm based on the DUET [22]. This method generates the histogram dis-

tribution of delaysδ[k, l] that are generated by PD as given by Eq. (4.5). Then number of

peaks in the obtained histogram is the same as the number of sources that are detected, and

these peaks are used to determine the DOAs. Some examples of DOA estimation using a

delay histogram are shown in Fig. 4.1.

4.3.2 Hough transform

Because DOA estimation corresponds to finding a linear phase relationship in a PD-F dis-

tribution, the Hough transform can be applied as a line extraction technique. In our case of

multiple DOA estimation, the problem is to fit a number of lines, each of which corresponds

to an individual source. The Hough transform, named after Paul Hough who patented the

method in 1962, is a feature extraction technique originally used in image analysis, com-

puter vision, and digital image processing.

A useful parameterization for a straight line in (x, y) plane is to consider its shortest

distance from the originρ and its orientationθ:

ρ = xcosθ + ysinθ. (4.6)

For a normalized PD-F distribution, the orientationθ is equivalent toβ as defined by Eq.

(3.21).

The first study in which the source direction was estimated using the Hough transform

was that of Suzuki et al. [79]. The main purpose of their study was to develop an omni-

directional acoustic sense with which a robot can localize and recognize multiple sounds

from an unlimited number of directions even in a noisy environment. They first investigated

the relationship between source direction and PD, then used the Hough transform to detect

straight lines from the PD-F space for the detection and localization of sound sources. In

their Hough transform approach, a histogram of the gradients given by the PD-F data is

generated. The peaks of this histogram are then used to estimate the DOAs. Therefore, the

Hough method with the constraintρ = 0 is identical to the delay-histogram method.
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(a) The mixture condition is a male source located at−23◦ and a female source located at

34◦. The estimation results are−22◦ and 33◦.
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(b) The mixture condition is a male source located at 14◦ and another male source located

at 42◦. The estimation results are 14◦ and 40◦.

Figure 4.1: Some examples of DOA estimation using a delay histogram
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Another Hough transform approach for the blind localization of several sound sources

from two binaural signals was proposed by Marchand et al. [80] in 2009. First, the binaural

signals are organized as two-dimensional (2D) data, where each sound source appears as a

line. Second, the Hough transform is used to recognize these lines. The slopes of the lines

give the mixing coefficients and directions of arrival (azimuths). On the basis of only one of

the interaural levels or time differences, two variants of their methods are given. Since this

new contribution is based on source sparseness, the method can deal with underdetermined

cases, which means that three source directions can be estimated using two received signals.

This method as well as that of Suzuki et al. are applicable in cases involving spatial aliasing.

Unlike [79] and [80], the proposed method in this thesis introduces the concept of band-

width in the Hough transform, which reflects the phase estimation error under real acoustic

conditions and obtains accurate results. In the next section, the proposed Hough transform

with a bandwidth approach is introduced, which is followed by the T-F cell selection pro-

cess.

4.3.3 Hough transform in PD-F distribution

An example of a PD-F data set defined by the vectors{l, ϕ[k, l]} in a 2D plane is shown in

Fig. 4.2(a). In the proposed method, the following frequency band is used:

Bhigh := {l|l > l1}, (4.7)

wherel1 = ⌊( f1 · L/ fs)⌋, f1 = 400 Hz, and⌊⌋ is the Gauss floor function, which maps a real

number to the largest previous integer.

Cell selection and normalization

A set of T-F cells, that satisfy the following two conditions is selected:

(1) Because the PD in the low-frequency band (l , Bhigh) is too small for accurate estima-

tion, l is restricted such thatl ∈ Bhigh.

(2) The maximum amplitude valueA(l) in each frequency bin is defined byA(l) = max
k∈[0,K]

|X1[k, l]|,
and then the T-F cells [k, l] satisfying

γ[k, l] =
|X1[k, l]|

A(l)
≥ Th1 (4.8)

are selected, whereγ[k, l] is used as the weight factor in the Hough transform, andTh1 = 0.5

is set on the basis of the result of experiments. This criterion is used to detect the line

in the PD-F distribution. Owing to the use of the relative power for cell selection, the

points in the PD-F distribution will be distributed in every frequency bin, rather than in only
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(a) All T-F cells [duration 5 seconds]
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(b) Selected T-F cells [duration 5 seconds]

Figure 4.2: PD-F distribution.fs = 8 kHz. The mixture condition is a male source located

at 4◦ and another male source located at 51◦.
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some frequency bins, which will be helpful for obtaining the line direction using the Hough

transform. The selected cells [k, l] are denoted asΩ1. An example of a PD-F distribution of

Ω1 is shown in Fig. 4.2(b).

For the analysis, all vectors inΩ1 are normalized by

[y(l), zk(l)] := [l/(L/2), ϕ[k, l]/π]. (4.9)

Angle range

The gradient of a line from the origin in the normalized PD-F plane, denoted byα, is

related to the actual DOAθ (degrees) by the equationθ = arcsin[ Lc
2π fsd

· tanα]. In addition,

the theoretical limit ofα is given by|α| ≤ arctan|2π fsd
Lc |, whered is the distance between

sensors andc is the sound velocity. From this inequality,α is restricted within the interval

|α| < αlimit .

Calculation of Hough transform

By transforming the 2D grid index [k, l] ∈ Ω1 into an arbitrary one-dimensional (1D)

alignment integer indexn, the corresponding formula is obtained

[x(l), yk(l)] → [xn, yn], γ[k, l] → γn, [k, l] ∈ Ω1. (4.10)

The Hough transform is calculated by

ρn(α) = xn · cosα + yn · sinα, |α| < αlimit , (4.11)

whereρ is the shortest distance from the origin to the line.

4.3.4 Hough transform with bandwidth

In theory, the DOA corresponds to the gradient angleα for ρ = 0. However, to consider the

phase estimation error at each frequency, the interval|ρn(α)| ≤ ϵ0 cosα at eachα is com-

bined into a unit rectangular cell for the Hough voting procedure. The bandwidth interval of

Hough transform|ρn| is related with the allowable error range of phase difference estimation

ϵ0 and orientationα, which is shown in Fig. 4.3. Throughout the experiments in this study,

ϵ0 is set to 0.03.

Assume that T-F cells with low power are not confidence, therefore the relative ampli-

tude ratio is utilized as the criterion to select reliable cells. At the same time, the selected

cells should play different roles in the voting process of Hough calculation depending on

their confidence ability. The relative amplitude ratio is therefore used as weight factor,
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Figure 4.3: The reason why|ρn| is related withα.

which means the high power cells will devote more in Hough calculation. The intersection

value at angleα (denoted byIV(α)) with weightγn is calculated as

IV(α) =
∑
Ω1

γn, i f |ρn(α)| ≤ ϵ0 cosα. (4.12)

As demonstrated in Fig. 4.4, the obtained value in experiments diverges from the the-

oretical value at the same frequency. If this value is still regarded as voting for the line

through the origin, it will give a false DOA estimation. However, all the lines with the same

slope but various values ofρ within the bandwidth±ρn(α) are considered, the effect of er-

rors will be diminished significantly, and the allowable error can also vote for the correct

PD distribution line.

Figure 4.4: Demonstration of bandwidth in Hough transform. The mixture condition is a

male source located at 4◦ and another male source located at 51◦.
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In practice,IV(α) is evaluated at sampledα values, such as integer values within the in-

terval [−αlimit , αlimit ]. The DOA estimation is performed as follows. Theα1 that maximizes

IV(α) gives the first source directionθ1 using the relationship betweenα andθ. Next, the

DOA θ2 is obtained using theα2 at which IV(α2) is a local maximum taking a submaxi-

mum value andθ2 is more than 10◦ apart from the estimated DOAθ1. Some examples of

intersection-value histograms are shown in Fig. 4.5.

4.4 Reliable T-F cell selection

4.4.1 Preselection of T-F cells

Before selecting a set of reliable T-F cells, as discussed in the next section, the preselection

of T-F cells on the basis of their local T-F power is performed. In this approach, T-F cells

whose amplitudes have significantly small values, namely, T-F cells for which the inequality

|Xm[k, l]| < Th1 (4.13)

is satisfied, are deleted to avoid unnecessary computation because the PD estimation errors

at these T-F points are relatively large. To investigate this, an experiment was performed

using real observed data from ten speakers with known DOAs. Since a known DOA gives

a real PD value, the PD estimation error can be obtained. Fig. 4.6 shows the obtained re-

lationship between the PD estimation error and the amplitude|Xm[k, l]|. All the observed

signals in this experiment were normalized by scaling to satisfy max
t
|s(t)| = 1. The ten re-

lationships between the PD estimation error and|Xm[k, l]| for individual speakers are shown

by dotted lines in the figure. The solid line in the figure shows the average relationship over

all speakers. From this figure, it can be seen that the PD estimation error is only related to

the amplitude at significantly small amplitudes.

Concerning the local power of T-F cells, the DUET [22] utilizes a cell’s attenuation ratio

and delay to enhance separation ability. However, the result shown in Fig. 4.6 indicates that

the local power of a cell has no specific relation to the magnitude of the PD estimation error

at the cell unless it has significantly small power. In this setup,Th1 = 2.0 is set on the basis

of the experimental results in Fig. 4.6. Further observations on the determination ofTh1

will be discussed in Sec. 4.8.1.
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(a) Two sources. The mixture condition is a male source located at 4◦ and another male

source located at 33◦. Two peaks indicate two source’s directions. The estimated source

direction are 3◦ and 33◦.
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(b) Three sources. The mixture condition is a female source located at−42◦, a male source

located at 14◦, and another female source located at 51◦. Three peaks indicate three

source’s directions. The estimated source direction are:−40◦, 15◦ and 48◦.

Figure 4.5: Two examples of intersection-value histograms
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Figure 4.6: Relationship between PD estimation error and amplitude. Each individual

speaker is one of 10 speakers: 5 males and 5 females.

4.4.2 Reliable cell selection

The PD estimation is subjected to unavoidable error. The success of the proposed method of

DOA estimation is expected if more reliable PD data are selected and outliers are eliminated.

Similarly to in [28], the following assumption is employed. When one source components

is dominant in a set of cells, all delays in it will take almost the same value; hence, the delay

and obviously the PD data in this set are expected to be reliable.

Conventionally, the confidence measure is obtained from the results of applying prin-

cipal component analysis to a set of steering vectors in individual horizontal and vertical

T-F regions in [28]. In [81], the entropy of the estimated DOAs in a rectangular T-F neigh-

borhood region was employed. Unlike these methods, the normalized delays given by Eq.

(4.5) are used to evaluate the feature consistency of the T-F cells in various regions, and a

novel reliability measure is introduced.

According to the above assumption, two types of T-F regions around cell [k, l] are con-

sidered: a temporal neighborhoodΓt[k, l] and a frequency neighborhoodΓ f [k, l],
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Γt[k, l] := {[k+ y, l] | |y| ≤ Y} (4.14)

Γ f [k, l] := {[k, l + z] | |z| ≤ Z}, (4.15)

where integersY and Z determine the numbers of cells in these regions, as denoted by

|Γt[k, l]| := 2Y + 1 and |Γ f [k, l]| := 2Z + 1. For eachΓt[k, l] and Γ f [k, l], the standard

deviations of the normalized delaysσΓt [k, l] andσΓ f [k, l] are calculated by

σΓ[k, l] =

√
1
|Γ|
∑

[p,q]∈Γ
(δ[p, q] − µΓ[k, l])2, (4.16)

where

µΓ[k, l] =
1
|Γ|
∑

[p,q]∈Γ
δ[p, q], Γ = Γt, Γ f . (4.17)

The reliability indexη[k, l] is calculated by

η[k, l] = exp{−min(σΓt [k, l], σΓ f [k, l])}, (4.18)

whereη[k, l] is a normalized index satisfying 0< η ≤ 1. WhenσΓt [k, l] and/or σΓ f [k, l]

at [k, l] is sufficiently small,η[k, l] approaches unity, consequently the corresponding delay

valueδ[k, l] is considered to be reliable.

To verify the validity of the introduced reliability index, the relationship between the

PD estimation error and the reliability indexη is observed withY andZ both set to 1 for the

experimental data with a known DOA. The experimental data used in this investigation are

the same as those used in Fig. 4.6. Fig. 4.7 shows both the results of individual speakers

and their averaged characteristic. The figure indicates that the PD error decreases as the

reliability index increases. Then, the cell group is selected with the highest reliability index

η[k, l] > ηth for subsequent DOA estimation. In this paper,ηth is set to 0.96. The reason for

using this value and related remarks are given in Sec. 4.8.1.

To present quantitative evidence of the assignmentY = 1 andZ = 1, as discussed above,

the correlation between the absolute PD estimation error|∆ϕ| and the reliability indexη is

investigated. Since a definite negative cross-correlation between these is appropriate, it is

evaluated for several combinations ofY andZ, then the values ofY andZ giving the largest

negative correlation are used as optimal values. For each pair of positive integersY andZ,

the sampled cross-correlationQ is calculated for the given data{|∆ϕi |, ηi |i = 1, 2, . . . , I } by
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Figure 4.7: Relationship between reliability index and PD estimation error settingY = 1

andZ = 1. The individual speaker is varied among 10 speakers: 5 male and 5 female.

Q =
1

I−1

∑I
i=1(|∆ϕi | − |∆ϕ|)(ηi − η̄)√∑I

i=1(|∆ϕi | − |∆ϕ|)2
√∑I

i=1(ηi − η̄)2
, (4.19)

where|∆ϕ| andη̄ are the sample averages of{|∆ϕi |} and{ηi} , respectively.

Among the values ofQ for variousY andZ, the case ofY = 1 andZ = 1 has the largest

negative cross-correlation value withQ(Y = 1) = −0.85 andQ(Z = 1) = −0.83. In other

cases, for example,Y = 2 andZ = 2, Q(Y = 2) = −0.68 andQ(Z = 2) = −0.64.

For each selected reliable T-F cell, the directionθ is computed using Eq. (4.5). Here the

set of computed directions is denoted as follows:

{
θ[l i ]i |i = 1,2, . . . , I

}
, (4.20)

wherei is the numbering integer of the selected cells,I is the total number of data, andl i is

the frequency bin in which theith cell is located.

4.5 DOA error distribution model

In the problem considered in this study, the reliable T-F cells selected in previous section

consist of the components of multiple sources. Even so, each of the selected T-F cells
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corresponds to the component of one source signal. Consider a T-F cell at which thenth

source dominates and is located in the unknown directionθn. From Eq. (4.4), the theoretical

PD in the cell is given by

ϕn[l] = ∆ωTl sinθn = Bnl, (4.21)

whereBn = ∆ωT sinθn. Sincek is not essential in this section, henceforth the frame indexk

is omitted. In thelth frequency bin, the observedϕn[l] is distributed around its mean value

Bnl,

ϕn[l] = Bnl + ∆ϕ[l], (4.22)

where∆ϕ[l] is a random variable representing the PD estimation error.

Then, assume that the random variable∆ϕ[l] is an independent identical Gaussian dis-

tribution with zero mean and constant varianceσ2
ϕ. The constant variance means that∆ϕ[l]

is independent of the frequency binl; this assumption is represented as follows:

∆ϕ[l] ∼ N(0, σ2
ϕ). (4.23)

Since main concern is with the first- and second-order statistics, the type of distribution is

not essential in developing the algorithm. The use of a Gaussian distribution is motivated

from the simplicity of theoretical manipulation. To verify that this assumption is really sat-

isfied in a statistical sense, it was checked experimentally. For the observed speech signals

of ten speakers (5 males and 5 females) from a known DOA which is varied from 0◦ to

70◦ at 10◦ intervals, PD estimation errors in individual frequency bins are calculated. The

averaged value and the standard deviation around it are calculated for eachl . The PD esti-

mation error for the ten speakers from the individual DOAs are shown in Fig.4.8 as dotted

lines. The average value and the standard deviation around it for eachl are also calculated

and illustrated in the figure. From Fig. 4.8, it can be verified that the average PD error∆ϕ[l]

is approximately zero and the standard deviation of PD errorσϕ is almost constant. This

means that assumption (4.23) is approximately satisfied.

Under assumption (4.23), the source directionθn estimated by Eq. (4.5) is also consid-

ered as a random variable, which is denoted byθ[l]n . Even though∆ϕ[l] is an independent

random variable with respect tol, the estimated source direction has a variance depending

on l. Now, the following proposition can be proved.

Proposition: If the random variable∆ϕ[l] is given by (4.23) andσϕ is sufficiently small,

the PDF ofθ[l]n is given by
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Figure 4.8: Mean and standard deviation of PD error vs frequency observed from ten indi-

vidual speakers

θ[l]n ∼ N(θn, σ
2
θn

[l]), (4.24)

where

σθn[l] =
1

T∆ωl cosθn
σϕ. (4.25)

The proof of this is as follows.

Denoting∆θn to represent the deviation of the estimation error from the real valueθn,

the following relationship between∆θn and∆ϕ[l] is obtained.

sin(θn + ∆θn) =
Bnl + ∆ϕ

T∆ωl
(4.26)

From the assumption thatσϕ is sufficiently small,∆θn takes a small value. Therefore, the

left-hand side of Eq.(4.26) can be replaced by the first-order approximation with respect to

∆θn as

sinθn + cosθn · ∆θn =
Bn

T∆ω
+
∆ϕ

T∆ωl
. (4.27)

By substituting Eq. (4.21), the relationship is satisfied

∆θn =
1

T∆ωl cosθn
∆ϕ. (4.28)
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From the assumption that∆θn ∼ N(0, σ2
θn

), Eq. (4.25) can be derived. The DOA error

distribution model in shown in Fig. 4.9.

Figure 4.9: DOA error distribution model

4.6 DOA estimation using kernel density estimator

The kernel density estimation algorithm [82] or Parzen window approach [83] is useful for

statistical estimation even for a multiple-source problem. The algorithm is used to obtain the

PDF ofθ[l] , which is theoretically described by Eq.(4.24), by using only observed samples.

If a large number of reliable observationsθ[l] can be obtained, the estimated PDF be-

comes reliable. This means that the maximum PDF point, namely, the mode of the PDF,

can be considered as the optimal estimate ofθn in the sense of the most probable value.

In the kernel density estimator approach, the DOA estimation problem is reduced to the

approximate estimation of the PDF ofθ[l] .

It is necessary to generalize the above theoretical investigation to multisource and mul-

tifrequency cases. The theoretical PDF formulation ofθ in the case of multiple sources

should be a Gaussian mixture with the same number of local modes (local peaks), each of

which corresponds to an individual source. For the selected reliable data used in Eq. (4.20),

the kernel density estimator is applied to estimate the multimodel PDF as follows:

p̂(θ) =
1
I

I∑
i=1

1
ϵ[l i ]

K(
θ − θ[l i ]i

ϵ[l i ]
), (4.29)

whereK(θ) is a kernel function, for which a Gaussian function is adopted in this study.ϵ[l]

is the bandwidth of the kernel. The idea behind applying the kernel density estimator is

to reflect the theoretical result obtained by the above proposition in the determination of

bandwidth. Since the variance ofθ[l] depends onl andθn as indicated in Eq. (4.25), the

bandwidth is selected using
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Figure 4.10: Estimated PDF for various~. The mixture condition is a male source located

at 4◦ and another male source located at 42◦.
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Figure 4.11: The relation between kernel bandwidthϵ and frequency binl with several

source directionθ.

ϵ[l i ] =
1

T∆ωl i cosθ[l i ]i

~, (4.30)

where~ is the control parameter and the observedθ[l i ]i is substituted in place of a real

unknownθn in Eq. (4.25). Accordingly, the dependence of the bandwidth onθn is indirectly

controlled. The control parameter~ is predetermined experimentally. Fig. 4.10 shows three

examples of estimated PDFs for a two-source case with different~. As discussed in Sec.

4.8.1,~ = 2 is hereafter used. The relation between kernel bandwidthϵ and frequency binl

with several source directionθ is shown in Fig. 4.11.

Finally, by finding the same number of local modes (peaks) as the number of pre-

assigned source numbers, the source directions are estimated. The peaks of the estimated

PDF used to determineθn are found by an exhaustive search. Because the estimated PDF

is 1D, an exhaustive search is very effective. In the computation, MATLAB 7.12.0 is used

with a PC, an Intel Core2 Quad CPU (2.83 GHz) and a Windows XP OS. The computation

time required to search for the peaks is 0.6 ms.
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4.7 Experimental conditions

Some experiments were performed in a conference room to evaluate the proposed methods.

The experimental setup and parameters are the same as those in Chapter. 3. The ampli-

tude information obtained from the original observation features is neglected. This type of

simplification is mentioned in [54].

The true source direction is determined as follows. Because the conventional meth-

ods [22] [54] and the proposed method can estimate the DOA accurately in the case of a

single source, only one source is made active in the experiment, and the source direction is

estimated by the conversional and proposed methods. All methods gave the same rounded

integer angles; thus, the obtained values were determined to be the true source directions.

4.7.1 Experimental results obtained using delay histogram and Hough trans-

form with bandwidth

Table 4.1: Estimation results obtained using Hough transform

Case
Number of

sources
Source

Sources

direction

Conventional

method

Proposed

method

1 2
Male1

Female1

4◦

14◦
3◦

Fail

4◦

14◦

2 2
Female2

Male2

51◦

70◦
55◦

Fail

48◦

67◦

3 2
Male3

Male3

23◦

42◦
20◦

40◦
25◦

40◦

4 2
Female4

Female4

4◦

59◦
2◦

64◦
4◦

63◦

5 3

Female5

Male4

Female6

−34◦

14◦

59◦

Fail

14◦

59◦

−34◦

15◦

58◦

6 3

Male5

Male6

Male7

−14◦

14◦

34◦

−11◦

14◦

Fail

−14◦

14◦

30◦
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Tab. 4.1 shows the experimental results obtained using the Hough transform. Here, four

typical cases are considered and compared with the conventional DUET [22]. In cases 1 and

2, two sources are closely located in different directions. The proposed method can estimate

the directions of the sources but the conventional histogram-mapping method cannot.Fail

in the table means that the method cannot identify the direction of the sources. In cases 3

and 4, both the proposed method and the conventional method can estimate the directions

of the two sources, but the proposed method can estimate the DOA more accurately than the

conventional method. Cases 5 and 6 are underdetermined situations, and the corresponding

results are shown in Fig. 4.12 and Fig. 4.13. The results show that the proposed method is

superior to the conventional method.
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(b) By Hough transform.

Figure 4.12: Result figures of case 5 in Table 4.1. The mixture condition is: a female source

located at−34◦, a male source located at 14◦, and another female source located at 59◦. The

estimation results by delay histogram areFail, 14◦ and 59◦, while the estimation results by

Hough transform are−34◦, 15◦ and 58◦.

Compared with the conventional method, there are two significant advantages of the

proposed method. One is that the conventional method searches for points in the distribution

coinciding with the theoretical value. From the viewpoint of the Hough transform, the

conventional method is limited to the case whenρ = 0, which does not allow an error to

exist. In the Hough transform, by using a bandwidth ofρ, the deviation is considered, and

the analysis is more stable.

The other advantage is in the calculation of delay. Since the PD is divided by the

frequency binl, a small error in the PD will cause a large delay value in the low-frequency

band, which affects the delay histogram. However, in the Hough transform, this problem

does not arise.
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Figure 4.13: Result figures of case 6 in Table 4.1. The mixture condition is: three male

sources are located at−14◦, 14◦ and 34◦ . The estimation results by delay histogram are

−11◦, 14◦ andFail, while the estimation results by Hough transform are−14◦, 14◦ and 30◦.

4.8 Experimental results obtained using kernel density estima-

tor

Two conventional methods are used for comparison. One is an independent component

analysis (ICA)-based approach for the two-microphone case proposed by Nesta et al. [56].

The cumulative state coherence transform (SCT) generates a likelihood function whose lo-

cal peaks correspond to the TDOA. The other is the method based on thek-means clustering

algorithm proposed by Araki et al. [54], which is applicable to underdetermined DOA esti-

mation for an arbitrary array configuration, but in this case, their algorithm is restrictively

applied to a pair of microphones for the sake of comparison.

The case of two sources is first tested, then the underdetermined case, in which there

are three sources, is considered as an extension. A noise-added case is also investigated.

4.8.1 Tuning parameters

Before presenting the experimental results, some remarks are given on the determination of

the three tuning parameters in the proposed method.

(1) The thresholdTh1 in the preselection is used to eliminate the meaningless tiny power

cells and to reduce the computation cost.Th1 is determined from the relationship between

the PD error and the amplitude|Xm[k, l]| as shown in Fig. 4.6.Th1 is set to 2.0. For values

of Th1 between 0 and 4.0 (0 means without preselection), little difference was observed in

the final DOA estimation results.
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(2) The reliable index thresholdηth is determined from the relationship between the

reliability indexη and the PD estimation error as shown in Fig. 4.7. The following decision

process is used. In the experiments, the standard deviation of the PD estimation error is

0.1◦ as shown in Fig. 4.8. By including 0.1◦ or a similar value (0.08◦ in the present case) in

the vertical axis of Fig. 4.7, the solid line in this figure yields the corresponding reliability

index of approximately 0.96. This value is used as the thresholdηth in the paper.

(3) The control parameter~ in the kernel density estimator is used to determine the

fundamental bandwidth of the kernel. Various~ were considered, as shown in Fig. 4.10,

and ~ = 2 is set in this paper. In the experiments,~ had a very small effect on DOA

estimation. For example, the obtained DOAs for~ between 1.0 and 5.0 are almost identical.

The effect of~ on DOA estimation results is shown in Fig. 4.14. The effect ofTh1 is similar

to that of~.

As discussed above, the three tuning parameters are known before by performing prepara-

tory experiments.
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Figure 4.14: Effect of~ on DOA estimation results

4.8.2 Two sources

In the case of two sources, the experiment compared two situations: (1) two sources and

located at symmetrical positions with respect to the broadside of the microphone array, and
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(2) two sources located on one direction side with one source placed at the broadside (near

0◦) and the location of the other source varied from 20◦ to 60◦ at intervals of 10◦. The

results are shown in Fig. 4.15 and Fig. 4.16.

The ICA-based method for symmetric source positions always gives very accurate re-

sults as shown in Fig. 4.15(a). However, the results obtained by the ICA-based method for

nonsymmetric source positions, as shown in Fig. 4.16(a), tend to be biased with relatively

large deviations. In the ICA-based method proposed by Nesta et al., their DOA estima-

tion results are mainly based on the SCT function with a sigmoid transform for a pair of

normalized states of two sources. Unlike the Gaussian kernel in the proposed method, the

SCT function is essentially a nonsymmetric function with respect to the TDOA except in

the case of symmetric source positions. This explains why the resulting likelihood given by

the accumulation of STC functions causes biased peak positions.

The method of Araki et al. based on thek-means algorithm is feasible because it avoids

the peak search process, but the estimated results are slightly biased as shown in Fig. 4.15(b)

and Fig. 4.16(b). This is caused by the hard clustering or the assignment of thek-means

algorithm. In fact, when two sources are closely located, the hard clustering may eventually

create a nonsymmetric data distribution. Thus, both centroids may be forced to move in

outward directions. The opposite deviational behavior can be seen when the two sources are

too far apart because the normalized feature values related to the DOA reach the boundary

of their extent. This eventually causes the opposite outcome.

On the other hand, the proposed method gives a non biased estimation as shown in Fig.

4.15(c) and Fig. 4.16(c). It works well in both situations and outperforms the conven-

tional methods. The combination of cell selection and the symmetric kernel function ofθ is

considered to result in accurate and nonbiased estimation.

4.8.3 Two sources with added diffuse noise

Additional experiments with two sources in a diffuse noise environment are performed to

evaluate the robustness according to [63] [84]. In the diffuse noise, there is equal probability

of energy flow in all directions. The noise appears to have no single source and is correlated

between sensors. A two-channel diffuse noise is generated and added using the theoretical

frequency-dependent covariance matrix to computer-generate directly propagating speech

signals. The diffuse noiseN[k, l] = (N1[k, l], N2[k, l])T is assumed to be independent of the

source signals with the correlation matrix
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(a) ICA-based
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(b) Araki et al.
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Figure 4.15: DOA estimation results for two sources located at symmetrical positions. The

horizontal axis is the source direction difference, and the vertical axis is the estimation

result. The error bars show the standard deviation.
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(b) Araki et al.
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Figure 4.16: DOA estimation results for two sources located on one direction side. The

horizontal axis is the source direction difference, and the vertical axis is the estimation

result. The error bars show the standard deviation.
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V = E[NNH] = σ2

 1 sinc(∆ωTl)

sinc(∆ωTl) 1

 , (4.31)

whereσ2 is the power of the noise,T = d/c is the maximum delay time between senors,

and∆ω = 2π fs/L is the unit frequency width inL-point STFT analysis. Matrix (4.31) is

factorized to generate the diffuse noise in the frequency domain. The generation of diffuse

noise is described in Appendix A. Source 1 is fixed at 0◦, source 2 is varied from 20◦ to 60◦

at intervals of 20◦, and noise with various signal-to-noise ratios (SNRs) is added.

The method of diffuse noise generation is verified and the results are shown in Fig. 4.17.

The figure shows that the generation method is correct.
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Figure 4.17: The verification of diffuse noise generation

The DOA estimation results using the estimation errorθerror = |θ − θtrue| are evaluated

and its standard deviationσθ, whereθ is the estimated source direction andθtrue is the true

source direction. The results are shown in Tab. 4.2. Because the estimation results for

source 1 do not vary significantly, the estimation results for source 2 are shown only. The

estimation errorθerror is the mean value for 10 random mixtures.

The results show that the proposed method can estimate source directions stably and

accurately even under a low-SNR condition (SNR=5 dB), while the conventional methods

can only work when SNR=20 dB.
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Table 4.2: DOA estimation results for two sources with added noise

(a) ICA-based

Direction of source 2 20 40 60

(degree) θerror σθ θerror σθ θerror σθ

SNR=20 dB 1.6 1.0 1.9 0.9 2.1 1.7

SNR=10 dB 11.7 8.9 2.7 1.8 2.6 2.5

SNR=5 dB 11.2 7.2 8.1 10.2 16.3 14.9

(b) Araki et al.

Direction of source 2 20 40 60

(degree) θerror σθ θerror σθ θerror σθ

SNR=20 dB 1.4 0.4 1.4 0.9 3.3 1.7

SNR=10 dB 1.0 0.6 6.6 1.7 15.3 3.6

SNR=5 dB 1.1 0.5 10.6 2.6 23.3 4.7

(c) Proposed

Direction of source 2 20 40 60

(degree) θerror σθ θerror σθ θerror σθ

SNR=20 dB 0.3 0.1 0.9 0.4 1.4 0.6

SNR=10 dB 0.5 0.3 0.9 0.4 1.8 1.1

SNR=5 dB 0.6 0.4 1.7 0.5 2.5 0.9
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4.8.4 Three sources

Experiments for the underdetermined case of three sources were also performed. Three

sources were set at close locations (−23◦, 4◦, and 23◦) or further apart (−42◦, 4◦, and 42◦).

Fig. 4.18 shows the results. Since the ICA-based method cannot solve underdetermined

situations theoretically, for the conventional methods, only the results for Araki et al.’s

method are shown. When the sources are close together, (θerror, σθ) = (7.1, 2.8) was

obtained for the source at 23◦ by the conventional method, while (θerror, σθ) = (1.5, 1.1)

was obtained by the proposed method. When the sources were far apart, (θerror, σθ) =

(1.1, 0.5) was obtained for the source at 42◦ by the conventional method, while for the

proposed method, (θerror, σθ) was (1.4, 1.0).

For widely spaced sources, both the conventional method and the proposed method can

estimate the source directions very well. However, when three sources are closely located,

the proposed method provides much more accurate and stable DOA estimation than the

conventional method.

4.9 Summary

In this chapter, the author’s research on DOA estimation was discussed. The DOA estima-

tion problem was described in Sec. 4.2. Then two new methods for estimating the DOA

were proposed: the Hough transform in Sec. 4.3 and the reliability index and kernel density

estimator in Sec. 4.4. The experiments in Sec. 4.7 show that the improvement in direction

accuracy and noise robustness are achieved by the proposed methods.
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Figure 4.18: DOA estimation results for three sources. The horizontal axis ’Case’ refers to

random three-source mixtures comprising the same sex or opposite sexes.



Chapter 5

General conclusion

In this chapter, a general review of the thesis is first given. Then some future areas of

research are proposed.

5.1 Review of the thesis

This dissertation is a summary of the author’s research on blind source separation (BSS) and

estimating of direction of arrival (DOA) using a pair of microphones. The main purpose of

the research was to obtain information on speech sources such as "Where is the speech

source?" or "Can we obtain the desired speech from many simultaneous speeches?".

In the following, the proposed methods for solving the BSS and DOA estimation prob-

lems are reviewed, the reasons why they are successful are analyzed, and the difference

between them are compared.

5.1.1 Speaker localization and source separation using PCA and harmonic

structure

Many methods have been proposed for solving source direction estimation and source sep-

aration problems. However, in most of these methods, all of the data are treated in the

time-frequency (T-F) domain, and the difference between time frames is not specified. In

this study, the phase difference versus frequency (PD-F) distribution at each time frame is

investigated, and the PD-F data of each frame are classified into three cases: a) non-source

active (NSA), b) single-source active (SSA), and c) double-source active (DSA).

The advantages of using a time-frame PD-F distribution are as follows. 1) The PD-F

data are located along a specific line through the origin and can thus be reliably estimated.

Therefore, the PD-F graph directly illustrates the PD estimation error tendency and gives
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an intuitive insight into the dependence of the PD estimation error distribution on the fre-

quency. 2) By observing the variance of the PD-F data at a specific frame, it can determine

whether or not a single source is active at that time frame. To be more precise, principle

component analysis (PCA) is applied to the two-dimensional PD-F data space at each time

frame.

Since the ratio of the principal eigenvalues in PCA indicates the degree of data spread

around the first principal axis, PCA is applied to detect SSA frames. Then, the detected

SSA frames are used to estimate source directions.

To separate the DSA frames, the relationship between the harmonic structures of the ini-

tially separated source signals and the mixed signals in the low-frequency band is exploited.

The separation process contains two substeps. The first step, which involves clustering, is

performed in a high-frequency band, denoted byBhigh, in which the PD estimation error is

relatively small; therefore, the PD-F data are much more reliable. In this clustering pro-

cedure, the delay value is adopted as the cell’s feature. For the T-F cells in the remaining

low-frequency band, or the complement ofBhigh, denoted byBlow, the harmonic structure

relationship between the initially separated spectrogram inBhigh and the spectrogram in

Blow is effectively used.

Experiments were performed to evaluate the proposed method by comparison with the

conventional separation algorithm utilizing the delay feature. It was shown that the average

improvement in the signal to interference ratio (SIR) obtained by the proposed method

exceeded that obtained by the conventional method.

5.1.2 DOA estimation using kernel density estimator

A DOA estimation method for multiple speech sources from a stereophonic mixture in an

underdetermined case was proposed, where the number of sources exceeds the number of

sensors. The method relies on the sparseness of speech signals in the T-F domain represen-

tation. First, a set of T-F cells providing reliable spatial information is selected by using

a newly proposed reliability index, which is defined as the estimated interaural phase dif-

ference at each T-F cell. Then, a statistical model for the propagation of the error between

the phase difference at the T-F cell and its consequent DOA is introduced. By employing

this model and the sparseness in the T-F domain, the DOA estimation problem is reduced to

obtaining the local peaks of the probability density function of the DOA. Finally, a kernel

density estimator approach based on the proposed statistical model is applied.

The performance of the method was assessed experimentally. The method outperforms
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other methods in terms of both its accuracy for real observed data and its robustness in the

case of simulation with additional diffused noise.

5.1.3 Comparison between PCA, Hough transform, and kernel density esti-

mator for DOA estimation

Three methods for DOA estimation are proposed in this thesis: by PCA, and using a Hough

transform and a kernel density estimator.

The PCA method is different from the other two methods because it is applied to single

time-frame data, to estimate the source direction. The PCA method can determine whether

or not the time frame is SSA, while the other two methods cannot. On the other hand,

the PCA method can only estimate one source direction, while the other two methods can

estimate multiple source directions.

The common feature of the methods involving the Hough transform and kernel density

estimator is that both of them consider the error obtained from a real environment. However,

their details of application are different. To detect the lines in the PD-F distribution, the

Hough transform applies the relative power for cell selection. The points in the PD-F are

distributed in every frequency bin, rather than in only some frequency bins, which is helpful

for obtaining the line direction by the Hough transform. Meanwhile, the kernel density

estimator applies a novel reliability index for cell selection, and only the reliable cells are

used for source direction estimation.

To obtain the error from a real environment, the Hough transform utilizes the band-

width, where it is assumed that the error is distributed around the theoretical value, and

the bandwidth is determined empirically. In the kernel density estimator a statistical model

for the propagation of the error between the estimated phase difference and the consequent

DOA is introduced. This model leads to a probability density function of the DOA, and

DOA estimation is reduced to finding the most probable points.

As stated previously, starting from the time order, the method using the Hough transform

was proposed, then the method using the kernel density estimator was proposed. Compared

with the former method, cell selection using the reliability index and DOA error distribution

model in the kernel density estimator is more novel and effective. This is why the kernel

density estimator was mainly discussed, especially in the experimental part. Note that cell

selection using the reliability index can also be applied in the Hough transform method.

However, some advantages of DOA estimation using the Hough transform should also

be noted, for example, its outstanding performance in dealing with spatial aliasing. Al-
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though the Hough transform is a feature extraction technique used in image analysis, com-

puter versions, and digital image processing, here it was utilized for speech signal pro-

cessing. This can also be regarded as an attempt to combine sound and an image. Because

sometimes, speech signal processing involves not only speech signal processing. Borrowing

ideas from other fields may lead to a new approach.

5.2 Possible topics for future research

As discussed in Chapter 3, the proposed separation method basically operates at each time

frame; thus, it has the potential to solve problems involving moving sources and real-time

problems.

In this thesis, a pair of microphones are used as the sensors because this is the simplest

array sensor system from the viewpoint of cost, and any complex array system can be re-

garded as a combination of numerous pairs of microphones. However, the estimation ability

of a pair of microphones is limited. A pair of microphones acquires the sources from only

half side of the array axis, because the signals from the symmetrical positions of the axis

are the same as the sensors. Thus, how to extend the microphone configuration to deal with

three-dimensional situations should be another interesting work, especially in the case of an

arbitrary microphone array.

Another factor worth investigating is the distance between microphones in the array.

In this thesis, the inter sensor distance is restricted to avoid spatial aliasing. However,

increasing the distance will also bring some benefits, such as the attenuation ratio becoming

clear. In this sense, consideration of the situation in which spatial aliasing occurs both in

DOA estimation and source separation is another possible topic for future research.



Appendix A

Diffuse noise generation

In the following, the methods of generating diffuse noisesn1(t) andn2(t) from independent

white Gaussian noisesw1(t) andw2(t) with zero means and unit variances is described.

In STFT domain, let denote the white Gaussian noises in the time-frequency(T-F) do-

main byW1[k, l] andW2[k, l], and the diffuse noises areN1[k, l] N2[k, l]. The next formula-

tion is derived

A(l)W = N, (A-1)

where

A(l) :=

A11(l) A12(l)

A21(l) A22(l)

 (A-2)

W :=

W1[k, l]

W2[k, l]

 (A-3)

N :=

N1[k, l]

N2[k, l]

 . (A-4)

Next, it is necessary to determine the matrixA(l).

The correlation matrix of white Gaussian noise is

Vw[k, l] = E[WW H] =

1 0

0 1

 , (A-5)

whereH is the Hermitian operator. The correlation matrix of diffuse noise is

Vn[k, l] = E[NNH] = σ2

 1 R(l)

R(l) 1

 (A-6)
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= E[A(l)WW HAH(l)]

= A(l)E[WW H]AH(l)

= A(l)AH(l),

where

R(l) = sinc(∆ωTl) =
sin(∆ωTl)
∆ωTl

. (A-7)

Let use the eigenvalue and eigenvector method to solve the following matrix factorization.

Vn(l) = σ2

 1 R(l)

R(l) 1

 = A(l)AH(l) (A-8)

Let us write

C(l) =

 1 R(l)

R(l) 1

 . (A-9)

Assume thatλ1 andλ2 are the eigenvalues ofC and thatb1 andb2 are the corresponding

eigenvectors.

C(l)b1 = λ1b1 (A-10)

C(l)b2 = λ2b2 (A-11)

C(l) =
[
b1b2

] λ1 0

0 λ2


bT

1

bT
2

 (A-12)

Vn(l) = σ2C(l) = σ
[
b1b2

] 
√
λ1 0

0
√
λ2



√
λ1 0

0
√
λ2


bT

1

bT
2

σ = A(l)AT(l) (A-13)

This can derive the matrixA(l)

A(l) = σ
[√
λ1b1,

√
λ2b2

]
, (A-14)

and using Eq. (A-1),N can be obtained. Finally, by performing an ISTFT, the diffuse noises

n1(t) andn2(t) are obtained.
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