
Semi-Fixed-Priority Scheduling

A Dissertation Presented
by

Hiroyuki Chishiro

Submitted to
the School of Science for Open and Environmental Systems
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at Keio University

March 2012

c©2012 Hiroyuki Chishiro

All rights reserved

i

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor Prof. Nobuyuki
Yamasaki. He has supported my research since I was a bachelor student. I am thankful
to Prof. Hiroki Matsutani for his detailed reading. I am proud of obtaining the first Ph.D.
in Yamasaki and Matsutani Laboratory. I would like to give my sincere gratitude to Prof.
Fumio Teraoka, Prof. Kenji Kono and Prof. Takahiro Yakoh for serving on the dissertation
committee. Though they are busy, they have dedicated their time and effort beyond their
duty.

I sincerely appreciate the technical support from Dr. Kenji Funaoka and Akira Takeda.
Without their support, this dissertation could not have been completed. My special thanks
go to Dr. Hidenori Kobayashi for completing this dissertation.

I am deeply grateful to Dai Yamanaka who invited me to the IRL track and field club.
Thanks to his invitation, I have enjoyed my runner’s life. I would like to thank Toshio
Utsunomiya for his friendship and encouragement since I was a high school student.

Finally, I would like to express my heartfelt thanks to my parents for encouraging my
life.

ii

Abstract

Semi-Fixed-Priority Scheduling
Hiroyuki Chishiro

Real-time systems have been encountering overloaded conditions in dynamic environments.
In order to perform real-time scheduling in such overloaded conditions, an imprecise com-
putation model, which improves the quality of result with timing constraints, has been pro-
posed. In the imprecise computation model, dynamic-priority scheduling algorithms cause
high-jitter of the shortest period task. Unfortunately, no fixed-priority scheduling algorithm
with low-jitter of the shortest period task can be adapted to the imprecise computation model
due to the overrun of the non-critical part.

This dissertation first proposes a concept of semi-fixed-priority scheduling to achieve
both low-jitter and high-schedulability. Semi-fixed-priority scheduling schedules the part of
each imprecise task by fixed-priority. This dissertation also proposes a novel semi-fixed-
priority scheduling algorithm based on the Rate Monotonic (RM) algorithm, called Rate
Monotonic with Wind-up Part (RMWP). The schedulability analysis proves that a task set is
schedulable by the RMWP algorithm if the task set is schedulable by the RM algorithm. In
addition, this dissertation extends the RMWP algorithm for global and partitioned schedul-
ing algorithms on multiprocessors.

This dissertation next presents a real-time operating system for semi-fixed-priority schedul-
ing algorithms, called RT-Est. The RT-Est real-time operating system implements two
queueing policies for semi-fixed-priority scheduling algorithms, called hybrid scheduler
and dual scheduler. The hybrid scheduler is implemented to achieve semi-fixed-priority
scheduling algorithms with low overhead. The dual scheduler is an extension of the hybrid
scheduler for global scheduling.

The effectiveness of semi-fixed-priority scheduling is confirmed through both simulation
studies and experimental evaluations. This dissertation concludes that semi-fixed-priority
scheduling contributes both theory and practice to practical imprecise computation.

iii

Contents

Acknowledgments ii

Abstract iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Overload in Real-Time Systems . 3
1.3 Multiprocessor Real-Time Systems . 4
1.4 Imprecise Computation . 5
1.5 Motivation . 6
1.6 Research Overview and Contributions . 8
1.7 Organization . 9

2 State of the Art 10
2.1 Traditional Computation Models . 10

2.1.1 Liu and Layland’s Model . 10
2.1.2 Traditional Imprecise Computation Model 10
2.1.3 Practical Imprecise Computation Model 11
2.1.4 Summary of Traditional Computation Models 12

2.2 Multiprocessor Real-Time Scheduling . 13
2.2.1 Partitioned Scheduling . 13
2.2.2 Global Scheduling . 15
2.2.3 Hybrid Scheduling . 18
2.2.4 Summary of Multiprocessor Real-Time Scheduling 20

2.3 Real-Time Scheduling for Imprecise Computation 21
2.3.1 Real-Time Scheduling for Imprecise Computation on Uniprocessors 21
2.3.2 Real-Time Scheduling for Imprecise Computation on Multiprocessors 23
2.3.3 Summary of Real-Time Scheduling for Imprecise Computation . . 23

2.4 Real-Time Operating Systems . 24
2.4.1 Real-Time Extensions of General Purpose Operating Systems . . . 24
2.4.2 Proprietary Real-Time Operating Systems 26
2.4.3 Summary of Real-Time Operating Systems 33

iv

CONTENTS

2.5 Experimental Evaluations of Multiprocessor Real-Time Scheduling 34
2.6 Summary of State of the Art . 34

3 System Model 36
3.1 Wind-up Operation . 36
3.2 Computation Model . 38
3.3 Optional Deadline . 39
3.4 Linear Task Model . 40
3.5 Jitter . 42

4 Semi-Fixed-Priority Scheduling 45
4.1 Basic Strategy . 45
4.2 The RMWP Algorithm . 46

4.2.1 Optional Deadline of the RMWP Algorithm 46
4.2.2 Schedulability Analysis of the RMWP Algorithm 48

4.3 The G-RMWP Algorithm . 50
4.3.1 Optional Deadline of the G-RMWP Algorithm 50
4.3.2 Schedulability Analysis of the G-RMWP Algorithm 54

4.4 The P-RMWP Algorithm . 55
4.5 Summary of Semi-Fixed-Priority Scheduling 55

5 RT-Est Real-Time Operating System 57
5.1 System Time Management . 58
5.2 Thread Management . 58
5.3 Ultra Configurable Module . 59
5.4 Implementation of Scheduler . 60

5.4.1 Hybrid Scheduler . 60
5.4.2 Dual Scheduler . 61

5.5 Imprecise Computation . 62
5.6 Architecure Dependent Implementation on x86 Multiprocessors 65
5.7 Summary of RT-Est Real-Time Operating System 66

6 Simulation Studies 67
6.1 Simulation Studies on Uniprocessors . 68

6.1.1 Simulation Setups on Uniprocessors 68
6.1.2 Simulation Results on Uniprocessors 69

6.2 Simulation Studies on Multiprocessors . 71
6.2.1 Simulation Setups on Multiprocessors 71
6.2.2 Simulation Results on Multiprocessors 71

6.3 Discussion of Simulation Studies . 91
6.4 Summary of Simulation Studies . 91

7 Experimental Evaluations 93
7.1 Experimental Evaluations on an x86 Uniprocessor 94

7.1.1 Experimental Setups on an x86 Uniprocessor 94
7.1.2 Experimental Results on an x86 Uniprocessor 94

7.2 Experimental Evaluations on an x86 Multiprocessor 97
7.2.1 Experimental Setups on an x86 Multiprocessor 97

v

CONTENTS

7.2.2 Experimental Results on an x86 Multiprocessor 98
7.3 Discussion of Experimental Evaluations 101
7.4 Comparison of Simulation and Experimental Results 101
7.5 Summary of Experimental Evaluations . 102

8 Conclusions 103
8.1 Summary of Contributions . 103
8.2 Future Directions . 104

Bibliography 106

A Schedulability Analysis of the RMWP Algorithm for Two Tasks 120

List of Papers 124

vi

List of Figures

1.1 Value of each computation . 2
1.2 Area of this dissertation in real-time scheduling 7

2.1 Example of task execution in Liu and Layland’s model 11
2.2 Example of task execution in the traditional imprecise computation model . 11
2.3 Value of result . 12
2.4 Example of task execution in the practical imprecise computation model . . 12
2.5 Partitioned scheduling . 13
2.6 Problem of partitioned scheduling . 15
2.7 Global scheduling . 15
2.8 Problem of global scheduling . 17

3.1 Inadequacy of milestone methods . 37
3.2 Infeasible schedule created by exception handling 37
3.3 Feasible schedule in the practical imprecise computation model 38
3.4 Feasible schdule with optional deadline in the practical imprecise computa-

tion model . 39
3.5 Linear task in the practical imprecise computation model 40
3.6 Behavior of optional deadline . 41
3.7 Block diagram of an automatic braking system 42
3.8 Velocity during brake . 43
3.9 Detection delay . 43
3.10 Jitter . 44

4.1 Split one practical imprecise task into two general tasks 46
4.2 General scheduling and semi-fixed-priority scheduling 47
4.3 Task queue . 48
4.4 The RMWP algorithm . 49
4.5 Case of worst case interference time . 50
4.6 Example of schedule generated by the RMWP and RM algorithms 51
4.7 The G-RMWP algorithm . 52
4.8 Example of schedule generated by the G-RMWP and G-RM algorithms on

two processors . 53
4.9 Next-fit task assignment algorithm for the P-RMWP algorithm 55

5.1 sys_jiffies and exec_jiffies . 58
5.2 State machine of thread . 59
5.3 Hybrid scheduler . 61
5.4 Dual scheduler . 62

vii

LIST OF FIGURES

5.5 Pseudo code of the practical imprecise computation model 63
5.6 end_mandatory function for the G-RMWP algorithm 64
5.7 end_optional function for the G-RMWP algorithm 64
5.8 terminate_optional function for the G-RMWP algorithm 65
5.9 Pseudo code of the interrupt handler . 66

6.1 Success ratio on uniprocessors . 68
6.2 Reward ratio on uniprocessors . 69
6.3 Switch ratio on uniprocessors . 69
6.4 RRJ ratio on uniprocessors . 70
6.5 RFJ ratio on uniprocessors . 70
6.6 Success ratio on multiprocessors when Umax = 1.0 72
6.7 Success ratio on multiprocessors when Umax = 0.5 73
6.8 Success ratio on multiprocessors when Umax = 0.1 74
6.9 Reward ratio on multiprocessors when Umax = 1.0 75
6.10 Reward ratio on multiprocessors when Umax = 0.5 76
6.11 Reward ratio on multiprocessors when Umax = 0.1 77
6.12 Switch ratio on multiprocessors when Umax = 1.0 78
6.13 Switch ratio on multiprocessors when Umax = 0.5 79
6.14 Switch ratio on multiprocessors when Umax = 0.1 80
6.15 RRJ ratio on multiprocessors when Umax = 1.0 81
6.16 RRJ ratio on multiprocessors when Umax = 0.5 82
6.17 RRJ ratio on multiprocessors when Umax = 0.1 83
6.18 RFJ ratio on multiprocessors when Umax = 1.0 84
6.19 RFJ ratio on multiprocessors when Umax = 0.5 85
6.20 RFJ ratio on multiprocessors when Umax = 0.1 86
6.21 Migration ratio on multiprocessors when Umax = 1.0 87
6.22 Migration ratio on multiprocessors when Umax = 0.5 88
6.23 Migration ratio on multiprocessors when Umax = 0.1 89

7.1 Overhead of end_mandatory function on an x86 uniprocessor 94
7.2 Overhead of end_optional function on an x86 uniprocessor 95
7.3 Overhead of terminate_optional function on an x86 uniprocessor . . . 95
7.4 Overhead of scheduler on an x86 uniprocessor 96
7.5 Overall overhead on an x86 uniprocessor 96
7.6 RRJ ratio on an x86 uniprocessor . 97
7.7 RFJ ratio on an x86 uniprocessor . 97
7.8 Overhead of end_mandatory function on an x86 multiprocessor 98
7.9 Overhead of end_optional function on an x86 multiprocessor 98
7.10 Overhead of terminate_optional function on an x86 multiprocessor . . 99
7.11 Overhead of scheduler on an x86 multiprocessor 99
7.12 Overall overhead on an x86 multiprocessor 100
7.13 RRJ ratio on an x86 multiprocessor . 100
7.14 RFJ ratio on an x86 multiprocessor . 101

A.1 Case 1 . 121
A.2 Case 2 . 121
A.3 Case 3 . 122
A.4 Case 4 . 123

viii

List of Tables

1.1 Area of this dissertation in system model 7

2.1 Overview of real-time scheduling for imprecise computation 23

4.1 Task set A . 48
4.2 Task set B . 54

8.1 Overview of this dissertation . 104

ix

Chapter 1

Introduction

1.1 Background
There are many computers in our world. We use many computers in homes, schools, sta-
tions, factories and laboratories. Without computers, we cannot lead our lives. There are
many types of computers including laptop computers, server machines, mobile phones and
robots. Laptop computers and server machines are categorized as general purpose systems,
which operate in cyber world. In contrast, mobile phones and robots are categorized as
embedded systems. More than 79% of manufactured processors were used for embedded
systems in 2006 [1].

Most of embedded systems are usually as same as real-time systems. The primary reason
why embedded systems are real-time systems is because they operate in real world. When
an event occurs in real world, embedded systems must react to perform proper operations.

Real-time systems are technically characterized by the fact that they require temporal
correctness as well as logical correctness. In other words, the correctness of the real-time
system depends on both the logical correctness of results and the time when they are pro-
duced. More precisely, every real-time computation must complete its execution in an inter-
val of certain length. The beginning of the interval is called release time and the end of that
is called deadline. The deadline in real-time systems has mainly three types depending on
what could happen if a deadline miss occurs.

• If the contribution to the system suddenly drops to negative, then the deadline is hard.

• If the contribution to the system suddenly drops to 0, then the deadline is firm.

• If the contribution to the system does not become 0 suddenly and degrades gradually
as the completion time is further delayed, then the deadline is soft.

The value of each computation is shown in Figure 1.1.
For example, robots have hard deadlines for their control because a catastrophe may

occur if their actuators cannot complete processing sensor data within a certain feedback
period.

Multimedia systems often have soft deadlines for image and audio processing, because
multimedia systems are able to continue to provide a service to users even if some compu-
tations miss their deadlines, though the quality of service may be degraded compared to the
case in which all computations meet their deadlines. In order to maintain substantial quality,
deadlines should not be missed even in soft real-time systems.

1

CHAPTER 1. INTRODUCTION

value

time0

(a) Non-real-time

value

time

deadline
0

(b) Soft

value

time

deadline
0

(c) Firm

value

time

deadline
0

(d) Hard

Figure 1.1: Value of each computation

Other multimedia systems including ATM networking systems have firm deadlines be-
cause they have included several applications with similar combinations of fine-grained tim-
ing requirements (typical of hard deadline) with system service requirements (typical of soft
deadline).

Real-time systems require reserving processor time to meet all computations called tasks
by their deadlines. The primary solution is the technique to execute tasks in the proper
order, called real-time scheduling. The contribution of real-time scheduling is to guarantee
completing real-time tasks by their deadlines theoretically.

The history of real-time scheduling has started by Liu and Layland [2] since 1973. They
presented the traditional task model called Liu and Layland’s model and proposed two repre-
sentative real-time scheduling algorithms, called Rate Monotonic (RM) and Earliest Dead-
line First (EDF).

The RM algorithm is a basic fixed-priority scheduling algorithm in real-time scheduling.
In the RM algorithm, tasks with shorter periods have higher priorities. Since periods are
constant, the RM algorithm is a fixed-priority assignment: priorities are assigned to tasks
before execution and do not change over time. They prove that any independent periodic
task set can be scheduled without deadline miss by the RM algorithm on uniprocessors if
the total processor utilization of the independent periodic task set is lower than or equal to
the following equation.

n(21/n − 1),

where n is the number of tasks.
In contrast, the EDF algorithm is a basic dynamic-priority scheduling algorithm in real-

time scheduling. In the EDF algorithm, tasks with earlier absolute deadlines are executed at
higher priorities. Therefore, each job, which is an instance of a task, is generated periodi-
cally every release time and has different priority, unlike the RM algorithm. They also prove

2

1.2. OVERLOAD IN REAL-TIME SYSTEMS

that any independent periodic task set can be scheduled without deadline miss by the EDF
algorithm on uniprocessors if the total processor utilization of the independent periodic task
set is lower than or equal to 1, regardless of the number of tasks.

Ever since these two algorithms are presented, there have been a considerable number
of arguments on which algorithm performs better in what conditions, some of which are
summarized by Buttazzo [3]. Buttazzo claims that the real advantage of the RM algorithm
with respect to the EDF algorithm is its simpler implementation in commercial kernels that
do not provide explicit support for timing constraints, such as periods and deadlines. In
addition, real-time scheduling should support dynamic real-time environments because we
use embedded devices everywhere. Therefore, real-time systems require a higher possibility
of being in overloaded conditions.

1.2 Overload in Real-Time Systems
In order to define what an overloaded condition is, the feasibility of a task set must be
defined. If a task set is feasible in a real-time scheduling algorithm, it means that no task in
the task set violates its timing constraints under any circumstance [4].

The feasibility of a task set based on Liu and Layland’s model in the EDF algorithm
on uniprocessors can be assessed by simply checking the processor utilization. In the EDF
algorithm, the task set is feasible on uniprocessors if the total processor utilization is lower
than or equal to 1. Therefore, when the EDF algorithm is used, an overloaded condition
is said to occur when the processor utilization is higher than 1. In a more general context,
an overloaded condition is said to occur in a system when no task set is schedulable by an
optimal scheduling algorithm.

In modern real-time systems, an overloaded condition is much harder to handle, because
workloads have become dynamic and the state of the overload is exposed only at run-time.
The background of this change is derived from the transition of real-time systems. One of
the real-time systems that have typically gone through this transition is a robot system. The
robot systems in their early days were used in limited environments that raised at a fixed rate
beforehand. For example, the majority of robots were once developed to work in assembly
lines of production factories. Since these robots only had to do some routine work, most
of their workloads were static. On the other hand, robots have appeared in much wider
areas lately. In fact, it has not become very uncommon to see an autonomous mobile robot
working in the same environment that we live. Moreover, robots have been sold even in a
department store as pets and helpers to people; for example, Roomba [5]. These robots that
aim to work in various environments must handle various kinds of events in various dynamic
environments. Thus, their workloads have become much more dynamic.

There are two important factors, which afflict the predictability of workloads in dynamic
real-time systems.

First of all, the worst case execution time of an application is hard to analyze, since com-
plex hardware components in modern real-time systems decrease the accuracy of the worst
case execution time analysis. High performance processors that can meet the requirement
of dynamic real-time systems adapt recent complex techniques, such as caches, translation
lookaside buffers, speculation and multithreading. These techniques can improve the av-
erage case performance at a larger cost in the worst case, leading to a wider gap between
the average case execution time and the worst case execution time. Since the worst case
rarely happens in practice, the accuracy of the worst case execution time can be either too

3

CHAPTER 1. INTRODUCTION

pessimistic or unsafe to use in feasibility assessment in practice.
Next, the worst case scenario is hard to identify. The dynamic environments make it

almost impossible to make correct assumptions on the incoming events. In addition, even
when it is possible, determining every impact of external factors on all scenarios needs
extensive testing and simulations. Considering the tight time-to-market schedules in the
development of embedded systems, it is not a practical approach. It should be also noted
that the commercial-off-the-shelf components used to be shorten the development period
could ironically encumber the correct identification of the worst case scenario.

If a real-time system must not fall into an overloaded condition at all, the only possi-
ble approach for handling the dynamic workloads would be to continue using the classical
theory and reserve enough resources based on the pessimistic worst case execution time on
a processor with sufficiently high capability so that the system never becomes overloaded.
Unfortunately, no matter how tight the worst case execution time is bounded, this reser-
vation approach is only effective when the degree of variation in the workloads is small.
Otherwise, the amount of reserved but unused resources becomes significantly large that
more expensive processors with higher processing capability must be used. Moreover, in
a dynamic real-time system with computation intensive workloads, it is also possible that
there exists no processor that can provide the required performance.

If a real-time system can also work in an overloaded condition, other existing approaches
can be used to sustain the system performance to an acceptable level under overload. These
approaches can be categorized by the types of the deadline. If some computations have
soft deadlines, a transient overload can be resolved by delaying their execution. Gardner
and Liu [6] described and evaluated scheduling algorithms that isolate the effect of overruns
caused by a computation, the worst case execution time of which is not safe. Buttazzo and
Stankovic [7] presented the Robust Earliest Deadline (RED) algorithm. In the RED algo-
rithm, a deadline tolerance of a computation is defined and used in an overloaded condition
to check whether each computation can still contribute to the system when its completion
must be delayed. If the computation cannot contribute to the system, the algorithm uses
important values attached to computations to determine which computation to reject. But-
tazzo et al. [8] gave a comparative study on such robust scheduling algorithms. Baruah and
Haritsa [9] developed an asymptotically optimal scheduling algorithm called Resistance to
Overload By Using Slack Time (ROBUST) that sustains the same level of effective pro-
cessor utilization both in normal and overloaded conditions. An unfortunate result is that
the ROBUST algorithm needs a processor that is twice as fast as the one used in a system
without any possibility of undergoing overload.

1.3 Multiprocessor Real-Time Systems
One of the solutions to overcome overloaded conditions is to make use of multiprocessors.
Multiprocessors can strongly reserve the spare capacity for tolerating overloaded conditions.
Multiprocessor real-time systems require multiprocessor real-time scheduling so that many
real-time scheduling algorithms on uniprocessors are extended for multiprocessors. Before
the exposition of the problem of real-time scheduling on multiprocessors, this dissertation
explains the reason why multiprocessors gather worldwide attention in recent years. The
performance of uniprocessors has been improved by shrinking transistor sizes, refining pro-
cessor architectures and raising processor clock frequencies. The performance improvement
of uniprocessors comes from the advancement of Instruction-Level Parallelism (ILP). The

4

1.4. IMPRECISE COMPUTATION

improvement of ILP is difficult due to the interference, which comes from physical factors
and the depletion of effective ideas. Raising processor clock frequencies is also difficult due
to the overheating problem. The hardware vendors must scope out other sales points against
traditional uniprocessors. Therefore, multiprocessors have been widely used in real-time
systems. Examples of multiprocessors are Intel’s Xeon [10], Sony-IBM-Toshiba’s Cell [11]
and ARM’s MPCore [12].

Multiprocessors also improve the quality of service efficiently to make use of the spare
capacity. For example, smartphones including iPhone [13] and Android [14] are used ev-
erywhere and we would like to generate the response of the operation at proper timing. If
the response time of such operation is longer and longer, we may chafe at smartphones.
However, it is also a problem that the response of such operation is too fast to understand
what smartphones do. The timing constraints of such actions between the time when we
input something and the time when we output operations are important to use smartphones
with comfort. The other example is robots including humanoid robots [15], mobile robots
[16] and animal robots [17]. These robots require multiprocessors because they detect and
avoid objects by image processing with high load. The processing time of the image pro-
cessing task depends on the dynamic real-time environments so that they always encounter
the overloaded conditions. The processing with sensitive timing constraint in autonomous
mobile robots is to control actuators. If the interval of getting the information from sensors
periodically in dynamic real-time environments is too fluctuated, autonomous mobile robots
may crash into objects due to not performing operations with proper timing. The fluctuation
of the interval between the previous input operation and the post input operation periodically
requires being low as much as possible without timing violations, which is called jitter.

1.4 Imprecise Computation
Liu and Layland’s model has the dilemma that became apparent in the development of com-
plex real-time systems, the workloads of which vary dynamically and may cause overload
only at run-time. The two conflicting demands behind the dilemma are as follows. First of
all, developers would like to statically reserve resources as much as possible so that all tim-
ing constraints are met even in the worst case. Next, they also would like to leave the same
resources unreserved as much as possible so that only a small portion of resources is wasted
as spare capacity in the other cases. Stated differently, designing real-time systems for high
processor utilization will risk the temporal correctness, whereas designing the systems for
perfect temporal correctness will increase the cost or may be impossible. Therefore, there is
a crucial dilemma of meeting the timing constraints and the high processor utilization at the
same time.

Solving this problematic dilemma requires establishing a good balancing point that guar-
antees timing constraints of at least important computations and allows dynamic sharing
among other computations for efficient use of resources, for example, the quality of service.
Thus, finding a solution to the problem enables the system to adjust effective system load to
a level dynamically where no critical constraint is violated. The ability to adjust the system
load is important especially in real-time systems, since they do not allow manual adjustment
of workloads once the system is put to operations. In other words, some forms of automatic
adjustment mechanism must be adapted if the system may fall into overloaded conditions.

In order to establish such a good balancing point, this dissertation needs to identify
critical and non-critical parts of the system. In other words, this dissertation needs to dis-

5

CHAPTER 1. INTRODUCTION

criminate parts that must be executed strictly as requested from what does not need to dis-
criminate those. In this research, the discrimination is made within computations as well
as among computations. The discrimination among computations means distinguishing soft
deadlines from hard deadlines. On the other hand, the discrimination within a computation
is accomplished by using the notion of the traditional imprecise computation model [18].

The traditional imprecise computation model aims to obtain the best result with all avail-
able resources, exactly by distinguishing a part of a computation that must be always com-
pleted from a part that does not have to be completed. The adjustment of load by the tradi-
tional imprecise computation model is carried out by terminating computations prematurely
to discard non-critical parts. A prematurely terminated computation can only return a par-
tially correct, called imprecise result. However, it is often desirable to receive an imprecise
result before deadline than to receive a precise result later.

Many real-time applications can be implemented based on the traditional imprecise com-
putation model actually. For example, a wavelet transform used in data compression and
signal processing is well suited to imprecise computation. Compression and decompression
of images by using the wavelet transform can directly trade-off the quality of images with
the processing time. Moreover, the wavelet transform can be also used indirectly to find a
balancing point for the trade-off. The data transformed in different resolutions can be used
to implement multiple versions with different processing time. For example, in a template
matching application, multiple templates can be stored in different resolutions and be chosen
dynamically depending on how high the system load is.

Some other examples among diverse applications are scalable multimedia processing
and transmission [19, 20, 21, 22], network traffic management [23, 24], decision making
under uncertainty [25], anytime learning in evolutionary robotics [26, 27], motion planning
and robot control [28, 29], multi-target tracking [30], transactions in real-time databases
[31] and fuzzy systems [32]. Unfortunately, despite thus many applications, the traditional
imprecise computation model has not been used widely in industry yet. One of the reasons
is that the traditional imprecise computation model assumes an impractical assumption, in
which the processing time of termination or completion of a non-critical part is 0. However,
the processing to terminate or complete a non-critical part is guaranteed by its deadline.
For example, the result of object detection by image processing tasks based on imprecise
computation must output the actuator by its deadline in robots. Therefore, the traditional
imprecise computation model cannot support practical imprecise applications.

1.5 Motivation
This research was motivated by the impracticality of the traditional imprecise computa-
tion model. In order to overcome the weakness of the traditional imprecise computation
model, Kobayashi and Yamasaki proposed a practical imprecise computation model [33].
This model redefines the practicality and applicability of imprecise computation by allow-
ing more than one critical parts and also more than one non-critical parts in a computation.
Moreover, these critical and non-critical parts can be freely interleaved. This model bridges
the gap between the existing theoretical models of imprecise computation and the practi-
cal characteristics of real world applications. They also proposed an EDF-based dynamic-
priority scheduling algorithm in the practical imprecise computation model on uniproces-
sors, called Mandatory-First with Wind-up Part (M-FWP) [34, 35]. The M-FWP algorithm
first supports the practical imprecise computation model so that the contribution of the M-

6

1.5. MOTIVATION

Schedulability

Jitter

RM

M-FWPThis dissertation

Figure 1.2: Area of this dissertation in real-time scheduling

Table 1.1: Area of this dissertation in system model

Algorithm Uniprocessor Multiprocessor Imprecise
RM [2] X X
M-FWP [34, 35] X X
This dissertation X X X

FWP algorithm is high. However, the M-FWP algorithm is difficult to support multipro-
cessors. Because the M-FWP algorithm calculates the assignable time of non-critical parts
dynamically, the M-FWP algorithm is not practical. In addition, the dynamic calculation
of the assignable time of the non-critical parts causes high-jitter of the shortest period task,
which usually controls an actuator with jitter-sensitive in autonomous mobile robots.

On the other hand, the RM algorithm supports multiprocessors and achieves low-jitter
against the M-FWP algorithm. Unfortunately, the RM algorithm cannot be adapted to the
practical imprecise computation model. Because the practical imprecise computation model
has more than one non-critical parts which require unknown processor time so that the over-
run of the non-critical parts causes the deadline miss of the critical parts in the overloaded
conditions. In order to support the practical imprecise computation model on multiproces-
sors, a new priority assignment policy is required.

Figure 1.2 shows the area of this dissertation in real-time scheduling. The goal of this
dissertation in real-time scheduling is to achieve higher schedulability than the RM algo-
rithm and lower jitter than the M-FWP algorithm. If the jitter is lower and lower, real-time
applications such as robots can achieve the more precise control.

Table 1.1 shows the area of this dissertation in the system model. The goal of this
dissertation in the system model is to support uniprocessors and multiprocessors for practical
imprecise computation.

7

CHAPTER 1. INTRODUCTION

1.6 Research Overview and Contributions

The goal of this research is to support imprecise computation and to improve the quality
of service on multiprocessors. In order to achieve this goal, this research considers real-
time scheduling in the practical imprecise computation model on both uniprocessors and
multiprocessors. The research overview of this dissertation is as follows.

A new priority assignment policy for practical imprecise computation aspires
for both theoretical and practical frontier.

In order to support this research, this dissertation makes the following contributions.

• A new priority assignment policy for practical imprecise computation is proposed
to achieve low-jitter and high schedulability. This policy, called semi-fixed-priority
scheduling, can make use of the techniques of the schedulability analysis for fixed-
priority scheduling.

• The proposed algorithms achieve both uniprocessor and multiprocessor real-time schedul-
ing in the practical imprecise computation model. The schedulability analysis shows
that semi-fixed-priority scheduling is at least as effective as fixed-priority scheduling.

• A real-time operating system is developed to achieve semi-fixed-priority scheduling
with low overhead in the practical imprecise computation model from scratch. Es-
pecially, the real-time operating system provides the presented schedulers for semi-
fixed-priority scheduling algorithms. The presented schedulers can implement semi-
fixed-priority scheduling with reasonable overhead.

• The effectiveness of semi-fixed-priority scheduling is confirmed through both sim-
ulation studies and experimental evaluations on uniprocessors and multiprocessors.
Semi-fixed-priority scheduling contributes both theory and practice to practical im-
precise computation from simulation and experimental results.

The advantage of this approach against other approaches is to try to remove the uncer-
tainty completely, for example, providing a method to analyze tighter worst case execution
time. This approach does not depend on a proprietary processor that does not require a rigid
analysis of application programs, thereby allowing use of software components, execution
paths of which are only determined at run-time.

Finally, the scope of this research is limited to providing a systematic approach for
scheduling practical imprecise computations. Especially, it focuses on the practical im-
precise computation model, real-time scheduling algorithms and implementation that can
be provided by a real-time operating system. The presented approach is targeted to both
uniprocessor and multiprocessor systems. A system with more than one processing units
must be structured as a group of independent subsystems, each with one processing unit, in
order to utilize the result of this research. Moreover, it is not the scope of this research to
provide hardware, language and compiler support for imprecise computation. In particular,
this research does not focus on extracting appropriate time attributes such as the worst case
execution time from programs or developing a method that facilitates its precise analysis.

8

1.7. ORGANIZATION

1.7 Organization
The rest of this dissertation is organized as follows. Chapter 2 summarizes the state of the
art techniques related to traditional computation models, multiprocessor real-time schedul-
ing policies, real-time scheduling algorithms and real-time operating systems. Chapter 3
formally defines the practical imprecise computation model. A linear task model is also
introduced to theoretically represent applications based on this computation model. Chap-
ter 4 presents a new priority assignment policy for practical imprecise computation, called
semi-fixed-priority scheduling. In addition, semi-fixed-priority scheduling algorithms for
uniprocessor scheduling, multiprocessor partitioned scheduling and multiprocessor global
scheduling are proposed. Chapter 5 presents a real-time operating system for semi-fixed-
priority scheduling algorithms. The real-time operating system implements the proposed
algorithms with low overhead. Chapter 6 evaluates the performance of the proposed algo-
rithms through simulation studies, compared to other algorithms. Chapter 7 evaluates the
practicality of the proposed algorithms through experimental evaluations. Chapter 8 con-
cludes this dissertation and suggests the future directions of this research.

9

Chapter 2

State of the Art

This chapter provides a survey on the state of the art techniques for traditional computation
models, multiprocessor real-time scheduling policies, real-time scheduling algorithms and
real-time operating systems. First, the survey explains existing task models. Next, mul-
tiprocessor real-time scheduling policies and real-time scheduling algorithms in these task
models are summarized. In addition, existing real-time operating systems implementing
these real-time scheduling algorithms are introduced. The survey ends with summarizing
the experimental evaluations of multiprocessor real-time scheduling algorithms.

2.1 Traditional Computation Models

2.1.1 Liu and Layland’s Model

Liu and Layland’s model is a basic computation model in real-time scheduling [2]. Figure
2.1 shows an example of task execution in Liu and Layland’s model. This model assumes
that a system has a task set Γ consisted of n periodic tasks τi {i = 1, 2, ..., n}. Each task τi is
released periodically at every period Ti and consumes its worst case execution time mi as a
mandatory part between the interval. The utilization of task τi is Ui = mi/Ti. The system
utilization of all tasks is Us =

∑
i Ui. The jth instance of task τi is called job τi, j. A solid

up arrow and a solid down arrow represent release time and deadline respectively. Each job
consumes the Worst Case Execution Time (WCET) of its mandatory part mi. The relative
deadline Di of each task τi is equal to its period Ti. The absolute deadline Di, j of each task
τi is Di, j = ri, j + Ti, where ri, j is the jth release time of job τi, j. However, this model does
not consider overloaded conditions in dynamic real-time environments. Therefore, a more
flexible computation model than Liu and Layland’s model is required.

2.1.2 Traditional Imprecise Computation Model

Lin et al. presented the traditional imprecise computation model [18] to consider overloaded
conditions. Figure 2.2 shows an example of task execution in the traditional imprecise com-
putation model. The crucial point is that the computation is split into two parts: mandatory
part and optional part. A mandatory part as a critical part affects the correctness of the result.
On the other hand, an optional part as a non-critical part only affects the quality of result. By
restricting the execution of the optional part only after the completion of the mandatory part,

10

2.1. TRADITIONAL COMPUTATION MODELS

Task τi

ri,j ri,j+1 ri,j+2 ri,j+3
time

Mandatory part Release Deadline

Figure 2.1: Example of task execution in Liu and Layland’s model

ri,j ri,j+1 ri,j+2 ri,j+3

time
Task τi

Mandatory part Optional part Release Deadline

Figure 2.2: Example of task execution in the traditional imprecise computation model

real-time applications based on the traditional imprecise computation model can provide the
correct output with lower quality, by terminating the optional part.

Figure 2.3 shows the value of result. The concave function CR(t) indicates the quality
of result and is within the range of [0, 1]. If the concave function CR(t) is 0, the result does
not make sense. In addition, tm indicates the WCET of mandatory part. After tm, then CR(t)
is increased if the elapsed time is longer and longer. The interval to − tm indicates the Re-
quired Execution Time (RET) of the optional part. Unlike WCET, the RET has unknown
upper bound. However, the traditional imprecise computation model does not consider the
processing time to terminate or complete optional parts. For example, an object detection
task must output the result to the actuator in robots so that the computation to output the re-
sult must guarantee the schedulability. In such cases, the traditional imprecise computation
model is not practical.

2.1.3 Practical Imprecise Computation Model

Kobayashi and Yamasaki presented the practical imprecise computation model [33]. The
practical imprecise computation model has more than one mandatory parts and more than
one optional parts in each job. Thanks to the following mandatory parts after executing
optional parts, the practical imprecise task guarantees the schedulability of the processing to
output the result. Figure 2.4 shows an example of task execution in the practical imprecise
computation model. In this example, task τi has two mandatory parts and one optional part.
Task τi executes the first mandatory part, the first optional part and the second mandatory
part sequentially. Job τi, j+2 only executes the first mandatory part and the second mandatory
part because job τi, j+2 discards its optional part. The total WCET of mandatory parts in each
job is mi =

∑nm
i

l=1 ml
i, where nm

i is the number of mandatory parts of task τi and ml
i is the

WCET of the lth mandatory part of task τi. On the other hand, the total RET of optional
parts in each job is oi =

∑no
i

l=1 ol
i, where no

i is the number of optional parts of task τi and ol
i is

the RET of the lth mandatory part of task τi.

11

CHAPTER 2. STATE OF THE ART

CR(t)

tm

1

time
to

0

Figure 2.3: Value of result

Task τi

ri,j ri,j+1 ri,j+2 ri,j+3
time

First mandatory part First optional part Second mandatory part

Release Deadline

Figure 2.4: Example of task execution in the practical imprecise computation model

The schedulability analysis in the practical imprecise computation model is more diffi-
cult than other task models. Because the practical imprecise computation model has more
than one mandatory parts so that the schedulability analysis in Liu and Layland’s model may
not be adapted to that in the practical imprecise computation model.

The practical imprecise computation model is similar to the self-suspension model [36].
The practical imprecise computation model defers the execution of the following mandatory
part to execute the optional part. Each practical imprecise task must not miss its deadline
by the deferred execution. That is to say, the schedulability of the practical imprecise com-
putation model is higher than or equal to that of Liu and Layland’s model. In contrast, the
self-suspension model manages the worst case suspension time. Due to suspension, each
self-suspension task may miss its deadline. Therefore, the practical imprecise computation
model and the self-suspension model is different.

2.1.4 Summary of Traditional Computation Models
In this section, three traditional computation models are introduced. The practical imprecise
computation model has the advantage of supporting overloaded conditions compared to Liu
and Layland’s model and overcomes the implementation problem of the traditional com-
putation model. In addition, the practical imprecise computation has upward compatibility
against both Liu and Layland’s model and the traditional imprecise computation model.
Therefore, the practical imprecise computation model is effective to achieve real-time sys-
tems in dynamic environments.

12

2.2. MULTIPROCESSOR REAL-TIME SCHEDULING

.

.

Local

scheduler

Local

scheduler

Local

scheduler

Ready queues Processors

τ4

τ1

τ2

τ3

τ7

Task assignment policies

τ5

τ6

P1

.

.

P2

PM

Figure 2.5: Partitioned scheduling

2.2 Multiprocessor Real-Time Scheduling
There are mainly two multiprocessor scheduling policies: partitioned scheduling and global
scheduling. In addition, two hybrid policies with both advantages of partitioned scheduling
and global scheduling are presented: semi-partitioned scheduling and cluster scheduling.

2.2.1 Partitioned Scheduling
Figure 2.5 shows the overview of partitioned scheduling. Partitioned scheduling assigns all
tasks to specific processors beforehand. Partitioned scheduling has the following advantages
against global scheduling.

• As each task only runs on each processor, then there is no penalty in terms of migration
cost. For example, a task preempted by higher priority tasks must have its context
restored on other processors. This can result in additional communication loads and
cache misses that would not occur in partitioned scheduling.

• Partitioned scheduling has a separate run queue per processor, rather than a single
global queue. For large systems, the overhead of manipulating a single global queue
can become excessive by memory access, cache and synchronization.

From a practical perspective, the main advantage of multiprocessor partitioned schedul-
ing is that once assigning tasks to processors has been achieved, the techniques of the
schedulability analysis on uniprocessors can be applied on each processor.

The main disadvantage of multiprocessor partitioned scheduling is that the task assign-
ing problem is similar with the bin packing problem, which is known to be NP-Hard [37].

In order to solve this problem, several heuristic task assignment policies have been pre-
sented; for example, first-fit, next-fit, best-fit and worst-fit and task orderings such as in-
creasing relative deadline and decreasing utilization for task allocation. When a task is
partitioned to a processor, the partitioned tasks on the processor are checked to be feasible
by the utilization bound of scheduling algorithms or schedulability tests. For example, one
task set is feasible by the EDF algorithm on each processor if the following condition is met
[2]:

UEDF
ub =

n∑
i=1

mi

Ti
5 1, (2.1)

13

CHAPTER 2. STATE OF THE ART

where n is the number of tasks, then mi is the WCET of task τi and Ti is the period of task
τi. In the RM algorithm, one task set is feasible on each processor if the following equation
is met [2]:

URM
lub 5 n(21/n − 1). (2.2)

Equation (2.2) is the utilization bound of the RM algorithm. For the more precise partitioned
test, Response Time Analysis (RTA) [38] is performed in pseudo-polynomial time and can
be analyzed precisely that one task set is feasible or not feasible on uniprocessors. The
equation of RTA is

Rk = mk +

k−1∑
i=1

⌈
Rk

Ti

⌉
mi, (2.3)

where Rk is the worst case response time of task τk, then mk is the WCET of task τk and Ti

is the period of task τi.
Oh and Baker proved that the worst case utilization bound of the Partitioned Rate Mono-

tonic (P-RM) algorithm [39] is

UP−RM
wb = M(21/2 − 1), (2.4)

where M is the number of processors. Lopez et al. proved that the refined worst case
utilization bound of the P-RM algorithm [40] is as follows.

UP−RM
rwb = (M + 1)(1 + 21/(M+1)) (2.5)

On the other hand, the worst case utilization bound of the Partitioned EDF (P-EDF)
algorithm [41] is

UP−EDF
wb (M, β) =

βM + 1
β + 1

, (2.6)

where β = b1/Umaxc. If β = 1 in Equation (2.6), the utilization bound of the P-EDF algorithm
is

UP−EDF
ub (M, 1) =

M + 1
2
. (2.7)

Partitioned scheduling has a critical disadvantage against global scheduling that the
worst case utilization bound is potentially limited to at most 50% [42]. Figure 2.6 shows a
problem of partitioned scheduling. Suppose that all the tasks are released at the time t = 0.
Considering that M + 1 tasks have the same utilizations 50 + ε%. Since an individual pro-
cessor cannot be utilized over 100%, there is no idle processor to execute task τM+1 when
the M tasks are assigned. Letting ε → 0, a task set with a total utilization over (M + 1)/2 is
never schedulable. They also have online problems that when a new task is submitted to the
system at run-time, the tasks may be required to be sorted again to accept the new task. Such
repartitioned processing can incur significant run-time overhead. Those drawbacks of the
partitioned scheduling lead to revival of the global scheduling approaches to achieve more
sophisticated scheduling of periodic tasks on multiprocessors.

14

2.2. MULTIPROCESSOR REAL-TIME SCHEDULING

Processor utilization
0% 50+ε% 100%

:

Task τ1

Task τ2

Task τM

Task τM+1

cannot assign Task τM+1 to processor

P1

P2

PM

:

Processors

Figure 2.6: Problem of partitioned scheduling

Global

scheduler

Ready queue

Processors

P1

.

.

τ4
τ1τ2τ3

τ7

τ5

τ6

P2

PM

Figure 2.7: Global scheduling

2.2.2 Global Scheduling
Figure 2.7 shows the overview of global scheduling. Global scheduling permits to migrate
tasks from one processor to another processor at run-time.

Global scheduling has the following advantages against partitioned scheduling.

• There are fewer context switches and preemptions when global scheduling policies are
used, because the scheduler will only preempt a task when there is no idle processor
[43].

• Global scheduling is more appropriate for open systems, as there is no need to run
load balancing and task allocation algorithms when the task set is changed.

Now this dissertation introduces two types of global scheduling: optimal scheduling and
non-optimal scheduling.

15

CHAPTER 2. STATE OF THE ART

2.2.2.1 Optimal Scheduling

Optimal scheduling means that one periodic task set is feasible if the following equation is
met:

Us =

n∑
i=1

mi

Ti
5 M, (2.8)

where Us is the system utilization, M is the number of processors, n is the number of tasks,
mi is the WCET of task τi and Ti is the period of task τi.

Proportionate fair (Pfair) [44] is an optimal dynamic-priority scheduling algorithm and
divides the timeline into equal length quanta. Due to dividing the timeline into equal length
quanta, many context switches are caused.

In order to reduce the number of context switches in Pfair scheduling, the Early Re-
lease fair (ERfair) algorithm [45] is proposed. The ERfair algorithm is a Pfair-based work-
conserving scheduling algorithm, if and only if there is no idle processor when at least one
ready task exists, to reduce the run-time overhead and average response time. However,
Pfair-based scheduling incurs significant overhead compared to other real-time scheduling.

Largest Local Remaining Execution First (LLREF) [46] is also an optimal scheduling
algorithm and divides the timeline into sections separated by normal scheduling events,
for example, release time and deadline. The LLREF algorithm has usually lower bounded
overhead than Pfair scheduling with time quanta. The work-conserving algorithm for the
LLREF algorithm [47] is presented to reduce the number of preemptions than the LLREF
algorithm.

These approaches have the fairness of task execution, which causes high overhead. On
the other hand, the approach of the unfairness based on the EDF algorithm is presented.
Unfair EDF (U-EDF) [48] is an EDF-based optimal scheduling algorithm without fairness.
The U-EDF algorithm reduces the number of preemptions and migrations than other optimal
scheduling.

2.2.2.2 Non-Optimal Scheduling

Non-optimal scheduling is not always true that one periodic task set is feasible if Equa-
tion (2.8) is met. Non-optimal scheduling usually extends traditional uniprocessor real-time
scheduling algorithms such as the RM and EDF algorithms for global scheduling. These
algorithms are usually lower context switch and migration costs than optimal scheduling
algorithms. Moreover, the implementation of non-optimal scheduling is usually easier than
that of optimal scheduling.

Global RM (G-RM) is a global fixed-priority scheduling algorithm based on the RM
algorithm and the utilization bound of the G-RM algorithm [49] is

UG−RM
ub =

n∑
i=1

mi

Ti
5

M
2

(1 − Umax) + Umax, (2.9)

where Umax = max{mi/Ti | i = 1, ..., n}.
On the other hand, Global EDF (G-EDF) is a global dynamic-priority scheduling algo-

rithm based on the EDF algorithm and the utilization bound of the G-EDF algorithm [50]
is

UG−EDF
ub = M(1 − Umax) + Umax. (2.10)

16

2.2. MULTIPROCESSOR REAL-TIME SCHEDULING

time0 2ε x+2ε

Task τ1

Task τ2

Task τM

x+ε

Task τM+1

deadline miss!

P1

P2

PM

:

Processors

Figure 2.8: Problem of global scheduling

The utilization bounds of the G-RM and G-EDF algorithms depend on Umax and are
lower and lower if Umax is higher and higher. The worst case utilization bound of both the
G-RM and G-EDF algorithms is only 1 when Umax = 1, which does not depend on the
number of processors. Therefore, the G-RM and G-EDF algorithms cannot make use of the
multiprocessor capacity. Figure 2.8 shows a problem of global scheduling. There are M + 1
tasks on M processors according to the G-RM algorithm is given. Tasks τ1, τ2, ..., τM have
the same periods of x and the same execution times of 2ε. On the other hand, task τM+1 has
a period of x + ε and an execution time of x. Notice that 2ε < x. Then, suppose that all the
tasks are released at the time t = 0. The M tasks, periods of which are all x, are dispatched
in advance according to the G-RM algorithm. Then, all the M tasks consume 2ε time units
and complete at the time t = 2ε at the same time. Hence, task τM+1 starts to be executed
at the time t = 2ε on a processor. However, task τM+1 cannot avoid missing its deadline
because the task completes its execution at the time t = x + 2ε and the deadline of the task
is x + ε. Letting ε → 0, the M tasks have the zero utilization because their execution times
become 0. In addition, task τM+1 has the 100% utilization because its period is equal to
its worst case execution time. The total utilization of the tasks becomes 100%, namely the
system utilization becomes 1/M × 100%. Therefore, a deadline can be missed even if only
the 1/M of the system is utilized. The G-EDF algorithm also sees the same phenomenon
with the same task set. This phenomenon is often called Dhall’s effect [51]. Dhall’s effect
occurs for the above case in which high utilization tasks exist.

In order to overcome Dhall’s effect, the technique of the utilization separation is pre-
sented. RM-US[M/(3M-2)] [52] is a G-RM based fixed-priority scheduling algorithm with
the technique of the utilization separation and gives the highest priority to task τi if Ui >
M/(3M − 2). If Ui 5 M/(3M − 2), then task τi has the RM priority. The utilization bound
of the RM-US[M/(3M-2)] algorithm is

URM−US [M(3M−2)]
ub =

M2

3M − 2
(2.11)

On the other hand, Earliest Deadline First with Utilization Separation (EDF-US)[M/(2M-
1)] [50] is a G-EDF based dynamic-priority scheduling algorithm with the technique of
the utilization separation and gives the highest priority to task τi if Ui > M/(2M − 1). If

17

CHAPTER 2. STATE OF THE ART

Ui 5 M/(2M − 1), then task τi has the EDF priority. The utilization bound of the EDF-
US[M/(2M-1)] algorithm is

UEDF−US [M/(2M−1)]
ub =

M2

2M − 1
. (2.12)

The disadvantage of the technique of the utilization separation is that the EDF-US algo-
rithm does not dominate the G-EDF algorithm. That is to say, there is one task set, which
is schedulable by the G-EDF algorithm if the task set is not schedulable by the EDF-US
algorithm. In order to overcome the weakness of the technique of the utilization separation,
the zero laxity rule is presented.

Earliest Deadline until Zero Laxity (EDZL) [53] is a G-EDF-based dynamic-priority
scheduling algorithm with the zero laxity rule. The zero laxity rule means that the task is set
to the highest priority if the laxity of task τi at the time t, which denotes li(t) = Di−Ri(t)−t, is
equal to 0. Here, Di is the deadline of task τi and Ri(t) is the remaining execution time of task
τi. Until when the zero laxity rule occurs, the EDZL algorithm generates the same schedule
as the G-EDF algorithm. Thanks to the zero laxity rule, the EDZL algorithm dominates
the G-EDF algorithm and achieves higher schedulability than other non-optimal real-time
scheduling algorithms with lower number of preemptions compared to optimal scheduling.
The utilization bound of the EDZL algorithm [54] is

UEDZL
ub = M(1 − 1

e
) ' 0.6321M, (2.13)

where e ' 2.718 is the Euler’s number.
Earliest Deadline until Critical Laxity (EDCL) [55] is a G-EDF-based dynamic-priority

scheduling algorithm and also dominates the G-EDF algorithm like the EDZL algorithm.
The EDCL algorithm generates the same schedule as the G-EDF algorithm until the laxity
of task τi is critical, if its laxity holds the following condition at the time t.

li(t) < emin, (2.14)

where emin denotes the minimum remaining execution time of the M jobs that have the ear-
liest deadlines. When Equation (2.14) meets, the laxity is critical. The priority-promotion
operation of the critical laxity is aligned with times where some jobs are released or com-
pleted so that the scheduler invocation does not occur due to this operation.

2.2.3 Hybrid Scheduling
Global scheduling usually incurs significant overhead depending on the hardware architec-
ture. Because the migrating task can result in cache misses, which causes increased WCET
of each task. However, partitioned scheduling suffers from the limitation of schedulability.
In order to integrate the advantages of both global scheduling and partitioned scheduling,
there are two hybrid approaches: semi-partitioned scheduling and cluster scheduling.

2.2.3.1 Semi-Partitioned Scheduling

Semi-partitioned scheduling assigns most tasks to specific processors, while a few tasks are
migrated to another processor.

18

2.2. MULTIPROCESSOR REAL-TIME SCHEDULING

EDF-fm (fm denotes that each task is either fixed or migrating) [56] is a semi-partitioned
EDF-based dynamic-priority scheduling algorithm and assigns the highest priority to mi-
grating tasks. The non-migrating tasks are scheduled according to the EDF algorithm when
no migrating task is ready to be executed.

EDF with task splitting and K processors in a Group (EKG) [57] is an EDF-based
dynamic-priority scheduling algorithm with semi-partitioned approach. The utilization bound
of the EKG algorithm depends on the parameter k, which is used to control division of tasks
into groups of both high and low utilization tasks. The utilization bound of the EKG algo-
rithm is as following equation.

UEKG
ub =

 k
k+1 k < M
1 k = M

(2.15)

By Equation (2.15), the utilization of the EKG algorithm is optimal if k = M as well as
optimal global scheduling. Moreover, the average number of preemptions per job over the
hyperperiod is bounded by 2k.

Rate Monotonic Deferrable Portion (RMDP) [58] is a semi-partitioned RM-based fixed-
priority scheduling algorithm and makes use of the portioned scheduling technique, which
classifies each task into a fixed or migrating task. A fixed task is scheduled on the dedicated
processor without migrations. A migrating task is migrated between two processors so that
the RMDP algorithm makes at most M - 1 migrating tasks on M processors. The utilization
bound of the RMDP algorithm is as following equation.

URMDP
ub = 0.5 (2.16)

Earliest Deadline Deferrable Portion (EDDP) [59] is a semi-partitioned EDF-based dynamic-
priority scheduling algorithm and also makes use of the portioned scheduling technique. The
EDDP algorithm as well as the RMDP algorithm makes at most M - 1 migrating tasks on M
processors. The utilization bound of the EDDP algorithm is as following equation.

UEDDP
ub = 4

√
2 − 5 ' 0.65 (2.17)

Deadline Monotonic with Priority Migration (DM-PM) [60] is a semi-partitioned fixed-
priority scheduling algorithm and dominates partitioned fixed-priority scheduling. Because
the DM-PM algorithm permits to migrate tasks to another processor if they fit on any pro-
cessor. A migrating task is set to the highest priority, with portions of their execution time
assigned to processors.

EDF with Window-constraint Migration (EDF-WM) [61] is a semi-partitioned EDF-
based dynamic-priority scheduling algorithm and dominates partitioned dynamic-priority
scheduling like the DM-PM algorithm.

Partitioned Deadline-Monotonic Scheduling (PDMS) algorithms by allowing the High-
est Priority Task on a processor to be Split (HPTS) across more than one processor (PDMS_HPTS)
[62] is presented to improve the schedulability of semi-partitioned scheduling. The least up-
per bound of the PDMS_HPTS algorithm is as following equation.

UPDMS _HPTS
lub ' 0.6003 +

0.0928
M

(2.18)

In addition, PDMS_HPTS with allocating tasks to processors in the Decreasing order of
Size, called PDMS_HPTS_DS [62] improves the least upper bound until the following equa-
tion.

UPDMS _HPTS _DS
lub ' 0.6547 (2.19)

19

CHAPTER 2. STATE OF THE ART

Guan et al. proposed two semi-partitioned RM-based fixed-priority scheduling algo-
rithms: SPA1 and SPA2 [63]. The utilization bound of the SPA1 and SPA2 algorithms are
analyzed with Liu and Layland’s utilization bound [2]. The utilization bound of the SPA1
algorithm is

US PA1
ub = URM

lub = n(21/n − 1), (2.20)

where n is the number of tasks if the utilization of each task is lower than or equal to
URM

lub /(1 + URM
lub). By introducing an extra task pre-assigning mechanism, the utilization

bound of the SPA2 algorithm is also Equation (2.20) for any task set.
Deadline Partitioned WRAP (DP-WRAP) [64] is a semi-partitioned EKG-based dynamic-

priority scheduling algorithm to simplify the EKG algorithm. In the DP-WRAP algorithm,
the non-migrating tasks assigned to a given processor are scheduled in the EDF algorithm
on each processor instead of McNaughton’s wrap around algorithm [65], which reduces the
number of context switches.

Reduction to UNiprocessor (RUN) [66] is an optimal semi-partitioned EDF-based dynamic-
priority scheduling algorithm, like the EKG algorithm. The RUN algorithm transforms the
multiprocessor scheduling problem into an equivalent set of uniprocessor problems. The
RUN algorithm significantly outperforms existing optimal scheduling algorithms with an
upper bound of O(log M) average preemptions per job on M processors and reduces the
P-EDF algorithm whenever a proper partitioning is found.

2.2.3.2 Cluster Scheduling

Cluster scheduling permits to migrate tasks from one processor to another processor in each
cluster. Cluster scheduling has the advantage of reducing migration overhead, compared to
global scheduling, because each cluster usually shares L2 or L3 caches. Therefore, when
each task is migrated to another processor, the migrated task can reuse data on L2 or L3
cache.

The utilization bound of the Cluster EDF (C-EDF) algorithm [67] is

UC−EDF
ub (Mk, k, β) =

βMk + 1
β + 1

k, (2.21)

where β = bc/Umaxc and c is the number of processors in each cluster. If each cluster has
one processor (i.e., k = 1 and Mk = M), the utilization bound of the C-EDF algorithm is
equal to that of the P-EDF algorithm in Equation (2.6).

2.2.4 Summary of Multiprocessor Real-Time Scheduling

Many multiprocessor real-time scheduling algorithms in Liu and Layland’s model have
been presented. However, Liu and Layland’s model does not support overloaded conditions
so that the imprecise computation is required to achieve multiprocessor real-time systems,
which run in dynamic environments.

20

2.3. REAL-TIME SCHEDULING FOR IMPRECISE COMPUTATION

2.3 Real-Time Scheduling for Imprecise Computation

2.3.1 Real-Time Scheduling for Imprecise Computation on Uniproces-
sors

The Mandatory-First with Earliest Deadline (M-FED) algorithm [68] is an EDF-based dynamic-
priority scheduling algorithm in the traditional imprecise computation model on uniproces-
sors. The M-FED algorithm ranks mandatory parts of tasks by the EDF algorithm and all
mandatory parts have higher priorities than all optional parts. The M-FED algorithm is op-
timal about competitive ratio if the value of result created by each task is uniform. The
competitive ratio c.A of a scheduling algorithm A is defined to be the worst case ratio of the
value returned by an optimal off-line algorithm on the task set Γ to the value returned by A
on the same task set. The competitive ratio is defined as follows:

C.A = max
all τ

v.OPT (τ)
v.A(τ)

, (2.22)

where OPT is an optimal off-line schedule and the value obtained by an algorithm on a task
set is defined to be the sum of the values obtained on each task in the task set.

The OPTimization with Least-Utilization (OPT-LU) algorithm [69] is an EDF-based
scheduling algorithm in the traditional imprecise computation model on uniprocessors. The
goal of the OPT-LU algorithm is to maximize the reward. An instance of the OPT-LU
algorithm is specified by the set of non-decreasing concave reward functions of each task
F = { f1, f2, ..., fn}, the set of upper bounds of optional parts O = {o1, o2, ..., on}, the rational
number bi, the assignable optional part oi and the available slack S . The aim of the OPT-LU
algorithm is:

maximize
n∑

i=1

fi(ti) (2.23)

subject to
n∑

i=1

biti = S (2.24)

ti 5 oi i = 1, 2, ..., n
0 5 ti i = 1, 2, ..., n,

where 0 < S <
∑n

i=1 bioi, then bi is the rational number and ti is the assignable time of
optional part. However, the OPT-LU algorithm assumes that the WCET of each optional
part can be analyzed.

The Mandatory-First with Wind-up Part (M-FWP) algorithm [34, 35] is an EDF-based
dynamic-priority scheduling algorithm in the practical imprecise computation model on
uniprocessors. The M-FWP algorithm schedules each practical imprecise task by the fol-
lowing parameters.

• li, j(t): the sum of the remaining execution time including all mandatory parts of job
τi, j at the time t

• Ri, j(t): the assignable time of job τi, j at the time t

• S i, j(t): the assignable time of the optional part of job τi, j at the time t

21

CHAPTER 2. STATE OF THE ART

• Xi, j(t): the reserved time of executing the optional part of job τi, j

Since there is a case that each task completes its optional part to consume all the assignable
time of the optional part, the following equation always holds:

S i, j(t) = Ri, j(t) − li, j(t). (2.25)

In addition, the following groups are defined.

• Γh(τi, j): the group of all ready jobs which have higher priority than job τi, j

• Γhp(τi, j): the group of jobs that satisfy rk,l + Tk < Di, j

• Γhpe(τi, j): the group of jobs in Γhp(τi, j) that satisfy ((Di, j − rk,l) mod Tk) < Dk

Then, the amount of idle processor time allocated to the optional part of job τi, j is estimated
as

S i, j(t) = min(Di, j − t − li, j(t) − Ei, j(t) − Fi, j(t) −min(Gi, j(t),Hi, j(t)),
S n

i, j(t) − Xn
i, j(t)), (2.26)

where S n
i, j(t) is the remaining optional computation time of the next job in the optional ready

queue at the time t and Xn
i, j(t) is the amount of its optional computation time reserved. In

addition, Ei, j(t), Fi, j(t), Gi, j(t) and Hi, j(t) are as follows.

Ei, j(t) =
∑

τk,l∈Γh(τi, j)

Rk,l(t) (2.27)

Fi, j(t) =
∑

τk,l∈Γhp(τi, j)

(
1 +
⌊Di, j − (rk,l + Tk) − Dk

Tk

⌋)
mi (2.28)

Gi, j(t) =
∑

τk,l∈Γhpe(τi, j)

min(mi + wi, (Di, j − rk,l) mod Tk) (2.29)

Hi, j(t) = max((Di, j − rk,l) mod Tk | τk,l ∈ Γhpe(τi, j)) (2.30)

The M-FWP algorithm calculates the assignable time of the optional part by Equation (2.26).
If there is the assignable time of the optional part, execute the optional part of each task.
Otherwise, the M-FWP algorithm discards the optional part of each task and executes its
following mandatory part.

The Slack Stealer for Optional Parts (SS-OP) algorithm [70] is also an EDF-based
dynamic-priority scheduling algorithm in the practical imprecise computation model on
uniprocessors. In order to maximize the quality of result, the SS-OP algorithm distributes
the assignable time of the optional part, the upper bound of which is

Us = 1 −
n∑

i=1

mi

Ti
. (2.31)

The job which has the least absolute deadline Di, j from current time t consumes the assignable
time of the optional part in [t,Di, j). In [t,Di, j), the assignable time of the optional part is

22

2.3. REAL-TIME SCHEDULING FOR IMPRECISE COMPUTATION

Table 2.1: Overview of real-time scheduling for imprecise computation

Algorithm Practical Uniprocessor Multiprocessor
M-FED X
OPT-LU X
M-FWP X X
SS-OP X X

(Di, j − t)Us. The SS-OP algorithm assigns the slack time S i to job τi, j to maximize the
following equation.

maximize
n∑

i=1

fi(S i)
Ti

(2.32)

subject to
n∑

i=1

S i

min(Ti,Di)
5 Us (2.33)

∀i, 0 5 S i 5 oi,

where fi is the value function of task τi and oi is the WCET of the optional part of task τi.
However, like the OPT-LU algorithm, the SS-OP algorithm requires the known WCET of
each optional part. The WCET of each optional part may be unknown because real-time
applications run in dynamic environments where the overloaded conditions occur suddenly.
Therefore, the SS-OP algorithm cannot be adapted to such situations.

2.3.2 Real-Time Scheduling for Imprecise Computation on Multipro-
cessors

The research of real-time scheduling in the traditional imprecise computation model on
multiprocessors is introduced.

Khemka et al. discuss the problem of multiprocessor real-time scheduling for imprecise
computations, as a network flow problem [71]. Yun et al. propose a heuristic scheduling al-
gorithm for imprecise computation with 0/1 constraint on multiprocessors [72]. Stavrinides
and Karatza evaluate the performance of dynamic-priority scheduling in distributed real-
time systems [73, 74]. However, these approaches for multiprocessor or distributed systems
do not analyze the schedulability. Therefore, real-time scheduling algorithms in the tradi-
tional imprecise computation model do not support multiprocessor real-time scheduling.

2.3.3 Summary of Real-Time Scheduling for Imprecise Computation
Table 2.1 shows the overview of real-time scheduling for imprecise computation. The M-
FED and OPT-LU algorithms in the traditional imprecise computation model are impractical
because the traditional imprecise computation model assumes that there is no time termi-
nating or completing optional parts. In order to overcome the weakness of the traditional
imprecise computation model, the practical imprecise computation model is presented. In
the practical imprecise computation model, the M-FED and OPT-LU algorithms do not sup-
port multiprocessor real-time scheduling. In contrast, the M-FWP and SS-OP algorithms in
the practical imprecise computation model are adapted to real-time applications based on

23

CHAPTER 2. STATE OF THE ART

imprecise computation, thanks to following mandatory parts after executing optional parts.
Unfortunately, the M-FWP and SS-OP algorithms also do not support multiprocessor real-
time scheduling, like the M-FED and OPT-LU algorithms.

2.4 Real-Time Operating Systems
There are two approaches to implement real-time operating systems. One approach is to
extend general purpose operating systems for real-time processing. The other approach is
to implement real-time operating systems from scratch for specific real-time applications.
Now this dissertation introduces real-time operating systems based on the two approaches.

2.4.1 Real-Time Extensions of General Purpose Operating Systems
Real-time extensions of general purpose operating systems have the following advantages
against proprietary real-time operating systems.

• Developers can make use of many Application Program Interfaces (APIs), libraries
and device drivers to develop real-time applications on general purpose operating sys-
tems.

• Many application users make use of real-time applications easily because they always
use general purpose operating systems.

Real-time extensions of Linux [75] are major approaches in real-time systems. Now this
dissertation introduces several real-time extensions of Linux.

The RT-Linux real-time operating system [76] is a real-time extension of Linux for hard
real-time systems. The RT-Linux real-time operating system provides the capability of run-
ning special real-time tasks and interrupt handlers on the same machine as standard Linux.

The RTAI real-time operating system [77] is also a real-time extension of Linux. The
RTAI real-time operating system has supported the Adaptive Domain Environment for Op-
erating Systems (ADEOS) nano-kernel as an alternative for RTAI’s core to get rid of the old
kernel patch.

The Xenomai real-time operating system [78] supports to execute real-time RTAI tasks
in user space. The Xenomai real-time operating system brings the concept of virtualiza-
tion one step further: like RTAI, it uses the ADEOS nano-kernel to provide the interrupt
virtualization. However, it also permits to execute a real-time task in user space.

The MontaVista Linux real-time operating system [79] meets embedded developers
where they are in the development cycle with a complete embedded Linux distribution and
developer tools for a faster time-to-development.

The PREEMPT_RT real-time operating system [80] is implemented as a kernel patch to
make Linux more predictable and deterministic. This is done through several optimizations.
The kernel patch makes almost all kernel code preemptive except the most critical kernel
routines for reducing the maximum latency.

The Linux/RK real-time operating system [81] has been directly modified to introduce
real-time features of Linux. The Linux/RK real-time operating system provides resource
reservations directly to user processes. The use of this mechanism is transparent. Therefore,
it is possible to assign a reservation to a legacy Linux application and to access a specific
API to take advantage of the reservations and the quality of service management.

24

2.4. REAL-TIME OPERATING SYSTEMS

The KURT-Linux real-time operating system [82] satisfies the constraints of the firm
real-time applications in Linux. By running the hardware timer as an aperiodic device, the
KURT-Linux real-time operating system has increased the temporal resolution of the system
without significantly increasing the overhead of the software clock, called UTIME.

The ART-Linux real-time operating system [83] is also one of hard real-time extensions
in Linux. The features of the ART-Linux real-time operating system are to execute hard
real-time tasks in user level and not to require special device drivers.

The RED-Linux real-time operating system [84] implements a general scheduling frame-
work, which divides the system scheduler into two components: dispatcher and allocator.
The dispatcher provides the mechanism of real-time scheduling and resides in the kernel
space. The allocator is used to define the scheduling policy and implemented as a user space
function. This framework allows users to implement application-specific schedulers in the
user space which is easy to program and to debug.

The Linux-SRT real-time operating system [85] is a real-time version of Linux enhanced
with support for predictable scheduling and quality of service management. It is binary com-
patible with standard Linux: existing applications can benefit from quality of service with-
out being modified in any way. Processor and disk bandwidth are scheduled, and scheduling
policies are propagated to servers. Automated control and management features simplify the
use of advanced features.

The LITMUSRT real-time operating system [86] is a soft real-time extension of Linux
and supports multiprocessor real-time scheduling. The LITMUSRT real-time operating sys-
tem provides a useful experimental platform for applied real-time systems research.

The Redline real-time operating system [87] brings the first-class support for interactive
applications in Linux. Redline relies on lightweight specifications, which gives an estimate
of the resources required by an application over any period in which they are active for their
responsiveness.

The SCHED_DEADLINE real-time operating system [88, 89] is a kernel patch of a new
scheduling class in Linux so that normal tasks can still behave as when the kernel patch is
not applied. Eventually, this kernel patch might be merged inside Linux mainline.

The AQuoSA real-time operating system [90] features a flexible, portable, lightweight
and open architecture for supporting soft real-time applications with facilities related to
timing guarantees and quality of service, on the top of a general-purpose operating system
as Linux.

The AIRS real-time operating system [91] is aimed at supporting systems that run mul-
tiple interactive real-time applications such as H264 movie to improve the quality of service
of the overall systems.

The ChronOS real-time operating system [92] is a best-effort real-time multiprocessor
Linux kernel and addresses the intersection of three problem spaces: (i) operating system
support for obtaining best-effort timing assurances; (ii) real-time Linux kernel augmented
with the PREEMPT_RT patch and (iii) operating system support for multiprocessor real-
time scheduling.

On the other hand, other real-time extensions of general purpose operating systems are
introduced.

The RT-Mach real-time operating system [93] is developed as a real-time version of the
Mach operating system [94] and supports predictable real-time computing environments.
Unfortunately, the development of the RT-Mach real-time operating system was stopped be-
cause the porting costs from the Mach operating system to the RT-Mach real-time operating
system and the implementation costs of new device drivers are too much [95].

25

CHAPTER 2. STATE OF THE ART

The Windows CE real-time operating system [96] is a real-time extension of Windows
[97] designed for a wide range of small-footprint consumer and enterprise devices and is
optimized for devices that have minimum storage.

The RT-UNIX real-time operating system [98] is a real-time extension of the UNIX
operating system [99] to achieve real-time operation in the UNIX environments.

2.4.2 Proprietary Real-Time Operating Systems

Proprietary real-time operating systems have the following advantages against real-time ex-
tensions of general purpose operating systems.

• Real-time application-specific implementation can be achieved without no-use codes.
Because general purpose operating systems implement various codes which does not
use real-time applications. Due to the no-use codes, the reliability of real-time appli-
cations may be degraded.

• Optimal design and implementation can be achieved because proprietary real-time
operating systems have been developed from scratch.

• Developers do not need to consider the application compatibility unlike general pur-
pose operating systems.

2.4.2.1 Standards of Real-Time Operating Systems

The role of standards in real-time operating systems is very important as it provides porta-
bility of applications from one platform to another platform. In addition, standards allow
the possibility of having several kernel providers for a single application to promote compe-
tition among vendors and to increase quality. Current real-time operating system standards
mostly specify portability at the source code level, requiring the application developer to
recompile the application for every different platform.

The RT-POSIX standard [100] is a real-time extension of the POSIX standard [101],
which is the portability of applications at the source code level.

• Minimal real-time systems profile (PSE51) is intended for small embedded systems
so that most of the complexity of general purpose operating systems is eliminated.
The unit of concurrency is the thread and processes are not supported. Input and
output operations are possible through predefined device files. However, there is not
a complete file system. The PSE51 profile can be implemented with a few thousand
lines of code and memory footprints in the tens of kilobytes range.

• Real-time controller profile (PSE52) is similar to the PSE51 profile, with the addition
of a file system in which regular files can be created, read or written. It is intended for
systems like a robot controller, which may need support for a simplified file system.

• Dedicated real-time system profile (PSE53) is intended for large embedded systems
(e.g., avionics) and extends the PSE52 profile with the support for multiple processes
that operate with protection boundaries.

26

2.4. REAL-TIME OPERATING SYSTEMS

• Multi-purpose real-time system profile (PSE54) is intended for general purpose sys-
tems running applications with real-time and non-real-time requirements. It requires
most of the POSIX functionality for general purpose systems and most real-time ser-
vices.

The HeartOS real-time operating system [102] is fast, light and well featured for most for
small to medium embedded applications including safety-critical applications. The HeartOS
real-time operating system is compliant with the PSE51 profile. The SHaRK real-time oper-
ating system [103] has a dynamically configurable module to support development and test
of new scheduling algorithms and synchronization protocols. The SHaRK real-time operat-
ing system is compliant with the PSE52 profile. The MaRTE OS real-time operating system
[104] follows the PSE51 profile. The services in the MaRTE OS real-time operating system
have a time-bounded response so that hard real-time requirements can be supported.

The µITRON [105] specification is specified as a real-time operating system for im-
proving reliability and reusability of embedded and real-time systems. Real-time operating
systems in the ITRON specification have been applied over a large range of embedded ap-
plication domains.

• audio-visual equipment (TVs, digital cameras and audio components)

• home appliances (microwave ovens, rice cookers, air-conditioners and washing ma-
chines)

• personal information appliances (PDAs, personal organizers and car navigation sys-
tems)

• entertainment (game gears and electronic musical instruments)

• PC peripherals (printers, scanners, disk drives and CD-ROM drives)

• office equipment (copies, FAX machines and word processors)

• communication equipment (phone answering machines, ISDN telephones, cellular
phones, ATM switches, wireless systems and satellites)

• transportation (automobiles)

• industrial control (plant control and industrial robots)

• others (elevators, vending machines, medical equipment and data terminals)

Examples of real-time operating systems in the µITRON specification are TOPPERS/JSP
[106], HOS [107], T-Kernel [108], Nucleus [109] and TNKernel [110].

The Offene Systeme und deren schnittstellen fur die Elektronik im Kraftfahrzeug/Vehicle
Distributed eXecutive (OSEK/VDX) specification [111] aims at the definition of an indus-
trial standard for an open-ended architecture for distributed control units in vehicles. The ob-
jective of the OSEK/VDX specification is to describe an environment that supports efficient
utilization of resources for automotive application software. This standard can be viewed
as an API for real-time operating systems integrated on a network management system,
which describes the characteristics of a distributed environment that can be used for devel-
oping automotive applications. Examples of real-time operating systems in the OSEK/VDX

27

CHAPTER 2. STATE OF THE ART

specification are TOPPERS/ATK [112], Erika Enterprise [113], FreeOSEK [114], PICOS18
[115] and Trampoline [116].

The AUTomotive Open System ARchitecture OS (AUTOSAR OS) specification [117]
extends the OSEK/VDX specification. The AUTOSAR OS specification reserves execution
time, release time, interrupt disable time and resource time. Currently, the TOPPERS/ATK
real-time operating system is extended for the AUTOSAR OS specification.

The Avionics Application Standard Software Interface 653 (ARINC 653) specification
[118] is specified for avionics real-time systems that specifies how to host multiple applica-
tions on the same hardware. In order to decouple the real-time operating system from the
application software, ARINC 653 defines an API called APplication/EXecutive (APEX).
The goal of the APEX API is to allow analyzable safety critical real-time applications to
be implemented, certified and executed. Several critical real-time systems have been suc-
cessfully built and certified using APEX, including some critical components for the Boeing
777 aircraft. An example of real-time operating system in the ARINC 635 specification is
INTEGRITY-178B [119].

Now this dissertation introduces real-time operating systems, which supports multiple
specifications.

The eCos real-time operating system [120] is intended for embedded applications. The
highly configurable nature of the eCos real-time operating system allows the operating sys-
tem to be customized to precise application requirements, delivering the best possible run-
time performance and an optimized hardware resource footprint. The eCos real-time oper-
ating system has compatibility layers and APIs for the PSE51 profile, the PSE52 profile and
the µITRON specification.

The RTEMS real-time operating system [121] supports many open APIs and interface
standards including the PSE52 profile and the µITRON specification.

The LynxOS real-time operating system [122] is the superior foundation for sophisti-
cated real-time systems and supports the PSE53 specification, the ARINC 653 specification
and Linux applications simultaneously in a single partition.

2.4.2.2 Proprietary Implementations of Real-Time Operating Systems for Research

Many researchers have developed real-time operating systems from scratch to evaluate real-
time scheduling algorithms and synchronization protocols in real-time systems. Now some
of real-time operating systems are introduced.

The Alpha real-time operating system [123] is a novel nonproprietary operating system
for large, complex and distributed real-time systems. Examples include combat platform
and battle management, factory automation and telecommunications.

The ARX/ULTRA real-time operating system [124] employs user level threads for schedul-
ing, communication and multithreading. The goal of the ARX/ULTRA real-time operating
system is to provide (i) flexible and predictable scheduling services; (ii) effective manage-
ment of kernel-level thread blocking; (iii) efficient handling of scheduling events including
timer interrupts.

The CHAOS real-time operating system [125] offers kernel-level primitives that allow
high-performance and large-scale real-time software to be programmed as a system of in-
teracting objects.

The CHIMERA II real-time operating system [126] is designed to reduce the develop-
ment time by providing a convenient software interface between the hardware and the user.

28

2.4. REAL-TIME OPERATING SYSTEMS

The Contiki real-time operating system [127] supports highly portable multitasking and
is developed for use on a number of memory-constrained networked systems ranging from
small to medium embedded systems on microcontrollers including sensor network systems.

The EMERALDS real-time operating system [128] is designed for small to medium size
embedded systems. The EMERALDS real-time operating system uses the novel approach of
mapping the kernel into each user-level address space with full memory protection. There-
fore, system calls do not need context switches unless a user-level server is involved.

The EOS real-time operating system [129] is intended to be compact enough to be used
in embedded systems and provides standard capabilities such as message handling, memory
sharing, device management and direct support for error tracking and recovery.

The EROS real-time operating system [130] combines an unusual collection of facilities
into a single package, hopefully in a novel way. Each of these facilities is essential to
providing scalable reliability. Currently, the EROS real-time operating system is merged
into the CapROS real-time operating system [131].

The Fiasco real-time operating system [132] is used to construct flexible systems. The
Fiasco real-time operating system is not only both suitable for big and complex systems but
also for small and embedded applications.

The HARTIK real-time operating system [133] is designed to provide facilities for pro-
gramming robot tasks with explicit timing constraints and predictable execution. The HAR-
TIK real-time operating system is used as a platform for programming predictable real-time
tasks in robotics applications, where control tasks and sensor acquisition processes have to
be performed at different rates.

The HARTOS real-time operating system [134] is to design and implement an experi-
mental distributed real-time system. An important feature of the HARTOS real-time oper-
ating system is the use of an intelligent network processor to handle many of the functions
relating to communications.

The hthreads real-time operating system [135] is a hardware/software co-design of a
multithreaded kernel and an integral part of the hybrid thread programming model being
developed for hybrid systems, which are comprised of both software resident and hardware
resident concurrently executing threads.

The Mars real-time operating system [136] guarantees a deterministic system behav-
ior. The goal of the Mars real-time operating system is to administer resources (processor,
memory and bus) and to hide all hardware details from the tasks.

The MARUTI real-time operating system [137] is designed to support real-time applica-
tions on a variety of hardware systems. The MARUTI real-time operating system supports
guaranteed-service scheduling, in which jobs that are accepted by the system are verified to
satisfy timing constraints.

The MERT real-time operating system [138] is built on top of a kernel, which pro-
vides the basic services such as memory management, process scheduling, and trap handling
needed to build various operating system environments.

The Nano-RK real-time operating system [139] has multi-hop networking support for
use in wireless sensor networks. The Nano-RK real-time operating system supports fixed-
priority preemptive multitasking for ensuring that task deadlines are met, along with support
for processor and network as well as sensor and actuator reservations.

The Quest real-time operating system [140] supports virtual real-time scheduling on x86
multiprocessors. The Quest real-time operating system develops a relatively small kernel for
research and educational purposes avoiding complexities of existing open source systems
like Linux.

29

CHAPTER 2. STATE OF THE ART

The S.O.O.S. real-time operating system [141] implements servers as a resource reser-
vation mechanism, which offers the ability to execute tasks with soft real-time requirements.

The Spring real-time operating system [142] first considers supporting multiprocessors.
The goal of the Spring real-time operating system extends beyond stand-alone multipro-
cessor systems and encompasses distributed systems composed of several multiprocessing
nodes and tasks with synchronization requirements.

The Timix real-time operating system [143] is developed to support multisensor robot
systems. Three features of the Timix real-time operating system are as follows: (i) it is pos-
sible to estimate the amount of time that a real-time process is executed since the execution
times of system calls are bounded; (ii) a hierarchy of communication methods differing in
synchronization, overheads and bandwidth requirements is provided to allow the program-
mer to choose the one most applicable to a particular application, depending on the real-time
requirements; (iii) new devices, which are directly controlled by application processes, can
be integrated into the system without changing the kernel.

The YARTOS real-time operating system [144] provides guaranteed response times to
tasks. The YARTOS real-time operating system is distinguished by the programming model
and by the usage of a novel processor scheduling and resource allocation policy.

2.4.2.3 Proprietary Implementations of Real-Time Operating Systems for Commer-
cial Use

Some real-time operating systems are developed as commercial products. Now real-time
operating systems for commercial use are introduced.

The Abassi real-time operating system [145] is configured with many features unmatched
in the industry. These features including robustness and code savings are intelligent starva-
tion protection, dynamic tracking and hybrid interrupt stack.

The AMX real-time operating system [146] meets the critical needs of the most chal-
lenging real-time applications and remains simple and easy to use. In addition, the AMX
real-time operating system is compact and modular as can readily be seen from the memory
size measurements.

The AVIX real-time operating system [147] is very fast, offers unprecedented interrupt
handling capabilities, consumes little memory, makes application development manageable
and introduces real-time insight in the application dynamics.

The ChorusOS real-time operating system [148] is very finely tuned to meet the re-
quirements of a given application or environment. The core executive component is always
present in an instance of the ChorusOS real-time operating system. Optional components
provide scheduling, memory management, time management, inter-thread communication
and inter-process communication.

The CMX real-time operating system [149] is designed for microprocessors, micro-
computers and DSPs. The CMX real-time operating system supports nested interrupts, ex-
tremely fast context switches and very low interrupt latencies.

The DioneOS real-time operating system [150] is designated for microcontrollers. The
main goal of the DioneOS real-time operating system is to improve performance. Due to
this requirement, many parts of the code have been optimized.

The embOS real-time operating system [151] is designed to be used as foundation for
the development of embedded real-time applications. The internal structure of the embOS
real-time operating system has been optimized in a variety of applications with different
customers, to fit the needs of different industries.

30

2.4. REAL-TIME OPERATING SYSTEMS

The Fusion real-time operating system [152] is designed and optimized for networking
and media-centric processors. The Fusion real-time operating system is targeted at media
applications for DSPs. Since then it has evolved into a more general real-time operating
system, it has maintained all of the strengths that made it successful for DSP applications.
These strengths include small footprint, objects for streaming data, very low processor over-
head, stack sharing capabilities and fully integrated interrupt controls.

The iRMX real-time operating system [153] has been proven in thousands of demand-
ing real-time applications worldwide and is highly configurable from a small-footprint and
kernel-only solution to a full-service.

The MicroC/OS-II real-time operating system [154] is a highly portable, scalable and
preemptive real-time multitasking kernel for microprocessors and microcontrollers.

The MQX real-time operating system [155] is a multitasking kernel with pre-emptive
scheduling, fast interrupt response, extensive inter-process communication, synchronization
facilities and a file system.

The OSE real-time operating system [156] is widely used in the automotive industry and
the communications industry. OSE processes can be either static or dynamic; that is, created
at compile-time or at run-time. Five different types of processes are supported: interrupt pro-
cess, timer interrupt process, prioritized process, background process and phantom process.
There are different scheduling principles for different processes: priority-based, cyclic and
round-robin. The interrupt processes and the prioritized processes are scheduled according
to their priorities, while timer interrupt processes are triggered cyclically. The background
processes are scheduled in a round-robin fashion. The phantom processes are not scheduled
at all and are used as signal redirectors.

The PikeOS real-time operating system [157] is a virtualization platform allowing to
run several applications in different virtual machine together on a single hardware platform.
For those applications having hard real-time requirements, the scheduling mechanism of the
PikeOS real-time operating system ensures temporal and spatial deterministic.

The Portos real-time operating system [158] does not use tasks: the priority levels are
directly assigned to functions. The scheduler of the Portos real-time operating system is
very small and fast to save context switches and stack space.

The Q-Kernel real-time operating system [159] implements the unique micro kernel seg-
mented interrupt architecture, called Dual-Mode. The Dual-Mode combines the traditional
thread-based kernel architecture for real-time control with specialized fibers for high data-
flow operations.

The QNX Neutrino real-time operating system [160] is a full-featured and robust ker-
nel that scales down to meet the constrained resource requirements of real-time embedded
systems. The micro-kernel design and modular architecture in the QUX Neutrino real-time
operating system enable customers to create highly optimized and reliable systems with low
total cost of ownership.

The QP real-time operating system [161] supports a highly portable, event-driven and
real-time framework for concurrent execution of state machines specifically designed for
real-time and embedded systems.

The ReaGOS real-time operating system [162] is a preemptive single-stack kernel. The
main advantages of the ReaGOS real-time operating system are fast scheduling and small
footprint. The kernel is generated automatically from a high level graphical description of
the application so that much of run-time setup and lookup can be avoided.

The rt-kernel real-time operating system [163] is designed to meet the hard real-time
requirements. The rt-kernel real-time operating system is well suited for automotive power

31

CHAPTER 2. STATE OF THE ART

train control applications or real-time audio and video streaming applications.
The RTX real-time operating system [164] reduces the product cost of the computer

platform and the operational costs of producing and supporting product, shortens the cycle
time of getting new generations of products to market and increases market share by opening
new markets not previously reachable and doing so profitably.

The RTXC Quadros real-time operating system [165] has scalability and extensive pro-
tocol stacks and middleware. In addition, the RTXC Quadros real-time operating system
supports not only integrated and tested platforms but also design and configuration tools.

The Salvo real-time operating system [166] is designed expressly for very low-cost em-
bedded systems with severely limited program and data memory. The Salvo real-time oper-
ating system is highly configurable and scalable with a full set of run-time features includ-
ing priority-based scheduling, cooperative multitasking, event services, real-time delays and
elapsed-time services.

The SCIOPTA real-time operating system [167] is specifically designed to provide ex-
cellent real-time performance and to use small memory. Internal data structures, memory
management, inter-process communication and time management are highly optimized.

The Sirius real-time operating system [168] is deterministic, predictable, safe and re-
liable. Therefore, the Sirius real-time operating system can be successfully applied in a
broad range of embedded applications in medical, telecommunication, robotics, automo-
tive, aerospace and space industries.

The SMX real-time operating system [169] is characterized by small footprint, high
performance, ease of use and integration with popular development tool suites.

The Talon DSP real-time operating system [170] meets the requirements of sophisti-
cated embedded DSP applications providing predictable, deterministic and hard real-time
behavior.

The TargetOS real-time operating system [171] is fast, small and preemptive. In order
to accelerate time-to-market, the TargetOS real-time operating system is integrated with
development tools and commercial-off-the-shelf board support packages.

The ThreadX real-time operating system [172] is a multitasking kernel with preemp-
tive scheduling, fast interrupt response, memory management, inter-thread communication,
mutual exclusion, event notification and thread synchronization features.

The µTasker real-time operating system [173] specifically targets smaller single-chip
Internet-enabled embedded processors (with internal Ethernet controller and memory). It is
small footprint but still offers comfortable development and powerful features as typically
required in control type applications.

The µ-velOSity real-time operating system [174] allows developers to configure and
build the microkernel to meet the specific and unique system design requirements while
only including what services are absolutely needed.

The VxWorks real-time operating system [175] addresses the overhead of context switch
by saving only the register windows that are actually in use by a task being switched. When
the context of each task is restored, only a single register window must be restored. The
other register windows are restored later at the appropriate returns from subroutine.

2.4.2.4 Proprietary Implementations of Real-Time Operating Systems for Open Source

Other real-time operating systems are usually open source. Examples of real-time operat-
ing systems for open source are Atomthreads [176], BeRTOS [177], Brazilian Real-Time
Operating System [178], ChibiOS/RT [179], cocoOS [180], Embox [181], Femto OS [182],

32

2.4. REAL-TIME OPERATING SYSTEMS

FreeRTOS [183], FunkOS [184], Helium [185], iRTOS [186], Milos [187], OSA [188], pi-
coOS [189], Phoenix [190], Prex [191], Real-Time Thread [192], scmRTOS [193], Small
Devices Portable Operating System [194], uOS [195] and uSmartx [196].

2.4.2.5 Proprietary Implementations of Real-Time Operating Systems for Imprecise
Computation

There are three ways for implementing imprecise computations. They are all suggested by
Lin et al. [18].

The milestone method is used for imprecise computations with monotone optional parts.
The method saves intermediate results, which the optional part is executed so that the best
result is immediately available when terminating optional parts. The points to save the
results are called milestones or checkpoints. The disadvantage of the milestone function is
to waste the processor time between the milestone time and the termination time.

The sieve function method is used for imprecise computations, which have optional parts
with 0/1 constraints. The method requires that the underlying operating system be capable
of telling applications the amount of available computation time.

The multi-version method is used for imprecise computations with multiple versions.
The method is implemented in programming languages [197] and is not implemented in
real-time operating systems.

The Concord system presented by Lin et al. [18] supports both the milestone and sieve
function methods in a client and server architecture. The Concord system provides both a
programming tool so that a user can design imprecise computations and a run-time support
so that imprecise results can be reliably and meaningfully returned. Such a system would
give users much greater flexibility in implementing their applications. Hull et al. [198]
develop the imprecise computation server, which implements monotone imprecise compu-
tations in as much as the same structure as the Concord system. Unfortunately, the Concord
system in the imprecise computation model cannot guarantee the schedulability to output
the results. Therefore, a real-time operating system in the practical imprecise computation
model is required.

The RT-Frontier real-time operating system [70] supports the practical imprecise com-
putation model and implements EDF-based dynamic-priority scheduling algorithms in the
practical imprecise computation model such as the M-FWP and SS-OP algorithms. How-
ever, the M-FWP and SS-OP algorithms calculate the assignable time of the optional part
dynamically, which causes high overhead [33].

2.4.3 Summary of Real-Time Operating Systems

Many real-time operating systems support Liu and Layland’s model. However, these real-
time operating systems do not support overloaded conditions. Therefore, a few real-time
operating systems are developed to support the traditional imprecise computation model or
the practical imprecise computation model. Unfortunately, there is no real-time operating
system, which supports both imprecise computation and multiprocessor real-time schedul-
ing.

33

CHAPTER 2. STATE OF THE ART

2.5 Experimental Evaluations of Multiprocessor Real-Time
Scheduling

In this section, several experimental evaluations of multiprocessor real-time scheduling in
Liu and Layland’s model are introduced.

Now this dissertation introduces experimental evaluations of multiprocessor real-time
scheduling in the LITMUSRT real-time operating system. There are several implementations
of global scheduling. Brandenburg and Anderson implement several global schedulers on
Sun’s Niagara platform [199]. The experimental results show that a combination of a parallel
heap, event-driven scheduling, and dedicated interrupt handling performed best for most
workloads. Bastoni et al. evaluate the G-EDF, P-EDF and C-EDF algorithms [200] on a
24-core Intel system. The experimental results show that the overhead of scheduler in the
P-EDF algorithm is approximately 10µs regardless of the number of tasks. In contrast, the
overhead of scheduler in the C-EDF algorithm is slightly higher than that in the P-EDF
algorithm. However, the overhead of scheduler in the G-EDF algorithm is 150-200µs for
100-350 tasks and dramatically higher than the overheads of schedulers in the P-EDF and
C-EDF algorithms. In addition, semi-partitioned EDF-based dynamic-priority scheduling is
often higher schedulability than other scheduling policies [201].

On the other hand, Lelli et al. present an efficient implementation of the G-EDF sched-
uler in Linux kernel [202]. The implementation is scalable and the overhead of scheduler in
the G-EDF algorithm is very close to that of SCHED_FIFO. From these results, the G-EDF
algorithm has comparable overhead of scheduler to the P-EDF algorithm on a 48-core AMD
system.

From the above experimental results, the overhead of global scheduler depends on both
hardware platform and software implementation so that the practicality of global scheduling
is still an open problem.

The ChronOS real-time operating system also evaluates the overhead of the G-EDF al-
gorithm. The average overhead of the G-EDF scheduler for 20 tasks is 15µs and the average
migration overhead is 8µs [92]. The overhead of the Chron OS real-time operating system
becomes high.

These Linux-based evaluation approaches suffer from the overhead including scheduler,
migrations and context switches. Therefore, experimental evaluations of multiprocessor
real-time scheduling in proprietary real-time operating systems are required achieving low
overhead.

2.6 Summary of State of the Art
This chapter first gives three task models and introduces the advantage of the practical im-
precise computation model against other task models. This chapter next shows multiproces-
sor real-time scheduling policies and real-time scheduling algorithms on multiprocessors.
In contrast, existing real-time scheduling algorithms do not support the practical imprecise
computation model. The existing real-time operating systems support these task models and
implement these real-time scheduling algorithms. However, existing real-time scheduling
algorithms in the practical imprecise computation model do not support multiprocessor real-
time scheduling so that the effectiveness of the practical imprecise computation model on
multiprocessors is unknown. They calculate the assignable time of the optional part dynam-
ically. Unfortunately, the analysis of the assignable time of the optional part is too complex

34

2.6. SUMMARY OF STATE OF THE ART

on multiprocessors. In addition, they suffer from the overhead of such processing [33]. This
dissertation claims that dynamic-priority scheduling algorithms in the practical imprecise
computation model are difficult to support multiprocessors and a new priority assignment
policy for practical imprecise computation model is required.

35

Chapter 3

System Model

This chapter defines the system model in this dissertation. Especially, this dissertation fo-
cuses on a practical imprecise computation model [33]. The practical imprecise compu-
tation model that can be applied to a diverse range of real-time applications and form the
basis of diverse real-time systems is required for the imprecise computation platform. As
pointed out in Chapter 2, the traditional imprecise computation model lacks the ability to
incorporate compensation or recovery operations properly needed after the termination of
an optional part to maintain the context of the computation in a safe stable state. Moreover,
other computation models do not allow the mixture of mandatory parts and optional parts,
which practical real-time applications require.

3.1 Wind-up Operation
In the traditional imprecise computation model [18], the most restrictive one is that no con-
sideration is given on how practical imprecise computations can be terminated. The tradi-
tional imprecise computation model has no place for compensation or recovery operations
needed on the termination of optional parts. Thus, as long as these computation models
are assumed, even a monotone imprecise computation cannot be implemented properly as
requested in practice.

Consider the following scenario to depict the problem. In a remote sensing application,
there exists an imprecise computation on one node that periodically monitors the environ-
ment and sends the up-to-date data to other nodes. The role of the imprecise computation
is to read sensor values, to process these raw values and to send these processed data to the
other nodes. Suppose that this computation is based on the traditional imprecise compu-
tation model so that its mandatory part entirely precedes its optional part. In addition, the
reward function of this computation is linearly monotone. Also suppose that the imprecise
computation has the highest priority in the interval [t,D), where t is the time and D is the
deadline of this computation. Consider that its optional part is too long to complete before
D in overloaded conditions.

Figure 3.1 shows the case with the milestone method. The imprecise computation starts
to execute its mandatory part from the time t. After it has completed its mandatory part, it
goes on to execute its optional part. When executing the optional part, the operating sys-
tem regularly places checkpoints. At each checkpoint, the intermediate imprecise results
are sent out to the destination nodes, since it will be too late to send out the result after the
computation is terminated at its deadline. Thus, when the size of the data becomes large, the

36

3.1. WIND-UP OPERATION

t
time

Task τi

D

checkpoints

{
Mandatory part Optional part

Figure 3.1: Inadequacy of milestone methods

t
time

Task τi

D

Exception Handler

Mandatory part Optional part

Figure 3.2: Infeasible schedule created by exception handling

overhead of the checkpoint can become large so that the performance of the computation
itself is degraded. On the other hand, when the deadline expires, thanks to the checkpoints,
the best imprecise result is already available in the remote nodes. However, the terminated
computation and the resources that the computation used may not be in a stable state, since
the computation could have been terminated at an arbitrary point. For example, the compu-
tation may not have released all the acquired locks for shared data. It is also possible that the
next instance of this computation uses the progress achieved by this terminated instance as
its start point. In that case, it is problematic to leave the internal data in an inconsistent state.
Therefore, the milestone method is not enough to support correct imprecise computation if
applications are based on the traditional imprecise computation model.

An exception handling mechanism may be superior to the milestone method in that there
is no overhead at checkpoints. Unfortunately, the exception handling mechanism can lead
to a deadline miss in the worst case. Suppose the same scenario of the previous example.
An exception handler is invoked at the deadline instead of regularly placing checkpoints
in Figure 3.2. The role of the exception handler is to send out the result to other nodes
and to put all the shared data back to a consistent state. However, there are two critical
problems. First of all, the exception handler is only invoked on a deadline miss. This means
that the operations performed by the exception handler violate the timing constraints of the
terminated imprecise computation. In particular, the result can only be sent after the original
deadline, which means that the result can only arrive at the destination nodes too late. Next,
if the handler is executed at the highest priority, the subsequent computations are delayed by
its execution. The execution of the exception handler could lead to another deadline miss.

Considering these cases, it must be concluded that there is a mismatch between the tradi-
tional imprecise computation model and practical real-time applications. Especially, practi-

37

CHAPTER 3. SYSTEM MODEL

t
time

Task τi

D

Mandatory part for Wind-up operation

First mandatory part First optional part Second mandatory part

Figure 3.3: Feasible schedule in the practical imprecise computation model

cal real-time applications that allow termination in its optional part require compensation or
recovery operations to allow safe termination, while the traditional imprecise computation
model allows no operation for that.

This dissertation calls these compensation operations for terminated optional parts wind-
up operations. Examples of wind-up operations are

• to return the result of computation to other computations on the same node and to
those on remote nodes;

• to notify other parts of system of its premature termination;

• to release acquired locks;

• to maintain the consistency of private and shared data by completing the portions that
were not executed or by rolling back prematurely terminated operations;

• to store the reward of terminated computation to provide a feedback to the scheduler
to optimize its behavior dynamically.

3.2 Computation Model
The basic idea behind the practical imprecise computation model to solve the issues aris-
ing from the mismatch is to let applications have the wind-up operations included within
themselves so that if appropriately modeled and scheduled, the timing constraints of wind-
up operations are met without a special supporting mechanism. The major characteristics in
the practical imprecise computation model that make different from the traditional imprecise
computation model are as follows.

• One computation can have more than one mandatory parts and more than one optional
parts.

• The mandatory and optional parts of the imprecise computation can be executed in an
interleaving manner.

Using this practical imprecise computation model, the previous example can be solved
by having two mandatory parts and one optional part as shown in Figure 3.3. In this case,
task τi has two mandatory parts and one mandatory part. The first mandatory part and the
first optional part is the same as those in the traditional imprecise computation model and

38

3.3. OPTIONAL DEADLINE

t
time

Task τi

D

set optional deadline statically

OD

First mandatory part First optional part Second mandatory part

Figure 3.4: Feasible schdule with optional deadline in the practical imprecise computation
model

the second mandatory part contains all the wind-up operations needed by this computation.
The second mandatory part is scheduled before the deadline without termination, since its
characteristics are the same as the mandatory part in the traditional imprecise computation
model, except that it can follow an optional part.

An example of the practical imprecise task with two mandatory parts and one optional
part is a visual-based feedback control task in autonomous mobile robots. Each part in the
practical imprecise task executes the following operation.

• First mandatory part: inputs the image data from cameras.

• First optional part: analyzes objects from the image data.

• Second mandatory part: outputs the proper operation to the actuator for avoiding
objects.

3.3 Optional Deadline

The M-FWP algorithm is difficult to support multiprocessors because the assignable time
of the optional part is calculated dynamically. If the assignable time of the optional part
is overestimated, the following mandatory part may miss a deadline due to the overrun of
the optional part. Though the RM algorithm cannot be adapted to the practical imprecise
computation model, a fixed-priority based assignment policy is a better choice to support
multiprocessors. In order not to overrun optional parts and to start wind-up operations, each
practical imprecise task has its optional deadline.

Figure 3.4 shows a feasible schedule with an optional deadline OD in the practical impre-
cise computation model. A dotted down arrow represents an optional deadline. An optional
deadline is a time when an optional part is terminated and the following mandatory part as a
wind-up operation is released. All mandatory parts except the first mandatory part are ready
to be executed after each optional deadline and can be completed if each mandatory part is
completed by each optional deadline. If each task executes the following mandatory part
after its optional deadline, the task may miss its deadline. Each optional deadline is set to
the time as late as possible to expand the executable range of each optional part. Not all
mandatory parts of each practical imprecise task must miss its deadline if there is an idle
processor or lower priority tasks are executed between the time when the mandatory part is
completed and the time when the following mandatory part is released.

39

CHAPTER 3. SYSTEM MODEL

Mandatory part Optional part

Discarded

Completed

Terminated

Mandatory part Optional part

Discarded

Completed

Terminated

Mandatory part

Figure 3.5: Linear task in the practical imprecise computation model

3.4 Linear Task Model
All tasks are expressed by a linear task model. A linear task does not have any branching
point in its logical structure when a mandatory part or an optional part is considered as a
single basic block. A branching point is defined as a mandatory or an optional part that
has more than one successors that can be selectively executed. An example of a linear task
in the practical imprecise computation model is shown in Figure 3.5. This linear task has
three mandatory parts and two optional parts. The purpose of using this linear task model
is to enable the feasibility assessment of given task sets in a practical overhead. It must be
noted that this linear constraint does not necessarily forbid a computation to have multiple
execution paths. Multiple execution paths within a part are allowed as long as there is only
one path between all consecutive parts.

An example of the practical imprecise task with three mandatory parts and two optional
parts is a lip reading task by a sensor fusion of a camera and a microphone [203]. Each part
in the practical imprecise task executes the following operation.

• First mandatory part: inputs the visual information from a camera. There are some
metrics to read the lip: the width of the lip, the height of the lip and the variation of the
height of the lip. In the first mandatory part, one of the metrics is executed to generate
the result with low quality.

• First optional part: performs other metrics except the metric performed in the first
mandatory part. More metrics are performed in the first optional part, the result has
higher quality.

• Second mandatory part: inputs the auditory information from a microphone. There
are also some metrics to analyze what a person speaks: log power spectrum and LPC-
derived mel-cepstrum. In the second mandatory part, one of the metrics is also exe-
cuted to generate the result with low quality.

• Second optional part: also performs other metrics except the metric performed in the
second mandatory part.

• Third mandatory part: performs the fusion of the visual and auditory information by
neural network [204] or hidden markov model [205].

This dissertation assumes that the system has M identical processors and a task set Γ
consisted of n periodic tasks with implicit deadlines. Task τi is represented as the following
tuple (Ti,Di,ODi,mi, oi): where Ti is the period, Di is the relative deadline, ODi is the
relative optional deadline, mi is the total WCET of the mandatory part and oi is the total RET
of the optional part. The total WCET of mandatory parts of task τi is mi =

∑nm
i

l=1 ml
i, where nm

i
is the number of mandatory parts and ml

i is the WCET of the lth mandatory part. On the other
hand, the total RET of optional parts is oi =

∑no
i

l=1 ol
i, where no

i is the number of optional parts

40

3.4. LINEAR TASK MODEL

Task τ1 Task τ2

time time0 OD1 0 OD2

1 1

First mandatory part First optional part Second mandatory part

Release Deadline Optional Deadline

Figure 3.6: Behavior of optional deadline

and ol
i is the RET of the lth mandatory part. For example, as shown in Figure 3.5, task τi has

three mandatory parts and two optional parts so that nm
i = 3 and no

i = 2. The RET of each
optional part tends to be underestimated or overestimated from time to time because this
dissertation assumes that target real-time applications run in dynamic environments. The
relative optional deadline of task τi is ODi =

∑no
i

l=1 ODl
i. An optional deadline performs to

terminate an optional part so that the number of optional deadlines is equal to that of optional
parts. The relative deadline Di of each task τi is equal to its period Ti. The jth instance of
task τi is called job τi, j. The utilization of each periodic task is defined as Ui = mi/Ti. The
reason why Ui does not include oi is because the optional part of task τi is a non-real-time
part so that completing it is not relevant to scheduling the task set successfully. Hence, the
system utilization within n tasks can be defined as Us =

∑n
i=1 Ui/M. All tasks are ordered

by increasing their periods and task τ1 has the shortest period.
In order to simplify the schedulability analysis, the following hypotheses are assumed

on the tasks.

• All tasks in the task set Γ are independent. That is to say, there is no precedence
relation and no resource constraint between practical imprecise tasks. However, there
are precedence relations in each practical imprecise task, as shown in Figure 3.5.

• No task can suspend itself, for example on I/O operations.

• All tasks are released as soon as they arrive.

• All overheads in the kernel including context switches and migrations are assumed to
be 0.

• Each job of the task is not allowed to be executed simultaneously.

Figure 3.6 shows a behavior of an optional deadline. Each task has two mandatory parts
and one optional part. In this behavior, task τ1 can execute the first mandatory part after
the first optional deadline OD1

1 and task τ2 cannot execute the first optional part after the
first optional deadline OD1

2. Task τ1 completes the first mandatory part by the first optional
deadline OD1

1 and executes the first optional part until the first optional deadline OD1
1. After

the first optional deadline OD1
1, then task τ1 executes the second mandatory part. In contrast,

task τ2 does not complete the first mandatory part by the first optional deadline OD1
2. When

task τ2 completes the first mandatory part, task τ2 executes the second mandatory part and
does not execute the first optional part.

In addition, this dissertation defines the following symbols as follows.

41

CHAPTER 3. SYSTEM MODEL

Dashboard

Controls

Distribution

Unit

Brake Control

Unit

Human

Range Sensors

Emergency Stop

Brakes

Figure 3.7: Block diagram of an automatic braking system

• ol
i, j: the actual case RET of the lth optional part of job τi, j

• ri, j: the release time of job τi, j

• sl
i, j: the start time of the lth mandatory part of job τi, j

• Ri(t): the remaining execution time of task τi at the time t

• Hk: the hyperperiod of the kth task set, which is the minimum interval of time af-
ter which the schedule repeats itself. If the hyperperiod Hk is the length of such
an interval, then the schedule in [0,H) is the same as that in [xK, (x + 1)K) for
any integer x > 0. For a set of periodic tasks synchronously activated at the time
t = 0, the hyperperiod Hk is given by the least common multiple of the periods
Hk = lcm(T1,T2, ...,Tn).

3.5 Jitter
Real-time applications running in dynamic environments such as autonomous mobile robots
require getting the information of the environments from sensors periodically so that the
interval of each input processing is constant as much as possible without missing a deadline.

In order to explain the importance of each input timing, this dissertation introduces a
wheel-vehicle by Buttazzo [206]. The wheel-vehicle is equipped with range sensors and
must operate in a certain environment running within a maximum given speed. The wheel-
vehicle could be a completely autonomous system such as an autonomous mobile robot or a
partially autonomous system driven by a human, such as a car or a train having an automatic
braking system for stopping motion in emergency situations.

In order to simplify discussion and reduce the number of controlled variables, a wheel-
vehicle is considered like a train, which moves along a straight line and suppose that there
an automatic braking system able to detect obstacles in front of the wheel-vehicle must be
designed and the brakes must be controlled to avoid collisions.

Figure 3.7 shows the block diagram of the automatic braking system. The Brake Control
Unit (BCU) is responsible for acquiring a pair of range sensors, computing the distance of
the obstacle, reading the state variables of the wheel-vehicle from instruments on the dash-
board and deciding whether an emergency stop must be superimposed. Given the criticality
of the braking action, this task must be periodically executed on the BCU. Let T be its
period.

42

3.5. JITTER

velocity

time

vehicle

at rest

0

V0

brake

pushed

obstacle

detected

obstacle

appears

T Δt Δb

Figure 3.8: Velocity during brake

time

Detection

Delay

Mandatory part Release Deadline

Figure 3.9: Detection delay

In order to determine a safe value for T , several factors must be considered. In particular,
the system must ensure that the maximum latency from the time when an obstacle appears
and the time when the wheel-vehicle reaches a complete stop is less than the time to impact.
Equivalently, the distance of the obstacle from the wheel-vehicle must always be greater
than the minimum space needed for a complete stop. Figure 3.8 shows the velocity of
the wheel-vehicle as a function of time when an emergency stop is performed. The initial
velocity at the time 0 is V0.

Three time intervals must be taken in to account to compute the worst case latency.

• The detection delay, which is the interval between the time when an obstacle appears
and the time when the obstacle is detected by the BCU.

• The transmission delay ∆t, which is the interval between the time at which the stop
command is activated by the BCU and the time at which the command starts to be
actuated by the brakes.

• The braking delay ∆b, which is the interval needed for a complete stop.

This dissertation focuses on the detection delay. Figure 3.9 shows the execution of the
detection delay task. The interval of each detection delay is at most 2T . If the interval
of each detection delay is fluctuated, the obstacle detection task may miss obstacles and
robots may crash into obstacles. In order to achieve precise control in such wheel-vehicle,
the interval of each task must be constant without timing constraints. In addition, there are

43

CHAPTER 3. SYSTEM MODEL

r1,1 s1,2 s1,3r1,3r1,2
times1,1

Task τ1

1 1 1

(a) Relative release jitter

r1,1 f1,1 f1,2 f1,3r1,3r1,2
time

Task τ1

2 2 2

(b) Relative finishing jitter

First mandatory part First optional part Second mandatory part

Release Deadline

Figure 3.10: Jitter

many metrics to measure the stability of the interval, called jitter. One of the examples to
measure the jitter is the differential of the relative start and finishing time from the release
time of each job. For example, the first, second and third differentials can be used to measure
the jitter. However, these differentials are difficult to measure jitter of each task. In order
to simplify the measure of the jitter, this dissertation defines jitter as both Relative Release
Jitter (RRJ) and Relative Finishing Jitter (RFJ) of each practical imprecise task.

RRJ is defined as the maximum deviation of the start time of two consecutive jobs:

RRJi = max
j
|(s1

i, j+1 − ri, j+1) − (s1
i, j − ri, j)|, (3.1)

where s1
i, j is the start time of the first mandatory part of job τi, j and ri, j is the release time of

job τi, j.
RFJ is defined as the maximum deviation of the finishing time of two consecutive jobs:

RFJi = max
j
|(f nm

i
i, j+1 − ri, j+1) − (f nm

i
i, j − ri, j)|, (3.2)

where f nm
i

i, j is the finishing time of the last mandatory part of job τi, j, then nm
i is the number

of mandatory parts of task τi and ri, j is the release time of job τi, j.
Figure 3.10 shows the RRJ and RFJ of task τ1 with two mandatory parts and one optional

part. In Figure 3.10(a), the RRJ of task τ1 is the maximum of |(s1
1,2 − r1,2) − (s1

1,1 − r1,1)|
and |(s1

1,3 − r1,3) − (s1
1,2 − r1,2)|. In Figure 3.10(b), the RFJ of task τ1 is the maximum of

|(f 2
1,2 − r1,2) − (f 2

1,1 − r1,1)| and |(f 2
1,3 − r1,3) − (f 2

1,2 − r1,2)|.

44

Chapter 4

Semi-Fixed-Priority Scheduling

This dissertation proposes a new priority assignment policy for practical imprecise compu-
tation, called semi-fixed-priority scheduling. This chapter starts describing the basic strategy
of semi-fixed-priority scheduling. Then, three semi-fixed-priority scheduling algorithms for
uniprocessor scheduling, multiprocessor global scheduling and multiprocessor partitioned
scheduling are proposed.

4.1 Basic Strategy
Semi-fixed-priority scheduling is defined as part-level fixed-priority scheduling. That is to
say, semi-fixed-priority scheduling fixes the priority of each part in the practical imprecise
task and changes the priority of each practical imprecise task only in the two cases: (i)
when the practical imprecise task completes its mandatory part and executes its following
optional part; (ii) when the practical imprecise task terminates or completes its optional part
and executes the following mandatory part. Also, semi-fixed-priority scheduling splits one
practical imprecise task into several general tasks in Liu and Layland’s model. The split
general tasks have same periods and same or different release times, are not allowed to be
executed simultaneously and are scheduled by fixed-priority as shown in Figure 4.1. In this
case, the practical imprecise task has two mandatory parts. Tasks τ1

i and τ2
i are represented

as the first mandatory part and the second mandatory part of task τi. The release times of
tasks τ1

i and τ2
i are 0 and OD1

i respectively. When there is no task which is ready to execute
its mandatory parts, each task executes its optional parts.

Figure 4.2 shows the difference between general scheduling in Liu and Layland’s model
and semi-fixed-priority scheduling in this dissertation’s model. In general scheduling, when
task τi is released at the time 0, then the remaining execution time Ri(t) is set to m1

i +m2
i and

monotonically decreasing until the remaining execution time Ri(t) becomes 0 at the time
m1

i + m2
i . In semi-fixed-priority scheduling, when task τi is released at the time 0, then Ri(t)

is set to mi and monotonically decreasing until the remaining execution time Ri(t) becomes
0 at the time m1

i . When the remaining execution time Ri(t) is 0 at the time m1
i , then task

τi sleeps until the optional deadline OD1
i . When task τi is released at the optional deadline

OD1
i , then the remaining execution time Ri(t) is set to m2

i and monotonically decreasing
until the remaining execution time Ri(t) becomes 0 at the time OD1

i + m2
i . If task τi does

not complete its mandatory part by the optional deadline OD1
i , then the remaining execution

time Ri(t) is set to m2
i at the time when task τi completes its mandatory part. In both cases,

task τi completes the second mandatory part by the deadline Di.

45

CHAPTER 4. SEMI-FIXED-PRIORITY SCHEDULING

Task τi

Task τi

Task τi

Split

ODi

2

1

Ti

Ti

Ti

time

1

First mandatory part Second mandatory part

Release Deadline Optional Deadline

Figure 4.1: Split one practical imprecise task into two general tasks

This dissertation first proposes a semi-fixed-priority scheduling algorithm on uniproces-
sors. This dissertation next extends the semi-fixed-priority scheduling algorithm for global
and partitioned scheduling on multiprocessors.

4.2 The RMWP Algorithm
The Rate Monotonic with Wind-up Part (RMWP) algorithm is one of semi-fixed-priority
scheduling algorithms in the practical imprecise computation model on uniprocessors. As
shown in Figure 4.3, the RMWP algorithm manages three task queues: Real-Time Queue
(RTQ), Non-Real-Time Queue (NRTQ) and Sleep Queue (SQ). The RTQ holds tasks, which
are ready to execute their mandatory parts in the RM order. One task is not allowed to ex-
ecute their mandatory parts simultaneously. The NRTQ holds tasks, which are ready to
execute their optional parts in the RM order. Every task in the RTQ has higher priority than
that in the NRTQ. The SQ holds tasks which complete their optional parts by their optional
deadlines or their last mandatory parts by their deadlines. Figure 4.4 shows the RMWP algo-
rithm. The RMWP algorithm executes each scheduling event when the following conditions
are met: (1) task τi becomes ready at its release time; (2) task τi completes its mandatory
part; (3) task τi completes its optional part; (4) the lth optional deadline ODl

i expires; (5)
there are one or multiple tasks in the RTQ; (6) there is no task in the RTQ and there are
one or multiples tasks in the NRTQ. This dissertation next describes how to calculate the
optional deadline and analyze the schedulability of the RMWP algorithm.

4.2.1 Optional Deadline of the RMWP Algorithm
An optional deadline is a time when optional parts are terminated and the following manda-
tory parts are released. The following mandatory parts are ready to be executed after the
optional deadlines and can be completed if each mandatory part is completed by the op-
tional deadline. Each optional deadline is set to the time as late as possible to expand the

46

4.2. THE RMWP ALGORITHM

Task τi

Task τi

remaining execution time Ri(t)

general scheduling

semi-fixed-priority scheduling

mi+mi

mi

mi

general scheduling

semi-fixed-priority scheduling

time0 ODimi mi+mi Di
1

1 2

1

2

1 1 2
ODi+mi

21

First mandatory part Second mandatory part

Release Deadline Optional Deadline

Figure 4.2: General scheduling and semi-fixed-priority scheduling

executable range of each optional part. The following mandatory part of each task must
not miss the deadline if there is an idle processor or lower priority tasks are executed be-
tween the time when the mandatory part is completed and the following mandatory part is
released. In order to calculate the optional deadline, this dissertation first analyzes the worst
case interference time Ii

k(i < k) which is the upper bound when task τk is interfered by higher
priority tasks τi.

Theorem 1 (Worst case interference time by higher priority tasks in the RMWP algorithm).
The worst case interference time Ii

k(i < k) which is the upper bound when task τk is interfered
by higher priority tasks τi in the RMWP algorithm is

Ii
k =

⌈
Tk

Ti

⌉
mi. (4.1)

Proof. If all optional deadlines of each task are equal to 0, as shown in Figure 4.5, the
interference time of task τk interfered by higher priority tasks τi(i < k) is equal to Equation
(4.1), regardless of the number of mandatory parts. Moreover, there is no case that the
interference time of task τk interfered by higher priority tasks τi is more than Equation
(4.1). �

By Theorem 1, this dissertation next calculates the relative optional deadlines of each
task in the RMWP algorithm.

Theorem 2 (Optional deadline in the RMWP algorithm). The lth relative optional deadline
ODl

k of task τk in the RMWP algorithm is

ODl
k =

{
max(0,Dk − m

nm
k

k −
∑

i<k Ii
k) (l = no

k)
max(0,ODl+1

k − ml+1
k − ol+1

k) (l < no
k).

(4.2)

47

CHAPTER 4. SEMI-FIXED-PRIORITY SCHEDULING

RTQ

SQ

Higher Priority

NRTQScheduler

Lower Priority

First mandatory part First optional part Second mandatory part

Sleep Empty

Figure 4.3: Task queue

Table 4.1: Task set A

Task Ti Di OD1
i m1

i m2
i o1

i
τ1 10 10 7 3 3 1
τ2 15 15 1 3 2 1

Proof. It is clear that if task τk completes its mandatory part by its optional deadline by The-
orem 1, task τk completes the following mandatory part by its following optional deadline
or deadline. �

The RMWP algorithm can calculate optional deadlines by Theorem 2. In contrast, in
the M-FWP algorithm, analyzing that what job maximizes the worst case interference time
Ii
k is too complex due to dynamic-priority scheduling. Therefore, in order to calculate the

optional deadline ODk easily, the RMWP algorithm is a semi-fixed-priority scheduling al-
gorithm and only considers tasks, which have higher priority than task τk. The RMWP
algorithm can delay the release time of the following mandatory part until the time when the
following mandatory part does not miss the deadline if the mandatory part is completed by
the optional deadline.

Figure 4.6 shows an example of schedule generated by the RMWP and RM algorithms.
Table 4.1 shows the task set scheduled by the RMWP and RM algorithms in Figures 4.6(a)
and 4.6(b) respectively. Each practical imprecise task has two mandatory parts and one
optional part. Each optional deadline is calculated by Theorem 2. This example shows
that there is at least one task set, which is schedulable by the RMWP algorithm and is not
schedulable by the RM algorithm. Moreover, in the RMWP algorithm, job τ1,1 and τ1,2 can
execute its optional part in [14, 15) and [26, 27) respectively.

4.2.2 Schedulability Analysis of the RMWP Algorithm
Now this dissertation analyzes the schedulability of the RMWP algorithm.

Theorem 3 (The RMWP algorithm is at least as effective as the RM algorithm). One task set
is schedulable by the RMWP algorithm if the task set is schedulable by the RM algorithm.

48

4.2. THE RMWP ALGORITHM

1. When task τi becomes ready at its release time, set the remaining execution time Ri(t) to m1
i , dequeue

task τi from the SQ and enqueue task τi to the RTQ. If task τi has the highest priority in the RTQ,
preempt the current task.

2. When task τi completes the lth mandatory part:

(a) If the lth mandatory part is the last mandatory part in each job, dequeue task τi from the RTQ
and enqueue task τi to the SQ.

(b) If the lth optional deadline ODl
i expired, set the remaining execution time Ri(t) to ml+1

i .

(c) Otherwise set Ri(t) to the RET of the optional part ol
i, dequeue task τi from the RTQ and

enqueue task τi to the NRTQ. If there are one or multiple tasks in the RTQ or the NRTQ
which have higher priority than task τi, preempt task τi.

3. When task τi completes its optional part, dequeue task τi from the NRTQ and enqueue task τi to the
SQ.

4. When the lth optional deadline ODl
i expires:

(a) If task τi is in the RTQ and does not complete the lth mandatory part, do nothing.

(b) If task τi is in the NRTQ, terminate and dequeue task τi from the NRTQ, set the remaining
execution time Ri(t) to ml

i and enqueue task τi to the RTQ. If task τi has the highest priority
in the RTQ, preempt the current task.

(c) If task τi is in the SQ, dequeue task τi from the SQ, set the remaining execution time Ri(t) to
ml

i and enqueue task τi to the RTQ.

5. When there are one or multiple tasks in the RTQ, perform the RM algorithm in the RTQ.

6. When there is no task in the RTQ and there are one or multiples tasks in the NRTQ, perform the
RM algorithm in the NRTQ.

Figure 4.4: The RMWP algorithm

Proof. This proof is shown by contraposition. This dissertation shows that if one task set
is not schedulable by the RMWP algorithm, the task set is not schedulable by the RM
algorithm. By Theorem 2, it is clear that task τi completes its all mandatory parts by its
deadline if task τi completes its all mandatory parts except the first mandatory part by its
all optional deadlines respectively. Task τi misses its deadline only if task τi executes its
mandatory parts after its optional deadlines. In this case, task τi executes its all mandatory
parts continuously without executing its all optional parts. In the RM algorithm, task τi also
misses its deadline because of executing its all mandatory parts continuously. Hence, this
theorem holds. �

Theorem 4 (Least upper bound of the RMWP algorithm). For a set of n tasks with semi-
fixed-priority assignment, the least upper bound of the RMWP algorithm on uniprocessors
is Ulub = n(21/n − 1).

Proof. The RMWP algorithm is at least as effective as the RM algorithm by Theorem 3 and
generates the same schedule as the RM algorithm in the case of worst case interference time
by Theorem 1. Therefore, the least upper bound of the RMWP algorithm on uniprocessors
is equal to that of the RM algorithm [2]. �

Theorem 4 shows the least upper bound of the RMWP algorithm for n tasks. Thanks to
Theorem 4, the least upper bound of the RMWP algorithm for two tasks on uniprocessors is
not so important so that this theorem is shown in Appendix A.

49

CHAPTER 4. SEMI-FIXED-PRIORITY SCHEDULING

Task τk

0

Task τi

TkTi

time

First mandatory part Second mandatory part Release Deadline

Figure 4.5: Case of worst case interference time

4.3 The G-RMWP Algorithm
The Global Rate Monotonic with Wind-up Part (G-RMWP) algorithm is based on and ex-
tends the RMWP algorithm for global scheduling on multiprocessors. Figure 4.7 shows the
overall of the G-RMWP algorithm. Like the RMWP algorithm, the G-RMWP algorithm
executes each scheduling event when the following conditions are met: (1) task τi becomes
ready at its release time; (2) task τi completes its mandatory part; (3) task τi completes its
optional part; (4) the lth optional deadline ODl

i expires; (5) there are one or multiple tasks in
the RTQ; (6) the number of tasks in the RTQ is less than that of processors and there are one
or multiples tasks in the NRTQ. The primary difference between the G-RMWP and RMWP
algorithms is events (5) and (6), which assign ready tasks to multiprocessors in the G-RM
order. This dissertation next shows how to calculate optional deadlines in the G-RMWP
algorithm.

4.3.1 Optional Deadline of the G-RMWP Algorithm
First this dissertation calculates the worst case interference time of each practical imprecise
task in the G-RMWP algorithm using RTA [38] for the G-RM algorithm. Next this disser-
tation calculates the relative optional deadlines of each task in the G-RMWP algorithm.

Bertogna and Cirinei showed RTA with slack for the G-RM algorithm [207]. This RTA
can be expressed in the following fixed-point iteration on the upper bound Rub

k .

Rub
k ← mk +

 1
M

∑
i<k

ICI
i (Rub

k)

 , (4.3)

where ICI
i (Rub

k) is the worst case interference time due to task τi within the worst case re-
sponse time of task τk given by:

ICI
i (Rub

k) = min(WCI
i (Rub

k),Rub
k − mk + 1), (4.4)

where WCI
i (Rub

k) is the worst case workload of task τi in an interval of the length L given by:

WCI
i (L) = NCI

i (L)mi +min(mi, L + Rub
i − mi − NCI

i (L)Ti), (4.5)

where NCI
i (L) is the maximum number of jobs of task τi that contributes all of their execution

time in the interval given by:

NCI
i (L) =

⌊
L + Rub

i − mi

Ti

⌋
. (4.6)

50

4.3. THE G-RMWP ALGORITHM

Task τ2

Task τ1

0 5 10 15 20 25 30 time

(a) Schedule successfully by the RMWP algorithm

Task τ2

Task τ1

0 5 10 15 20 25 30

deadline miss!

time

(b) Schedule unsuccessfully by the RM algorithm

First mandatory part First optional part Second mandatory part

Release Deadline Optional Deadline

Figure 4.6: Example of schedule generated by the RMWP and RM algorithms

Guan et al. improved the precision of RTA for the G-RM algorithm against Equation
(4.3) [208] using Baruah’s window analysis framework [209]. They showed that the refined
worst case interference time INC

i (Rub
k) is

INC
i (Rub

k) = min(WNC
i (Rub

k),Rub
k − mk + 1), (4.7)

where

WNC
i (L) = NNC

i (L)mi +min(mi, L − NNC
i (L)Ti) (4.8)

NNC
i (L) =

⌊
L
Ti

⌋
. (4.9)

The difference between ICI
i (Rub

k) and INC
i (Rub

k) is

IDIFF
i (Rub

k) = ICI
i (Rub

k) − INC
i (Rub

k). (4.10)

Using this result, the refined RTA for the G-RM algorithm can be expressed in the following
fixed-point iteration on the refined upper bound Rub

k :

Rub
k ← mk + Îk, (4.11)

51

CHAPTER 4. SEMI-FIXED-PRIORITY SCHEDULING

1. When task τi becomes ready at its release time, set the remaining execution time Ri(t) to m1
i , dequeue

task τi from the SQ and enqueue task τi to the RTQ. If task τi has higher priority than the running
task with the lowest priority, preempt this running task.

2. When task τi completes the lth mandatory part:

(a) If the lth mandatory part is the last mandatory part in each job, dequeue task τi from the RTQ
and enqueue task τi to the SQ.

(b) If the lth optional deadline ODl
i expired, set the remaining execution time Ri(t) to ml+1

i .

(c) Otherwise set Ri(t) to the RET of the optional part ol
i, dequeue task τi from the RTQ and

enqueue task τi to the NRTQ. If there are one or multiple tasks in the RTQ or the NRTQ
which have higher priority than task τi, preempt task τi.

3. When task τi completes its optional part, dequeue task τi from the NRTQ and enqueue task τi to the
SQ.

4. When the lth optional deadline ODl
i expires:

(a) If task τi is in the RTQ and does not complete the lth mandatory part, do nothing.

(b) If task τi is in the NRTQ, terminate and dequeue task τi from the NRTQ, set the remaining
execution time Ri(t) to ml

i and enqueue task τi to the RTQ. If task τi has higher priority than
the running task with the lowest priority, preempt this running task.

(c) If task τi is in the SQ, dequeue task τi from the SQ, set the remaining execution time Ri(t) to
ml

i and enqueue task τi to the RTQ.

5. When there are one or multiple tasks in the RTQ, perform the G-RM algorithm in the RTQ.

6. When the number of tasks in the RTQ is less than that of processors and there are one or multiples
tasks in the NRTQ, perform the G-RM algorithm in the NRTQ on the remaining processors.

Figure 4.7: The G-RMWP algorithm

where

Îk =

 1
M

(∑
i<k

INC
i (Rub

k) +
∑

i<max(k,M−1)

IDIFF
i (Rub

k)
) . (4.12)

Now this dissertation shows the worst case interference time of task τi in the G-RMWP
algorithm by Equation (4.11).

Theorem 5 (Worst case interference time in the G-RMWP algorithm). The worst case in-
terference time of task τk by higher priority tasks τi(i < k) in the G-RMWP algorithm is Îk

by Equation (4.11).

Proof. The worst case interference time of task τk by higher priority tasks τi(i < k) occurs
if all optional deadlines of each task are equal to 0. In this case, the G-RMWP algorithm
generates the same schedule as the G-RM algorithm. Moreover, there is no case that the
worst case interference time of task τk interfered by higher priority tasks τi is more than Îk

by Equation (4.11). �

In addition, this theorem explains that the technique for fixed-priority scheduling can
be adapted to semi-fixed-priority scheduling. Next this dissertation calculates the relative
optional deadlines of each task in the G-RMWP algorithm.

52

4.3. THE G-RMWP ALGORITHM

Task τ3

Task τ2

0 5

Task τ1

time

(a) Schedule successfully by the G-RMWP algo-
rithm

0 5
time

Task τ3

Task τ2

Task τ1

(b) Schedule unsuccessfully by the G-RM algorithm

First mandatory part First optional part Second mandatory part

Release Deadline Optional Deadline

Figure 4.8: Example of schedule generated by the G-RMWP and G-RM algorithms on two
processors

Theorem 6 (Optional deadline in the G-RMWP algorithm). The lth relative optional dead-
line ODk of task τk in the G-RMWP algorithm is the following equation.

ODl
k =

max(0,Dk − m

nm
k

k) (k 5 M and l = no
k)

max(0,Dk − m
nm

k
k − Îk) (k > M and l = no

k)
max(0,ODl+1

k − ml+1
k − ol+1

k) (l < no
k)

(4.13)

Proof. If k 5 M and l = no
k , it is clear that the following mandatory part of task τk does not

miss its deadline if task τk completes its mandatory part at the lth relative optional deadline
ODl

k. If k > M and l = no
k , the worst case interference time of task τk by higher priority

tasks τi(i < k) is at most Îk by Theorem 5. In a similar way, if l < no
k , it is clear that task

τk completes its following mandatory parts by its following optional deadlines or deadline
if task τk completes its mandatory parts by its optional deadlines by Theorem 5. Hence, this
theorem holds. �

The approach of calculating the relative optional deadlines of each task by Theorem 6
makes use of the worst case interference time of the G-RM algorithm by Equation (4.11),
which is pessimistic. If the worst case interference time of the G-RM algorithm is more
precise, the relative optional deadlines of each task in the G-RMWP algorithm can be set to
the later value to expand the executable range of each optional part.

Figure 4.8 shows an example of schedule generated by the G-RMWP and G-RM algo-
rithms on two processors. Table 4.2 shows the task set scheduled by the G-RMWP and
G-RM algorithms in Figures 4.8(a) and 4.8(b) respectively. Each practical imprecise task
has two mandatory parts and one optional part. Each relative optional deadline is calculated
by Theorem 6. This example shows that there is at least one task set, which is schedulable

53

CHAPTER 4. SEMI-FIXED-PRIORITY SCHEDULING

Table 4.2: Task set B

Task Ti Di OD1
i m1

i m2
i o1

i
τ1 5 5 4 2 1 1
τ2 5 5 3 1 2 0
τ3 5 5 0 2 1 0

by the G-RMWP algorithm and is not schedulable by the G-RM algorithm. Moreover, in
the G-RMWP algorithm, job τ1,1 executes its optional part in [2, 3).

4.3.2 Schedulability Analysis of the G-RMWP Algorithm
Now this dissertation analyzes the schedulability of the G-RMWP algorithm. First this dis-
sertation proves that the G-RMWP algorithm is at least as effective as the G-RM algorithm,
which is the similar approach to the RMWP algorithm.

Theorem 7 (The G-RMWP algorithm is at least as effective as the G-RM algorithm). One
task set is schedulable by the G-RMWP algorithm if the task set is schedulable by the G-RM
algorithm.

Proof. This proof is shown by contraposition as well as that in Theorem 3. This dissertation
shows that if one task set is not schedulable by the RMWP algorithm, the task set is not
schedulable by the RM algorithm. By Theorem 6, it is clear that task τi completes its
all mandatory parts by its deadline if task τi completes its all mandatory parts except the
first mandatory part by its all optional deadlines respectively. Task τi misses its deadline
only if task τi executes its mandatory part after its optional deadlines. In this case, task
τi executes its all mandatory parts continuously without executing its all optional parts. In
the G-RM algorithm, task τi also misses its deadline because of executing its all mandatory
parts continuously. Hence, this theorem holds. �

By Theorem 7, this dissertation next shows the least upper bound of the G-RMWP algo-
rithm.

Theorem 8 (Least upper bound of the G-RMWP algorithm). The least upper bound of the
G-RMWP algorithm on multiprocessors is

Ulub =
M
2

(1 − Umax) + Umax, (4.14)

where M is the number of processors and Umax = max{Ui | i = 1, 2, 3, ..., n}.

Proof. The G-RMWP algorithm is at least as effective as the G-RM algorithm by Theorem
7 and generates the same schedule as the G-RM algorithm if all relative optional deadlines
of each task are equal to 0 as shown in Theorem 5. Hence, the least upper bound of the
G-RMWP algorithm is equal to that of the G-RM algorithm [210]. �

By Theorems 7 and 8, the schedulability of the G-RMWP algorithm is higher than or
equal to that of the G-RM algorithm. In addition, by Figure 4.8, the G-RMWP algorithm
outperforms the G-RM algorithm from the aspects of both schedulability and imprecise
computation.

54

4.4. THE P-RMWP ALGORITHM

j← 1;
for i← 1 to n do

partitioned = FALS E;
for k ← j to M + j − 1 do

q← (k − 1) mod M + 1;
if task τi satisfies Theorem 9 on processor Pq then

assign task τi to processor Pq;
partitioned = TRUE;
break;

end
end
if partitioned == FALS E then

return UNSCHEDULABLE;
end
j← q mod M + 1;

end
return SCHEDULABLE;

Figure 4.9: Next-fit task assignment algorithm for the P-RMWP algorithm

4.4 The P-RMWP Algorithm
The Partitioned Rate Monotonic with Wind-up Part (P-RMWP) algorithm assigns all tasks
to specific processors with bin packing heuristics. Assigning tasks on each processor are
executed in the RMWP order. Now this dissertation analyzes the schedulability of the P-
RMWP algorithm.

Theorem 9 (Schedulability analysis of the P-RMWP algorithm). The P-RMWP algorithm
makes use of the two following equations as schedulability tests.

Ulub = n(21/n − 1) = Utotal (4.15)

Rk = mk +

k−1∑
i=1

⌈
Rk

Ti

⌉
mi 5 Dk, (4.16)

where n is the number of tasks on each processor and Utotal is each total utilization of
assigning tasks to each processor.

Proof. By Theorem 3, it is clear that this theorem is true. �

By Theorem 9, the P-RMWP algorithm can use bin packing heuristics for the RM al-
gorithm such as first-fit [211], next-fit [51] and best-fit [211] with task orderings such as
increasing relative deadline and decreasing utilization [212] for task allocation.

Figure 4.9 shows the next-fit task assignment algorithm for the P-RMWP algorithm.
Here, the processor P with the processor id q is represented as Pq. The P-RMWP algo-
rithm uses schedulability test in Equation (4.15) or (4.16), as well as the P-RM algorithm.
Therefore, the P-RMWP algorithm has as same schedulability as the P-RM algorithm.

4.5 Summary of Semi-Fixed-Priority Scheduling
This chapter first described the basic strategy of semi-fixed-priority scheduling. Next semi-
fixed-priority scheduling algorithms for uniprocessor scheduling, multiprocessor global schedul-

55

CHAPTER 4. SEMI-FIXED-PRIORITY SCHEDULING

ing and multiprocessor partitioned multiprocessor, called the RMWP, G-RMWP and P-
RMWP algorithms respectively are proposed. The important characteristics of the proposed
algorithms are as follows.

• The RMWP algorithm is at least as effective as the RM algorithm. That is to say, one
task set is schedulable by the RMWP algorithm if the task set is schedulable by the
RM algorithm. The least upper bound of the RMWP algorithm is equal to that of the
RM algorithm Ulub = n(21/n − 1), where n is the number of tasks.

• The G-RMWP algorithm is also at least as effective as the G-RM algorithm. The least
upper bound of the RMWP algorithm is equal to that of the RM algorithm Ulub =

M(1−Umax)/2+Umax, where M is the number of processors and Umax = max{Ui | i =
1, 2, 3, ..., n}.

• The P-RMWP algorithm makes use of the schedulability test for the RM algorithm
with the least upper bound or RTA when tasks are assigned to processors. Therefore,
the P-RMWP algorithm has as same schedulability as the P-RM algorithm.

• The advantage of semi-fixed-priority scheduling in the practical imprecise compu-
tation model against existing real-time scheduling in Liu and Layland’s model is to
execute optional parts for improving the quality of result without overrun of the op-
tional part, thanks to the optional deadline.

56

Chapter 5

RT-Est Real-Time Operating System

This chapter describes the implementation of three semi-fixed-priority scheduling algo-
rithms in the RT-Est real-time operating system, which is developed from scratch. The
goals of the RT-Est real-time operating system are as follows. The first goal is to evalu-
ate semi-fixed-priority scheduling algorithms compared to other real-time scheduling algo-
rithms. Because there is no real-time operating system implementing semi-fixed-priority
scheduling algorithms. The second goal is to make use of semi-fixed-priority scheduling
algorithms in real-time systems such as autonomous mobile robots, which require low-jitter
and high schedulability. The RT-Est real-time operating system is implemented on x86 mul-
tiprocessors.

The RT-Est real-time operating system must manage the system time so that the sched-
uler can release jobs at specified times. Moreover, the RT-Est real-time operating system
must also manage the amount of time spent in both mandatory and optional parts of real-
time jobs so that an overrun of an optional part is detected at the time when optional compu-
tation time is exhausted at the optional deadline. Otherwise, delayed termination of optional
parts can cause a deadline miss in the schedule.

Terminating an optional part of each job and making the job resume in the following
mandatory part require that the context of every imprecise thread be managed by the kernel.
This issue is not trivial when the practical imprecise computation model is deployed, since
the kernel must prepare the context of the thread for a mandatory part that might not have
been executed at all.

Another one of the required features in the RT-Est real-time operating system is that the
kernel should have the ability to allow users to easily change configurations for different
situations. This is accomplished by supporting many modules and by extending the kernel
for some new real-time scheduling algorithms and the portability to some new hardware
platforms. This requires that the kernel clearly distinguish the part that is dependent to the
real-time scheduling algorithm and to the hardware used from the other independent parts.

In addition, the RT-Est real-time operating system has enough time predictability to uti-
lize the capability of imprecise computation to cope with uncertain workloads. To this end,
the RT-Est real-time operating system is designed to be preemptive. This means that all the
system calls including those required to implement the real-time scheduling algorithms are
preemptive whenever possible. All the threads inside the kernel are scheduled preemptively
with other application threads.

57

CHAPTER 5. RT-EST REAL-TIME OPERATING SYSTEM

Task τi

0 sys_jiffies

time

exec_jiffies

First mandatory part Second mandatory part

Figure 5.1: sys_jiffies and exec_jiffies

5.1 System Time Management
The RT-Est real-time operating system supports the high resolution timer, which usually
performs to terminate optional parts at optional deadlines. The time when the timer interrupt
of the high resolution timer occurs is between ticks. The execution time of each task between
timer interrupts should be managed. In order to manage the execution time of each task, the
RT-Est real-time operating system manages both system time and execution time, called
sys_jiffies and exec_jiffies respectively.
sys_jiffies is incremented every periodic timer interrupt and exec_jiffies is set

to the relative elapsed time to sys_jiffies, as shown in Figure 5.1. In this example,
task τ1 has two mandatory parts. The interrupt of each high resolution timer can occur
per exec_jiffies. In this example, the unit of sys_jiffies is 10 times as much as
that of exec_jiffies. In addition, the relative length of exec_jiffies compared to
exec_jiffies can be defined by users.

5.2 Thread Management
Figure 5.2 shows the state machine of each thread in the RT-Est real-time operating sys-
tem. When a thread is created in create function, its initial state is UNADMITTED. Then, it
becomes READY in activate function. If the thread is assigned to the processor, its state
becomes RUNNING. When the thread finishes its execution, the completion of each job is
informed to the scheduler in end_job function. This function neither takes an argument nor
returns a value and it succeeds always. If the aperiodic thread finishes its execution, its state
is put back to UNADMITTED. If the periodic thread finishes its execution, its state is put to
NON_INT_SLEEP unless suspend function was issued prior to end_job function. If the sus-
pension of each periodic thread was requested in suspend function, the state of the thread
is changed to UNADMITTED. Thus, suspend function does not directly change the state of a
real-time thread. By comparison, suspend function issued for a non-real-time thread puts
the state of the thread to UNADMITTED. A thread in the NON_INT_SLEEP state can only be
woken up by the scheduler and only when its next release time is reached. A similar state is
INT_SLEEP. This state is reached when a non-real-time thread issues sleep function, which
takes the length to sleep as its argument. The thread in this state is woken up and put to the
READY state either when its requested wake-up time is reached or when another thread issues
wake_up function. wake_up function takes a pointer to the thread control block of the re-
quested thread as its argument. The last remaining state BLOCKED can only be reached when
a non-real-time thread is blocked on requesting a resource in sem_down function. In the
RT-Est real-time operating system, a resource requested by a non-real-time thread should

58

5.3. ULTRA CONFIGURABLE MODULE

exit / activate(),delete()
entry / create(),end_job(),suspend()

UNADMITTED

exit / preemption
entry / next release time,preemption,wake-up time,activate(),release(),sem_up(),wake_up()

READY

activate()

exit / preemption,end_job(),sem_down(),sleep(),suepend()

do / execute()
entry / preemption

RUNNING

exit / next release time
entry / end_job()

NON_INT_SLEEP

end_job()

next release time

exit / wake_up_time,wake_up()
entry / sleep()

INT_SLEEP

sleep()

wake-up time,wake_up()

exit / sem_up()
entry / sem_down()

BLOCKED

sem_up()

sem_down()

end_job(),suspend()

delete()create()

preemption

Figure 5.2: State machine of thread

never be requested by a real-time thread. The thread in the BLOCKED state is put back to the
READY state when the blocking thread releases the resource in sem_up function. These two
functions used to acquire and to release a resource take a pointer to the semaphore that is
guarding the requested resource.

There are two ways an application can be implemented. One way is to implement it
as a user level task. A user level task receives services from the server threads via port-
based communication or by entering supervisor mode via system calls. The second way is
to implement it as one of the server threads to build in the application as part of the kernel.
The first way has an advantage that the application program can be dynamically loaded and
tested without having the kernel reloaded to the target board every time, which makes the
cross development of applications easier and quicker. On the other hand, the second way
allows an application with very fine timing constraints to be implemented. For example,
software that controls the body of a robot may be critical enough to reside in the kernel
space to access peripheral I/O devices directly. Therefore, the RT-Est real-time operating
system supports the second way.

5.3 Ultra Configurable Module
This dissertation introduces the ultra configurable module in the RT-Est real-time operating
system. Thanks to the ultra configurable module, users can change various configurations
easily. The supported module is as follows.

• Real-time scheduling

59

CHAPTER 5. RT-EST REAL-TIME OPERATING SYSTEM

• Synchronization protocol

• Processor environment

• Task set

• Architecture

The real-time scheduling module selects real-time scheduling algorithms including the
RM [2], RM-US [52] EDF [2], EDF-US [213], RMWP and M-FWP algorithms [34, 35].
The synchronization protocol module selects synchronization protocols including Priority
Ceiling Protocol (PCP) [214] and Stack Resource Policy (SRP) [215].

The processor environment module selects supported processor environments includ-
ing uniprocessor environment, multiprocessor global environment and multiprocessor parti-
tioned environment with bin packing heuristics such as first-fit, next-fit, best-fit and worst-fit.

The task set module has the task set type, the processor type and the task sorting policy.
The supported task set types are general task sets and harmonic task sets. A general task set
indicates that there is not relevant to the period of each task. In contrast, a harmonic task
set indicates that the period of each task is equal to the integral multiple of that of the task
with the shorter period. The supported task sorting policies are increasing period, increasing
relative deadline and decreasing utilization.

The architecture module selects architectures to execute various processors including
x86, SH and SIM. SIM is one of the architecture modules for simulating real-time schedul-
ing in the RT-Est real-time operating system. Unlike User-Mode Linux [216], SIM does not
measure the actual processor time consumed by tasks. Like Real-Time system SIMulator
(RTSIM) [217], SIM executes simulations of real-time scheduling algorithms theoretically.
SIM can make use of implementations of architecture independent parts to those of other
architectures, unlike RTSIM. Therefore, SIM is an effective technique for not only measur-
ing the performance of real-time scheduling algorithms but also improving the efficiency of
development.

5.4 Implementation of Scheduler
In this section, this dissertation presents two schedulers for semi-fixed-priority scheduling,
called hybrid scheduler and dual scheduler.

5.4.1 Hybrid Scheduler
The hybrid scheduler manages not only practical imprecise tasks in this dissertation’s model
but also general tasks in Liu and Layland’s model [2] if nm

i = 1 and no
i = 0.

Figure 5.3 shows the hybrid scheduler with N priority levels. In this dissertation, the
number of priority levels is N = 512 because Liu claims that 256 priority levels are suffi-
cient even for the most complex rate-monotonically scheduled systems [218]. Like Linux,
a smaller number indicates higher priority. In addition, the sum of priority levels including
both real-time and non-real-time parts in the practical imprecise tasks is 512 and the highest
priority level is 0. The priority range of the RTQ is [0,N/2 − 1] and that of the NRTQ is
[N/2,N − 1]. The hybrid scheduler manages each task queue by each double circular linked
list in the FIFO order.

60

5.4. IMPLEMENTATION OF SCHEDULER

Double circular linked list

FIFO task queue

Priority

...

...

...

...

0

1

N/2-1

N/2

::

...N/2+1

...N-1

: :

RTQ

NRTQ

Queue

head

Terminate

optional part

Complete

mandatory part

... SQ

Task becomes ready

Optional deadline expires

Complete optional part

Complete mandatory part

Sorted in increasing wakeup time order

Figure 5.3: Hybrid scheduler

Now this dissertation explains the behavior of the hybrid scheduler. For example, task
τi, the priority of which is 0, is created and enqueued to the SQ. When task τi is released,
task τi is dequeued from the SQ, is ready to execute its mandatory part and is enqueued to
the RTQ. When task τi completes its mandatory part, task τi is dequeued from the RTQ, sets
its priority to N/2 and is enqueued to the NRTQ. When task τi terminates its optional part,
task τi is dequeued from the NRTQ, sets its priority to 0, is ready to execute its following
mandatory part and is enqueued to the RTQ. When task τi completes its optional part or
mandatory part until its optional deadline, task τi is dequeued from the RTQ or the NRTQ
and is enqueued to the SQ.

5.4.2 Dual Scheduler

The dual scheduler is an extension of the hybrid scheduler for global scheduling. First of all,
this dissertation explains how to implement the G-RMWP algorithm. Figure 5.4 shows the
dual scheduler. A running queue manages running tasks, the number of which is at most that
of processors and a ready queue manages ready tasks. Each queue has N double circular
linked lists, where N is the number of priority levels. In addition, the implementation of
the dual scheduler can be adapted to global fixed-priority scheduling algorithms such as the
G-RM algorithm in Liu and Layland’s model if nm

i = 1 and no
i = 0.

61

CHAPTER 5. RT-EST REAL-TIME OPERATING SYSTEM

Priority

0

1

N/2-1

N/2

:

N/2+1

N-1

:

RTQ

NRTQ

Double circular linked list

FIFO task queue

...

...

:

Queue

head

Terminate

optional part

Complete

mandatory part

... SQ

Task becomes ready

Optional deadline expires

Complete optional part

Complete mandatory part

Sorted in increasing release time order

Double circular linked list

FIFO task queue

...

...

:

...

...

:

Queue

head

Task becomes running

Preempted by

higher priority task :

Ready queue Running queue

Figure 5.4: Dual scheduler

5.5 Imprecise Computation

Figure 5.5 shows the pseudo code of the practical imprecise computation model. This prac-
tical imprecise task has two mandatory parts and one optional part. First each task saves
its context including general purpose registers and the program counter in save_context
function. Because each task resumes its context in the timer interrupt routine for terminating
the optional part at the optional deadline. If save_context function is called via the timer
interrupt routine to terminate the optional part at the optional deadline, save_context func-
tion returns MANDATORY2. Otherwise save_context function returns MANDATORY. Next
each task executes the first mandatory part in exec_mandatory function. After complet-
ing its mandatory part, each task calls end_mandatory function. If the return value of
end_madnatory function is DISCARD, each task discards its optional part and executes
the following mandatory part in exec_mandatory2 function. Otherwise each task exe-
cutes the first optional part in exec_optional function. If each task completes its optional
part, each task calls end_optional function and executes the following mandatory part in
exec_mandatory2 function. If each task terminates its optional part at its optional dead-
line, the scheduler resumes its context in the timer interrupt routine and calls save_context
function. In this case, the return value of save_context function is MANDATORY2 so that
the resumed task executes the second mandatory part in exec_mandatory2 function. After
completing the second mandatory part, each task calls end_job function to complete its job.

This dissertation now introduces three functions to implement the practical imprecise
computation model: end_mandatory, end_optional and terminate_optional.

62

5.5. IMPRECISE COMPUTATION

part = save_context(); /* return value: MANDATORY,MANDATORY2,... */
switch (part) {
case MANDATORY:
/* execute first mandatory part */
exec_mandatory();
res = end_mandatory();
/* pass through */
/* execute first optional part */
if (res != DISCARD) {
exec_optional();
end_optional();

}
/* pass through */

case MANDATORY2:
/* execute second mandatory part */
exec_mandatory2();

}
end_job();

Figure 5.5: Pseudo code of the practical imprecise computation model

Figure 5.6 shows end_mandatory function for the G-RMWP algorithm, which is called
when each task completes its mandatory part. If the optional deadline of the current task
does not expire at the current time, then the current task starts to execute its optional part.
The current task is dequeued from the running queue, decreases its priority and changes its
part from mandatory part to optional part. Next the scheduler finds the ready task which
has the highest priority in the ready queue. If the ready task has higher priority than the
current task, preempt the current task. The current task is enqueued to the ready queue.
After that, the ready task is dequeued from the ready queue and enqueued to the running
queue. Otherwise the current task is enqueued to the running queue, again. If the optional
deadline of the current task does not expire at the current time, then the current task starts to
execute its following mandatory part.

On the other hand, the implementation of end_mandatory function in the P-RMWP
algorithm is different from the enqueue and dequeue operations. Because the P-RMWP al-
gorithm schedules assigned tasks on each processor so that enqueue and dequeue operations
are performed in the same ready queue.

Figure 5.7 shows end_optional function for the G-RMWP algorithm, which is called
when each task completes its optional part. The current task changes its part from optional
part to mandatory part, sleeps until its optional deadline and increases its priority. If the
current time is the optional deadline of the task, execute its following mandatory part. When
each task sleeps until its optional deadline or deadline, the task is managed by the single SQ,
regardless of multiprocessor real-time scheduling policies. Therefore, the implementation
of end_optional function in the P-RMWP algorithm is equal to that in the G-RMWP
algorithm.

Figure 5.8 shows terminate_optional function for the G-RMWP algorithm, which is
called when each task terminates its optional part at its optional deadline. First the scheduler
gets the task at the head of the optional deadline queue, which sorts tasks by increasing

63

CHAPTER 5. RT-EST REAL-TIME OPERATING SYSTEM

if currentTime < currentTask.optionalDeadline then
DequeueTask (runningQueue, currentTask);
DecreasePriority (currentTask);
ChangePart (OPTIONAL);
readyTask← GetHighestPriorityTask (readyQueue);
if readyTask has higher priority than currentTask then
// preempt currentTask
EnqueueTask (currentTask, readyQueue);
DequeueTask (readyTask, readyQueue);
EnqueueTask (readyTask, runningQueue);

end
else
// not preempt currentTask
EnqueueTask (currentTask, runningQueue);

end
end
else
SleepUntil (currentTask.release + currentTask.period, currentTask);

end

Figure 5.6: end_mandatory function for the G-RMWP algorithm

ChangePart (MANDATORY);
SleepUntil (currentTask.optionalDeadline, currentTask);
IncreasePriority (currentTask);

Figure 5.7: end_optional function for the G-RMWP algorithm

absolute optional deadline. Next the scheduler checks if the absolute optional deadline of the
task expires. If this is true, execute the following operations. If the task is ready to execute
or executing its optional part, then the task is dequeued from the optional deadline queue.
If the task is running, then the task is dequeued from the running queue. Otherwise the task
is dequeued from the ready queue. After that, the task increases its priority and changes its
part from optional part to mandatory part. Next the scheduler gets an idle processor ID. If
there is an idle processor, then the task is enqueued to the running queue and assigned to
the processor. Otherwise the scheduler gets the running task which has the lowest priority
in the running queue. If the task has higher priority than the running task, then preempt the
running task. The scheduler gets the processor ID of the running task. Next the running
task is dequeued from the running queue and enqueued to the ready queue. After that, the
task is enqueued to the running queue and assigned to the processor. Otherwise the task
is enqueued to the ready queue. Finally the scheduler gets the next task and checks if the
absolute optional deadline of the next task expires, again.

On the other hand, the implementation of terminate_optional function in the P-
RMWP algorithm is different from the G-RMWP algorithm. The P-RMWP algorithm does
not need to find the lowest priority task in running tasks. Because the P-RMWP algo-
rithm manages each task queue on each processor. By the same reason in end_mandatory
function, the P-RMWP algorithm schedules assigning tasks on each processor so that the
enqueue and dequeue operations are performed in the same ready queue.

64

5.6. ARCHITECURE DEPENDENT IMPLEMENTATION ON X86
MULTIPROCESSORS

task← GetHeadOfQueue (optionalDeadlineQueue);
while task.optionalDeadline 5 currentTime do

if task is ready to execute or executing its optional part then
DequeueOptionalDeadlineQueue (task);
if task is running then
DequeueTask (task, runningQueue);

end
else
DequeueTask (task, readyQueue);

end
IncreasePriority (task);
ChangePart (MANDATORY);
idleProcessorId← GetIdleProcessorId ();
if there is an idle processor then
EnqueueTask (task, runningQueue, idleProcessorId);

end
else

runningTask← GetLowestPriorityTask (runningQueue);
if task has higher priority than runningTask then
// preempt runningTask
processorId← GetProcessorId (runningTask);
DequeueTask (runningTask, runningQueue);
EnqueueTask (runningTask, readyQueue);
EnqueueTask (task, runningQueue, processorId);

end
else
// not preempt runningTask
EnqueueTask (task, readyQueue);

end
end

end
task← GetHeadOfQueue (optionalDeadlineQueue);

end

Figure 5.8: terminate_optional function for the G-RMWP algorithm

5.6 Architecure Dependent Implementation on x86 Multi-
processors

The RT-Est real-time operating system supports x86 multiprocessors, which have Advanced
Programmable Interrupt Controller (APIC). Each APIC has a local APIC timer which gen-
erates a local APIC timer interrupt on each processor. Now this dissertation explains x86-
specific implementation on multiprocessors.

When booting the system on x86 multiprocessors, the Boot Strap Processor (BSP) is
booted. Next BSP initializes IRQ and sends startup inter-processor interrupts to Application
Processors (APs), which are remaining processors except BSP. Then all APs are booted.
When all processors including BSP and APs are ready to start each scheduler, then each
processor generates each local APIC timer interrupt and starts to execute tasks. The IRQ
ID of each local APIC timer interrupt on each processor is different because the interrupt

65

CHAPTER 5. RT-EST REAL-TIME OPERATING SYSTEM

irq = do_LAPIC_IRQ();
if (irq != NO_IRQ) {
goto end;

}
irq = do_Master8259_IRQ();
if (irq != NO_IRQ) {
goto end;

}
irq = do_Slave8259_IRQ();
if (irq != NO_IRQ) {
goto end;

}
end:
do_IRQ_vector(irq);

Figure 5.9: Pseudo code of the interrupt handler

handler should be executed simultaneously to reduce the overhead. In addition, the interrupt
of local APIC is handled before that of Intel 8259, which is one of the PIC. Figure 5.9
shows the pseudo code of the interrupt handler in the RT-Est real-time operating system.
First do_LAPIC_IRQ function is called to check whether any local APIC interrupt occurs.
If the return value of do_LAPIC_IRQ function is NO_IRQ, no local APIC interrupt occurs.
Otherwise do_IRQ_vector function is called without checking interrupts of Master and
Slave 8259s. In a similar way, do_Master8259_IRQ and do_Slave8259_IRQ functions
are called to check whether other interrupts occur.

5.7 Summary of RT-Est Real-Time Operating System
This chapter presents the RT-Est real-time operating system for semi-fixed-priority schedul-
ing algorithms. This chapter first introduces some features including time management,
thread management and ultra configurable module. The RT-Est real-time operating sys-
tem implements the hybrid scheduler for the RMWP and P-RMWP algorithms and the dual
scheduler for the G-RMWP algorithm. This chapter next presents how to implement the
practical imprecise computation model and functions: end_mandatory, end_optional
and terminate_optional. Finally, the architecture dependent implementation using APIC
on x86 multiprocessors is described.

66

Chapter 6

Simulation Studies

This chapter evaluates the proposed algorithms through simulation. The simulation studies
are running at the SIM architecture in the RT-Est real-time operating system. The source
codes of architecture independent parts used at the SIM architecture are common so that
these codes are reusable for other architectures such as x86.

In this simulation, there is no overhead such as context switches, task queueing, interrupt
handler and migrations. Because this simulation focuses on the theoretical capacity of eval-
uated algorithms. Each practical imprecise task has two mandatory parts and one optional
part. This dissertation uses the Mersenne Twister [219] for uniform pseudo random number
generator.

The performance metrics are defined as the following equations.

Success Ratio =
of successfully scheduled task sets

of scheduled task sets
(6.1)

Reward Ratio =
Ti

n · simulation length

∑
j

oi, j

oi
(6.2)

Switch Ratio =
of context switches
M · simulation length

(6.3)

RRJ Ratio =
1
n

∑
i

RRJi

Ti
(6.4)

RFJ Ratio =
1
n

∑
i

RFJi

Ti
(6.5)

Migration Ratio =
of migrations

M · simulation length
(6.6)

The success ratio is the value of the number of successfully scheduled task sets divided
by the number of scheduled task sets in each system utilization. If the success ratio is equal
to 1, all task sets are schedulable. If the success ratio of each system utilization is lower than
1, the results of the system utilization evaluated by other performance metrics are omitted.

The reward ratio is the sum of the average execution ratio between the actual RET of
optional part oi, j of job τi, j and the RET of optional part oi of task τi normalized by the
period Ti and by the inverses of both the number of tasks and the simulation length. If the
reward ratio is equal to 1, all tasks complete their all optional parts.

The switch ratio is the sum of the number of context switches normalized by the inverses
of both the number of processors and the simulation length.

67

CHAPTER 6. SIMULATION STUDIES

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

RMWP M-FWP RM

Figure 6.1: Success ratio on uniprocessors

The RRJ ratio is the sum of the RRJ of task τi in Equation (3.1) normalized by the
inverses of both the period Ti of task τi and the number of tasks. Also, the RFJ ratio is the
sum of the RFJ of task τi in Equation (3.2) normalized by the inverses of both the period Ti

of task τi and the number of tasks. If the RRJ and RFJ ratios are equal to 0, the jitters of all
tasks are equal to 0.

The migration ratio is the sum of the number of migrations normalized by the inverses
of both the number of processors M and the simulation length. In addition, the migration
ratio is only used for global scheduling on multiprocessors. If the migration ratio is equal to
0, there is no migrating task.

6.1 Simulation Studies on Uniprocessors

6.1.1 Simulation Setups on Uniprocessors

The simulation studies on uniprocessors use 1, 000 task sets in each system utilization and
evaluate the RMWP, RM and M-FWP algorithms. The period Ti of each task τi is selected
within [100, 200, 300, ..., 3000]. Each system utilization Ui is selected from [0.02, 0.03, 0.04, ..., 0.25].
The total system utilization Us is selected from [0.3, 0.35, 0.4, ..., 1.0]. The simulation length
of the kth task set is Hk, which is the hyperperiod of the kth task set.

The utilization of the optional part oi, j/Ti is within the range of [oi − 0.05, oi + 0.05],
where oi is selected within [0.1, 0.2, 0.3], represented such as the RMWP-10, RMWP-20
and RMWP-30 algorithms or the M-FWP-10, M-FWP-20 and M-FWP-30 algorithms re-
spectively, computed at every task release. If the utilization of the optional part oi, j/Ti is
always equal to 0, the result is represented as the RMWP or M-FWP algorithm.

The results of the RMWP-10, RMWP-20 and RMWP-30 algorithms in the success and
RRJ ratios are equal to the result of the RMWP algorithm and those of the M-FWP-10,
M-FWP-20 and M-FWP-30 algorithms in the success ratio are equal to the result of the
M-FWP algorithm so that they are omitted.

68

6.1. SIMULATION STUDIES ON UNIPROCESSORS

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ew

a
rd

 R
a

ti
o

System Utilization

RMWP-10

RMWP-20

RMWP-30

M-FWP-10

M-FWP-20

M-FWP-30

Figure 6.2: Reward ratio on uniprocessors

0

0.005

0.01

0.015

0.02

0.025

0.03

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
w

it
ch

 R
a

ti
o

System Utilization

RMWP M-FWP RM

Figure 6.3: Switch ratio on uniprocessors

6.1.2 Simulation Results on Uniprocessors

Figure 6.1 shows the simulation result of the success ratio on uniprocessors. The success
ratio of the M-FWP algorithm is always 1. The success ratio of the RMWP algorithm is
degraded when the system utilization is higher than 0.8. In contrast, the success ratio of
the RM algorithm is degraded when the system utilization is higher than 0.75. In addition,
the success ratio of the RMWP algorithm is always higher than or equal to that of the RM
algorithm by Theorem 3.

Figure 6.2 shows the simulation result of the reward ratio on uniprocessors. The M-
FWP-10, M-FWP-20 and M-FWP-30 algorithms outperform the RMWP-10, RMWP-20
and RMWP-30 algorithms respectively because the RMWP algorithm sets each optional
deadline statically. In contrast, the M-FWP algorithm calculates the assignable time of each
optional part dynamically so that the analysis of the assignable time of the optional part is
more precise.

69

CHAPTER 6. SIMULATION STUDIES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
R

J
 R

a
ti

o

System Utilization

RMWP M-FWP M-FWP-10

M-FWP-20 M-FWP-30 RM

Figure 6.4: RRJ ratio on uniprocessors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
F

J
 R

a
ti

o

CPU Utilization

RMWP M-FWP M-FWP-10

M-FWP-20 M-FWP-30 RM

Figure 6.5: RFJ ratio on uniprocessors

Figure 6.3 shows the simulation result of the switch ratio on uniprocessors. The switch
ratio of the RMWP algorithm is higher than that of the RM algorithm because the RMWP al-
gorithm splits one practical imprecise task into multiple Liu and Layland’s tasks, the number
of which is equal to that of mandatory parts. Therefore, the frequency of context switches
in the RMWP algorithm is higher than that in the RM algorithm. The switch ratio of the
RMWP algorithm is also higher than that of the M-FWP algorithm because when the op-
tional part of each task is completed by each optional deadline, the task sleeps until the
optional deadline in the RMWP algorithm. In addition, the switch ratio of the M-FWP algo-
rithm is approximately equal to that of the RM algorithm. If the utilization of the optional
part is 0 in the M-FWP algorithm, the M-FWP algorithm generates the same schedule as the
EDF algorithm, which has approximately as same switch ratio as the RM algorithm.

Figure 6.4 shows the simulation result of the RRJ ratio on uniprocessors. The RMWP
algorithm can reduce the RRJ ratio, regardless of the assignable time of each optional part
thanks to the optional deadline, unlike the M-FWP-20, M-FWP-40 and M-FWP-60 algo-

70

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

rithms. The RMWP algorithm has the lowest RRJ ratio in all evaluated algorithms.
Figure 6.5 shows the simulation result of the RFJ ratio on uniprocessors. The RFJ ratio

of the M-FWP-10, M-FWP-20 and M-FWP-30 algorithms are dramatically the different
results to the RFJ ratio of the M-FWP algorithm because they calculate the assignable time
of each optional part when each mandatory part is completed. If the RET of each optional
part is more than 0, the optional part is ready to be executed. Otherwise the following
mandatory part is ready to be executed immediately or the task finishes its all mandatory
parts. Therefore, the RFJ ratios of the M-FWP-10, M-FWP-20 and M-FWP-30 algorithm
are dramatically higher than the RFJ ratio of the M-FWP algorithm. On the other hand, the
RFJ ratio of the RMWP algorithm is also lowest in all evaluated algorithms, thanks to the
optional deadline.

From the simulation results of the RRJ and RFJ ratios, the RMWP algorithm is the
lowest jitter in all evaluated algorithms.

6.2 Simulation Studies on Multiprocessors

6.2.1 Simulation Setups on Multiprocessors
The simulation studies on multiprocessors use 1, 000 task sets in each system utilization and
evaluate the G-RMWP, G-RM, RM-US[M/(3M-2)], P-RMWP and P-RM algorithms. In
simulation environments, the number of processors M is selected within [4, 8, 16]. Each sys-
tem utilization Ui is selected within [0.02, 0.03, 0.04, ...,Umax], where Umax is selected within
[0.1, 0.5, 1.0]. The period Ti of each task τi is selected within [100, 200, 300, ..., 3000]. The
utilization of optional part oi, j/Ti is within the range of [oi − 0.05, oi + 0.05], where oi

is selected within [0.2, 0.4, 0.6], represented such as the G-RMWP-20, G-RMWP-40 and
G-RMWP-60 algorithms or the P-RMWP-20, P-RMWP-40 or P-RMWP-60 algorithms re-
spectively, computed at every task release. If the utilization of the optional part oi, j/Ti is
always equal to 0, the result is represented as the G-RMWP or P-RMWP algorithm respec-
tively. The total system utilization Us is selected from [0.3, 0.35, 0.4, ..., 1.0]. The simulation
length of the kth task set is Hk, which is the hyperperiod of the kth task set.

The P-RMWP and P-RM algorithms use the same schedulability test by the next-fit
heuristic in Equation (4.16) so that the success ratio of the P-RMWP algorithm is the same
as that of the P-RM algorithm and the result of the P-RM algorithm is omitted. The results
of the G-RMWP-20, G-RMWP-40 and G-RMWP-60 algorithms in the success and RRJ
ratios are equal to the result of the G-RMWP algorithm so that they are omitted.

6.2.2 Simulation Results on Multiprocessors
Figures 6.6, 6.7 and 6.8 show the success ratios when Umax = 1.0, Umax = 0.5 and Umax = 0.1
respectively. In all results, the success ratio of the G-RMWP algorithm is higher than or
equal to that of the G-RM algorithm by Theorem 7. In Figure 6.6, the RM-US algorithm
has the highest success ratio in all evaluated algorithms. In contrast, in Figure 6.7, the G-
RMWP algorithm has the highest success ratio in all evaluated algorithms. The G-RM al-
gorithm outperforms the RM-US algorithm in Figure 6.7 because the occurrence frequency
of Dhall’s effect [51] is less than that of avoiding the deadline miss of each task thanks to
the technique of the utilization separation. In Figure 6.8, the G-RMWP, G-RM and RM-US
algorithms have the approximately same success ratios. In addition, the success ratio of the

71

CHAPTER 6. SIMULATION STUDIES

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(a) M = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(b) M = 8

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(c) M = 16

Figure 6.6: Success ratio on multiprocessors when Umax = 1.0

72

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(a) M = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(b) M = 8

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(c) M = 16

Figure 6.7: Success ratio on multiprocessors when Umax = 0.5

73

CHAPTER 6. SIMULATION STUDIES

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(a) M = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(b) M = 8

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

cc
es

s
R

a
ti

o

System Utilization

G-RMWP G-RM RM-US P-RMWP

(c) M = 16

Figure 6.8: Success ratio on multiprocessors when Umax = 0.1

74

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(a) M = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(b) M = 8

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(c) M = 16

Figure 6.9: Reward ratio on multiprocessors when Umax = 1.0

75

CHAPTER 6. SIMULATION STUDIES

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(a) M = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(b) M = 8

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(c) M = 16

Figure 6.10: Reward ratio on multiprocessors when Umax = 0.5

76

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(a) M = 4

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(b) M = 8

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.4 0.5 0.6 0.7 0.8

R
ew

a
rd

 R
a

ti
o

System Utilization

G-RMWP-20

G-RMWP-40

G-RMWP-60

P-RMWP-20

P-RMWP-40

P-RMWP-60

(c) M = 16

Figure 6.11: Reward ratio on multiprocessors when Umax = 0.1

77

CHAPTER 6. SIMULATION STUDIES

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.3 0.4 0.5 0.6

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(a) M = 4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.3 0.4 0.5 0.6

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(b) M = 8

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.3 0.4 0.5 0.6

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(c) M = 16

Figure 6.12: Switch ratio on multiprocessors when Umax = 1.0

78

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.3 0.4 0.5 0.6 0.7

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(a) M = 4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.3 0.4 0.5 0.6 0.7

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(b) M = 8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.3 0.4 0.5 0.6 0.7

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(c) M = 16

Figure 6.13: Switch ratio on multiprocessors when Umax = 0.5

79

CHAPTER 6. SIMULATION STUDIES

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.3 0.4 0.5 0.6 0.7 0.8

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(a) M = 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.3 0.4 0.5 0.6 0.7 0.8

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(b) M = 8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.3 0.4 0.5 0.6 0.7 0.8

S
w

it
ch

 R
a

ti
o

System Utilization

G-RMWP G-RM P-RMWP

(c) M = 16

Figure 6.14: Switch ratio on multiprocessors when Umax = 0.1

80

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.3 0.4 0.5 0.6

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(a) M = 4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.3 0.4 0.5 0.6

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(b) M = 8

0

0.002

0.004

0.006

0.008

0.01

0.012

0.3 0.4 0.5 0.6

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(c) M = 16

Figure 6.15: RRJ ratio on multiprocessors when Umax = 1.0

81

CHAPTER 6. SIMULATION STUDIES

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.3 0.4 0.5 0.6 0.7

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(a) M = 4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.3 0.4 0.5 0.6 0.7

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(b) M = 8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.3 0.4 0.5 0.6 0.7

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(c) M = 16

Figure 6.16: RRJ ratio on multiprocessors when Umax = 0.5

82

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.3 0.4 0.5 0.6 0.7 0.8

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(a) M = 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.3 0.4 0.5 0.6 0.7 0.8

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(b) M = 8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.3 0.4 0.5 0.6 0.7 0.8

R
R

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(c) M = 16

Figure 6.17: RRJ ratio on multiprocessors when Umax = 0.1

83

CHAPTER 6. SIMULATION STUDIES

0

0.005

0.01

0.015

0.02

0.025

0.3 0.4 0.5 0.6

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(a) M = 4

0

0.005

0.01

0.015

0.02

0.025

0.3 0.4 0.5 0.6

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(b) M = 8

0

0.005

0.01

0.015

0.02

0.025

0.3 0.4 0.5 0.6

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(c) M = 16

Figure 6.18: RFJ ratio on multiprocessors when Umax = 1.0

84

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.3 0.4 0.5 0.6 0.7

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(a) M = 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.3 0.4 0.5 0.6 0.7

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(b) M = 8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.3 0.4 0.5 0.6 0.7

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(c) M = 16

Figure 6.19: RFJ ratio on multiprocessors when Umax = 0.5

85

CHAPTER 6. SIMULATION STUDIES

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.4 0.5 0.6 0.7 0.8

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(a) M = 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.4 0.5 0.6 0.7 0.8

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(b) M = 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.4 0.5 0.6 0.7 0.8

R
F

J
 R

a
ti

o

System Utilization

G-RMWP G-RM RM-US

P-RMWP P-RM

(c) M = 16

Figure 6.20: RFJ ratio on multiprocessors when Umax = 0.1

86

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.3 0.4 0.5 0.6

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(a) M = 4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.3 0.4 0.5 0.6

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(b) M = 8

0

0.002

0.004

0.006

0.008

0.01

0.012

0.3 0.4 0.5 0.6

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(c) M = 16

Figure 6.21: Migration ratio on multiprocessors when Umax =

1.0

87

CHAPTER 6. SIMULATION STUDIES

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.3 0.4 0.5 0.6 0.7

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(a) M = 4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.3 0.4 0.5 0.6 0.7

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(b) M = 8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.3 0.4 0.5 0.6 0.7

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(c) M = 16

Figure 6.22: Migration ratio on multiprocessors when Umax =

0.5

88

6.2. SIMULATION STUDIES ON MULTIPROCESSORS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.3 0.4 0.5 0.6 0.7 0.8

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(a) M = 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.3 0.4 0.5 0.6 0.7 0.8

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(b) M = 8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.3 0.4 0.5 0.6 0.7 0.8

M
ig

ra
ti

o
n

 R
a

ti
o

System Utilization

G-RMWP G-RM RM-US

(c) M = 16

Figure 6.23: Migration ratio on multiprocessors when Umax =

0.1

89

CHAPTER 6. SIMULATION STUDIES

G-RM algorithm is equal to that of the RM-US algorithm because the G-RM algorithm gen-
erates the same schedule as the RM-US algorithm when Umax = 0.1 < M/(3M − 2). On the
other hand, the P-RMWP algorithm has the lowest success ratio in all evaluated algorithms.

Figures 6.9, 6.10 and 6.11 show the reward ratios when Umax = 1.0, Umax = 0.5 and
Umax = 0.1 respectively. When the utilization of each optional part is higher and higher, the
reward ratio is lower and lower. Interestingly, when the system utilization is lower than 0.5,
the reward ratios of the G-RMWP-20, G-RMWP-40 and G-RMWP-60 algorithms in Figure
6.10 are higher than those in Figure 6.9 respectively. If Umax is too high like Figure 6.9, the
degradation of the reward ratio occurs because the interval to execute each optional part is
decreased. If the utilization of the task is 1, then the task cannot execute their optional parts.
In Figure 6.9, the G-RMWP algorithm has higher reward ratio than the P-RMWP algorithm.
In contrast, in Figure 6.10, the P-RMWP-20, P-RMWP-40 and P-RMWP-60 algorithms
have higher reward ratio than the G-RMWP-20, G-RMWP-40 and G-RMWP-60 algorithms
respectively when the system utilization is higher than 0.55. In Figure 6.11, the reward
ratios of the P-RMWP-20, P-RMWP-40 and P-RMWP-60 algorithms are slightly higher
than those of the G-RMWP-20, G-RMWP-40 and G-RMWP-60 algorithms respectively.

Figures 6.12, 6.13 and 6.14 show the switch ratios when Umax = 1.0, Umax = 0.5 and
Umax = 0.1 respectively. In all results, the switch ratio of the G-RM algorithm is approxi-
mately equal to the switch ratios of the RM-US and P-RM algorithms so that the all results of
the RM-US and P-RM algorithms are omitted. The switch ratio of the G-RMWP algorithm
has approximately twice as much as that of the G-RM algorithm, which is the similar trend
of the RMWP and RM algorithms on uniprocessors, as shown in Figure 6.3. Interestingly,
in Figure 6.12, the switch ratio of the P-RMWP algorithm is approximately equal to that of
the G-RM algorithm. In contrast, in Figure 6.13, the switch ratio of the P-RMWP algorithm
is slightly higher than those of the G-RM algorithm. In Figure 6.14, the switch ratio of the
P-RMWP algorithm is also higher than those of the G-RM algorithm, like Figure 6.13. If
Umax is higher and higher, the switch ratio of the P-RMWP algorithm is gradually equal to
that of the G-RM algorithm.

Figures 6.15, 6.16 and 6.17 show the RRJ ratios when Umax = 1.0, Umax = 0.5 and
Umax = 0.1 respectively. In Figures 6.15 and 6.16, the RRJ ratio of the G-RMWP algorithm
is lowest in all evaluated algorithms. In Figure 6.17, the RRJ ratio of the P-RMWP algorithm
is lowest in all evaluated algorithms. That is to say, the G-RMWP and P-RMWP algorithms
have lower RRJ ratio than the G-RM, RM-US and P-RM algorithms. The RM-US algorithm
has dramatically higher RRJ ratio than other algorithms in Figures 6.15 and 6.16 due to the
technique of the utilization separation. This explains that the technique of the utilization
separation has the disadvantage of high RRJ ratio.

Figures 6.18, 6.19 and 6.20 show the RFJ ratios when Umax = 1.0, Umax = 0.5 and
Umax = 0.1 respectively. The simulation results of the RFJ ratios are similar to those of the
RRJ ratios, as shown in Figures 6.15, 6.16 and 6.17. That is to say, in Figures 6.18 and
6.19, the RFJ ratio of the G-RMWP algorithm is lowest and that of the RM-US algorithm is
highest in all evaluated algorithms. In addition, in Figure 6.20, the RFJ ratio of the P-RMWP
algorithm is lowest in all evaluated algorithms.

From the simulation results of the RRJ and RFJ ratios, the G-RMWP and P-RMWP al-
gorithms achieve low-jitter in all evaluated algorithms. In addition, the G-RMWP algorithm
has lower jitter than the P-RMWP algorithm when Umax = 1.0 and Umax = 0.5.

Figures 6.21, 6.22 and 6.23 show the migration ratios when Umax = 1.0, Umax = 0.5 and
Umax = 0.1 respectively. In all results, the G-RMWP algorithm has higher migration ratio
than the G-RM and RM-US algorithms. In Figures 6.21 and 6.22, the migration ratio of the

90

6.3. DISCUSSION OF SIMULATION STUDIES

RM-US algorithm is approximately equal to that of the G-RM algorithm. That is to say, the
technique of the utilization separation does not generate the additional migration cost.

6.3 Discussion of Simulation Studies
Considering all simulation results, this dissertation discusses which algorithm is well suited
to practical imprecise computation.

From the simulation results on uniprocessors, the RM algorithm does not consider the
remaining time to improve the quality of service. In dynamic real-time environments, the
WCET of each task usually tends to be overestimated so that the RM algorithm is not well
suited to practical imprecise computation. In the RMWP and M-FWP algorithms, this dis-
sertation discusses the trade-offs between reward ratios and jitter to achieve practical im-
precise computation. The M-FWP algorithm is well suited to applications requiring high
schedulability with non-jitter sensitive tasks because the M-FWP algorithm has higher suc-
cess ratio than the RMWP algorithm. In contrast, the RMWP algorithm is well suited to dy-
namic real-time systems because not only is the jitter of the RMWP algorithm not affected
by the execution time of each optional part, but also the RMWP algorithm has lower jitter
than the M-FWP algorithm. The goal of this dissertation is to achieve real-time schedul-
ing with low-jitter and high schedulability so that the RMWP algorithm is well suited to
practical imprecise computation on uniprocessors.

From the simulation results on multiprocessors, the success ratio of the RM-US algo-
rithm is higher than that of the G-RM algorithm when Umax = 1.0 and lower than that of the
G-RM algorithm when Umax = 0.5. In contrast, the success ratio of the G-RMWP algorithm
is higher than or equal to that of the G-RM algorithm by Theorem 7. The success ratio of
the P-RMWP algorithm is equal to that of the P-RM algorithm by Theorem 3. The disad-
vantage of the G-RMWP algorithm is that the G-RMWP algorithm has the highest switch
ratio in all evaluated algorithms. In contrast, the switch ratio of the P-RMWP algorithm is
approximately as same as that of the G-RM algorithm when Umax = 1.0. The G-RMWP
and P-RMWP algorithms have the novel advantage against the G-RM, RM-US and P-RM
algorithms to achieve practical imprecise computation on multiprocessors. In addition, the
G-RMWP and P-RMWP algorithms have lower jitter than the G-RM, RM-US and P-RM
algorithms. Especially, the jitter of the RM-US algorithm is dramatically high. Therefore,
the G-RMWP and P-RMWP algorithms are cost-effective real-time scheduling for practical
imprecise computation on multiprocessors.

From the simulation results on uniprocessors and multiprocessors, semi-fixed-priority
scheduling is effective for practical imprecise computation in dynamic environments.

6.4 Summary of Simulation Studies
This chapter performs simulation studies on uniprocessors and multiprocessors. The suc-
cess ratios of semi-fixed-priority scheduling algorithms are higher than or equal to those
of fixed-priority scheduling algorithms. The reward ratios of semi-fixed-priority schedul-
ing algorithms are lower than those of dynamic-priority scheduling algorithms. The switch
ratios of semi-fixed-priority scheduling algorithms are higher than those of other real-time
scheduling algorithms. The jitters of semi-fixed-priority scheduling algorithms are lower
than other algorithms and do not depend on the assignable time of the optional part, thanks

91

CHAPTER 6. SIMULATION STUDIES

to the optional deadline. The migration ratios of semi-fixed-priority scheduling algorithms
are higher than those of fixed-priority scheduling algorithms. Considering all simulation
results, semi-fixed-priority scheduling algorithms can achieve practical imprecise computa-
tion on uniprocessors and multiprocessors. Therefore, semi-fixed-priority scheduling can be
strongly adapted to overloaded conditions in dynamic environments.

92

Chapter 7

Experimental Evaluations

This chapter evaluates the proposed algorithms through experimental evaluations in the RT-
Est real-time operating system on an x86 uniprocessor and an x86 multiprocessor. Each
practical imprecise task has two mandatory parts and one optional part. The system has
the Corei5 750 2.66GHz quad core processor and 2GB DDR3SDRAM 1,333MHz. In all
measurements, the RT-Est real-time operating system is compiled with gcc version 4.6.1
with the second level of optimization (-O2). The metrics in the experimental evaluations are
the following overheads.

• end_mandatory function: is called if each task completes its mandatory parts. The
detail implementation of end_mandatory function is shown in Figure 5.6.

• end_optional function: is called if each task completes its optional parts. The detail
implementation of end_optional function is shown in Figure 5.7.

• terminate_optional function: is called if each task terminates its optional parts.
The detail implementation of terminate_optional function is shown in Figure 5.8.

• scheduler: finds the running task which has the highest priority by the hybrid sched-
uler as shown in Figure 5.3 or the dual scheduler as shown in Figure 5.4.

• overall: includes the above overheads and the overhead of the interrupt handler. That
is to say, the overall overhead is between the time when the interrupt handler is started
and the time when the interrupt handler is finished.

Each overhead is measured by ReaD Time Stamp Counter (RDTSC) instruction on x86
processors. In addition, the experimental evaluations do not use cache to measure the worst
case overhead. The RDTSC instruction is used at the start and the finishing points to measure
each overhead.

In addition, the experimental evaluations measure the jitter of each task, which is called
RRJ and RFJ in Equations (3.1) and (3.2) respectively. The RRJ and RFJ ratios are defined
as the following equations.

RRJ Ratio =
1
n

∑
i

RRJi

Ti
(7.1)

RFJ Ratio =
1
n

∑
i

RFJi

Ti
(7.2)

93

CHAPTER 7. EXPERIMENTAL EVALUATIONS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6 7 8

O
v

er
h

ea
d

[n
s]

of Tasks

RMWP

M-FWP

Figure 7.1: Overhead of end_mandatory function on an x86 uniprocessor

7.1 Experimental Evaluations on an x86 Uniprocessor

7.1.1 Experimental Setups on an x86 Uniprocessor
The experimental evaluations use only one core on the Corei5 750 processor. In addition,
the experimental evaluations use 1, 000 task sets in each system utilization and evaluate
the RMWP, M-FWP and RM algorithms. The period Ti of each task τi is selected within
[1ms, 2ms, 3ms, ..., 30ms]. Each utilization Ui is selected from [0.02, 0.03, 0.04, ..., 0.25] and
splits Ui into two utilizations which are assigned to m1

i and m2
i respectively. The utilization of

optional part oi, j/Ti is within the range of [0, 0.3]. The system utilization Us is selected from
[0.3, 0.35, 0.4, ..., 0.8]. The execution time of the kth task set is Hk, which is the hyperperiod
of the kth task set.

7.1.2 Experimental Results on an x86 Uniprocessor
Figure 7.1 shows the overhead of end_mandatory function on an x86 uniprocessor. The
overhead of the RMWP algorithm is approximately constant and low. On the other hand, the
overhead of the M-FWP algorithm is dramatically higher than that of the RMWP algorithm
because the M-FWP algorithm calculates the assignable time of the optional part dynami-
cally. The overheads of the RMWP algorithm for 3 and 4 tasks are approximately same so
that the length of each error bar is very short.

Figure 7.2 shows the overhead of end_optional function on an x86 uniprocessor. Un-
like Figure 7.1, the overhead of the RMWP algorithm is higher than that of the M-FWP
algorithm. In end_optional function, the RMWP algorithm enqueues the task to the SQ
and the M-FWP algorithm starts to execute its following mandatory part without queueing
operations in the RTQ and NRTQ. That is to say, when the task completes its optional part
in the M-FWP algorithm, the task executes its following mandatory part immediately.

Figure 7.3 shows the overhead of terminate_optional function on an x86 unipro-
cessor. The average overhead of the RMWP algorithm is lower than that of the M-FWP
algorithm. However, the maximum overhead of the RMWP algorithm is usually higher than
that of the M-FWP algorithm. The RMWP algorithm checks whether the current time is the

94

7.1. EXPERIMENTAL EVALUATIONS ON AN X86 UNIPROCESSOR

0

50

100

150

200

250

300

350

3 4 5 6 7 8

O
v

er
h

ea
d

[n
s]

of Tasks

RMWP

M-FWP

Figure 7.2: Overhead of end_optional function on an x86 uniprocessor

0

50

100

150

200

250

300

350

3 4 5 6 7 8

O
v

er
h

ea
d

[n
s]

of Tasks

RMWP

M-FWP

Figure 7.3: Overhead of terminate_optional function on an x86 uniprocessor

optional deadline of each task in terminate_optional function. If many tasks have the
same optional deadlines, the maximum overhead of the RMWP algorithm becomes high. In
contrast, the M-FWP algorithm does not need the optional deadline because the M-FWP al-
gorithm calculates the assignable time of the optional part dynamically in end_mandatory
function, which causes high overhead as shown in Figure 7.1. If the assignable time of the
optional part becomes 0, the M-FWP algorithm terminates optional parts so that more than
one tasks are not terminated at the same time and the maximum overhead of the M-FWP
algorithm becomes low.

Figure 7.4 shows the overhead of scheduler on an x86 uniprocessor. The overhead of the
RM algorithm is lower than the overheads of the RMWP and M-FWP algorithms because
the RM algorithm does not perform imprecise computation. The overhead of the RMWP
algorithm is higher than that of the M-FWP algorithm. This result explain that the overhead
of scheduler in the M-FWP algorithm is not so high though the overhead of end_mandatory
function in the M-FWP algorithm is dramatically higher than that in the RMWP algorithm.

95

CHAPTER 7. EXPERIMENTAL EVALUATIONS

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7 8

O
v

er
h

ea
d

[n
s]

of Tasks

RMWP

M-FWP

RM

Figure 7.4: Overhead of scheduler on an x86 uniprocessor

0

500

1000

1500

2000

2500

3000

3500

3 4 5 6 7 8

O
v

er
h

ea
d

[n
s]

of Tasks

RMWP

M-FWP

RM

Figure 7.5: Overall overhead on an x86 uniprocessor

Figure 7.5 shows the overall overhead on an x86 uniprocessor. Like Figure 7.4, the
overhead of the RM algorithm is also lower than the overheads of the RMWP and M-FWP
algorithms. The average overhead of the RMWP algorithm is approximately as same as
that of the M-FWP algorithm. On the other hand, the maximum overhead of the RMWP
algorithm is dramatically lower than that of the M-FWP algorithm due to the overhead of
end_mandatory function as shown in Figure 7.1.

Figure 7.6 shows the RRJ ratio on an x86 uniprocessor. The RRJ ratio of the RMWP
algorithm is lowest in all evaluated algorithms. The RRJ ratio of the RM algorithm is higher
than that of the RMWP algorithm. Especially, the RRJ ratio of the M-FWP algorithm is
dramatically high for 7 and 8 tasks because the M-FWP algorithm has high RRJ ratio in
high system utilization like the simulation result, as shown in Figure 6.4.

Figure 7.7 shows the RFJ ratio on an x86 uniprocessor. Like Figure 7.6, the RFJ ratio
of the RMWP algorithm is lowest in all evaluated algorithms. The RFJ ratio of the RM
algorithm is also higher than that of the RMWP algorithm. The RFJ ratio of the M-FWP

96

7.2. EXPERIMENTAL EVALUATIONS ON AN X86 MULTIPROCESSOR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

3 4 5 6 7 8

R
R

J
 R

a
ti

o

of Tasks

RMWP

M-FWP

RM

Figure 7.6: RRJ ratio on an x86 uniprocessor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3 4 5 6 7 8

R
F

J
 R

a
ti

o

of Tasks

RMWP

M-FWP

RM

Figure 7.7: RFJ ratio on an x86 uniprocessor

algorithm is dramatically high, regardless of the number of tasks like the simulation result,
as shown in Figure 6.5.

From the experimental results of the RRJ and RFJ ratios on an x86 uniprocessor, the
RMWP algorithm has low-jitter in all evaluated algorithms.

7.2 Experimental Evaluations on an x86 Multiprocessor

7.2.1 Experimental Setups on an x86 Multiprocessor
The experimental evaluations use 1, 000 task sets in each system utilization and evalu-
ate the G-RMWP, P-RMWP, G-RM and P-RM algorithms. Each Ui is selected within
[0.02, 0.03, 0.04, ..., 0.1] and splits Ui into two utilizations which are assigned to m1

i and
m2

i respectively. The period Ti of each task τi is selected within [1ms, 2ms, 3ms, ..., 30ms].

97

CHAPTER 7. EXPERIMENTAL EVALUATIONS

0

200

400

600

800

1000

1200

10 20 30

O
v

er
h

ea
d

[n
s]

of Tasks

G-RMWP

P-RMWP

Figure 7.8: Overhead of end_mandatory function on an x86 multiprocessor

0

100

200

300

400

500

600

700

800

10 20 30

O
v

er
h

ea
d

[n
s]

of Tasks

G-RMWP

P-RMWP

Figure 7.9: Overhead of end_optional function on an x86 multiprocessor

The utilization of optional part oi, j/Ti is within the range of [0, 0.3]. The system utilization
Us is selected from [0.15, 0.2, 0.25, ..., 0.6]. The execution length of the kth task set is Hk,
which is the hyperperiod of the kth task set. The task assignment algorithm for the P-RMWP
and P-RM algorithms is the next-fit heuristic to even the number of tasks on each core.

7.2.2 Experimental Results on an x86 Multiprocessor
Figure 7.8 shows the overhead of end_mandatory function. The overhead of the G-RMWP
algorithm is higher than that of the P-RMWP algorithm. In the P-RMWP algorithm, the en-
queue and dequeue operations are performed in each ready queue on each core. In contrast,
in the G-RMWP algorithm, the enqueue and dequeue operations are performed in a single
global queue so that the overhead of the G-RMWP algorithm becomes high.

Figure 7.9 shows the overheads of end_optional functions. Like Figure 7.8, the G-
RMWP algorithm has higher average and maximum overheads than the P-RMWP algo-

98

7.2. EXPERIMENTAL EVALUATIONS ON AN X86 MULTIPROCESSOR

0

50

100

150

200

250

300

350

400

450

500

10 20 30

O
v

er
h

ea
d

[n
s]

of Tasks

G-RMWP

P-RMWP

Figure 7.10: Overhead of terminate_optional function on an x86 multiprocessor

0

200

400

600

800

1000

1200

1400

10 20 30

O
v

er
h

ea
d

[n
s]

of Tasks

G-RMWP

P-RMWP

G-RM

P-RM

Figure 7.11: Overhead of scheduler on an x86 multiprocessor

rithm. The overhead of end_optional function is usually lower than that of end_mandatory
function. Because the number of enqueue and dequeue operations in end_mandatory func-
tion is more than that in end_optional function.

Figure 7.10 shows the overhead of terminate_optional function. The overhead
of terminate_optional function is lower than the overheads of end_mandatory and
end_optional functions because terminate_optional function performs the enqueue
and dequeue operations only if there is a task, the optional deadline of which expires at the
current time. Otherwise, terminate_optional function does not perform the enqueue and
dequeue operations.

Figure 7.11 shows the overhead of scheduler. Interestingly, the overhead of scheduler
in the G-RMWP algorithm is lower than that in the P-RMWP algorithm. Similarly, the
overhead of the G-RM algorithm is also lower than that of the P-RM algorithm. As a result,
global scheduling has lower overhead of scheduler than partitioned scheduling, thanks to
the dual scheduler.

99

CHAPTER 7. EXPERIMENTAL EVALUATIONS

0

500

1000

1500

2000

2500

3000

3500

10 20 30

O
v

er
h

ea
d

[n
s]

of Tasks

G-RMWP

P-RMWP

G-RM

P-RM

Figure 7.12: Overall overhead on an x86 multiprocessor

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30

R
R

J
 R

a
ti

o

of Tasks

G-RMWP

P-RMWP

G-RM

P-RM

Figure 7.13: RRJ ratio on an x86 multiprocessor

Figure 7.12 shows the overall overhead. Like Figure 7.11, the overall overhead is ap-
proximately constant regardless of the number of tasks. That is to say, the dual scheduler is
scalable and achieves low overhead. The overall overhead in the G-RMWP and P-RMWP
algorithms are approximately 2,000-3,000 ns which is very lower than Linux-based experi-
mental evaluations on multiprocessors, as previously described in Section 2.5.

Figure 7.13 shows the RRJ ratio on an x86 multiprocessor. The RRJ ratios of the G-
RMWP and P-RMWP algorithms are lower than those of the G-RM and P-RM algorithms
respectively, like Figure 7.6. Especially, the maximum RRJ ratio of the P-RM algorithm is
highest in all evaluated algorithm.

Figure 7.14 shows the RFJ ratio on an x86 multiprocessor. The RFJ ratios of the G-
RMWP and P-RMWP algorithms are approximately as same as those of the G-RM and
P-RM algorithms. Because the G-RMWP and P-RMWP algorithms perform the additional
operations in end_mandatory, end_optional and terminate_optional functions so
that the finishing time of each task tends to be fluctuated.

100

7.3. DISCUSSION OF EXPERIMENTAL EVALUATIONS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30

R
F

J
 R

a
ti

o

of Tasks

G-RMWP

P-RMWP

G-RM

P-RM

Figure 7.14: RFJ ratio on an x86 multiprocessor

From the experimental results of the RRJ and RFJ ratios on an x86 multiprocessor, the
G-RMWP and P-RMWP algorithms have lower jitter than or approximately as same jitter
as the G-RM and P-RM algorithms.

7.3 Discussion of Experimental Evaluations
Considering all results of experimental evaluations, this dissertation discusses which algo-
rithm is well suited to practical imprecise computation.

From the experimental results on an x86 uniprocessor, the RM algorithm has the lowest
overhead in all evaluated algorithms. However, the RM algorithm cannot make use of the
remaining time to improve the reward. The M-FWP algorithm has higher overall overhead
than the RMWP algorithm. The RMWP algorithm has approximately constant overall over-
head regardless of the number of tasks like the RM algorithm and can make use of remaining
time to improve reward, unlike the RM algorithm. In addition, the RMWP algorithm has
the lowest jitter in all evaluated algorithms. Therefore, the RMWP algorithm is well suited
to practical imprecise computation.

From the experimental results on an x86 multiprocessor, semi-fixed-priority scheduling
has comparable overhead to fixed-priority scheduling. The G-RMWP algorithm has lower
overhead than the P-RMWP algorithm, thanks to the dual scheduler. In addition, the G-
RMWP and P-RMWP algorithms have lower jitter than or approximately as same jitter as
the G-RM and P-RM algorithms. Therefore, the G-RMWP and P-RMWP algorithms are
well suited to practical imprecise computation.

7.4 Comparison of Simulation and Experimental Results
The simulation results show that the RMWP algorithm has both lower jitter and higher
schedulability than the RM algorithm on uniprocessors. The G-RMWP and P-RMWP algo-
rithms also have lower jitter than and at least as same schedulability as the G-RM and P-RM
algorithms respectively on multiprocessors. The experimental results show that the RMWP,
G-RMWP and P-RMWP algorithms have slightly higher overhead than the RM, G-RMWP

101

CHAPTER 7. EXPERIMENTAL EVALUATIONS

and P-RMWP algorithms respectively. In addition, the jitters of the RMWP, G-RMWP and
P-RMWP algorithms are lower than or approximately as same as those of the RM, G-RM
and P-RM algorithms respectively. In contrast, the M-FWP algorithm has higher overhead
than the RMWP algorithm on uniprocessors. Unfortunately, the M-FWP algorithm does not
support multiprocessor real-time scheduling. Therefore, semi-fixed-priority scheduling is
an effective technique for practical imprecise computation.

7.5 Summary of Experimental Evaluations
This chapter performs experimental evaluations in the RT-Est real-time operating system
on an x86 uniprocessor and an x86 multiprocessor. The experimental results show that
semi-fixed-priority scheduling is a cost-effective technique for practical imprecise compu-
tation. The additional overhead of semi-fixed-priority scheduling is tiny compared to that
of fixed-priority scheduling. From both simulation and experimental results, semi-fixed-
priority scheduling achieves practical imprecise computation and has comparable overhead
to fixed-priority scheduling.

102

Chapter 8

Conclusions

This dissertation presented the research of real-time scheduling and real-time operating sys-
tem in the practical imprecise computation model on both uniprocessors and multiproces-
sors. The target computation model called the practical imprecise computation model has
more than one mandatory parts and more than one optional parts without causing a critical
timing violation.

8.1 Summary of Contributions
The contributions of this dissertation cover both theoretical and practical aspects in real-
time systems. Each of the contributions leads to eviction of resource overprovision and con-
tributes to the development of cost-effective real-time systems that can work in overloaded
conditions and in various dynamic environments.

The theoretical contributions are to present semi-fixed-priority scheduling on uniproces-
sors and multiprocessors. The first theoretical contribution is to analyze the schedulability of
semi-fixed-priority scheduling which is higher than or equal to that of fixed-priority schedul-
ing. The second theoretical contribution is to define the optional deadline of each practical
imprecise task. Thanks to the optional deadline, semi-fixed-priority scheduling avoids the
deadline miss of the following mandatory parts due to the overrun of the optional parts. Note
that mandatory parts in a practical imprecise task can be regarded as tasks with same or dif-
ferent release times in Liu and Layland’s model. Therefore, semi-fixed-priority scheduling
can schedule a task set, which does not have the time when all tasks are released at the same
time. The third theoretical contribution is to support practical imprecise computation on
uniprocessors and multiprocessors, thanks to semi-fixed-priority scheduling.

The effectiveness of the proposed algorithms is shown through simulation studies. The
simulation results on uniprocessors show that the RMWP algorithm has higher success ratio
than the RM algorithm and lower jitter than both the RM and M-FWP algorithms. The jitter
of the M-FWP algorithm depends on the assignable time of the optional part. In contrast,
the jitter of the RMWP algorithm does not depend on the assignable time of the optional
part by the optional deadline. Therefore, the RFJ ratio of the RMWP algorithm is dramati-
cally higher than that of the M-FWP algorithm. The simulation results on multiprocessors
show that the G-RMWP algorithm has higher success ratio than the G-RM and RM-US
algorithms. In addition, the P-RMWP algorithm has same success ratio as the P-RM algo-
rithm because the P-RMWP algorithm can schedule a task set, which is schedulable by the
P-RM algorithm. Therefore, the P-RMWP algorithm can make use of the schedulability test

103

CHAPTER 8. CONCLUSIONS

Table 8.1: Overview of this dissertation

Model Uniprocessor Multiprocessor Imprecise
Liu and Layland [2] X X
Imprecise Computation [18, 33] X X
This dissertation X X X

for the P-RM algorithm. The G-RMWP and P-RMWP algorithms have lower jitter than the
G-RM and RM-US algorithms.

The practical contributions are to present the RT-Est real-time operating system for semi-
fixed-priority scheduling algorithms. The first practical contribution is to implement the
hybrid scheduler for uniprocessor and multiprocessor partitioned scheduling. The second
practical contribution is to implement the dual scheduler for multiprocessor global schedul-
ing. The experimental results on uniprocessors show that the RMWP algorithm has com-
parable overhead to the RM algorithm. The maximum overhead of the M-FWP algorithm
has dramatically higher than that of the RMWP algorithm because the M-FWP algorithm
calculates the assignable time of the optional part dynamically, which consumes much time.
In contrast, the RMWP algorithm does not need to calculate the assignable time of the op-
tional part dynamically, thanks to the optional deadline, which is calculated statically. The
jitter of the RMWP algorithm is lowest in all evaluated algorithms. The experimental re-
sults on multiprocessors show that the G-RMWP and P-RMWP algorithms have comparable
overhead to the G-RM and P-RM algorithms. In addition, the jitters of the G-RMWP and
P-RMWP algorithms are lower than or approximately as same as those of the G-RM and
P-RM algorithms.

This dissertation concludes that semi-fixed-priority scheduling is the best choice for
practical imprecise computation on uniprocessors and multiprocessors. This dissertation be-
lieves that many researchers use and refine semi-fixed-priority scheduling. Table 8.1 shows
the overview of this dissertation. This dissertation puts all checkmarks.

8.2 Future Directions
This dissertation gives several directions toward the future work as follows.

• A more practical schedulability analysis for semi-fixed-priority scheduling will be de-
sired to fill the gap between ideal simulation results and experimental evaluations. For
example, schedulability tests include the overhead of context switches and migrations.

• Distributed real-time systems will be supported by semi-fixed-priority scheduling.
The worst case arrival time of each packet is analyzed for remote sensing applica-
tions based on imprecise computation.

• Real-time synchronization protocols such as PCP [214] and SRP [215] will be sup-
ported in semi-fixed-priority scheduling. In order to manage multiple I/Os in robots,
semi-fixed-priority scheduling is required to meet the deadline of each task with
shared resources.

• Both the hybrid scheduler and the dual scheduler will be evaluated to verify the scal-
ability on many-core systems such as Intel’s Single-Chip Cloud Computer [220]. The

104

8.2. FUTURE DIRECTIONS

other evaluation approach is to use full system simulation platforms such as Simics
[221]. Also, other queueing policies such as binomial heap queue [222] will be com-
pared to both hybrid and dual schedulers.

• Real-time applications will be adapted to the practical imprecise computation model,
as described in Chapter 3. Especially, this dissertation will integrate semi-fixed-
priority scheduling algorithms to the sensor fusion of visual and auditory information
[203].

105

Bibliography

[1] P. Marwedel. Embedded System Design. Springer, 2006.

[2] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the ACM, Vol. 20, No. 1, pp. 46–61, 1973.

[3] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems, Vol.
29, No. 1, pp. 5–26, 2005.

[4] J. A. Stankovic, K. Ramamritham, and M. Spuri. Deadline Scheduling for Real-Time
Systems: EDF and Related Algorithms. Kluwer Academic Publishers, 1998.

[5] iRobot Corporation. Roomba. http://store.irobot.com/home/index.jsp.

[6] M. K. Gardner and J. W.-S. Liu. Performance of Algorithms for Scheduling Real-
Time Systems with Overrun and Overload. In Proceedings of the 11th Euromicro
Conference on Real-Time Systems, pp. 287–296, June 1999.

[7] G. C. Buttazzo and J. A. Stankovic. RED: Robust Earliest Deadline Scheduling. In
Proceedings of 3rd International Workshop on Responsive Computing Systems, pp.
100–111, September 1993.

[8] G. C. Buttazzo, M. Spuri, and F. Sensini. Value vs. Deadline Scheduling in Overload
Conditions. In Proceedings of the 16th IEEE Real-time Systems Symposium, pp. 90–
99, December 1995.

[9] S. K. Baruah and J. R. Haritsa. Scheduling for Overload in Real-Time Systems. IEEE
Transactions on Computers, Vol. 46, No. 9, pp. 1034–1039, 1997.

[10] Intel Corporation. Intel Xeon processor E7 family. http://www.intel.com/
content/www/us/en/processors/xeon/xeon-processor-e7-family.html.

[11] Sony Computer Entertainment Inc. Cell Broadband Engine. http://cell.scei.
co.jp/.

[12] ARM Ltd. ARM11 Processor Family. http://www.arm.com/products/
processors/classic/arm11/index.php.

[13] Apple Inc. iPhone. http://www.apple.com/iphone/.

[14] Google Inc. Android. http://www.android.com/.

106

http://store.irobot.com/home/index.jsp
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://cell.scei.co.jp/
http://cell.scei.co.jp/
http://www.arm.com/products/processors/classic/arm11/index.php
http://www.arm.com/products/processors/classic/arm11/index.php
http://www.apple.com/iphone/
http://www.android.com/

BIBLIOGRAPHY

[15] F. Kanehiro, H. Hirukawa, and S. Kajita. OpenHRP: Open Architecture Humanoid
Robotics Platform. The International Journal of Robotics Research, Vol. 23, No. 2,
pp. 155–165, 2004.

[16] Future Robotics Technology Center. HallucII. http://furo.org/ja/robot/
halluc2/index.html.

[17] Boston Dynamics. BigDog. http://www.bostondynamics.com/robot_bigdog.
html.

[18] K. Lin, S. Natarajan, and J. Liu. Imprecise Results: Utilizing Partial Computations in
Real-Time Systems. In Proceedings of the 8th IEEE Real-Time Systems Symposium,
pp. 210–217, December 1987.

[19] W. Feng and J. W.-S. Liu. An Extended Imprecise Computation Model for Time-
Constrained Speech Processing and Generation. In Proceedings of the IEEE Work-
shop on Real-Time Applications, pp. 76–80, May 1993.

[20] X. Huang and A. M. K. Cheng. Applying Imprecise Algorithms to Real-Time Image
and Video Transmission. In Proceedings of the 1st IEEE Real-Time Technology and
Applications Symposium, pp. 96–101, May 1995.

[21] X. Chen and A. M. K. Cheng. An Imprecise Algorithm for Real-Time Compressed
Image and Video Transmission. In Proceedings of 6th International Conference on
Computer Communications and Networks, pp. 390–397, September 1997.

[22] W. Tan and A. Zakhor. Real-Time Internet Video Using Error Resilient Scalable
Compression and TCP-Friendly Transport Protocol. IEEE Transactions on Multime-
dia, Vol. 1, No. 2, pp. 172–186, 1999.

[23] V. Millan-Lopez, W. Feng, and J. W.-S. Liu. Using the Imprecise-Computation Tech-
nique for Congestion Control on a Real-Time Traffic Switching Element. In Pro-
ceedings of the International Conference on Parallel and Distributed Systems, pp.
202–208, December 1994.

[24] W. Feng and J. W.-S. Liu. Performance of a Congestion Control Scheme on an ATM
Switch. In Proceedings of the International Conference on Networks, pp. 225–228,
January 1996.

[25] M. C. Horsch and D. Poole. An Anytime Algorithm for Decision Making under
Uncertainty. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pp. 246–255, July 1998.

[26] G. B. Parker and J. W. Mills. Adaptive Hexapod Gait Control Using Anytime Learn-
ing with Fitness Biasing. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pp. 519–524, July 1999.

[27] G. B. Parker. Punctuated Anytime Learning for Hexapod Gait Generation. In Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and System, pp.
2664–2671, October 2002.

107

http://furo.org/ja/robot/halluc2/index.html
http://furo.org/ja/robot/halluc2/index.html
http://www.bostondynamics.com/robot_bigdog.html
http://www.bostondynamics.com/robot_bigdog.html

BIBLIOGRAPHY

[28] K. Fujisawa, S. Hayakawa, T. Aoki, T. Suzuki, and S. Okuma. Real Time Motion
Planning for Autonomous Mobile Robot using Framework of Anytime Algorithm. In
Proceedings of the 1999 IEEE International Conference on Robotics and Automation,
pp. 1347–1352, May 1999.

[29] S. Zilberstein and S. J. Russel. Anytime Sensing, Planning and Action: A Practical
Model for Robot Control. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pp. 1402–1407, August 1993.

[30] I. J. Cox, M. L. Miller, R. Danchick, and G. E. Newnam. A Comparison of Two
Algorithms for Determining Ranked Assignments with Application to Multi-Target
Tracking and Motion Correspondence. IEEE Transactions on Aerospace and Elec-
tronic Systems, Vol. 33, No. 1, pp. 295–301, 1997.

[31] S. V. Vrbsky and J. W.-S. Liu. APPROXIMATE - A Query Processor that Produces
Monotonically Improving Approximate Answers. IEEE Transactions on Knowledge
and Data Engineering, Vol. 5, No. 6, pp. 1056–1068, 1993.

[32] O. Takács and A. R. Várkonyi-Kóczy. Iterative-type Evaluation of PSGS Fuzzy Sys-
tems for Anytime Use. In Proceedings of IEEE Instrumentation and Measurement
Technology Conference, pp. 233–238, May 2002.

[33] H. Kobayashi. REAL-TIME SCHEDULING OF PRACTICAL IMPRECISE TASKS
UNDER TRANSIENT AND PERSISTENT OVERLOAD. PhD thesis, Keio University,
March 2006.

[34] H. Kobayashi and N. Yamasaki. An Integrated Approach for Implementing Imprecise
Computations. IEICE Transactions on Information and Systems, Vol. 86, No. 10, pp.
2040–2048, 2003.

[35] H. Kobayashi, N. Yamasaki, and Y. Anzai. Scheduling Imprecise Computations with
Wind-up Parts. In Proceedings of the 18th International Conference on Computers
and Their Applications, pp. 232–235, March 2003.

[36] R. R. Rajkumar. Dealing With Suspending Periodic Tasks. Technical report, IBM
Thomas J. Watson Research Center Yorktown Heights, July 1991.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of Np-Completeness. W. H. Freeman, 1979.

[38] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings. Ap-
plying New Scheduling Theory to Static Priority Pre-emptive Scheduling. Software
Engineering Journal, Vol. 8, No. 5, pp. 284–292, 1993.

[39] T. P. Baker D. Oh. Utilization Bounds for N-Processor Rate Monotone Scheduling
with Static Processor Assignment. Real-Time Systems, Vol. 15, No. 2, pp. 183–192,
1998.

[40] J. M. López, J. L. Díaz, and D. F. García. Minimum and Maximum Utilization
Bounds for Multiprocessor Rate Monotonic Scheduling. IEEE Transactions on Par-
allel and Distributed Systems, Vol. 15, No. 7, pp. 642–653, 2004.

108

BIBLIOGRAPHY

[41] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-Case Utilization Bound
for EDF Scheduling on Real-Time Multiprocessor Systems. In Proceedings of the
12th Euromicro Conference on Real-Time Systems, pp. 25–33, June 2000.

[42] B. Andersson and J. Jonsson. The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50%. In Proceedings of the 15th Euromi-
cro Conference on Real-Time Systems, pp. 33–40, July 2003.

[43] B. Andersson and J. Jonsson. Fixed-Priority Preemptive Multiprocessor Scheduling:
To Partition or not to Partition. In Proceedings of the Seventh International Con-
ference on Real-Time Computing Systems and Applications, pp. 337–346, December
2000.

[44] S. K. Baruah, C. G. Plaxton N. K. Cohen, and D. A. Varvel. Proportionate Progress:
A Notion of Fairness in Resource Allocation. Algorithmica, Vol. 15, No. 6, pp. 600–
625, 1996.

[45] J. H. Anderson and A. Srinivasan. Early-Release Fair Scheduling. In Proceedings of
the 12th Euromicro Conference on Real-Time Systems, pp. 35–43, June 2000.

[46] H. Cho, B. Ravindran, and E. D. Jensen. An Optimal Real-Time Scheduling Al-
gorithm for Multiprocessors. In Proceedings of the 27th IEEE Real-Time Systems
Symposium, pp. 101–110, December 2006.

[47] K. Funaoka, S. Kato, and N. Yamasaki. Work-Conserving Optimal Real-Time
Scheduling on Multiprocessors. In Proceedings of the 20th Euromicro Conference
on Real-Time Systems, pp. 13–22, July 2008.

[48] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Reducing Preemptions and
Migrations in Real-Time Multiprocessor Scheduling Algorithms by Releasing the
Fairness. In Proceedings of the 17th International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 15–24, August 2011.

[49] T. P. Baker. Multiprocessor EDF and Deadline Monotonic Schedulability Analysis.
In Proceedings of the 24th IEEE Real-Time Systems Symposium, pp. 120–129, De-
cember 2003.

[50] J. Goossens, S. Funk, and S. Baruah. Priority-Driven Scheduling of Periodic Task
Systems on Multiprocessors. Real-Time Systems, Vol. 25, No. 2-3, pp. 187–205,
2003.

[51] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem. Operations Re-
search, Vol. 26, No. 1, pp. 127–140, 1978.

[52] B. Andersson, S. K. Baruah, and J. Jonsson. Static-Priority Scheduling on Multi-
processors. In Proceedings of the 22th IEEE Real-Time Systems Symposium, pp.
193–202, December 2001.

[53] S. K. Lee. On-line Multiprocessor Scheduling Algorithms for Real-Time Tasks. In
Proceedings the IEEE Region 10’s Ninth Annual International Conference, pp. 607–
611, August 1994.

109

BIBLIOGRAPHY

[54] Y.-H. Chao, S.-S. Lin, and K.-J. Lin. Schedulability issues for EDZL scheduling on
real-time multiprocessor systems. Information Processing Letters, Vol. 107, No. 5,
pp. 158–164, August 2008.

[55] S. Kato and N. Yamasaki. Global EDF-based Scheduling with Efficient Priority Pro-
motion. In Proceedings of the 14th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 197–206, August 2008.

[56] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based Scheduling Algorithm for
Multiprocessor Soft Real-Time Systems. In Proceedings of the 17th Euromicro Con-
ference on Real-Time Systems, pp. 199–208, July 2005.

[57] B. Andersson and E. Tovar. Multiprocessor Scheduling with Few Preemptions. In
Proceedings of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 322–334, August 2006.

[58] S. Kato and N. Yamasaki. Portioned Static-Priority Scheduling on Multiprocessors.
In Proceedings of the 22nd IEEE International Parallel and Distributed Processing
Symposium, May 2008.

[59] S. Kato and N. Yamasaki. Portioned EDF-based Scheduling on Multiprocessors. In
Proceedings of the 8th ACM international conference on Embedded Software, pp.
139–148, October 2008.

[60] S. Kato and N. Yamasaki. Semi-Partitioned Fixed-Priority Scheduling on Multipro-
cessors. In Proceedings of the 15th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 23–32, April 2009.

[61] S. Kato and N. Yamasaki. Semi-Partitioned Scheduling of Sporadic Task Systems
on Multiprocessors. In Proceedings of the 21st Euromicro Conference on Real-Time
Systems, pp. 249–258, July 2009.

[62] K. Lakshmanan, R. R. Rajkumar, and J. P. Lehoczky. Partitioned Fixed-Priority Pre-
emptive Scheduling for Multi-Core Processors. In Proceedings of the 21st Euromicro
Conference on Real-Time Systems, pp. 239–248, July 2009.

[63] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-Priority Multiprocessor Scheduling
with Liu and Layland’s Utilization Bound. In Proceedings of the 16th IEEE Real-
Time and Embedded Technology and Applications Symposium, pp. 165–174, April
2010.

[64] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. DP-FAIR : A Simple Model
for Understanding Optimal Multiprocessor Scheduling. In Proceedings of the 21st
Euromicro Conference on Real-Time Systems, pp. 3–13, July 2010.

[65] R. McNaughton. Scheduling with Deadlines and Loss Functions. Management Sci-
ence, Vol. 6, No. 1, pp. 1–12, 1959.

[66] P. Regnier, G. Lima, E. Massa, and G. Levinand S. Brandt. RUN: Optimal Multipro-
cessor Real-Time Scheduling via Reduction to Uniprocessor. In Proceedings of the
32th IEEE Real-Time Systems Symposium, pp. 104–115, November 2011.

110

BIBLIOGRAPHY

[67] X. Qi, D. Zhu, and H. Aydin. A Study of Utilization Bound and Run-Time Overhead
for Cluster Scheduling in Multiprocessor Real-Time Systems. In Proceedings of the
16th International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 3–12, August 2010.

[68] S. K. Baruah and M. E. Hickey. Competitive On-line Scheduling of Imprecise Com-
putations. IEEE Transactions on Computers, Vol. 47, No. 9, pp. 1027–1033, 1998.

[69] H. Aydin, R. Melhem, D. Mosse, and P. Mejfa-Alvarez. Optimal Reward-Based
Scheduling of Periodic Real-Time Tasks. In Proceedings of the 20th IEEE Real-Time
Systems Symposium, pp. 79–89, December 1999.

[70] H. Kobayashi and N. Yamasaki. RT-Frontier: A Real-Time Operating System for
Practical Imprecise Computation. In Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 255–264, May 2004.

[71] A. Khemka, R. K. Shyamasundar, and K. V. Subrahmanyam. Multiprocessors
Scheduling for Imprecise Computations in a Hard Real-Time Environment. In Pro-
ceedings of the Seventh International Parallel Processing Symposium, pp. 374–378,
April 1993.

[72] K. Yun, K. Song, K. Choi, G. Jung, S. Park, M. Hong, and D. Choi. A Heuristic
Scheduling Algorithm of Imprecise Multiprocessor System with 0/1 Constraint. In
Proceedings of the Third International Workshop on Real-Time Computing Systems
Application, pp. 307–313, October 1996.

[73] G. L. Stavrinides and H. D. Karatza. Fault-tolerant Gang Scheduling in Distributed
Real-time Systems Utilizing Imprecise Computations. Simulation, Vol. 85, No. 8, pp.
525–536, 2009.

[74] G. L. Stavrinides and H. D. Karatza. Scheduling multiple task graphs with end-to-end
deadlines in distributed real-time systems utilizing imprecise computations. Journal
of Systems and Software, Vol. 83, No. 6, pp. 1004–1014, 2010.

[75] The Linux Kernel Organization Inc. Linux. http://www.kernel.org/.

[76] V. Yodaiken and M. Barabanov. A Real-Time Linux. In Proceedings of the Linux
Applications Development and Deployment Conference, January 1997.

[77] Department of Aerospace Engineering of Politecnico di Milano. Real-Time Applica-
tion Interface. http://www.rtai.org.

[78] Xenomai. http://www.xenomai.org/.

[79] MontaVista Software Inc. MontaVista Linux. http://www.mvista.com/
product_detail_mvl6.php.

[80] I. Molnar. CONFIG PREEMPT RT Patch. https://rt.wiki.kernel.org/
articles/c/o/n/CONFIG_PREEMPT_RT_Patch_79df.html.

[81] S. Oikawa and R. R. Rajkumar. Portable RK: A Portable Resource Kernel for Guar-
anteed and Enforced Timing Behavior. In Proceedings of the Fifth IEEE Real-Time
Technology and Applications Symposium, pp. 111–120, June 1999.

111

http://www.kernel.org/
http://www.rtai.org
http://www.xenomai.org/
http://www.mvista.com/product_detail_mvl6.php
http://www.mvista.com/product_detail_mvl6.php
https://rt.wiki.kernel.org/articles/c/o/n/CONFIG_PREEMPT_RT_Patch_79df.html
https://rt.wiki.kernel.org/articles/c/o/n/CONFIG_PREEMPT_RT_Patch_79df.html

BIBLIOGRAPHY

[82] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus. A Firm Real-Time System
Implementation Using Commercial Off-The-Shelf Hardware and Free Software. In
Proceedings of the Fourth IEEE Real-Time Technology and Applications Symposium,
pp. 112–119, June 1998.

[83] Y. Ishiwata and T. Matsui. A Real-Time Operating System that can Share Device
Drivers with General Purpose OS. IEICE Technical Report, pp. 41–48, 1998.

[84] Y.-C. Wang and K.-J. Lin. Implementing a general real-time scheduling framework in
the RED-Linux real-time kernel. In Proceedings of the 20th IEEE Real-Time Systems
Symposium, pp. 246–255, December 1999.

[85] S. Childs and D. Ingram. The Linux-SRT integrated multimedia operating system:
bringing QoS to the desktop. In Proceedings of the Seventh IEEE Real-Time Tech-
nology and Applications Symposium, pp. 135–140, May 2001.

[86] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. LITMUSRT:
A Testbed for Empirically Comparing Real-Time Multiprocessor Schedulers. In Pro-
ceedings of the 27th IEEE Real-Time Systems Symposium, pp. 111–123, December
2006.

[87] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, J. Eliot, and B. Moss. Redline: First
Class Support for Interactivity in Commodity Operating Systems. In Proceedings of
the 8th USENIX Symposium on Operating Systems Design and Implementation, pp.
73–86, December 2008.

[88] D. Faggioli, M. Trimarchi, and F. Checconi. An Implementation of the Earliest Dead-
line First Algorithm in Linux. In Proceedings of the 24th Annual ACM Symposium
on Applied Computing, pp. 1984–1989, March 2009.

[89] D. Faggioli, M. Trimarchi, F. Checconi, and C. Scordino. An EDF Scheduling Class
for the Linux Kernel. In Proceedings of the Real-Time Linux Workshop, pp. 16–23,
September 2009.

[90] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA-adaptive quality of
service architecture. Software-Practice and Experience, Vol. 39, No. 1, pp. 1–31,
2009.

[91] S. Kato, R. R. Rajkumar, and Y. Ishikawa. AIRS: Supporting Interactive Real-Time
Applications on Multicore Platforms. In Proceedings of the 22nd Euromicro Confer-
ence on Real-Time Systems, pp. 47–56, July 2010.

[92] M. Dellinger, P. Garyali, and B. Ravindran. ChronOS Linux: A Best-Effort Real-
Time Multiprocessor Linux Kernel. In Proceedings of the ACM Design and Automa-
tion Conference, pp. 474–479, July 2011.

[93] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Towards a Predictable Real-
Time System. In Proceedings of USENIX Mach Workshop, pp. 73–82, October 1990.

[94] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub, and M. Jones.
Mach: A System Software Kernel. In Proceedings of the 1989 IEEE International
Conference, COMPCON, pp. 176–178, February 1989.

112

BIBLIOGRAPHY

[95] T. Nakajima and S. Oikawa. Experiences with Building Real-Time Mach Operating
Systems. Computer Software, Vol. 23, No. 1, pp. 24–44, 2006 (in Japanese).

[96] Microsoft Corporation. Windows CE. http://www.microsoft.com/
windowsembedded/en-us/windows-embedded.aspx.

[97] Microsoft Corporation. Windows. http://windows.microsoft.com/en-US/
windows/home.

[98] B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, and M. McRoberts. REAL-
TIME UNIX SYSTEMS: Design and Applications Guide. Springer, 1st edition, 1990.

[99] The Open Group. UNIX. http://www.unix.org/.

[100] POSIX. 1003.13-2003 IEEE Standard for Information Technology - Standardized
Application Environment Profile (AEP) - POSIX Realtime and Embedded Application
Support.

[101] POSIX. IEEE Std 1003.1, 2004 Edition. http://www.unix.org/version3/
ieee_std.html.

[102] HeartOS. http://www.ddci.com/products_heartos.php.

[103] P. Gai, L. Abeni, M. Giorgi, and G. C. Buttazzo. A New Kernel Approach for Modular
Real-Time Systems Development. In Proceedings of the Euromicro Conference on
Real-Time Systems, pp. 199–206, June 2001.

[104] University of Cantabria. MaRTE. http://marte.unican.es/.

[105] H. Takada. µITRON4.0 Specification. http://www.ertl.jp/ITRON/SPEC/FILE/
mitron-400e.pdf, 1999.

[106] TOPPERS Project. TOPPERS/JSP Kernel. http://www.toppers.jp/en/
jsp-kernel.html.

[107] Hyper Operating System. http://sourceforge.jp/projects/hos/.

[108] T-Engine Forum Japan. T-Kernel. http://www.t-engine.org/
what-is-t-kernel/t-kernel.

[109] Mentor Graphics Inc. Nucleus. http://www.mentor.com/embedded-software/
nucleus/.

[110] Y. Tiomkin. TNKernel. http://www.tnkernel.com/.

[111] OSEK VDX Portal. http://www.osek-vdx.org/.

[112] TOPPERS Project. TOPPERS/ATK Kernel. http://www.toppers.jp/atk1.
html.

[113] Evidence Srl and the Real-Time Systems Laboratory. Erika Enterprise. http://
erika.tuxfamily.org/.

[114] FreeOSEK. http://opensek.sourceforge.net/.

113

http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://windows.microsoft.com/en-US/windows/home
http://windows.microsoft.com/en-US/windows/home
http://www.unix.org/
http://www.unix.org/version3/ieee_std.html
http://www.unix.org/version3/ieee_std.html
http://www.ddci.com/products_heartos.php
http://marte.unican.es/
http://www.ertl.jp/ITRON/SPEC/FILE/mitron-400e.pdf
http://www.ertl.jp/ITRON/SPEC/FILE/mitron-400e.pdf
http://www.toppers.jp/en/jsp-kernel.html
http://www.toppers.jp/en/jsp-kernel.html
http://sourceforge.jp/projects/hos/
http://www.t-engine.org/what-is-t-kernel/t-kernel
http://www.t-engine.org/what-is-t-kernel/t-kernel
http://www.mentor.com/embedded-software/nucleus/
http://www.mentor.com/embedded-software/nucleus/
http://www.tnkernel.com/
http://www.osek-vdx.org/
http://www.toppers.jp/atk1.html
http://www.toppers.jp/atk1.html
http://erika.tuxfamily.org/
http://erika.tuxfamily.org/
http://opensek.sourceforge.net/

BIBLIOGRAPHY

[115] PICOS18. http://www.picos18.com/index_us.htm.

[116] Real-Time Systems Group in Nantes Communications and Cybernetics Research In-
stitute. Trampoline. http://trampoline.rts-software.org/.

[117] AUTomotive Open System ARchitecture. http://www.autosar.org/.

[118] AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE. http://www.
arinc.com/.

[119] Green Hills Software Inc. INTEGRITY-178B. http://www.ghs.com/products/
safety_critical/integrity-do-178b.html.

[120] eCos. http://ecos.sourceware.org/.

[121] OAR Corporation. RTEMS Operating System | Real-Time and Real Free. http:
//www.rtems.com/.

[122] LynxWorks Inc. LynxRTOS. http://www.lynuxworks.com/rtos/.

[123] E. D. Jensen and J. D. Northcutt. Alpha: a nonproprietary OS for large, complex,
distributed real-time systems. In Proceedings of the IEEE Workshop on Experimental
Distributed Systems, pp. 35–41, October 1990.

[124] S. Hong, Y. Seo, and J. Park. ARX/ULTRA: A New Real-Time Kernel Architecture
for Supporting User-Level Threads. Technical Report SNU-EE-TR1997-3, School of
Electrical Engineering, Seoul National University, 2000.

[125] K. Schwan, P. Gopinath, and W. Bo. CHAOS-Kernel Support for Objects in the
Real-Time Domain. IEEE Transactions on Computers, Vol. 36, No. 8, 1987.

[126] D. B. Stewart, D. E. Schmitz, and P. K. Khosla. Implementing Real-Time Robotic
Systems using CHIMERA II. In Proceedings of 1990 IEEE International Conference
on Robotics and Automation, Cincinnatti, pp. 598–603, May 1990.

[127] Contiki. http://www.contiki-os.org/.

[128] K. Zuberi and K. G. Shin. EMERALDS: A Microkernel for Embedded Real-Time
Systems. In Proceedings of the 2nd IEEE Real-Time Technology and Applications
Symposium, pp. 241–249, June 1996.

[129] D. Langan. EOS: an object-oriented operating system for embedded real-time ap-
plications. In Proceedings of the 1993 ACM conference on Computer science, pp.
60–65, February 1993.

[130] J. S. Shapiro and J. Adams. Design Evolution of the EROS Single-Level Store. In
Proceedings of the 2002 USENIX Annual Technical Conference, pp. 59–72, June
2002.

[131] Strawberry Development Group. CapROS. http://www.capros.org/.

[132] Dresden University of Technology. Fiasco. http://os.inf.tu-dresden.de/
fiasco/.

114

http://www.picos18.com/index_us.htm
http://trampoline.rts-software.org/
http://www.autosar.org/
http://www.arinc.com/
http://www.arinc.com/
http://www.ghs.com/products/safety_critical/integrity-do-178b.html
http://www.ghs.com/products/safety_critical/integrity-do-178b.html
http://ecos.sourceware.org/
http://www.rtems.com/
http://www.rtems.com/
http://www.lynuxworks.com/rtos/
http://www.contiki-os.org/
http://www.capros.org/
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/

BIBLIOGRAPHY

[133] G. C. Buttazzo. HARTIK: A real-time kernel for robotics applications. In Proceed-
ings of the 14th IEEE Real-Time Systems Symposium, pp. 201–205, December 1993.

[134] D. D. Kandlur, D. L. Kiskis, and K. G. Shin. HARTOS: a distributed real-time oper-
ating system. ACM SIGOPS Operating Systems Review, Vol. 23, No. 3, pp. 72–89,
1989.

[135] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass.
hthreads: A Hardware/Software Co-Designed Multithreaded RTOS Kernel. In Pro-
ceedings of the 10th IEEE International Conference on Emerging Technologies and
Factory Automation, pp. 331–338, September 2005.

[136] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zain-
linger. Distributed Fault-Tolerant Real-Time Systems: The Mars Approach. IEEE
Micro, Vol. 9, No. 1, pp. 25–40, 1989.

[137] S. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The MARUTI hard real-
time operating system. ACM SIGOPS Operating Systems Review, Vol. 23, No. 3, pp.
90–105, 1989.

[138] D. L. Bayer and H. Lycklama. MERT - a multi-environment real-time operating
system. In Proceedings of the fifth ACM symposium on Operating systems principles,
pp. 33–42, November 1975.

[139] A. Eswaran, A. Rowe, and R. R. Rajkumar. Nano-RK: an Energy-aware Resource-
centric RTOS for Sensor Networks. In Proceedings of the 26th IEEE International
Real-Time Systems Symposium, pp. 256–265, December 2005.

[140] M. Danish, Y. Li, and R. West. Virtual-CPU Scheduling in the Quest Operating
System. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 169–179, April 2011.

[141] D. R. Donari, L. Ordinez, R. Santos, and J. Orozco. Real-Time Server Oriented
Operating System for Embedded Applications. http://www.ingelec.uns.edu.
ar/rts/soos/soos_2008.pdf.

[142] J. Stankovic and K. Ramamritham. The Spring kernel: A new paradigm for real-time
systems. IEEE Software, Vol. 8, No. 3, 1991.

[143] I. Lee and R. King. Timix: a distributed real-time kernel for multi-sensor robots. In
Proceedings of the 1988 IEEE International Conference on Robotics and Automation,
pp. 1587–1589, April 1988.

[144] K. Jeffay, D. L. Stone, and D. E. Poirier. YARTOS Kernel support for efficient,
predictable real-time systems. Real-Time Systems Newsletter, Vol. 7, No. 4, pp. 8–
13, 1991.

[145] Code Time Technologies Inc. Abassi. http://www.code-time.com/products.
html.

[146] KADAK Products Ltd. AMX. http://www.kadak.com/rtos/rtos.htm.

115

http://www.ingelec.uns.edu.ar/rts/soos/soos_2008.pdf
http://www.ingelec.uns.edu.ar/rts/soos/soos_2008.pdf
http://www.code-time.com/products.html
http://www.code-time.com/products.html
http://www.kadak.com/rtos/rtos.htm

BIBLIOGRAPHY

[147] AVIX-RT. AVIX. http://www.avix-rt.com/.

[148] Oracle Corporation. ChorusOS. http://www.oracle.com/technetwork/
documentation/legacy-op-sys-193044.html#os.

[149] CMX Systems Inc. CMX. http://www.cmx.com/rtos.htm.

[150] ELESOFTROM company. DioneOS. http://www.elesoftrom.com.pl/en/os/.

[151] SEGGER Microcontroller Systems. embOS. http://www.segger.com/embos.
html.

[152] Fusion RTOS. http://www.unicoi.com/product_suite_pages/fusion_
rtos_product_suite.htm.

[153] TenAsys Corporation. iRMX. http://www.tenasys.com/products/irmx.php.

[154] J. J. Labrosse. MicroC/OS-II: The Real Time Kernel. Newnes, 2nd edition, 2002.

[155] Freescale Semiconductor Inc. MQX. http://www.freescale.com/webapp/sps/
site/homepage.jsp?code=MQX_HOME.

[156] Enea. OSE. http://www.enea.com/software/products/rtos/ose/.

[157] SYSGO Inc. PikeOS. http://www.sysgo.com/products/
pikeos-rtos-and-virtualization-concept/.

[158] Softwave Wireless. Portos. http://www.portos.org/.

[159] QuasarSoft Ltd. Q-Kernel. http://www.quasarsoft.com/products.html.

[160] D. Hildebrand. An Architectural Overview of QNX. In Proceedings of the Workshop
on Micro-kernels and Other Kernel Architectures, pp. 113–126, April 1992.

[161] Quantum Leaps Inc. QP. http://www.state-machine.com/qp/.

[162] OBP Research Oy. ReaGOS. http://www.obp.fi/2009/products/reagos/.

[163] rt-labs Aktiebolag. rt-kernel. http://www.rt-labs.com/rt-kernel_overview.
shtml.

[164] IntervalZero Inc. RTX. http://www.intervalzero.com/.

[165] Quadros Systems Inc. RTXC Quadros. http://www.quadros.com/products/
operating-systems.

[166] Pumpkin Inc. Salvo. http://www.pumpkininc.com/.

[167] SCIOPTA Systems AG. SCIOPTA. http://www.sciopta.com/.

[168] SpaceShadow Company. Sirius. http://www.spaceshadow.com/products.php.

[169] Micro Digital Inc. SMX. http://www.smxrtos.com/.

116

http://www.avix-rt.com/
http://www.oracle.com/technetwork/documentation/legacy-op-sys-193044.html#os
http://www.oracle.com/technetwork/documentation/legacy-op-sys-193044.html#os
http://www.cmx.com/rtos.htm
http://www.elesoftrom.com.pl/en/os/
http://www.segger.com/embos.html
http://www.segger.com/embos.html
http://www.unicoi.com/product_suite_pages/fusion_rtos_product_suite.htm
http://www.unicoi.com/product_suite_pages/fusion_rtos_product_suite.htm
http://www.tenasys.com/products/irmx.php
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=MQX_HOME
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=MQX_HOME
http://www.enea.com/software/products/rtos/ose/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.portos.org/
http://www.quasarsoft.com/products.html
http://www.state-machine.com/qp/
http://www.obp.fi/2009/products/reagos/
http://www.rt-labs.com/rt-kernel_overview.shtml
http://www.rt-labs.com/rt-kernel_overview.shtml
http://www.intervalzero.com/
http://www.quadros.com/products/operating-systems
http://www.quadros.com/products/operating-systems
http://www.pumpkininc.com/
http://www.sciopta.com/
http://www.spaceshadow.com/products.php
http://www.smxrtos.com/

BIBLIOGRAPHY

[170] EWA Technologies Inc. Talon. http://www.blackhawk-dsp.com/products/
Talon.aspx.

[171] Blunk Microsystems Company. TargetOS. http://www.blunkmicro.com/os.
htm.

[172] Express Logic Inc. ThreadX. http://rtos.com/products/threadx/.

[173] M. J. Butcher Consulting. µTasker. http://www.utasker.com/.

[174] Green Hills Software. µ-velOSity. http://www.ghs.com/products/micro_
velosity.html.

[175] J. Fiddler, Eric Stromberg, and D. N. Wilner. Software considerations for real-time
RISC. In Compcon Spring 90 Digest of Papers: Thirty-Fifth IEEE Computer Society
International Conference, pp. 274–277, February 1990.

[176] Atomthreads. http://atomthreads.com/.

[177] BeRTOS. http://www.bertos.org/.

[178] BRTOS. http://code.google.com/p/brtos/.

[179] ChibiOS/RT. http://www.chibios.org/.

[180] cocoOS. http://www.cocoos.net/.

[181] Hardware Engineering Department of Lanit-Tercom Inc. and Saint-Petersburg State
University. Embox. http://code.google.com/p/embox/.

[182] Femto OS. http://www.femtoos.org/.

[183] FreeRTOS. http://www.freertos.org/.

[184] FunkOS. http://funkos.sourceforge.net/.

[185] Helium. http://helium.sourceforge.net/.

[186] iRTOS. http://irtos.sourceforge.net/.

[187] Milos. Milos RTOS. http://www.milos.it/.

[188] OSA. http://wiki.pic24.ru/doku.php/en/osa/ref/intro.

[189] D. Kuschel and S. Moczarski. picoOS. http://picoos.sourceforge.net/.

[190] Phoenix. http://www.phoenix-rtos.org/.

[191] K. Ohtani. Prex. http://prex.sourceforge.net/.

[192] RT-Thread. http://code.google.com/p/rt-thread/.

[193] scmRTOS Team. scmRTOS. http://scmrtos.sourceforge.net/.

[194] SDPOS Team. SDPOS. http://www.sdpos.org/.

117

http://www.blackhawk-dsp.com/products/Talon.aspx
http://www.blackhawk-dsp.com/products/Talon.aspx
http://www.blunkmicro.com/os.htm
http://www.blunkmicro.com/os.htm
http://rtos.com/products/threadx/
http://www.utasker.com/
http://www.ghs.com/products/micro_velosity.html
http://www.ghs.com/products/micro_velosity.html
http://atomthreads.com/
http://www.bertos.org/
http://code.google.com/p/brtos/
http://www.chibios.org/
http://www.cocoos.net/
http://code.google.com/p/embox/
http://www.femtoos.org/
http://www.freertos.org/
http://funkos.sourceforge.net/
http://helium.sourceforge.net/
http://irtos.sourceforge.net/
http://www.milos.it/
http://wiki.pic24.ru/doku.php/en/osa/ref/intro
http://picoos.sourceforge.net/
http://www.phoenix-rtos.org/
http://prex.sourceforge.net/
http://code.google.com/p/rt-thread/
http://scmrtos.sourceforge.net/
http://www.sdpos.org/

BIBLIOGRAPHY

[195] uOS. http://code.google.com/p/uos-embedded/wiki/about.

[196] uSmartx. http://usmartx.sourceforge.net/.

[197] C. Marlin, W. Zhao, G. Doherty, and A. Bohonis. GARTL: A Real-time Program-
ming Language Based on Multi-version Computation. In Proceedings of Interna-
tional Conference on Computer Languages, pp. 107–115, March 1990.

[198] D. Hull, W. Feng, and J. W.-S. Liu. Enhancing the Performance and Dependability
of Real-Time Systems. In Proceedings of the IEEE International Computer Perfor-
mance and Dependability Symposium, pp. 174–182, April 1995.

[199] B. B. Brandenburg and J. H. Anderson. On the Implementation of Global Real-Time
Schedulers. In Proceedings of the 30th IEEE Real-Time Systems Symposium, pp.
214–224, December 2009.

[200] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. An Empirical Comparison of
Global, Partitioned, and Clustered Multiprocessor Real-Time Schedulers. In Proceed-
ings of the 31th IEEE Real-Time Systems Symposium, pp. 14–24, December 2010.

[201] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Is Semi-Partitioned Scheduling
Practical? In Proceedings of the 23rd Euromicro Conference on Real-Time Systems,
pp. 125–135, July 2011.

[202] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta. An efficient and scalable imple-
mentation of global EDF in Linux. In Proceedings of the 7th Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, pp. 6–15, July 2011.

[203] K. Takahashi. Sensing System Integrating Audio and Visual Information : Concrete
Examples of Sensor Fusion Systems. Journal of the Institute of Electronics, Informa-
tion, and Communication Engineers, Vol. 79, No. 2, pp. 155–161, 1996 (in Japanese).

[204] P. Kritsada and K. O.-Yang. Sensor Fusion by Neural Network and Wavelet Analysis
for Drill-Wear Monitoring. Journal of Solid Mechanics and Materials Engineering,
Vol. 4, No. 6, pp. 749–760, 2010.

[205] A. Shintani, A. Ogihara, Y. Yamaguchi, Y. Hayashi, and K. Fukunaga. Speech Recog-
nition Using HMM Based on Fusion of Visual and Auditory Information. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, Vol. 77, No. 11, pp. 1875–1878, 1994.

[206] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Springer, 3rd edition, 2010.

[207] M. Bertogna and M. Cirinei. Response-Time Analysis for Globally Scheduled Sym-
metric Multiprocessor Platforms. In Proceedings of the 28th IEEE Real-Time Systems
Symposium, pp. 149–158, December 2007.

[208] N. Guan, M. Stigge, W. Yi, and G. Yu. New Response Time Bounds for Fixed Prior-
ity Multiprocessor Scheduling. In Proceedings of the 30th IEEE Real-Time Systems
Symposium, pp. 387–397, December 2009.

118

http://code.google.com/p/uos-embedded/wiki/about
http://usmartx.sourceforge.net/

BIBLIOGRAPHY

[209] S. K. Baruah. Techniques for Multiprocessor Global Schedulability Analysis. In Pro-
ceedings of the 28th IEEE Real-Time Systems Symposium, pp. 119–128, December
2007.

[210] T. P. Baker. An Analysis of Fixed-Priority Schedulability on a Multiprocessor. Real-
Time Systems, Vol. 32, No. 1-2, pp. 49–71, 2006.

[211] Y. Oh and S. H. Son. Tight Performance Bounds of Heuristics for a Real-Time
Scheduling Problem. Technical Report CS-93-24, Department of Computer Science,
University Of Virginia, 1993.

[212] Y. Oh and S. H. Son. Fixed Priority Scheduling of Periodic Tasks on Multiprocessor
Systems. Technical Report CS-95-16, Department of Computer Science, University
Of Virginia, 1995.

[213] A. Srinivasan and S. K. Baruah. Deadline-based Scheduling of Peroidic Task Sys-
tems on Multiprocessors. Information Processing Letters, Vol. 84, No. 2, pp. 93–98,
October 2002.

[214] L. Sha, R. R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization. IEEE Transactions on Computers, pp. 1175–
1185, 1990.

[215] T. P. Baker. Stack-Based Scheduling of Realtime Processes. The Journal of Real-Time
Systems, pp. 67–99, 1991.

[216] J. Dike. User Mode Linux. Prentice Hall, 2006.

[217] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini, and P. Ancilotti. An
object oriented tool for simulating distributed real-time control systems. Software -
Practice and Experience, Vol. 32, No. 9, pp. 907–932, 2002.

[218] J. W.-S. Liu. Real-Time Systems. Prentice Hall, 1st edition, 2000.

[219] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator. ACM Transactions on Model-
ing and Computer Simulations, Vol. 8, No. 1, pp. 3–30, 1998.

[220] Intel Corporation. SCC External Architecture Specification (EAS), July 2010.

[221] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System Simulation Platform.
Computer, Vol. 35, No. 2, pp. 50–58, 2002.

[222] J. Vuillemin. A Data Structure for Manipulating Priority Queues. Communications
of the ACM, Vol. 21, pp. 309–315, April 1978.

119

Appendix A

Schedulability Analysis of the RMWP
Algorithm for Two Tasks

This appendix analyzes the least upper bound of the RMWP algorithm for two tasks on
uniprocessors in Subsection 4.2.2.

Theorem 10 (Least upper bound of the RMWP algorithm for two tasks). For a set of two
tasks with semi-fixed-priority assignment, the least upper bound of the RMWP algorithm on
uniprocessors is Ulub = 2(21/2 − 1).

Proof. As before F = bT2/T1c be the number of periods of task τ1 entirely contained in
T2. Without loss of generality, the computation time

∑nm
2

L=1 mL
2 is adjusted to fully utilize the

processors.
Case 1: As shown in Figure A.1, when job τ2,2 is released, task τ1 executes the lth

mandatory part and there is no idle processor time between mandatory parts of task τ1. In
this case, the equation T2 − T1F 5

∑nm
1

L=1 mL
1 is met so that the maximum of all mandatory

parts of task τ2 is

nm
2∑

L=1

mL
2 = (T1 −

nm
1∑

L=1

mL
1)F. (A.1)

The corresponding upper bound Uub is

Uub =

∑nm
1

L=1 mL
1

T1
+

∑nm
2

L=1 mL
2

T2
=

∑nm
1

L=1 mL
1

T1
+

(T1 −
∑nm

1
L=1 mL

1)F
T2

=
T1

T2
F +
∑nm

1
L=1 mL

1

T1
−
∑nm

1
L=1 mL

1

T2
F =

T1

T2
F +
∑nm

1
L=1 mL

1

T2

[T2

T1
− F
]
. (A.2)

Since the quantity in square brackets is positive, the corresponding upper bound Uub is
monotonically increasing in

∑nm
1

L=1 mL
1 . Being T2 − T1F 5

∑nm
1

L=1 mL
1 , the minimum of the

corresponding upper bound Uub occurs for

nm
1∑

L=1

mL
1 = T2 − T1F. (A.3)

120

Task τ2

0

Task τ1

T1F T2 time

l Mandatory part
th Release Deadline Optional Deadline

Figure A.1: Case 1

Task τ2

0

Task τ1

T1F T2 time

l Mandatory part
th Release Deadline Optional Deadline

Figure A.2: Case 2

Case 2: As shown in Figure A.2, when job τ2,2 is released, task τ1 does not complete the
lth mandatory part by the lth optional deadline and there is no idle processor time between
mandatory parts of task τ1. In this case, the equation

∑nm
1

L=1 mL
1 5 T2 − T1F is met so that the

maximum of all mandatory parts of task τ2 is

nm
2∑

L=1

mL
2 = T2 − (F + 1)

nm
1∑

L=1

mL
1 . (A.4)

The corresponding upper bound Uub is

Uub =

∑nm
1

L=1 mL
1

T1
+

∑nm
2

L=1 mL
2

T2
=

∑nm
1

L=1 mL
1

T1
+

T2 − (F + 1)
∑nm

1
L=1 mL

1

T2

= 1 +
∑nm

1
L=1 mL

1

T1
−

(F + 1)
∑nm

1
L=1 mL

1

T2
= 1 +

∑nm
1

L=1 mL
1

T2

[T2

T1
− (F + 1)

]
. (A.5)

Since the quantity in square brackets is negative, the corresponding upper bound Uub is
monotonically increasing in

∑nm
1

L=1 mL
1 . Being

∑nm
1

L=1 mL
1 5 T2 − T1F, the minimum of the

corresponding upper bound Uub occurs for

nm
1∑

L=1

mL
1 = T2 − T1F. (A.6)

Case 3: As shown in Figure A.3, when job τ2,2 is released, task τ1 executes the lth

mandatory part and there is processor time between mandatory parts of task τ1. In this case,

121

APPENDIX A. SCHEDULABILITY ANALYSIS OF THE RMWP ALGORITHM FOR
TWO TASKS

Task τ2

0

Task τ1

T1F T2 time

l Mandatory part
th Release Deadline Optional Deadline

Figure A.3: Case 3

the equations ODl
1 5 T2 − T1F 5 ODl

1 +ml
1 and 0 5

∑nm
i

L=l+1 mL
1 5 T1 −ODl+1

1 are met so that
the maximum of all mandatory parts of task τ2 is

nm
2∑

L=1

mL
2 = (T1 −

nm
1∑

L=1

mL
1)F + ODl

1 −
l−1∑
L=1

mL
1 . (A.7)

The corresponding upper bound Uub is

Uub =

∑nm
1

L=1 mL
1

T1
+

∑nm
2

L=1 mL
2

T2
=

∑nm
1

L=1 mL
1

T1
+

(T1 −
∑nm

1
L=1 mL

1)F + ODl
1 −
∑l−1

L=1 mL
1

T2

=
T1

T2
F +
∑nm

1
L=1 mL

1

T2

[T2

T1
− F
]
+

ODl
1 −
∑l−1

L=1 mL
1

T2

=
T1

T2
F +
∑nm

1
L=1 mL

1

T2

[T2

T1
− F
]
+

ODl
1 + ml

1 −
∑l

L=1 mL
1

T2
. (A.8)

Since the quantity in square brackets is positive, the corresponding upper bound Uub is
monotonically increasing in

∑nm
1

L=1 mL
1 . In addition, ODl

1 + ml
1 −
∑l

L=1 mL
1 is positive so that

the minimum of that equation occurs if ODl
1+ml

1−
∑l

L=1 mL
1 = 0. That is to say, ODl

1+ml
1 =∑l

L=1 mL
1 . Being ODl

1 5 T2−T1F 5 ODl
1+ml

1 and 0 5
∑nm

i
L=l+1 mL

1 5 T1−ODl+1
1 , the minimum

of the corresponding upper bound Uub occurs for

nm
1∑

L=1

mL
1 =

l∑
L=1

mL
1 +

nm
i∑

L=l+1

mL
1 = (T2 − T1F) + 0 = T2 − T1F. (A.9)

Case 4: As shown in Figure A.4, when job τ2,2 is released, task τ1 completes the lth

mandatory part by the lth optional deadline and does not start to execute the l+1th mandatory
part. In addition, there is processor time between mandatory parts of task τ1. In this case,
the equations 0 5

∑l
L=1 mL

1 5 T2 − T1F 5 ODl
1 and 0 5

∑nm
i

L=l+1 mL
1 5 T1 − ODl+1

1 are met so
that the maximum of all mandatory parts of task τ2 is

nm
2∑

L=1

mL
2 = T2 − [(F + 1)

l∑
L=1

mL
1 + F

nm
i∑

L=l+1

mL
1]. (A.10)

122

Task τ2

0

Task τ1

T1F T2 time

l Mandatory part
th Release Deadline Optional Deadline

Figure A.4: Case 4

The corresponding upper bound Uub is

Uub =

∑nm
1

L=1 mL
1

T1
+

∑nm
2

L=1 mL
2

T2
=

∑nm
1

L=1 mL
1

T1
+

T2 − [(F + 1)
∑l

L=1 mL
1 + F

∑nm
i

L=l+1 mL
1]

T2

=

(1
T1
− F

T2

) nm
i∑

L=l+1

mL
1 + 1 +

∑l
L=1 mL

1

T1
−

(F + 1)
∑l

L=1 mL
1

T2
. (A.11)

After that, the corresponding upper bound Uub is partially differentiated by
∑nm

i
L=l+1 mL

1 .

∂Uub

∂
∑nm

i
L=l+1 mL

1

=
1
T1
− F

T2
=

1
T2

[T2

T1
− F
]

(A.12)

Since the quantity in square brackets is positive, the corresponding upper bound Uub is
monotonically increasing. In this case, the minimum of the corresponding upper bound Uub

is as the following equation if
∑nm

i
L=l+1 mL

1 = 0.

Uub = 1 +
∑l

L=1 mL
1

T1
−

(F + 1)
∑l

L=1 mL
1

T2
= 1 +

∑l
L=1 mL

1

T2

[T2

T1
− (F + 1)

]
(A.13)

Since the quantity in square brackets is negative, the corresponding upper bound Uub is
monotonically decreasing in

∑l
L=1 mL

1 . Being 0 5
∑l

L=1 mL
1 5 T2 − T1F 5 ODl

1 and 0 5∑nm
i

L=l+1 mL
1 5 T1 − ODl+1

1 , the minimum of the corresponding upper bound Uub occurs for

nm
1∑

L=1

mL
1 =

l∑
L=1

mL
1 +

nm
i∑

L=l+1

mL
1 = (T2 − T1F) + 0 = T2 − T1F. (A.14)

The upper bound of the corresponding upper bound Uub occurs if
∑nm

1
L=1 mL

1 = T2 − T1F
in all cases. This value is equal to that of Theorem 3 in [2]. Hence, the least upper bound of
the RMWP algorithm for two tasks on uniprocessors is

Ulub = 2(21/2 − 1). (A.15)

�

123

List of Papers

Articles on Periodicals
• Hiroyuki Chishiro, Akira Takeda, Kenji Funaoka and Nobuyuki Yamasaki. Real-time

Scheduling Based on Rate Monotonic for Extended Imprecise Tasks. IPSJ Journal,
Vol. 52, No. 8, pp. 2365–2377, August 2011 (in Japanese).

• Hiroyuki Chishiro and Nobuyuki Yamasaki. RT-Est: Real-time Operating System for
Semi-fixed-priority Scheduling. IPSJ Transactions on Advanced Computing Systems,
Vol. 4, No.1, pp. 53–68, February 2011 (in Japanese).

• Hiroyuki Chishiro and Nobuyuki Yamasaki. Semi-fixed-priority Scheduling on Pri-
oritized SMT Processor. IPSJ Journal, Vol. 51, No. 12, pp. 2227–2237, December
2010 (in Japanese).

Articles on International Conference Proceedings
• Hiroyuki Chishiro and Nobuyuki Yamasaki. Experimental Evaluation of Global and

Partitioned Semi-Fixed-Priority Scheduling Algorithms on Multicore Systems. In
Proceedings of the 15th IEEE International Symposium on Object / Component /
Service-Oriented Real-Time Distributed Computing, April 2012. (To appear)

• Hiroyuki Chishiro and Nobuyuki Yamasaki. RT-Est: Real-Time Operating System for
Semi-Fixed-Priority Scheduling Algorithms. In Proceedings of the 2011 International
Symposium on Embedded and Pervasive Systems, pp. 358–365, October 2011.

• Hiroyuki Chishiro and Nobuyuki Yamasaki. Global Semi-fixed-priority Scheduling
on Multiprocessors. In Proceedings of the 17th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pp. 218–223, August
2011.

• Hiroyuki Chishiro and Nobuyuki Yamasaki. Performance Evaluation of Semi-Fixed-
Priority Scheduling on Prioritized SMT Processors. In Proceedings of the 10th IASTED
International Conference on Parallel and Distributed Computing and Networks, pp.
75–82, February 2011.

• Hiroyuki Chishiro, Akira Takeda, Kenji Funaoka and Nobuyuki Yamasaki. Semi-
Fixed-Priority Scheduling: New Priority Assignment Policy for Practical Imprecise
Computation. In Proceedings of the 16th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, pp. 339–348, August 2010.

124

LIST OF PAPERS

• Hiroyuki Chishiro, Yuji Fujita, Akira Takeda, Yuta Kojima, Kenji Funaoka, Shin-
pei Kato and Nobuyuki Yamasaki. Extended RT-Component Framework for RT-
Middleware. In Proceedings of the 12th IEEE International Symposium on Ob-
ject / Component / Service-Oriented Real-Time Distributed Computing, pp. 161–168,
March 2009.

125

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Overload in Real-Time Systems
	1.3 Multiprocessor Real-Time Systems
	1.4 Imprecise Computation
	1.5 Motivation
	1.6 Research Overview and Contributions
	1.7 Organization

	2 State of the Art
	2.1 Traditional Computation Models
	2.1.1 Liu and Layland's Model
	2.1.2 Traditional Imprecise Computation Model
	2.1.3 Practical Imprecise Computation Model
	2.1.4 Summary of Traditional Computation Models

	2.2 Multiprocessor Real-Time Scheduling
	2.2.1 Partitioned Scheduling
	2.2.2 Global Scheduling
	2.2.3 Hybrid Scheduling
	2.2.4 Summary of Multiprocessor Real-Time Scheduling

	2.3 Real-Time Scheduling for Imprecise Computation
	2.3.1 Real-Time Scheduling for Imprecise Computation on Uniprocessors
	2.3.2 Real-Time Scheduling for Imprecise Computation on Multiprocessors
	2.3.3 Summary of Real-Time Scheduling for Imprecise Computation

	2.4 Real-Time Operating Systems
	2.4.1 Real-Time Extensions of General Purpose Operating Systems
	2.4.2 Proprietary Real-Time Operating Systems
	2.4.3 Summary of Real-Time Operating Systems

	2.5 Experimental Evaluations of Multiprocessor Real-Time Scheduling
	2.6 Summary of State of the Art

	3 System Model
	3.1 Wind-up Operation
	3.2 Computation Model
	3.3 Optional Deadline
	3.4 Linear Task Model
	3.5 Jitter

	4 Semi-Fixed-Priority Scheduling
	4.1 Basic Strategy
	4.2 The RMWP Algorithm
	4.2.1 Optional Deadline of the RMWP Algorithm
	4.2.2 Schedulability Analysis of the RMWP Algorithm

	4.3 The G-RMWP Algorithm
	4.3.1 Optional Deadline of the G-RMWP Algorithm
	4.3.2 Schedulability Analysis of the G-RMWP Algorithm

	4.4 The P-RMWP Algorithm
	4.5 Summary of Semi-Fixed-Priority Scheduling

	5 RT-Est Real-Time Operating System
	5.1 System Time Management
	5.2 Thread Management
	5.3 Ultra Configurable Module
	5.4 Implementation of Scheduler
	5.4.1 Hybrid Scheduler
	5.4.2 Dual Scheduler

	5.5 Imprecise Computation
	5.6 Architecure Dependent Implementation on x86 Multiprocessors
	5.7 Summary of RT-Est Real-Time Operating System

	6 Simulation Studies
	6.1 Simulation Studies on Uniprocessors
	6.1.1 Simulation Setups on Uniprocessors
	6.1.2 Simulation Results on Uniprocessors

	6.2 Simulation Studies on Multiprocessors
	6.2.1 Simulation Setups on Multiprocessors
	6.2.2 Simulation Results on Multiprocessors

	6.3 Discussion of Simulation Studies
	6.4 Summary of Simulation Studies

	7 Experimental Evaluations
	7.1 Experimental Evaluations on an x86 Uniprocessor
	7.1.1 Experimental Setups on an x86 Uniprocessor
	7.1.2 Experimental Results on an x86 Uniprocessor

	7.2 Experimental Evaluations on an x86 Multiprocessor
	7.2.1 Experimental Setups on an x86 Multiprocessor
	7.2.2 Experimental Results on an x86 Multiprocessor

	7.3 Discussion of Experimental Evaluations
	7.4 Comparison of Simulation and Experimental Results
	7.5 Summary of Experimental Evaluations

	8 Conclusions
	8.1 Summary of Contributions
	8.2 Future Directions

	Bibliography
	A Schedulability Analysis of the RMWP Algorithm for Two Tasks
	List of Papers

