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Abstract 

 

The past decade witnessed rapid development in the basic Internet, communications theories 

and in some newly emerging technologies, such as wireless sensor networks (WSNs), 

wearable sensing and computation. With the rapid development of these technologies, 

understanding individual’s activities, social interaction, and group dynamics of a certain 

society becomes possible and plays an important role for creation a ubiquitous information 

society around us. This will inevitably enrich our life’s content and improve our society’s 

efficiency. 

 

Environmental background sound is a rich information source for identifying individual and 

social behaviors. Therefore, many power-aware wearable devices in the WSNs system with 

sound recognition function are widely used to trace and understand human activities. Design 

of these sound recognition algorithms has two major challenges: limited computation 

resources and a strict power consumption requirement. These motivate us to develop a new 

method for recognizing environmental background sounds upon our power-aware wearable 

sensor node. Therefore, we address to develop a new and low-complex sound recognition 

algorithm which can achieve high recognition accuracy while still meeting the wearable 

sensor’s power requirement in the dissertation.   

 

In Chapter 1, the motivation and challenge of this study are introduced. Related work is also 

surveyed.   

 

In Chapter 2, hardware architecture of the power-aware wearable senor node for detection 

and software-level sound recognition flow are introduced. Upon this resource limited 

platform, the assumptions and special constrains of this research are discussed. Basic 

approaches to tradeoff the system’s accuracy and power consumption problem are proposed. 

 

In Chapter 3, the experimental setup and process are presented. Comprehensively considering 

the accuracy and power consumption as the proposed sound recognition algorithms’ 

performance evaluation criteria is also discussed.  

 

In Chapter 4, sound feature extraction Mel-frequency cepstral coefficients (MFCC) and 

vector quantization (VQ) classification Linde-Buzo-Gray (LBG) algorithm is applied for 



 

 - II - 

recognizing the environmental background sounds. Applying this algorithm to 20 typical 

daily activity sounds, average recognition accuracy of 93.8% can be achieved. In this 

algorithm, how the three parameters (i.e., Mel filters number, frame-to-frame overlap and 

LBG codebook cluster number) affect the system’s calculation burden and accuracy is also 

investigated. Based on the performance evaluation method in Chapter 3, the comprehensive 

performance of proposed MFCC+LBG algorithm is evaluated.  

 

In Chapter 5, a new low-complex sound feature extraction Haar-like filtering with hidden 

Markov model (HMM) classification algorithm is proposed and applied to recognize the 

environmental sounds. Average recognition accuracy 96.3% of 20 typical daily activity 

sounds by the proposed algorithm can be achieved, which outperforms normal personal 

hearing capacity 82% accuracy. At the same time, it also satisfies the amount of calculation 

cost decided by the wearable sensor node’s energy resource. Through experimental 

comparison, the proposed method outperforms other normally utilized sound recognition 

algorithms as the recognition accuracy and calculation cost two evaluation parameters 

concerned.  

 

In Chapter 6, summary of this study is concluded. Overview of the future work is also 

mentioned. 
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Firstly, the motivation of this research “Low-Complex Environmental Sound Recognition 

Algorithms for Power-Aware Wireless Sensor Networks (WSNs)” is introduced. A 

well-known bird habitat monitoring system in the “Great Duck Island” project is taken as an 

example to briefly introduce the WSNs system. At the same time, unique constrains in the 

WSNs system and research challenges, especially its front-end wearable sensors are 

introduced. The importance of activity recognition and reason to employ sound as a detection 

media are presented. Related researches of environmental sound recognition and its 

implementation on a hardware platform are also surveyed. Finally, the research targets and 

our contributions are concluded, outline of this dissertation is also delivered.  

 

1.1 Research Motivation 

Wireless sensor networks (WSNs) [1, 2, 3] becomes an active research area these years, 

its research results are gradually being applied in various fields and plays an important role 

for creation a ubiquitous information society around us. Its application ranges from initial 

battlefield surveillance to industrial fields, such as industrial monitoring, inventory tracking, 

and so on; and also to personal applications, such as household health care and elder-people 

caregiver systems [29, 91], etc.  

To help realization these functions, employing the sound sensor embedded in some 

wearable device and recognizing personal daily activities are meaningful and challenging 

work. Background environmental sounds contain a lot of useful information to tell what 

activities people are doing. Through recognition these sounds continuously for a day, the 

people’s daily activities log can be established. This log contains abundant information of 

individual self and between others. With the WSNs involvement, it is very helpful to 
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establish household medical systems like long distance diagnose for patients, physical and 

health monitoring for people in normal daily life, etc. The log information can also assist in 

understanding social interactions in a particular group or society; for example, the working 

status of employees and their efficiency in offices or working places. However, these sound 

recognition algorithms executed on the power-aware WSNs platform are difficult because the 

power assigned for the signal processing block is very limited. Therefore, a so-called “smart 

sensing” which processes raw data and makes decision locally is absolutely required (Refer 

to Section 2.2.3). This demands the sound-context recognition algorithm to achieve high 

accuracy with low calculation cost to satisfy the energy requirement.  

 

 

1.2 Wireless Sensor Networks and Front-End Wearable Sensors 

1.2.1 Introduction of Wireless Sensor Networks  

With the development of the micro-fabrication and integration, such as sensors and 

actuators manufactured using advanced micro-electromechanical system or MEMS 

technology, the transistors integrated in a IC chips has been doubled every two years based 

on Moore’s Law and improved the computational performance by 70% every year. These 

advantages provide more low-cost and high performance front-end sensors which can sense 

fields and forces in our physical world.  

Another, with the development of wireless communication, system software, hardware 

technologies that supports networks , and with sensor itself improvement in this decade make 

our scope of probing and understanding the outside physical world to an extent which human 

being has not even had before. Under this background, a new technology - wireless sensor 
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networks (WSNs) [1-6] arouses the researchers’ great interest in both industry and academic 

fields.  

These front-end sensors in the WSNs system mainly include sensing, data processing, and 

communication components. They can be self-organized and self-adjusted to build up a 

network and complete more complex functions than individual sensor does. Potential 

applications are described in references [2, 3] and specified as follow:  

� Environmental and habitat monitoring (e.g., traffic, habitat, security monitoring) [3, 

7] 

� Industrial sensing and diagnostics (e.g., factory, inventory tracking) 

� Infrastructure monitoring and protection [8, 9] (e.g. structural health monitoring) 

� Battlefield awareness (e.g. multi-target tracking) 

� Context-aware computing [10, 12-17] (e.g. intelligent home, responsive 

environment) 

� Body Sensor Networks (BSN) [6].  

 

1.2.2 An Application Example of the WSNs System 

A well-known research for the “environmental and habitat monitoring” – the “Great Duck 

Island” monitoring system [103] is taken as an example to explicate the WSNs system. In 

year 2002, this project was initiated near the coast of “Great Duck Island” in Maine, USA by 

a combined research group from the University of California Berkeley and College of the 

Atlantic. The research target is to long-distance monitor the habitats of the local bird - Leach's 

Storm Petrel without personal interference by employing many locally embedded sensors and 

WSNs system.  
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The whole system is as Fig 1.1 shown, various type of sensor nodes called “motes” 

(marked as ①①①① and ②②②②) are embedded in and outside nest. They can measure the 

environmental temperature, light, infrared, relative humidity, and barometric pressure around 

the nest. The birds’ living environmental information is sampled, collected, and processed 

real-time inside the motes locally. Monitoring results and environmental information are 

transmitted by the mote’s transmitter to nearby Gateway (③③③③) and to the faraway base station 

(④④④④). Finally, the observation data is sent to remote lab in California through the satellite and 

internet (⑤⑤⑤⑤).  

In this way, the scientists who are not locally can learn the bird’s habitat information 

quickly. With the WSNs system involvement, disturbance from the researches was 

minimized compared with the traditional on-site study. Even now, this system is still working 

and we can learn the local environmental and habitat information from the internet [103]. 
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Figure 1.1 An Example of Habitat Monitoring – “Great Duck Island” Project by 

Employing WSNs Technology.  
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1.2.3 Front-End Wearable Sensor Node in the WSNs System 

Previous Section 1.2.2 simply introduces what major components compose a WSNs 

system and how they work cooperatively to complete an environmental monitoring work. 

Similarly, multi-functional sensors can be integrated into a wearable device and applied to 

people. These wearable devices are easily and comfortable attached to human body. From 

them, carrier’s activities, behaviors, and person-to-person’s relationship information can be 

detected.  

Supposed every member inside a society wearing these multi-functional sensors and with 

the WSNs involvement, detecting and understanding the individual’s activities, 

person-to-person interaction of the society are available. This is of benefit to fulfill the

“Community Detection and Social Behavior Analysis” and “Socially-Aware Computing” 

[10-19, 26, 27, 77, 78, 99] functions in the near future. Among them, the MIT Media Lab. 

and the Hitchai Ltd. research groups had developed their own front-end wearable sensor 

nodes. 

It is reported that active pattern recognition of face-to-face interactions within a 

workplace can radically improve the function of the organization [20]. In order to improve it 

by detection the face-to-face interaction, researchers of the MIT Media Lab. developed some 

wearable sensors, such as “MIThril”, “Uber-Badge” [11, 13], and “Sociometer” [12], etc. By 

using the “Sociometer” as Fig. 1.2 shown, ambient audio, acceleration information of the 

wearers can be sampled, processed and detected. The infrared ray (IR) sensor inside can 

inform the wearer’s location and proximity. Therefore, individual and whole community’s 

physical information can be collected, analyzed and conveyed, such as in an office, school or 

company. This community “networks” is helpful to understand their collaboration, team 
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formation, knowledge management, and dynamic communication conditions inside it. All 

these provide a powerful tool to understand and organize a dynamic human organization.  

 

 

Figure 1.2 MIT Media Lab’s “Sociometer” Which Can Detect the Carrier’s Physical 

Information and Notify Wearer’s Location and Proximity. 

 

 

In order to perform the “context-aware computing” function for realization the ubiquitous 

society, Hitachi researchers have also developed their low-power wearable sensor nodes - 

“Life microscope” [15, 16, 18], “Business microscope” [15, 16, 19] and “Life Thermoscope” 

[17]. These designs also figure out a prosperous version of “knowledge-creating” and 

“opportunities-discovering” society in the near future by using these wearable sensors with 

the WSNs technology [15]. People’s daily household and working information can be 

collected, analyzed, and well managed. These systems will inevitably enrich our life content 

and improve our society’s efficiency. 

A low-power wearable sensor -“Business microscope” [15, 16] is as Fig.1.3 shown. It is 

designed for understanding individuals and their interactive relations with others inside an 
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organization. The system uses an ID-tag-shape wearable sensor node that transmits and 

receives infrared light to detect face-to-face interaction between people. It can track 

individuals’ movement using embedded accelerometers. At the same time, it can also detect 

and understand voice and ambient sound acoustic information inside a community by the 

integrated sound sensor. In this way, activities of all members within the organization can be 

sampled, collected, analyzed and illustrated. For example, this technology’s application is 

great benefit to the employees’ self-study and growth, the company’s management and 

efficiency improvement [15, 16, 17, 21, 22, 23, 24, 63]. Besides inside a company, this 

low-power wearable sensor node can also be utilized at home. It is helpful to implement 

“household monitoring and assistance” and “household health monitoring and diagnose” 

functions. 

 

 

Figure 1.3 Our Wearable Sensor Node Embedded Sound, Acceleration, IR Sensor  

in Size of Worker’s ID Card (3.86 inch × 2.87 inch × 0.35 inch). 

 

 

From introduction of these front-end wearable sensors, we learn that their architecture is 

quite similar. They mainly consist of six major components as depicted in Fig. 1.4. 

� MCU processor: the brain of the wearable sensor node. 
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� Wireless Communication: wireless communication between sensor nodes. 

� Memory: external storage for sensor reading or program.  

� Sensor Interface: interface with sensors and other devices.  

� Power Supply: power provides for the sensor node. 

� Operating System: software for managing the networks and resources.  
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Figure 1.4 Main Components of a Wearable Sensor Node. 

 

 

1.2.4 Unique Constrains and Challenges 

Three main constrains lead to special research challenges during designing the WSNs 

system and applications [1, 2, 6]. 

� Limited support for networking: each node in the WSNs system acts as a router and 

as an application host. The network is peer-to-peer, mesh topology, and dynamic, 

mobile and unreliable connectivity. How to manage the networks effectively is a 

challenge work and have some discussion in [2, 4, 5, 9].  
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� Limited hardware: front-end sensor of the WSNs system has limited energy supply 

(on-board battery), memory, and communication capacity. Therefore, the 

methodology of signal processing, data storage and communication bandwidth of the 

WSNs system is different from the normal network system with a constant power 

supply.  

� Limited support for software development: energy is limited in the WSNs system. 

For this reason, algorithms and network protocols need to maximize the system’s 

lifetime, address robustness and fault tolerance, and self-configure.  

 

Different constrains lead to different research problems in the WSNs system. In this 

research, we just focus on the first issue - energy supply and hardware resource assigned to 

our wearable sensor in Fig. 1.3 are limited (technical details are presented in the Chapter 2). 

This requires the applied algorithms upon the sensor platform must be operated within the 

very limited energy budget. Followed this energy constrains, the final performance must 

achieve to a reasonable and practical accuracy becomes meaningful. This is the difference 

from normal sound recognition research that mainly focuses on the recognition accuracy. 

 

 

1.3 Environment Background Sound Detection for Activity Recognition 

1.3.1 Low-Level Activity Recognition 

Activity recognition [28] aims to recognize the actions and goals of one or more agents. It 

can be detected from a series of observations on the agents’ actions and the environmental 

context conditions. It is a part of research field of pattern recognition.  
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There are three levels of activity recognition. At low-level activity recognition, relative 

information is collected by the sensors and processed locally or transmitted to higher level. At 

intermediate-level, statistical inference concerns about how to recognize individuals’ 

activities from the inferred location and environmental conditions from the low-level. At the 

high-level, major concern is to discover the overall goal of an agent from the detected activity 

sequences through a mixture of logic and statistical reasoning. In this research, we focus on 

the low-level recognition by employing various kinds of sensors. 

The low-level human activities can be recognized from two kinds of information. One is 

from the agent’s body information. It can be sampled and collected by accelerometers [18, 30, 

31, 32, 33], thermo-sensor [17], infrared ray (IR) sensor [12, 21, 23], etc. Another is from the 

context-aware sensing, for example, acoustic environmental sound [10, 13, 15, 25, 35, 36, 37, 

38, 77, 78] and image processing [34]. These two ways are sometimes combined together 

with different functional sensors embedded into the wearable devices. Employing these 

easy-carrying movable devices is helpful to achieve better performance of tracking, 

monitoring and recognizing human daily activities.  

Daily activity recognition has many important applications and plays an important role on 

improvement of personal and social life qualities. Health care is one of applications, such as 

nursing home for the elders, assisting the sick and disabled, fitness monitoring, etc. [6, 29]. 

Traditionally, people’s physical and health information is acquired through self-reporting 

based on diaries or questionnaires from the doctors. This method is time-consuming and 

unreliable, especially for the elderly and subjects with memory impairment. Another method 

of acquiring this information is through clinical observation, but it requires expert’s 

involvement and may not accurately reflect the patient’s behaviors under the normal 

household environment. With the current advances in sensor and wireless technology, it is 
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now possible to provide ubiquitous monitoring of the subjects under their natural 

physiological status. The activity detection results can also be used to a person’s behavior, 

intention, goal and social connection analyses. If these detection results are utilized in a 

company or an organization, every member’s working status can be understood and 

illustrated. This can be a beneficial feedback for them. Their working efficiency can be 

improved and “healthcare” of the organization can also be realized [15, 21].  

 

1.3.2 Why Applies Sound as the Detection Media? 

Many detection media are used to recognize human activities, the most commonly used 

are acceleration [18, 30, 31, 32, 33], video [34], IR [12, 21, 23], and sound [10, 13, 15, 25, 35, 

36, 37, 38, 77, 78], etc.  

In Bao’s work [30], five two-axis accelerometers were attached on the tester’s joints and 

successfully recognized 20 human daily activities and achieve 84% accuracy. Work [31, 32] 

also used the acceleration sensor to detect people’s abnormal activities which lead by 

Parkinson’s or Alzheimer’s disease. Through their reports, it can be conclude that the 

acceleration is mainly applied to detect individual activities. It is rarely employed to 

person-to-person social activity detection. Video is also widely used to detect people’s 

individual and social activities [34]. Limitation of taking image as an activity detection media 

is at some unobtrusive situations, such as in hospital and toilet. In addition, image signal 

processing is more calculational complex than the acoustic signal processing. 

In our research, the sound is chosen as the activities detecting media. Because compared 

with other detecting media, it possesses some unique advantages:  
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� Wide detection scopes - It can be person-to-person social activity detection, not like 

accelerometer is limited to the carrier’s individual detection. IR detecting content is 

not as rich as sound sensing is. Sometimes, image detection quality is effected by the 

environmental illumination and setting position. 

� Convenient and comfortable - Not like accelerometer and IR sensor which must be 

attached to the carrier, the sound sensor can be embedded into the background 

environment. This avoids inconvenience and discomfort of carrying the sensors.  

� Privacy protection - Some of the people’s activities are very personal, such as using 

toilet or taking bath. Applying sound as the activities detecting media is more 

suitable under these unobtrusive situations.  

� Appropriate calculation complexity - For human being, sound is the second most 

important source of information after vision. However, image processing is more 

complex than sound processing. Image processing needs much more data rate and 

sampling rate than sound processing does as Table 1-1 shown. Therefore, sound 

processing is appropriate for the power-aware WSNs system. 

� Low cost - From the Table 1-1, we notice that the number of the sound sensor is less 

than the accelerometers which makes the cost of sound system cheaper. Normally, 

sound sensor is cheaper than video sensor.  

 

Table 1-1: Approximate Data Rate of Different Sensor Modalities. 

1k B/s8bit100 Hz10Accelerometers

1

1

Sensors Num.

10k B/s8bit8k HzSound 

4608k B/s8bit4608k HzVideo*

Data RateResolutionSampling RateSensor Type

1k B/s8bit100 Hz10Accelerometers

1

1

Sensors Num.

10k B/s8bit8k HzSound 

4608k B/s8bit4608k HzVideo*

Data RateResolutionSampling RateSensor Type

 
* Assuming 15 frames per second (fps) and VGA solution (640 x 480) x15=4608k B/s   
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As above described, sound is an ideal sensing media for the human activities recognition 

upon our wearable sensor platform. This is very helpful and promising for future integration 

with other sensor(s) to enhance daily activity recognition. 

 

1.3.3 Application Domains 

With the WSNs involvement, embedded acoustic sound and other functional sensors 

wearable devices can realize many applications. They can recognize the environmental 

background sounds happening around the people. These sounds contain a lot of useful 

information to understand what activity a person is doing. They also act as a social interactive 

“bridge” between people. Many applications can be built up based on the sound-context 

detecting results [11, 12, 15, 99]. 

Household Monitoring and Assistance is one of the main application fields. People’s 

daily dietetic and sanitary information is hidden within the daily activities log. This is very 

helpful to understand the people’s daily physical and health condition, and provides 

assistance to establish household medical systems, such as long distance diagnose for patients 

and elder-people health monitoring [29]. For example, we can deduce a person is having a 

food through chewing and drinking sounds. Toilet flush and urination sounds can indicate 

how often a person uses toilet, it is one of useful hints for doctor to diagnose the person’s 

urinary system is abnormal or not. This household monitoring and assistance application is 

our main concerning. Therefore, in our experiments of later chapters, the detecting sounds are 

mainly targeted to the household events. The specific target test sounds are introduced in 

Section 3.1.1. 
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“Healthcare” of an Organization can be benefit form sound-context based human 

activities detection technology. Staffs of the organization’s individual and social interaction, 

working status and efficiency can be illustrated from their daily activities log and other 

indicative methods [15, 16, 17, 18, 21]. Clearly understanding this information helps the 

staffs to realize their deficiencies during the working period and make improvement 

accordingly. This feedback-loop system inevitably improves the organization’s efficiency and 

makes it more productive and healthier.  

Social Aware and Communication is also an application domain for our sound-context 

detection. Acoustic voices and sounds are a rich information source for identifying the social 

behaviors and interactions. A good example for the group dynamics application is to find 

common favorite individual in the group. The utilized wearable device “UberBadge” 

mounted on each participants of the group employs sound sensor [11, 13]. A measuring 

interaction between people wearable sensor platform “Sociometer” shown in Fig. 1.2 is 

implemented with embedment of IR, acceleration and sound sensors [12].  

 

 

1.4 Related Work 

1.4.1 Environmental Background Sound Recognition  

Some researches have been directed to recognize the environmental sounds happening 

around us [40-49, 80]. Most of them are algorithm level study and do not concern hardware 

implementation.  

At the feature extraction stage, presenting the spectral envelope characteristic of a sound 

signal, linear prediction cepstral coefficients (LPCC) [46, 47] is a typical sound feature. 
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However, it can be clearly concluded that Mel-frequency cepstral coefficients (MFCC) 

outperforms the LPCC algorithm in normal sound recognition from previous work [43, 44]. 

Conventional state-of-art MFCC filtering is used to extract the sound feature and obtains 

good recognition accuracy [35, 41, 44, 45, 48]. However, computational expensive FFT is 

calculated before entering a bank of Mel-scale filters in the feature extraction flow. This 

increases the calculation complexity of sound feature extraction. Recently, in Chu’s work 

[43], a new matching pursuit (MP) algorithm is introduced to decompose sound’s 

time-frequency feature. In each step, the best decomposed matching atom from a redundant 

dictionary (such as Gabor dictionary) is searched. The sound can be presented by linearly 

combination with those atoms. Problem of the MP algorithm is that calculation cost for the 

searching enlarges dramatically with the number of the atoms in the dictionary increase.  

At the classification stage, Cowling’s work has a comprehensive comparison of most 

conventionally used classifiers [40]. Performance of the k-nearest neighbor (kNN), Gaussian 

mixture model (GMM), dynamic time wrapping (DTW), support vector machine (SVM), 

Linde-Buzo-Gray algorithm (LBG), k-means, and hidden Markov model (HMM) classifiers 

have been studied and compared.  

 

1.4.2 Audio-Context Recognition on Hardware Platforms 

Some researches about sound-context recognition based on DSP, FPGA, and MCU 

hardware platforms have been reported [38, 50-59]. Besides the system’s recognition 

accuracy, these researches also consider how to implement the acoustic recognition 

algorithms on the hardware system. 
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A DSP system in Dong’s work [57] is applied to execute sound environmental 

recognition for hearing aid application. A traditional sound feature extraction - 

Mel-frequency cepstral coefficient (MFCC) with hidden Markov model (HMM) classifier are 

implemented upon the DSP system. In this work, the complicated MFCC-based sound feature 

with HMM classification is implemented on the Ezairo 5900 SoC system. A 24-bit specific 

DSP IP core is employed to process the acoustic environmental sounds. For our power-aware 

wearable sensor, to execute these complex algorithms is difficult. 

An interesting system upon a combined DSP and MCU hardware platforms to realize 

acoustic scene analysis is carried out by a research group of Arizona State University [52, 53, 

54]. The system can process the acoustic signal which is sampled by the front-end sensor. 

Sampling data are transmitted through a RS232 serial link to the attached DSP board to 

process. These pre-processed acoustic features are wirelessly transmitted to the base station, 

and some functions are implemented inside the station. This system can fulfill 

speech/non-speech, gender (male or female) recognitions and other functions. In fact, these 

achieved various functions are at the cost of abundant power supply (power adaptor) in DSP 

board and base station. Moreover, all the classification is executed inside the base station, not 

inside the front-end sensor locally. This proposed system is not suitable for our wearable 

application. 

MIT media center group basically completes social dynamics detection [10, 11, 12, 13]. 

Their wearable front-end sensor nodes - “UbER-Badge” [13] and “Sociometer” [12] have 

been developed. Each member carrying these wearable sensors inside a social organization 

can build up a social dynamic sensor networks. Social connections and interactions between 

them can be detected and understood. Both “Uber-badge” and “Sociometer” employ 

acceleration, microphone, IR sensors to complete the functions. The “Uber-badge” has four 
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AAA batteries with 100mA average current and continuously works for 15 hours. The 

microphone samples with 8-bit resolution and 8 kHz sampling rate. Only simple background 

sound’s average and difference of the amplitude values are calculated to indicate the carrier’s 

dynamic, such as during lunch, dinner, and buffet break these social dynamic moments. 

However, this work just achieves a rough function of understanding acoustic context around 

the people. As to comprehensively understand the detail acoustic context, their proposed 

sound feature is simple and does not work.  

Researcher of the Waseda University employs some sensors called “Cookie” and 

“Muffin” [55, 56] to build up their sensor networks. This front-end wearable system can 

detect person’s daily activity from 11 genres sensors (microphone, RFID, pulse, 3-D 

acceleration, etc.). These sampling data are transmitted to a host mobile terminal (such as 

cellular phone or a PDA) that provides enough power to analyze and detect the carrier’s 

background context. The recognition software and hardware infrastructures have been 

introduced. Multi-sensors fusion and hierarchical context refinement methods help to 

complete context awareness function. However, as the system’s power consumption and how 

long the system maintains, the authors do not provide enough explanation and research effort. 

In fact, power consumption is one of important factors during the algorithm’s implementation 

on power-aware front-end wearable sensor node. 

 

1.4.3 Tradeoffs of the Sound-Context Recognition on Wearable Platform 

The design of a wearable computing system needs to consider various factors: low power, 

high performance, easily wearable, efficient communication channels, etc. In our research, 

we focus on the sound-context recognition algorithm’s study. It must achieve acceptable 
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recognition accuracy and satisfy the power budget assignment of our wearable sensor [16, 

18].   

Including the algorithms introduced in Section 1.4.1, most reported environment sound 

recognition researches don’t need to consider the hardware factor. In Chen’s work [35], seven 

bathroom activities are recognized by detecting sounds happening in it, such as shower and 

brush tooth sounds, etc. The sounds are sampled by a microphone set on site and recognized 

by utilizing the MFCC+HMM algorithm on a PC afterwards. Similar cases also happen in 

acceleration-context activities study. Yin’s Work [31] uses the acceleration sensor to detect 

people’s abnormal activities which lead by Parkinson’s or Alzheimer’s disease. Even though 

the experiment raw data were sampled by some wearable sensors and transmitted to the 

computer, the recognition is not completed inside the sensor nodes locally, whereas inside the 

computer. 

Comprehensively trading off the recognition system’s performance and power 

consumption research was firstly reported by the ETH research group in 2004 [36, 38]. Their 

researches are most close to our research. They employed wearable accelerometer and 

microphone embedded sensor - ETH PadNET to detect carrier’s activities happening in a 

wood shop [36, 38, 50, 51]. Recorded sounds are sampled at 48 kHz and down-sampled to 2 

kHz, frame based FFT feature extraction is executed and linear discriminant analysis (LDA) 

is applied to decrease the feature’s dimensions. Twenty-one sounds happened in wood shop, 

such as from filing, sawing, drilling, and hammering, etc. can be detected with combination 

of the carrier’s acceleration information. In Stager and Bharatula’s work [36, 38], how to 

trade off the accuracy and power consumption of a sound-based context recognition system 

upon a wearable platform is reported. Free combinations of nine time-domain features (mean, 

variance, etc.) and five frequency-domain features (bandwidth, frequency centroid, etc.) 
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constitute sound feature sets. With different classifiers, different recognition results are 

yielded. A target sound feature set and classifier is decided by the accuracy and power 

consumption’s tradeoff. However, to explore this ideal sound feature set and classifier needs 

an empirical and complicated training process.  

Power efficiency plays a crucial role for those wearable devices in WSNs system [61]. In 

our work, a sound sensor embedded in the power-aware wearable sensor node is utilized to 

recognize the environmental background sounds. Power supply for the wearable sensor is 

energy limited battery, not like DSP and FPGA board with adaptor power. Conventional 

sound recognition and acoustic signal processing algorithms which can be executed on the 

DSP or FPGA [57, 62] platforms may not perform well on our wearable sensor. Therefore, 

how to develop a new sound recognition algorithm to achieve high accuracy with low 

calculation cost to satisfy the energy requirement is the challenge of this research. 

 

 

1.5 Research Objects and Contributions  

Environmental background sound is a good context indicator for human activities, and 

contains rich information for identifying individual and social behaviors. Therefore, many 

front-end wearable devices in the WSNs system with sound recognition function are widely 

used to trace and understand human activities. Because those front-end sensor nodes are 

low-powered and the WSNs system has limited resource, these limitations decide our unique 

research objects: 

1: the sound-context detection function in front-end wearable sensor node should work 

continuously for 24 hours for a whole day observation.  



 

 

 

  Chapter 1  
______________________________________________________________________________________________________________ 

 - 21 - 

2: the sound-based context recognition algorithms should be local processing. This can 

save energy than wireless transmitting the raw data to upper server to process. 

3: the local processing decides the sound recognition algorithms must be of low 

computational complex. Therefore, our developed algorithms should achieve high 

recognition accuracy while still be with low calculation cost to satisfy our wearable sensor’s 

power requirement. This is the difference from the normal sound recognition researches of 

which mainly focus on the recognition accuracy. 

 

In order to complete the above mentioned research objects, we make efforts and achieve 

these goals in this research.  

Our power-aware front-end wearable sensor node inside the WSNs system shown in Fig. 

1.3 has been thoroughly studied. Upon this resource limited platform, the assumptions and 

special constrains of this research are analyzed and discussed. Especially the local 

environmental background sound detection is the most crucial problem which must be 

solved. 

After understanding the system’s limited recourse provided for our sound recognition 

algorithms, both the final detection accuracy and its power consumption are considered as the 

evaluation approach to those candidate algorithms. The target values of these two factors 

have been discussed and decided.  

Two of our proposed sound recognition algorithms – MFCC+LBG and Haar+HMM are 

studied. Their recognition accuracy and approximate power consumption for execution these 

algorithms upon the wearable sensor node are also evaluated.   
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1.6 Thesis Organization 

This dissertation is divided into six chapters, and its flowchart is shown in Fig. 1. 5. 

In chapter 2, the power-aware wearable sensor’s hardware platform and software-level 

sound recognition flow are introduced. Assumptions and constrains of this research are also 

presented and discussed. Based on the introduced resource limited sensor node platform, 

basic solution approaches to satisfy both the recognition accuracy and energy budget 

requirements are proposed.  

In chapter 3, experiment details including target detected 20 sounds, training and detected 

experimental data sets and recognition flow are introduced. Two evaluation benchmarks - the 

accuracy expected to achieve and computational power budget for the applied sound 

recognition algorithms are discussed and decided. 

In chapter 4, sound feature extraction Mel-frequency cepstral coefficients (MFCC) and 

vector quantization (VQ) classification Linde-Buzo-Gray algorithm (LBG) algorithm is 

applied for the sound-based context recognition. How three parameters (i.e., Mel filters 

number, frame-to-frame overlap and LBG codebook cluster number) of the algorithm affect 

the system’s calculation burden and accuracy is investigated. Based on the performance 

evaluation method in Chapter 3, the comprehensive performance of proposed MFCC+LBG 

algorithm is evaluated. 

In chapter 5, an extreme low calculation sound feature extraction Haar-like filtering with 

hidden Markov model (HMM) classification algorithm is newly proposed and applied to 

recognize the environmental sounds. Through experimental comparison, the proposed 

method outperforms other normally utilized sound recognition algorithms as the recognition 

accuracy and calculation cost two evaluation parameters concerned. Average recognition 
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accuracy 96.3% of 20 typical daily activity sounds can be achieved. At the same time, it also 

satisfies the amount of calculation cost decided by the wearable sensor node’s energy 

resource.  

In chapter 6, we conclude the dissertation and also discuss potential directions for future 

work. 
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Figure 1.5 Flowchart of This Dissertation.
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Chapter 2   Our System Study 
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In order to achieve our sound-based activity recognition upon the power-aware wearable 

senor node, we must have a clear understanding of the wearable system. Therefore, in the 

first part of this chapter, the system’s hardware-level architecture and software-level sound 

recognition flow of this research are introduced. Next, based on the introduced resource 

limited sensor node platform, important assumptions and constrains for this research are 

presented and discussed. Finally, aiming at achieving certain high recognition accuracy with 

limit assigned power, our basic approaches are proposed. 

 

2.1 Our Hardware and Software System 

2.1.1 Hardware Platform and Specifications of Our Wearable Sensor 

2.1.1.1 Hardware Schematic Diagram  

The wearable sensor used in our search is provided by the Hitachi’s Central Research 

Laboratory.  

 

 

(a)                                   (b) 

Figure 2.1 Wearable Sensor Recharging on a Charging Pad (a) and Inner Hardware 

Prototype (b).  
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Recharging status and inner hardware structure outlooks of the wearable sensor are 

indicated in Fig. 2.1. From the inner hardware outlook indicated in Fig. 2.1 (b), we notice that 

the sensor node mainly includes: 

� Various types of sensors (acceleration, sound, temperature, etc.) 

� Analog to digital converter (ADC) 

� RF communication module (IEEE 802.15.4 wireless communication protocol) 

� Micro control unit (MCU) processor which contains CPU for calculation. 

� Li-ion battery power supply 

 

A
D

C

Power Supply

MCU

(Renesas H8S/2218)

R
F

 
C

o
m

m
u

n
ic

a
tio

n

CPU

IP Core

(H8S/2000)

IEEE 802.15.4

Sound

IR

Accelerate

Thermo

Sensors

A
D

C

Power Supply

MCU

(Renesas H8S/2218)

R
F

 
C

o
m

m
u

n
ic

a
tio

n

CPU

IP Core

(H8S/2000)

IEEE 802.15.4

Sound

IR

Accelerate

Thermo

Sensors

 

Figure 2.2 Schematic Diagram of the Front-End Wearable Sensor Node. 

 

The schematic diagram of the front-end wearable sensor is illustrated in Fig. 2.2. Three 

blocks mainly consume the sensor’s limited energy: ADC block, communication block, and 

MCU microprocessor [16, 38, 61, 72]. 

ADC block can sample and convert a continuous physical environmental analog signal 

into discrete digital signals for later processing. Optimized low power MCU processor [64] 

processes the converted signals, and can complete some control functions based on processed 
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results. The technical details of our MCU processor are introduced and discussed in Section 

2.1.1.2, Section 2.1.1.3 and Section 3.2.3. RF and communication block are in charge of 

exchanging information between other sensors and with upper gateway nodes. Because this 

sensor node is applied to the power-aware WSNs system, this limitation decides the 

communication employs low-rate IEEE 802.1.4 and ZigBee protocols [6, 16]. The sensor 

node is with Li-ion rechargeable battery powered because of its superior discharge 

characteristics at high current as well as high energy density [16]. 

Inside the MCU processor, there is an embedded low-power CPU core in which our 

proposed sound recognition algorithm is executed. The algorithm is executed by individual 

addition and multiplication operations in the CPU [65, 66, 67]. In this work, we focus on 

sensor nodes which perform the whole environmental sound recognition process locally – 

from signal acquisition to classification. Thus, the challenge is to develop a sound-based 

context recognition algorithm upon the power-aware wearable sensor node. Executed 

algorithm in the MCU should guarantee certain recognition accuracy, and on the other hand 

satisfy the energy requirement.  

 

2.1.1.2 Why MCU? DSP, FPGA, and MCU Comparison 

To utilize which kind of processor as the processing and control unit decides the system’s 

performance and cost. Comparison of candidate processors - DSP, FPGA, and MCU is listed 

in Table 2-1. Because our sensor node is wearable and battery power supply for the 

application is limited, therefore, the low-power MCU can be an appropriate choice. The 

MCU’s energy requirement is less than that of DSP and FPGA. Another attractive advantage 

is that the price of MCU is cheaper compared with the DSP and FPGA. Therefore, in our 
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research, a middle class MCU in the Renesas H8S series had been decided and used inside 

our wearable sensor [16, 64]. 

 

Table 2-1: DSP, FPGA, and MCU Technical Parameters’ Comparison.  
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a:   TI_TMS320C54x data sheet (www.ti.com) [Ref. 68]

b:   Xinlinx_FPGA_Spartan-6 data sheet (www.xinlinx.com) [Ref. 69]

c:   Renesas_MCU_H8S/2218 data sheet [Ref. 64]

d: Refer to book “The application of programmable DSPs in mobile communications” [Ref. 70_A. Gatherer ]

*: 10mAh is the energy assigned for the sound processing module in H8S/2000 CPU.

X -- none
 

 

2.1.1.3 Hardware Specification 

Our wearable sensor node (Fig. 1.3 and Fig. 2.1) contains many types of sensors and 

modules. They are illuminometer, thermometer, microphone, accelerometer, infrared rays 

(IR) transceiver, RF communication module and MCU processor [16, 19, 21].  

� Approximate 150mAh battery energy is the sensor node’s total energy budget.  
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� Among the 150mAh energy, 10mAh is assigned to the microphone’s acoustic signal 

processing. (Battery resource inside our sensor node is limited. From Table 2-1, it is 

obvious that the 150mAh energy is much less than a typical mobile acoustic codec 

mode’s energy consumption on a DSP platform as item “d” indicates.) 

� The MCU is Renesas Technology’s H8S/2218 chip [16, 19, 64]. It is a 

microprocessor with 35µm process, 16-bit architecture, 65 basic instructions, 6mA 

working current, and 3.0~3.6V working voltage. 

� Inside this MCU chip, there is an embedded low power H8S/2000 CPU core in 

which our proposed sound recognition algorithm is executed. The CPU core works at 

20MHz (50ns per cycle), 1.8V input voltage with 4mA average working current. 

� Size of ROM = 128 KB, size of RAM = 12 KB.  

 

We prefer the sound module in the sensor node could continuously work for 24 hours 

(3,600×24=86,400 seconds), and CPU core can finish the sound recognition algorithm within 

each second sampling. Therefore, the recognition results can help to capture a person’s 

activities for a whole day with one second unit recording. 

 

2.1.2 Recognition Flow in Software Aspect   

Based upon the hardware platform shown in Fig. 1.3, Fig. 2.1 and Fig. 2.2, sound sensor 

inside the front-end wearable node can sample environmental sounds happening around the 

people. As the Section 2.2.3 analyses, the sound recognition algorithm should be locally 

processed. The local recognition algorithm flow is as Fig. 2.3 indicated.  
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It includes two steps sequentially: off-line sound templates generation and on-line sound 

classification.  

With training data set, features of the template sound can be extracted. After training 

them off-line, the sound template is completed and stored in memory in advance. When the 

input test sound comes, its feature can be extracted on-line by applying the same feature 

extraction method. Following this, the recognition result is finally achieved by comparison 

with the prepared templates by using certain classification method. 

 

Classification
Classifier

Recognition 

Result

Templates Generation   (off-line)

Input 

Sounds

Input Test
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Sound Classification (on-line)

Feature Extract

Feature Extract
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Training  

Classification
Classifier

Recognition 

Result

Templates Generation   (off-line)

Input 

Sounds

Input Test

Sound

Sound Classification (on-line)

Feature Extract

Feature Extract

Sound Templates

Training  

 

Figure 2.3 Sound Recognition Flow. 

 

 

2.2 Assumptions and Constraints of This Research 

2.2.1 Placement of the Wearable Sensor 

Various genres of sensor are employed to recognize human activities. Placement of the 

sensor depends on specific research [12, 30, 31, 33, 36, 71], and mounted place on body has 

an obvious effect on final results. E.g., the accelerometers are often mounted on some body 
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joints when executing some activity detections [30, 31, 33, 71]. Only at these joints, the 

detected unique action’s characteristics feature can be embodied and well collected.  

As utilizing acoustic sound to complete the human activities detection, Stager’s work [36] 

focuses on some activities happens in a small working mill and kitchen. The microphone – 

sound sensor is attached on participator’s arm. Choudhury’s work in MIT [12] employs a 

“Sociometer” wearable sensor to understand the connections between members inside a 

social group. The “Sociometer” contains IR, microphone, and acceleration three kinds of 

sensors. It is attached on the participator’s chest. With the wearable sensor node shown in 

Fig. 1.3, our case is similar to Choudhury’s work. The node is hung on the tester’s chest as 

an ID card or set under test environment (such as testing shower action). In this way, the 

sound sensor can sample the environmental sounds information to a maximum extent. 

 

2.2.2 Dominant and Single-Content Sounds  

Our test target sounds are required “dominant” and “single-content”. There are two 

extreme situations which are not included in our research scope.  

One is the real target recognized environmental sound is dominated by noise or other 

sounds, it is undetectable. For example, a vacuum is operated by mom while her kid is 

brushing teeth. From the activity detection angle, the kid can’t brush and operate vacuum at 

the same time. Among the kid’s daily activities, possibility to encounter his mom to use 

vacuum while brushing teeth is very low. Therefore, our test target environmental 

background sounds are often caused by a single action, and they are defined dominant and 

detectable. By “dominant”, it means that the test sound is the loudest and dominant sound 

received by our system. Our target 20 test sounds are listed in Section 3.1.1 specifically. They 
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are recorded in real environment, not in a noise-isolated room. It means our sampling sounds 

data comprises both real test sound and background noise.  

Another extreme case is the test sound is composed of multiple components sounds. For 

example, a TV program is broadcasted when a person is on shaver. It is happens at home 

sometime. To detect shaving activity, we must recognize the shaving sound overwhelmed by 

the TV sound. However, extracting the target sound from a mixture sound is another research 

topic. It is beyond this research scope and not our research focus. 

 

2.2.3 Local Processing 

As previous Section 2.1.1 introduced, three blocks inside the front-end sensor mainly 

consume the limited assigned energy from the WSNs system. They are ADC, communication, 

and MCU microprocessor three blocks. Among them, ADC and the communication blocks 

consume most energy; the remaining for the MCU is limited [16, 38, 61, 72].  

A “Traffic Tracking Scenario” employed the WSNs technology in reference [72] 

illustrates proportion of each block within the whole energy budget. In this project, Rene 

sensor node’s ADC sampling (10-bit) energy is 375pJ/sample, communication energy 

(short-range) is 800pJ/byte, and computation is 1pJ/instruction. Three blocks work together 

for one second with 30 Hz sampling rate and communicate 30-bytes message to the network. 

The required energy in each block is as below described, and their proportion is as Fig. 2.4 

shown.  

� 30 Hz sampling × 375pJ/sample = 11.3 nJ           ADC sampling (31.1%) 

� 30 bytes/message × 800pJ/byte = 24nJ              Communication (66.1%) 

� 1000 instructions/sample × 1pJ/instruction = 1nJ      Computation (2.8%) 
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ADC Sampling  (31.1%)
Signal Processing Part  (2.8%)

Communication Part  (66.1%)

ADC Sampling  (31.1%)
Signal Processing Part  (2.8%)

Communication Part  (66.1%)

ADC Sampling  (31.1%)
Signal Processing Part  (2.8%)

Communication Part  (66.1%)

 

Figure 2.4 Energy Assignment to the Three Main Blocks inside the Front-End Sensor 

Node – Rene. (Ref. [72_L. Doherty])  

 

Normally, there are two ways to process the sampled data from the front-end sensor node 

in WSNs. One is to deliver the sampling data to the sink node directly without any processing, 

and then transmits them to a server. Finally, the data are processed in the more computational 

sever. Another is to process the data inside the sensor locally and only transmit the final 

classification result. 

In this research, the local processing is adopted basing on two following considerations:  

� As indicated in Fig. 2.4, the ADC and communication blocks spend most energy, and 

the remaining energy for MCU processor is limited. Moreover, wireless 

communication generally consumes more power than computation [61, 72]. 

Therefore, locally processing the sampling sound data is more power efficient than 

wirelessly transmitting them to the upper-level server to process.  

� The limited communication bandwidth is a crucial problem in WSNs system [6]. 

Transmitting the sound raw data must occupy more bandwidth than transmitting the 
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final processing results. Therefore, the local processing is helpful to save some 

bandwidth resource.   

 

In the following Chapter 3, the necessity of processing the sampling data locally from the 

hardware and energy aspects is justified in detail. The executed acoustic environmental sound 

recognition algorithms in the MCU of power-aware WSNs system should be simple and 

effective. Therefore, it can satisfy both the high recognition accuracy and low power 

consumption requirements. This is the most challengeable task of our research and our 

solutions are explicated in the following Chapters 4 and Chapter 5. 

 

2.2.4 Length of Processing Unit: One Second 

In the Chapter 1, one of our research targets is defined as: the environmental sound 

recognition module in the wearable sensor node could continuously work for 24 hours. 

Therefore, the detection results can capture and understand a person’s activities for a whole 

day without any interruption. Especially, the proposed method sometimes meets some 

extreme situations. For example, a fire siren alerts when the fire happens. Our sound 

recognition system should detect the siren sound within a very short time, and inform the 

carrier immediately. Similar requirement happens in household medical health monitoring 

and elderly care.  

Above two examples require our sound’s segmentation method should not adopt “duty 

cycle” method in reference [19]. Otherwise, 10 seconds interval with 0.1 second sampling 

“duty cycle” may miss some important activities taken place within the neighboring 

samplings. For example, this “duty cycle” method may miss sampling abnormal walking 



 

 

 

  Chapter 2 
______________________________________________________________________________________________________________ 

 - 35 - 

sound if a stroke happens between the neighbor samplings. Therefore, it needs continuous 

sampling based on our applications.  

At the same time, time for the sound recognition processing must not be long. The 

recognition must be finished within the sampling interval (processing unit) or before the 

coming sampling. Otherwise the carrier will miss precious reaction time. These require our 

sound recognition algorithm must be simple and effective. From the previous researches [33, 

36, 43, 45, 48], the appropriate processing unit is in “second” scale is clear. And the sound’s 

processing unit decides the final recognition accuracy. Comprehensively considering the 

energy assigned for the microphone in Fig. 1.3 and accuracy two evaluation factors, “one 

second” of processing unit is adopted in our research.  

 

 

2.3 Basic Approaches and Principles of Our Solution 

Aiming at achieving certain high recognition accuracy with limit assigned power by our 

environmental sound recognition algorithms, two basic approaches are proposed. 

� The sound feature should be simple. In this way, each sound’s template after the 

training stage will occupy little memory. This can save memory which is a precious 

recourse in the WSNs system. On the other hand, simple sound feature extraction 

brings low calculation cost in the on-line classification stage. This leads to low power 

consumption accordingly when executing the algorithm inside the sensor’s MCU. 

� The sound feature with the classifier should be effective which can achieve certain 

high level accuracy. Simple sound feature decreases calculation cost, however, it also 

brings low recognition accuracy problem. However, this disadvantage can be 
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compensated with high performance classifier [40]. That means the system’s 

comprehensive performance (accuracy and power consumption) is decided by the 

feature and classifier’s combination. For example, in the later Chapter 5, simple and 

low cost Haar-like feature with high performance HMM classifier can achieve high 

accuracy with reasonable calculation complexity. This is helpful to implement the 

Haar+HMM algorithm upon our power-aware sensor node. 

 

 

2.4 Chapter Summary 

In this chapter, the power-aware front-end sensor’s hardware platform and software level 

recognition flow are introduced. The hardware specification used for evaluation of power 

consumption in the following Chapter 3 is specifically discussed. Important assumptions and 

constrains for the research are also discussed and explained. Finally, aiming to achieve a 

certain high accuracy with less power consumption by our sound recognition algorithm, we 

propose our basic approaches. 
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Chapter 3   Experiment Setup and 

System’s Performance Evaluation 
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 By utilizing the wearable senor node in previous chapter introduced, our experimental 

setup is introduced in the first part of this chapter. Test environmental sounds and data sets 

for the training and test are described. In the second part, we proposed our evaluation 

approach for the sound recognition algorithm(s) executed on the power-aware wearable 

sensor. That is our recognition algorithm should both satisfy certain detection accuracy, and 

less power consumption within the budget simultaneously.  

 

3.1 Experimental Setup 

3.1.1 Test Environmental Sounds 

There are many activities in our daily life. We can distinguish what people are doing 

under what kind of environment by analyzing the activity’s background sound. Sounds 

chosen for the experiment are listed below. Most of person’s daily activities at home are 

included.  

1:  Vacuum cleaner (house cleaning) 

2:  Washing machine (wash something) 

3:  Water sound from tap               -- Household Clean 

4:  Brush teeth 

5:  Shaving (shave beard) 

6:  Taking shower 

7:  Hair dryer (dry hair) 

8:  Urination (man) 

9:  Flush toilet (use water closet) -- Household Sanitary 

10: Chewing cake (eat) 
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11: Drinking (drink something) 

12: Oven-timer (toast some food) -- Household Dietetic 

13: Walk inside room 

14: Walk outside 

15: Run 

16: Train start (train accelerates, in train) 

17: Train run (train normally runs, in train) 

18: Rain hits Umbrella (in the rain) -- Outside Acts 

19: Mechanical alarm 

20: Telephone rings -- Others. 

 

3.1.2 Experimental Data Collection and Data Sets 

Main parameters of sound sensor inside the front-end wearable node shown in Fig. 1.3 

are: 

1:  sampled sounds are mono 

2:  16,000 samples/second (16 kHz sampling rate) 

3:  16-bit resolution sampling 

4:  256 samples/frame 

The sampling mode of the wearable sensor node has been wirelessly configured in 

advance. During data collection, it operates at the setting configuration. The node is hung in 

front of the tester’s chest or set within the environment depending on the test activity. For 

example, it can be placed on the bathroom’s countertop when the tester takes a shower. 

Under normal circumstances, it is hung in front of the tester’s chest. Those sounds are 
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recorded in real environment, not in a noise-isolated room. The experimental sound data are 

stored in the sensor node’s on-board memory, and used for their templates training and test 

inputs. 

With the wearable sensor node introduced, above introduced 20 sounds were recorded for 

templates training and input test two data sets. Each of above mentioned 20 sounds were 

recorded more than three times. The recording experiments were operated on different days 

by different testers. All these sampling data taken by different testers were mixed. Among 

many recordings of each sound, one recording was randomly taken as the test input. Those 

different 20 test input sounds compose the testing data set. Their lengths vary from 14.9 to 

170.5 seconds (indicated on the 2nd column of the Table 4-2 and Table 5-4). Left others are 

used as training data sets, their length vary from 16 to 277 seconds, total length is 1788 

seconds. In this way, unfairness in the training and testing steps can be avoided to a great 

extent.  

 As Section 2.2.4 discussed, each unit length of detected sound is one second during the 

recognition process. This means the proposed algorithms for our sound recognition should 

finish within each one second.  

 

3.1.3 Recognition Flow 

The environmental sound recognition diagram is as Fig. 2.3 indicated. It contains 

following three major stages. 

Stage1: Training sound templates 
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Step1: We have taken 1.0second length sound as a unit to partition same property sounds 

from the training data sets. By applying the sound feature extraction algorithm to these units, 

the feature vectors for the following training are prepared. 

Step2: With the sound template training process, the Step 1’s feature vectors are trained 

and generate its template. 

Step3: Repeat above two steps to other 19 sounds, these remaining sound templates can 

be completed. Therefore, detected 20 different environmental sounds have their unique 

template accordingly after the training process. This provides possibility for different test 

sounds classification and matching.  

Stage 2: Sound matching 

The sound matching flow is as shown in Fig. 3.1. When the test sound is input, it is also 

segmented as 1.0-second units and executed feature extraction. Because those 20 sound 

templates have been prepared in memory after the training stage, the classification process is 

applied to match the input sound, and then the closest one among the 20 sound templates is 

selected.  
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Figure 3.1 Sound Matching and Recognition Flow. 
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Stage 3: Calculate recognition accuracy and evaluation 

The recognition Accuracy Rate (AR) is defined as: 

 

%100××××====
u

u

A

C
AR , (3.1) 

 

where Cu is the number of Correctly recognized units, Au is the number of All input sound 

units. 

 

 

3.2 Evaluation Approach: System’s Accuracy and Power Consumption 

Locally completing the sound recognition inside the wearable sensor node means the 

applied algorithm should be operated within the node energy budget. At the same time, the 

final recognition accuracy should be guaranteed to a reasonable degree. In another word, the 

sound recognition algorithm executed inside the sensor node should simultaneously satisfy 

both the recognition performance – certain high detection accuracy and less power 

consumption.  

 

3.2.1 Recognition Accuracy 

In order to evaluate the sound recognition system performance, the accuracy is an 

important evaluation parameter. To decide a benchmark recognition accuracy value of the 

system, the best and intuitional method is to refer the human’s hearing test. How much 

accuracy human hearing system can correctly recognize the ambient environmental sounds is 

taken as a reference for our automatic recognition system. In previous works similar to our 
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research, the human listening test experiences have been carried out and their results have 

been reported [43, 45, 48].  

In Chu’s work [43], there are 14 different kinds of environmental sounds as test target. 

Recognition period unit has 2 seconds, 4 seconds and 6 seconds three different length cases. 

Through experiments, the author concludes that: 

� Different period unit length leads to different recognition accuracy. However, the 

period length becomes less important as it passes a certain threshold. Among the 

three cases, the accuracy of 2s length case has less accuracy than the 4s and 6s cases. 

The accuracy of 4s and 6s length cases is close.  

� If the recognition targets are environmental sounds, the listening test experiments 

performed in above researches indicate that people’s hearing can achieve 

approximate 82% accuracy for the 4s length case.  

� Under the condition of 4s length case, the Chu’s proposed sound recognition 

algorithm achieves 83% accuracy. This means that sound recognition can reach 

comparable accuracy as human ear does.  

 

In Eronen’s work [45], there are 18 different kinds of environmental sounds are utilized 

as the test target. Through the experiments, we can learn that:  

� The author proposed a “Higher-level” definition among the 18 different sounds and 

six “Higher-level” classes are classified. For example, the background environmental 

sounds are classified as “in the public traffic” if the background sounds is car, bus 

and train, etc. The “Higher-level” average 88% accuracy is higher than the average 

66% accuracy of individual sound’s result. This means that human hearing system is 
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sensitive to different “Higher-level” sounds. However, the recognition capability 

drops when coming to the specific in a similar sound content group. 

� Mono and Stereo two sound configurations achieve similar accuracy results. This 

means that Mono sound configuration is also fitful for recording sounds and later 

processing.  

 

Through these previous studies, we find that if the recognition targets are environmental 

sounds, the listening test experiments indicate that people’s hearing can achieve approximate 

82% accuracy. This conclusion provides a benchmark for deciding the accuracy level of our 

environmental sound recognition research. For one-second detecting length in our research, 

82% average recognition accuracy is a challenging performance to achieve. 

 

3.2.2 Power Consideration and Evaluation 

Because the WSNs system and its front-end wearable sensor node are power-aware, 

energy consideration is an essential factor compared with normal sound recognition 

algorithm study. To achieve both high recognition accuracy and low power consumption of 

the sound recognition algorithm, a lot of effort is dedicated to solve this problem in our work. 

 

3.2.2.1 Algorithm’s Evaluation in Power Consumption Aspect 

The performance of an applied algorithm is normally evaluated by the four methods 

sequentially. They are explicated in the following and concluded in Table 3-1.  

Software Algorithm Based 
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� Algorithm’s General Complexity – calculation cost controlled by the loops of key 

variables in the algorithm. 

� Calculation Cost and Approximate Energy Evaluation – multiplication and addition 

derived calculation cost and their approximate energy expenditure. 

Hardware Platform Based 

� Calculation Cycles Count – algorithm’s execution cycles on hardware platform’s 

clock. 

� Direct Energy Measurement – energy measurement upon hardware platform.  

 

 “Algorithm’s General Complexity” evaluation method indicates the complexity by 

counting the calculation amount inside program loops. They are decided by some algorithm’s 

key variables. In initial algorithm level study, this method is convenient and quick to 

approximately understand how complex the algorithm is. Therefore, it is very commonly 

adopted to evaluate the algorithm’s performance in many acoustic applications’ early 

research stage [43, 47]. However, this method does not concern the hardware factors and 

algorithm’s implementation. 

“Calculation Cost and Approximate Energy Evaluation” method is to calculate the 

amount of multiplication and addition which is derived from the algorithm [47, 81]. 

Multiplication and addition of each functional block in the algorithm can be counted. As we 

known, the algorithm is executed sequentially inside the CPU of different platforms (MCU, 

DSP, FPGA) with basic addition and multiplication calculation. If we have known basic 

values of the processor and hardware’s information (such as, working voltage and average 

working current), the approximate total energy of the algorithm can be calculated as:  

 

AddoneAddMuloneMul NumENumEyTotalEnerg ××××++++××××==== , (3.2) 
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where, EoneMul and EoneAdd stand for the energy consumption for one multiplication and 

addition respectively in CPU. NumMul and NumAdd stand for the number of multiplication and 

addition in an algorithm. 

The advantage of this method is that the algorithm designer can understand each 

functional block’s calculation complexity. It is evaluated by the number of multiplication and 

addition inside the block. In middle term of the research stage, this method acts as a “bridge” 

connecting the algorithm and hardware design. If having known some basic hardware 

information in advance (e.g. how much energy a multiplication and addition calculation 

spends), the designer can roughly calculate how much energy the algorithm will spend upon 

the hardware platform. 

“Calculation Cycles Count” evaluation method utilizes execution cycles in a unit of 

hardware platform’s clock to indicate the algorithm’s complexity [57, 79]. This method can 

give an insight into each functional block’s calculation cost. The more cycles have, the more 

complex this functional block is, and more energy consumes. It is utilized at the mid-late 

research stage based upon the decided hardware platform. If the cycles of certain block are 

out of budget, the designer can easily return to modify the algorithm and satisfy the 

requirement.  

 “Direct Energy Measurement” is the most accurate to measure the energy consumption 

of an implemented function which originates from the designed algorithm. It is used to verify 

the energy performance is qualified the target specification or not at the final design stage [16, 

36, 72, 80, 82]. Our future research target is to implement our proposed environmental sound 

recognition algorithm on the hardware platform, and satisfy both the accuracy and low-power 

consumption’s requirements. 
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Table 3-1: Power Consumption Evaluation Methods in Different Design Stages. 

Hardware

(final stage)

Hardware

(mid-late stage)

Algorithm

(middle stage)

Algorithm

(early stage)

Research 

Stage

• difficult in early algorithm stage

• function block level, not instruction 

level.

• need knowing some basic hardware 
platform  information in advance

• no hardware, energy consumption 

information  

Disadvantages

• quick and approximate evaluation
Algorithm’s General 

Complexity

• quick evaluation

• energy assigned for functional blocks can 

be approximately understood

Calculation Cost and 
Approximate Energy 

Evaluation

• hardware based

• energy of functional blocks is indicated by

the number of tested cycles 

Calculation Cycles 

Count

• accurate energy evaluation
Direct Energy 

Measurement

Advantages

Hardware

(final stage)

Hardware

(mid-late stage)

Algorithm

(middle stage)

Algorithm

(early stage)

Research 

Stage

• difficult in early algorithm stage

• function block level, not instruction 

level.

• need knowing some basic hardware 
platform  information in advance

• no hardware, energy consumption 

information  

Disadvantages

• quick and approximate evaluation
Algorithm’s General 

Complexity

• quick evaluation

• energy assigned for functional blocks can 

be approximately understood

Calculation Cost and 
Approximate Energy 

Evaluation

• hardware based

• energy of functional blocks is indicated by

the number of tested cycles 

Calculation Cycles 

Count

• accurate energy evaluation
Direct Energy 

Measurement

Advantages

 

 

Through the Table 3-1, we notice that the calculation complexity and energy evaluation 

of an algorithm is necessary at different design stages. If the design does not satisfy the 

energy requirements, the designer can return and modify it. During our sound recognition 

algorithm study, the “Calculation Cost and Approximate Energy Evaluation” method is 

convenient for us to evaluate the algorithm’s approximate energy consumption before 

entering hardware implementation. 

 

3.2.2.2 Power Consideration in Previous Sound Recognition Algorithms 

In normal sound recognition researches [35, 40, 41, 43, 44, 45, 48, 57, 73-75], recognition 

accuracy is evaluated [35, 40, 41, 44, 45, 48, 73-75] or with a simple discussion of the 

algorithm’s computational cost [43]. Because these researches are not hardware related, the 

designers seldom consider their algorithms from a hardware angle. 
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Some of the sound recognition algorithm(s) is executed on enough power supplied DSP / 

FPGA hardware platform. In Dong’s work [57], the author applies MFCC features with 

HMM classifier to realize environmental sounds recognition for a digital hearing aids 

application. Based on the DSP platform, architecture optimized DSP block for complex 

Viterbi classification and accelerator for some specific calculation FFT, Hamming filters, 

discrete cosine transform (DCT) are utilized. These methods are helpful to accomplish the 

real-time sounds recognition. Each functional block’s cycle count can be known and analyzed, 

which helps optimize the design and improve the system’s performance. Similar 

methodology is also adopted in Hwang’s speech codec work [79].  

Researches of sound-based context recognition upon a wearable sensor have been studied 

in work [36, 53]. In Stager’s work [36], the author studied the trade-offs between system’s 

power consumption and accuracy. With only little degradation in recognition accuracy 

performance, the power consumption is decreased obviously and battery lifetime of the 

system gets longer. The power evaluation is executed on the sensor node. Similar wearable 

system is also introduced in Wichern’s work [53]. 

 

3.2.3 Our Evaluation Approach  

One of the evaluation parameter for our sound recognition performance is the system’s 

average accuracy. Referring to some similar researches, if the recognition targets are 

environmental sounds, the listening test experiments performed in above researches 

indicate that people’s hearing can achieve approximate 82% accuracy. This conclusion 

provides a benchmark for deciding the accuracy level of our environmental sound 

recognition research. 
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Another aspect is to evaluate our applied recognition algorithm(s) can fulfill the sound 

recognition or not with limited power assigned for MCU inside the wearable sensor node. 

Among four methods, the “Calculation Cost and Approximate Energy Evaluation” is 

adopted in our research. The environmental sound recognition algorithm is decomposed 

into instruction-level multiplication and addition calculations. Approximate needed energy 

is summed up as Eq. (3.2) indicated.  

The MCU inside our wearable sensor node in Fig. 1.3 is Renesas Technology’s 

H8S/2218 chip [16, 19, 64]. The Chip detail specification has been introduced in Section 

2.1.1.3. Inside this MCU chip, there is an embedded low power H8S/2000 CPU core in 

which our proposed sound recognition algorithm is executed. The CPU core works at 

20MHz (50ns per cycle), 1.8V input voltage with 4mA working current. Main parameters 

of the MCU and CPU core are summarized in Table 3-2. From the specification [64], it can 

be calculated:  

� For one cycle commands, such as add and subtract operation consumes 

4mA×1.8V×50ns = 0.36nJ energy.  

� For four cycles command, multiply operation consumes 4mA×1.8V×4×50ns = 

1.44nJ energy. 

 

Table 3-2: Main Electronic Parameters of the H8S/2218 MCU and Embedded 

H8S/2000 CPU Core. 

150mAh6mA3.0~3.6VMCU (H8S/2218)

10mAh*4mA1.8VCPU core (H8S/2000)

Energy (mAh) Current (mA)Voltage (V)

150mAh6mA3.0~3.6VMCU (H8S/2218)

10mAh*4mA1.8VCPU core (H8S/2000)

Energy (mAh) Current (mA)Voltage (V)

 

*10mAh is the energy assigned for module of sound processing in CPU. 
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Therefore, the total energy of the algorithm in Eq. (3.2) can be calculated as: 

 

AddMul NumnJNumnJyTotalEnerg ××××++++××××==== 36.044.1 , (3.3) 

 

where, NumMul and NumAdd stand for the number of multiplication and addition in an 

algorithm. 

 

We aim that the sound module in the sensor node could continuously work for 24 hours 

(3,600×24=86,400 seconds), and the CPU core can finish the sound recognition algorithm 

within each one-second sampling. Therefore, the recognition results can help capture a 

person’s activities for a whole day. The algorithm is executed by individual addition and 

multiplication operations in the CPU.   

� 1.8V×10mAh =18mWh =64.7J (1J=2.78 × 10
-4

Wh) energy in CPU for calculation 

� 64.7J / 86,400seconds =7.5×10
5
 nJ/s =0.75mil. nJ/s energy assigned for execution 

sound recognition algorithm 

 

Therefore, based on the hardware platform, a minimum 82% sound recognition 

accuracy and maximum 0.75 million nJ/s power consumption for computation are decided. 

These two values are used as benchmarks to evaluate the performance of the sound 

recognition algorithms. They are indicated as dashed-lines in Fig. 3.2 for performance 

comparison. If the performance marks of the applied algorithms drop into the top left 

shaded region of the figure, it can be concluded that the algorithms are suitable for our 

sound recognition application. Other three tri-angle marks indicate unqualified situations. 

Our research effort should be as the arrow in the Fig. 3.2 indicates. That means the applied 

sound recognition algorithm can achieve high accuracy with less power consumption.  
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Figure 3.2 Our Sound Recognition Performance Evaluation Approach – Average 

Accuracy and Power Benchmarks. 

 

 

 

3.3 Chapter Summary 

In the first part of this chapter, our experimental setup is introduced. Test environmental 

sounds and data sets for the training and test are described. 

In the second part, the evaluation approach for our sound recognition algorithm executed 

on the power-aware wearable sensor is proposed. Based on the hardware platform, a 

minimum 82% sound recognition accuracy and maximum 0.75 million nJ/s power 

consumption for computation are decided. These two values are used as benchmarks to 

evaluate the performance of our sound recognition algorithms. The two benchmarks are 

concluded and indicated in Fig. 3.2. In the following chapters, this approach is taken as a 

reference to evaluate our proposed environmental sound recognition algorithms. 



 

 - 52 - 

Chapter 4   Mel-Scale Feature with 

LBG Classification for Environmental 

Sound Recognition 
 

 

 

 

 

 

 

 

 



 

 

 

  Chapter 4 
______________________________________________________________________________________________________________ 

 - 53 - 

In this chapter, sound feature extraction Mel-frequency cepstral coefficients (MFCC) and 

vector quantization (VQ) classification Linde-Buzo-Gray algorithm (LBG) algorithms are 

applied for recognizing the background sounds in the human daily activities. Applying these 

algorithms to 20 typical daily activity sounds, average recognition accuracy of 93.8% can be 

achieved. In these algorithms, how three parameters (i.e., Mel filters number, frame-to-frame 

overlap and LBG codebook cluster number) affect system’s calculation burden and accuracy 

is also investigated. By adjusting these three parameters to an optimized combination, the 

multiplication and addition calculation burden can be reduced by 87.0% and 87.1% 

individually while maintaining the system’s average accuracy rate at 92.5%. Based on the 

performance evaluation method decided in previous Chapter 3, the comprehensive 

performance of proposed MFCC+LBG algorithm is evaluated.  

 

4.1 Introduction and Related Work 

As acoustic signal processing study, extensive effort has been made to develop systems 

that can recognize such specialized audio sources as speech, music. To the best of our 

knowledge, only few frameworks [35, 40-45, 80] have been directed to the daily sounds 

happening around us. Presenting the spectral envelope characteristic of a sound signal, linear 

prediction cepstral coefficients (LPCC) [46, 47] is a typical sound feature extraction method. 

However, it can clearly be concluded that MFCC outperforms the LPCC algorithm in sound 

recognition experiments from previous work [43, 44]. Recently, matching pursuit (MP) 

algorithm is introduced to decompose sound’s time-frequency feature in Chu’s work [43]. 

During each step, the best decomposed matching atom from a redundant dictionary (such as, 

Gabor dictionary) is searched and the sound can be presented by linearly combination with 
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those atoms. Problem of the MP algorithm is that calculation cost for the searching enlarges 

dramatically with the number of the atoms in dictionary increase. At the same time, after 

comprehensive comparison of different sound features extraction methods, Cowling’s work 

[40] concludes that MFCC is one of suitable algorithms for non-speech environmental sound 

recognition. Chen [35], Goldhor [41], and Davis’ work [84] also prove that good sound 

recognition result has been achieved by using Mel cepstrum. These provide the essential 

motivation for us to apply MFCC as the sound feature. 

In addition, power resource of the WSNs system is very limited. Therefore, applied sound 

recognition algorithm for our front-end wearable sensor should not only achieve high 

recognition accuracy as traditional sound recognition method, but also with small calculation 

cost which is evaluated by amount of multiplication and addition calculation in our research. 

After studying the MFCC algorithm, we find that the number of Mel filters and sound 

frame-to-frame overlap are two important factors that decide the system’s accuracy and 

calculation amount. In work [35, 83], how Mel filters number affects accuracy has some 

discussion. However, research so far has rarely been discussed on how frame-to-frame 

overlap affects the final result. Moreover, with advantage of fewer calculation and higher 

recognition rate, LBG classifier takes place of the previous dynamic time wrapping (DTW) 

classifier which is reported in our previous work [76]. Therefore, much effort is on studying 

how these factors affect and improve the system’s accuracy and calculation burden in this 

chapter.  

In order to classify environmental background sound in our everyday life, the Chu’s work 

[43] employs combined MP and MFCC features of 14 sounds which normally happen in our 

daily environment and achieves 83% average accuracy. However, MP is a computationally 

complex method. This shortcoming limits it to be applied in our power-aware wearable 
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sensor node. Another, if the recognition targets are environmental sounds, the listening test 

experiment executed indicates that people hearing normally can achieve around 82% 

accuracy. This conclusion provides a benchmark for deciding the accuracy level of similar 

environmental sound recognition system. Chen’s work [35] is close to our research. Seven 

sounds often happening in bathroom, such as showering and brush tooth sounds, etc., are 

recognized by utilizing MFCC+HMM and 83.5% average accuracy is achieved. However, as 

sound template’s training process concerned, HMM is a complicated algorithm compared 

with the LBG. By considering the system’s accuracy and calculation burden comprehensively, 

MFCC+LBG algorithm is decided and applied in our system. 

 

 

4.2 Sound Recognition Algorithm’s Flow 

Sound recognition flow is depicted in Fig. 4.1. It has two steps: off-line sound templates 

generation and on-line sound classification sequentially.  

Sound templates characteristics can be extracted off-line and stored in memory in 

advance. When input test sound comes, by using the same feature extraction method, its 

feature can be on-line extracted and compared with stored templates to get recognition 

result. Finally, recognition accuracy is calculated.  

The better the sound characteristics can be extracted, the better result can be achieved 

from the sound classification. In this project, MFCC is applied to extract the sound feature. 

Based on the extracted templates and input test sounds MFCC matrixes, LBG is applied to 

do sound classification.  
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Figure 4.1 Sound Recognition Flow with the MFCC+LBG Algorithm. 

 

4.2.1 Why Mel-Scale? 

In order to simplify the system and make the system low cost, our ideal system’s 

sampling rate is less than 16k Hz. Therefore, Nyquist-Shannon Sampling Theory decides 

what we concern sounds are within [0Hz, 8k Hz]. Fortunately, this range is similar to voice 

range [0Hz, 4 kHz]. Therefore, we can refer to some achieved voice recognition methods to 

sounds in our project.  

In speech recognition, MFCC is classical algorithm to do feature extraction. How about 

borrow this algorithm to our sounds recognition project? This motivates us to take a tryout. 

In fact, the recognition accuracy result shown in Section 4.4.4 by using this algorithm to do 

sound feature extraction is quite good.  

“Mel” comes from word “melody” which is people’s feeling based on different pitch 

values [85, 86]. Scientist found that the pitch comparison scale is not linear with sound 
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frequency f, but linear with called “Mel frequency”- Mel (f). That means sound loudness or 

pith is linear with “Mel frequency”, the higher Mel frequency, the higher pitch or loudness. 

Sound frequency f and Mel (f) relationship is as Eq. (4.1) indicated:  

 

)700/1(log*2595)( 10 ffMel ++++==== . (4.1) 
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(a)                                         (b) 

Figure 4.2 Relationship of the Frequency f and Mel Frequency Mel (f). 

 

 

Based on the Eq. (4.1), a group of triangle band-pass filters in Fig. 4.2 (b) is designed to 

imitate the curve’s function as in Fig. 4.2 (a). We can see that: 

� In Fig. 4.2 (a), if the frequency f is less than 1 kHz, Mel (f) is linear with f and 

logarithmic spacing above 1k Hz. 

� Accordingly, in Fig. 4.2 (b), neighbor triangle filters summit distance is same (linear) 

if the f is less than 1k Hz. However, neighbor triangle filters summit distance is 

increased (no linear) when the f is over 1k Hz. 
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If the horizontal axis in Fig. 4.2 (b) is changed to Mel (f), neighbor triangle filters 

summit distance will be same, which means sound loudness is linear in Mel (f) scale. 

 

4.2.2 Feature Extraction – MFCC Flow 

Seven steps in MFCC algorithm are shown in Fig. 4.3:  

1: Pre-emphasis 

2: Frame blocking 

3: Passing Hamming window 

4: FFT 

5: Mel triangle bandpass filters 

6: log  

7: DCT (discrete cosine transform) 
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Figure 4.3 MFCC Algorithm Flow. 
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Some of the steps are described in detail as follows. 

Step 1: Pre-emphasis high-pass filter is designed to enhance the higher frequency sound 

information. Another issue is to do normalization: sound’s new value is normalized by 

using each element to divide the maximum value in the segment.  

Step 2: In Fig. 4.3’s top left “Frame Overlap”, if we can guarantee high recognition 

accuracy without frame overlap or less frame overlap, the calculation burden can be 

reduced obviously because of the less calculated frames in certain sound segment. 

Step 5: In previous work [76], two experiments prove that Mel-scale triangle filters can 

extract sound feature well. When a bank of 24 Mel bankpass triangle filters is applied to the 

system, the 256 points sound frame is condensed into a Mel spectrum matrix ([24×1]) after 

passing through it. 

Step 6, 7: MFCC’s coefficients CMFCC (n) is expressed as: 

 

Ln
K

knmnC
K

k
kMFCC ,...,2,1])

2

1
(cos[)(log)(

1

====−−−−==== ∑∑∑∑
====

ππππ
,    (4.2) 

 
 

where Mel spectrum is mk ([24×1]), k=1,2,…K. K is Mel filters number (K =24 in the 

experiment). L is desired length of cepstrum. Normally, L< K is helpful to compress data 

(L=12 in the experiment). Therefore, Step 5’s achieved [24×1] matrix is further condensed 

into [12×1] matrix. 

Delta values of the [12×1] matrix that means how quickly the CMFCC (n) changes are 

also used to denote sound characteristics. Therefore, newly built [24×1] matrix combined 

MFCC and delta MFCC is obtained to feature a frame sound’s information. The 0
th

 MFCC 

coefficient representing the test sound energy is excluded because it is regarded as 

somewhat unreliable [83]. 
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Through studying the MFCC sound feature algorithm flow, the input sound signal is 

compressed into a low-dimensional MFCC. It can also be found that two factors play an 

important role to decide the system’s accuracy and calculation cost, they are:  

� Frame overlap in “Frame blocking” in Step 2 

� Mel triangle filters number in Step 5 

After sound feature extraction, triangle Mel band pass filters can successfully extract 

sound characteristics which are presented by the MFCC coefficients. Fig. 4.4 is a good 

example to illustrate its effect. In this figure, 1.5 second sounds of train start and train 

running’s MFCC are calculated. In this example, 24 Mel filters are used, sampling rate is 

16k samples per second, 256 points per frame, frame to frame overlap is 128 points. Size of 

the MFCC coefficients is [297×24] and their values are as Fig. 4.4 shown. We can see the 

difference between these two sounds’ MFCC value, train start’s MFCC amplitude is higher, 

train run’s MFCC amplitude is flatter compared with train start’s.  

 

 

MFCC Dimension MFCC DimensionFrame Number Frame Number

MFCC MFCC

MFCC Dimension MFCC DimensionFrame Number Frame Number

MFCC MFCC

 

(a) Train Start               (b) Train Running 

 

Figure Figure Figure Figure 4444....4444    Mel Mel Mel Mel DDDDomain omain omain omain DDDDiagram iagram iagram iagram of Two Sounds of Two Sounds of Two Sounds of Two Sounds ----    Train Train Train Train SSSStart and Train tart and Train tart and Train tart and Train RRRRununununningningningning    

(1.5(1.5(1.5(1.5----second second second second lengthlengthlengthlength))))....    
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4.2.3 Why MFCC Can Have Less Overlap? 

Explanation by an experimental example is shown in Fig. 4.5.  

MFCC feature vectors of 1.5 seconds Sound “oven-timer” (item 12 in Section 3.1.1) 

and Voice of ‘Sensor Network’ are extracted with overlap=0 and 50%. The Mel vectors of 

these two conditions are [24×89] and [24×182]. Mel vectors average value of each case is 

defined as MFCC . Euclidean distance between each vector and MFCC  is defined as 

MFCCMFCC j −−−−  which indicates how much deviation from its MFCC . Results of four 

cases are shown in Fig. 4.5.  
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Figure 4.5 An Experimental Waveform That Explains Less Overlap in Sound Process 

Is Available. 

 

From this figure, it can be clearly noticed that Sound fluctuation is less than Voice’s as 

time increases in two cases of “0 overlap”. Additionally, the fluctuations of Sound with 0 
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overlap and Sound with 50% overlap are nearly same. The reason is that, in speech 

recognition, frame-to-frame overlap is applied to decrease discontinuity of consecutive 

frames. However, in sounds recognition, contents in near two frames do not change too 

much and quickly as the voice frames do. Therefore, frame overlap is not compulsory in 

sound recognition. 

Later part of experimental results verifies that less overlap of neighbor frames is an 

effective way to reduce calculation cost with little recognition accuracy degradation. 

 

4.2.4 Classification – LBG Algorithm 

In 1980, Linde, Buzo, Gray proposed the LBG algorithm which provides a new, quick 

and simple multi-dimensional integration VQ method. LBG uses an iterative way to generate 

a codebook and a partition from given training vectors. The codebook can represent original 

vectors with smallest average distortion. References [87, 88, 89] introduce the algorithm flow 

in detail. 

Suppose X ={x1, …, xi, …, xn}is input test sound’s MFCC feature vectors within certain 

period, n is number of frames in the segment. 

With LBG algorithm, sound j’s previously extracted MFCC template vectors can be 

further condensed into k clusters codebook Yj (k is in power of 2). Yj is denoted as Yj ={λj1, …, 

λjq…, λjk}, Different m sound templates can be presented by m codebooks as Y1, …, Yj, …, 

Ym.  

Classification process can be described as:  

Step 1:  calculates minimum distance between X and codebook Yj for matching. 



 

 

 

  Chapter 4 
______________________________________________________________________________________________________________ 

 - 63 - 

),(),(
1

∑∑∑∑
====

====
n

i
jij YXeYXD ,           (4.3) 
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2

1
jqi

kq
ji xYxe λλλλ−−−−====

≤≤≤≤≤≤≤≤
, and . denotes the L2 norm. 

Step 2:  Classification Result (CR) is the smallest distortion between test sounds X and 

stored Y1, …, Yj, …, Ym. 

 

),(min )1( jmjY YXDCR
j ≤≤≤≤≤≤≤≤

==== .    (4.4) 

 

In this research, xi and all codewords in the codebooks Y1, …, Yj, …, Ym are [24×1] 

MFCC vectors. Each codebook contains same k clusters. 

When test sound X is input, because k clusters (k<n) comprises the trained LBG 

codebook, just n×k distance calculation are executed when doing test sound and a template 

matching in Step 1. However, with previous work’s DTW classifier, only distance matrix 

between test sound and a template needs n×n times distance calculation in [76]’s Step 1. 

Therefore, LBG classifier can reduce calculation burden dramatically compared with DTW if 

k<<n. 

In Eq. (4.3), we notice that the calculation burden increases with codebook cluster’s 

value k getting larger. For this reason, under premise of certain high recognition accuracy rate, 

the less value k can lead to less calculation cost. Relation between the multiplication, addition 

calculation and value k will be shown in Fig. 4.7. 
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4.3 Experimental Process and Consideration of Some Parameters  

4.3.1 Experimental Setup and Details 

The experimental setup and details has been introduced in previous Section 3.1. In order 

to make a comparison, another sound recognition method - Haar+HMM algorithm in the 

following Chapter 5 also adopts the same experimental setup and data sets as Section 3.1 

described.  

The test target 20 different type of environmental sounds is same as Section 3.1.1 

described. In our experiments, some basic person’s daily activities are covered. For example, 

such as inside house activities, household clean, sanitary, dietetic, outside activities, and so on. 

The background environmental sounds happening with these activities are recorded with the 

wearable sensor node in Fig. 1.3. 

The experimental parameters, process, and experimental data sets for the sound’s 

template training and testing input have also been introduced in the previous Chapter 3. 

When doing the experiments, we follow these introductions in Section 3.1.2. During the 

templates’ training and recognition process, each unit length of sound is one second. This 

means the algorithm(s) for our sound recognition upon the wearable sensor platform must 

finish the detection within each second as the Section 2.2.4 discussed.  

 

4.3.2 Recognition Flow 

Following three major stages comprise the recognition flow as in Section 3.1.3 

introduced.  

Stage 1: Training sound templates with LBG clustering 
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Step1: We have taken 1.0 second length sound as a unit to partition same property sounds 

from the training data sets. By applying the MFCC algorithm to these training units, sound 

features vectors for the following LBG training are extracted. 

Step2: With the introduced LBG clustering, the Step 1’s MFCC vectors are trained and 

generate a sound codebook. 

Step3: Repeat above two steps to the other 19 sounds, we can get different codebooks of 

those 20 testing sounds. The different codebooks occupy different ‘domain’ of whole vector 

space. This provides possibility for test sounds matching.  

Stage 2: Sound matching/classification 

The matching flow is same as Fig. 3.1.3 shown. When the input test sound comes, it is 

also segmented as 1.0 second units, and its MFCC feature is extracted. Because the 

completed training template codebooks of those 20 sounds have been stored in memory, 

distance between the test MFCC vector and the 20 different sound’s codebook is calculated.  

The closest one among those 20 sound templates is recognized as the most similar to the test 

sound. 

Stage 3: Calculate recognition accuracy rate and algorithm’s calculation cost 

The final recognition Accuracy Rate (AR) of our sound recognition system is defined as 

the Eq. (3.1) in Section 3.1.3. Another evaluation factor of the performance of our 

sound-context recognition system is the calculation cost. It can be determined by the amount 

of multiplication and addition calculations within the whole algorithm flow. 
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4.3.3 Consideration of Some Parameter Values 

Some parameters decide the system’s performance. Before the final evaluation of our 

system, these parameters must be decided through some experiments.  

When the LBG codebook cluster number k is 2, 4, 8, 16, 32, detection length is 0.5, 1.0, 

1.5, 2.0, 3.0, 5.0 second(s), and with frame-to-frame 128 and 0 overlap respectively (50% and 

0% overlap, a frame length=256), the average recognition accuracy are calculated. Their 

results are indicated in Fig. 4.6. The reason to select these two overlap is that proportion 50% 

is commonly used in sound and speech signal processing, and 0% is an extreme case through 

which we can understand how much margin the worst case has.  

In Fig. 4.6, the accuracy doesn’t differ obviously with respect to each template length 

cases with the k increasing. For example, if the template length is 1.0s, the accuracy of all 

cases ranges from 90.0% to 96.1%. However, multiplication and addition amount in the 

classification stage in Fig. 4.7 is doubled as k increases. These mean, if a proper k is chosen, 

satisfying recognition accuracy (higher than 82% decided in Section 3.2.1) can be achieved 

with small calculation cost. Finally, the appropriate cluster number k is decided as 4 after 

thoroughly studying the Fig. 4.6.  

Among Fig. 4.6 B’s cases, when the k =4 and template length is 1.0s, the recognition 

accuracy is 92.5%. The result is very close to the accuracy 94.3% of 1.5s case and better than 

85.6% of 0.5s case. Compared with the 1.0s template length case, the accuracy of 2.0s, 3.0s 

and 5.0s three cases have no obvious improvement. Comprehensively considering these facts, 

1.0s is taken as the template unit. This experiment also proves that the constraint - “Length of 

Processing Unit is One Second” in Section 2.2.4 is reasonable.  
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Figure 4.6 Average Recognition Accuracy as a Function of the Template Length and 

LBG Codebook Cluster Number k.  
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Figure 4.7 Multiplication and Addition Calculation Cost as a Function of the LBG 

Codebook Cluster Number k. 

 

 

4.4 Experimental Results and Discussion 

For sound recognition algorithm applied for the power-aware WSNs system, we expect 

the calculation cost could be decreased much on premise of certain high accuracy rate. 

Therefore, it is necessary to do trade-off between the system’s recognition accuracy and 



 

 

 

  Chapter 4 
______________________________________________________________________________________________________________ 

 - 68 - 

calculation cost. As the analyses of MFCC algorithm flow in Section 4.2.2, the Mel filters 

number and frame overlap are two parameters that play important roles to determine the 

system’s performance.  

Most research sets the frame overlap as a default value (e.g. 50% overlap), and has not 

too much discussion about how this variance affects the system performance. However, 

through our study, we find that tuning appropriate variance of the frame overlap and proper 

cooperation with other parameters are effective methods to achieve low calculation cost with 

little accuracy deterioration. 

 

4.4.1 Recognition Accuracy (Mel-filter Number, Frame Overlap) 

The Mel-filter Number is set as seven values 12, 14, 16, 18, 20, 22, 24, frame overlap is 

set as eight values 0, 32, 64, 96, 128, 160, 192, 224, and every frame’s length is 256 points. 

The template length is as previously decided 1.0 second. Among these 56 different 

combinations of Mel-filter Number and Frame Overlap, every combination’s average 

recognition accuracy of the test 20 sounds is illustrated in Fig. 4.8 with the proposed 

MFCC+LBG algorithm.  

From the figure, some trends can be concluded: 

� More the filters, higher the system’s accuracy becomes. 

� As frame overlap increases, accuracy becomes higher.  

Two extreme cases in the figure - case A (filter number=24, frame overlap=224) with 

highest accuracy rate 93.8% and case C (filter number=12, frame overlap=0) with accuracy 

rate 88.8% are taken as references. 
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-- LBG Codebook Num.=4

-- filter number: [12: 2: 24]

-- frame overlap: [0: 32: 224]

(256 points/Frame)

-- Accuracy: 20 sounds average value

-- A: Max accuracy  (for reference)

(93.8%, Mel filters=24, overlap=224)

-- C: Min accuracy (for reference) 

(88.8%, Mel filters=12, overlap=0)

-- B: (92.5%, Mel filters=24, overlap=0)
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Figure 4.8 Accuracy Rate in Function of Mel-filter Number and Frame Overlap. 

 

 

4.4.2 Calculation Cost (Mel-filter Number, Frame Overlap) 

Multiplication and addition calculation of the algorithm versus the Mel-filter Number and 

the Frame Overlap are shown in Fig. 4.9 (a) and 4.9 (b) individually. We can see that: 
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(b) 

Figure 4.9 Calculation Cost of Multiplication and Addition in Function of the 

Mel-filter Number and Frame Overlap. 

 

 

� Frame Overlap is a main parameter to affect the amount of multiplication and 

addition calculation. With its increase, both of the calculations increase quickly. 

� In contrast, Mel-filter Number has little effect on the calculation cost. It is because 

Mel filtering is just one step among seven steps of the MFCC flow, and does not add 

any calculation burden to the latter LBG classifier. 

 

Therefore, aiming to achieve high accuracy with low calculation cost, increasing the 

Mel-filters and decreasing the neighbor frame to frame’s overlap is a good applicable method. 

Under this consideration, case B in Fig. 4.8 and Fig. 4.9 satisfies these requirements and 

taken as a candidate case in the following experiments. 
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4.4.3 Experimental Results 

With reference cases A, C in Fig. 4.8 and Fig. 4.9, case B’s average accuracy, 

multiplication and addition calculation with same MFCC+LBG algorithm are listed in Table 

4-1, bar graph is illustrated in Fig. 4.10. Twenty sounds recognition confusion matrix result 

(only case B) is contained in Table 4-2. 

From those figures and tables, we can see that case B sacrifices 1.3% of accuracy 

compared with the highest accuracy case A (93.8%-92.5%). However, this help decrease 

87.0% of multiplication and 87.1% addition calculation compared with the reference case A. 

Case C displays best performance in terms of computational complexity, followed by case 

B. However, the recognition accuracy of some test items is not satisfying as that of point B 

in Table 4-2. Therefore, comprehensively trading off accuracy and calculation cost, case 

B’s condition (template sound length =1.0s, Mel filters number=24, frame overlap=0) has 

the best performance among those 56 combinational cases. 92.5% high recognition 

accuracy rate with less calculation cost can be achieved.  

 

 

Table 4-1: Performance Comparison of Optimized Case B, Reference Cases A and C 

with the Same MFCC+LBG Algorithm. 

4.7793.54493.8% (max accuracy)A (24 Mel filters/224 overlap) 

0.391( A’s 8.2%)0.294 (A’s 8.3% )88.8%C (12 Mel filters/0    overlap)

0.615( A’s 12.9%)0.459 (A’s 13.0%)92.5%B (24 Mel filters/0    overlap)

Addition (Millions)Multiplication (Millions)Average Accuracy (%) 

4.7793.54493.8% (max accuracy)A (24 Mel filters/224 overlap) 

0.391( A’s 8.2%)0.294 (A’s 8.3% )88.8%C (12 Mel filters/0    overlap)

0.615( A’s 12.9%)0.459 (A’s 13.0%)92.5%B (24 Mel filters/0    overlap)

Addition (Millions)Multiplication (Millions)Average Accuracy (%) 
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Table 4-2: Twenty Sounds Recognition Accuracy Confusion Matrix of Optimized Case 

B, Reference Cases A and C. 
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Figure 4.10 Comparison of Optimized B, Referenced A and C’s Accuracy and 

Calculation Cost. 
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4.4.4 Performance Comparison and Whole System’s Evaluation 

In this research, the MFCC+LBG algorithm achieves better result than the 

MFCC+DTW [76] and MFCC+GMM (Gaussian mixture model) [90] algorithms as 

recognition accuracy and calculation burden concerned. Performance of these three 

algorithms with same experimental parameters (Section 4.4.3 point B’s case) is indicated in 

Fig. 4.11, Table 4-2 and Table 4-3. 

In order to have a fair performance comparison, the number of LBG codebook cluster 

and GMM mixture-components’ number are all set as 4. One division and logarithm 

calculation in the GMM classifier are assumed to take a single multiplication calculation. 

Under same circumstance, 20 sounds average recognition rate of MFCC+LBG and 

MFCC+GMM can be up to 92.5% which is higher than that of MFCC+DTW 84.8%. In 

addition, the most attractive is that MFCC+LBG can reduce multiplication by 79.0% and 

addition calculation by 85.7% compared with the reference MFCC+DTW. As the amount 

of multiplication calculation shown in Fig. 4.11, MFCC+LBG is also less than 

MFCC+GMM and need not calculate complicated logarithm and division as GMM does. 
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Figure 4.11 Accuracy Comparison of the MFCC+LBG, MFCC+DTW, and 

MFCC+GMM Algorithms. 



 

 

 

  Chapter 4 
______________________________________________________________________________________________________________ 

 - 74 - 

 

Table 4-3: Performance Comparison of the MFCC+DTW, MFCC+GMM, and 

MFCC+LBG Algorithms. 
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* The whole Energy = 1.44nJ × Mul. + 0.36nJ × Add (mil. nJ) based on Section 3’s discussion. 

 

 

Based on the previous discussion, the whole system’s performance comparison is 

illustrated in Fig. 4.12. Three sound recognition algorithms recognition accuracy are all 

over the accuracy benchmark 82% decided in previous Section 3.2.1. Among them, the 

proposed MFCC+LBG algorithm can achieve 92.5% accuracy. In order to decrease the 

algorithm’s calculation cost and satisfy the system’s power consumption requirement, the 

“Mel-filter Number” and “Frame Overlap” two parameters in the MFCC feature extraction 

have been discussed. The optimization of these two parameters decreases the algorithm’s 

calculation cost greatly. If the algorithm executed on our wearable sensor node introduced 

in Chapter 2, as Table 4-3 indicated 0.883mil. nJ/s energy is need. However, the proposed 

MFCC+LBG algorithm with lest calculation cost does not satisfy the power consumption’s 

requirement still.  
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Figure 4.12 Performance Comparisons of MFCC+LBG, MFCC+DTW, and 

MFCC+GMM Algorithms. 
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4.5 Chapter Summary 

In this chapter, MFCC+LBG algorithm is applied to recognize the background 

environmental sound. Twenty typical daily activities sounds are recognized. As the system’s 

two important factors – recognition accuracy and algorithm’s calculation cost, we have a 

thorough study. Finally, the approximate power consumption of executing the algorithm upon 

our wearable sensor node has been evaluated.  

Compared with our previous study by utilizing MFCC+DTW method, the optimized 

MFCC+LBG sound recognition algorithm improves the recognition accuracy to 92.5%, 

obvious improvement than 84.8% with the MFCC+DTW. If the algorithm executed on our 

wearable sensor node, the power consumption is much less than the MFCC+DTW method. 

However, the MFCC+LBG’s power consumption (0.883mil. nJ/s) does not qualify the 

benchmark requirement (0.75mil. nJ/s) through the power consumption evaluation.  

Therefore, there is a need to have a new method to satisfy the system’s power 

consumption requirement while maintaining certain level recognition accuracy. In the 

following Chapter 5, a novel sound Haar-like feature with high performance HMM classifier 

is proposed to solve these problems. 
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Chapter 5   Low-Complex Haar-Like 

Feature with HMM Classification for 

Environmental Sound Recognition 
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In this chapter, a low cost sound feature extraction Haar-like filtering with hidden Markov 

model (HMM) classification algorithm is newly proposed and applied to recognize the 

environmental sounds. Average recognition accuracy 96.3% of 20 typical daily activity sounds 

by the proposed algorithm can be achieved, which outperforms normal personal hearing 

capacity 82% accuracy.  At the same time, it also satisfies the amount of calculation cost 

decided by the wearable sensor node’s energy resource. Through experimental comparison, the 

proposed method outperforms other normally utilized sound recognition algorithms as the 

recognition accuracy and calculation cost two evaluation parameters concerned.  

 

5.1 Introduction and Related Work 

Some environmental sound recognition researches have been reported previously [35, 

38, 40, 41, 43, 44, 48, 57]. 

At the feature extraction stage, conventional state-of-the-art Mel-frequency cepstral 

coefficients (MFCCs) filtering is used to extract the sound feature and obtain good 

recognition accuracy [35, 41, 48, 57]. However, computationally expensive FFT is 

calculated before entering a bank of Mel-scale filters in the extraction flow. This increases 

the calculation complexity of sound feature extraction. Recently, in study [43], a new 

matching pursuit (MP) algorithm was introduced to decompose sound’s time-frequency 

feature. In each step, the best decomposed matching atom from a redundant dictionary 

(such as Gabor dictionary) is searched. The sound can be presented by a linear combination 

with those atoms. A drawback of the MP algorithm is that the calculation cost for the 

searching enlarges significantly as the number of the atoms in the dictionary increases. At 

the classification stage, performance of the Gaussian mixture model (GMM), support 
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vector machine (SVM), Linde-Buzo-Gray algorithm (LBG), k-means, and HMM classifiers 

has been studied and compared in work [40]. Through the work, we have learned that the 

HMM [48, 81] classifier can achieve high recognition accuracy with an acceptable 

increment of calculation cost compared with other classifiers. 

Energy efficiency plays an important role for mobile and wearable devices in the WSNs 

system [61]. In order to reveal individual activities and social interactions, most front-end 

sensing units are mobile and portable, for example mobile phones, PDAs and wearable 

devices. In addition, power supply for these devices is an energy limited battery, unlike a 

DSP and FPGA board fitted with a power adaptor. Conventional sound recognition and 

acoustic signal processing algorithms that can be executed on the DSP or FPGA [57, 62] 

platforms may not perform well on our wearable sensor node. In work [57], a complicated 

MFCC-based sound feature with HMM classification is implemented on the Ezairo 5900 

SoC system. It is used to classify environmental sounds for a hearing aid application. A 

24-bit specific DSP IP core is employed to process acoustic environmental sounds. It is 

difficult for our power-aware wearable sensor to execute these complex algorithms. In work 

[38], how to trade off the power consumption and accuracy of a sound-based context 

recognition system is reported. Free combinations of nine time-domain features (such as 

mean and variance) and five frequency-domain features (such as bandwidth and frequency 

centroid) constitute sound feature sets. Different recognition results are obtained using 

different classifiers.  A target sound feature set and classifier is decided by the tradeoff 

between accuracy and power consumption. However, exploring the ideal sound feature set 

and classifier is an empirical and complicated process. In work [35], seven bathroom 

activities are recognized by detecting sounds, such as shower and brush tooth sounds. They 

are sampled by a microphone and are subsequently recognized by utilizing the 
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MFCC+HMM algorithm on a PC. An average recognition accuracy of 83.5% has been 

achieved. The difference between our research and Chen’s work is that the recognition of 

Chen’s work is processed off-line on a PC. In our case, processing must be done by using 

the limited power available in the wearable sensor node. Therefore, a major challenge for 

our research is development of a new sound recognition algorithm for achieving high 

accuracy with low calculation cost to meet the energy requirement. 

Among the similar researches, Nishimura’s studies [82, 93, 104] are the most close to 

this research. However, there are some fundamental difference between his work and this 

research as Table 5-1 shown. One is the research target is different, speech/non-speech 

detection is one of Nishimur’s main focus [82, 104]. In this research, what is the specific 

environmental background sound is our main focus. Another, in this research, approximate 

power consumption evaluation upon the power-aware wearable sensor platform is 

comprehensively discussed and studied; however, there is not too much consideration and 

power consumption evaluation on a certain hardware platform in Nishimura’s work [104]. 

Specifically speaking, to calculate the total number of multiplication and addition of the 

sound algorithm separately is adopted in this work; however, the total number of 

multiplication and addition is counted as the applied algorithm’s computational complexity 

in Nishimura’s studies [82, 93]. In fact, the power used for a multiplication is about as 4 

times as an addition operation needs [58, 64]. Thirdly, because the difference of an 

environmental sounds with time variation can be well modeled by a specific statistical 

HMM model; therefore, the HMM classifier is used in this research. The performance 

comparison of the Haar+HMM and Haar+LBG algorithms is illustrated in later Fig. 5.9 of 

Section 5.4.4.   
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Table 5-1: Comparison of Nishimura’s Studies (Ref. [82, 93, 104]) and This Work. 
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In this chapter, a novel Haar+HMM algorithm is proposed to recognize the 

environmental background sounds. Haar-like filtering is a commonly used feature 

extraction method for two-dimensional (2-D) image processing fields. This method was 

first used in 2-D face detection and yielded good performance [92]; it was also applied to 

speech and non-speech detection [93]. In order to utilize its low cost and high efficiency 

aspects, 1-D Haar-like filtering is newly employed for environmental sound recognition. 

The integral signal (IS) method [95] can further decrease the calculation cost considerably 

during the Haar-like filtering without compromising accuracy. Furthermore, the HMM 

classifier can achieve comparatively high recognition accuracy at the classification stage. 

With the above mentioned advantages, our Haar+HMM algorithm is very effective and can 

be used for environmental background sound recognition on the power-aware wearable 

sensor node. 
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5.2 Implementation of Sound Recognition by the Haar+HMM Algorithm 

The proposed sound recognition flow is shown in Fig. 5.1. It follows two sequential 

steps: generation of off-line sound’s classifier training and on-line sound classification. 

Features of the template sound can be extracted by low computational Haar-like filtering. 

After training them off-line, the sound’s training classifier is completed and stored in 

memory in advance. When the input test sound comes, its feature can be extracted on-line 

by applying the same filtering method. Following this, the recognition result is finally 

achieved by comparison with the prepared templates using the HMM classifiers [48, 81, 

100].  
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Figure 5.1 Sound Recognition Flow with the Haar+HMM Algorithm. 

 

 

5.2.1 Why Employ Haar-like Sound Feature with HMM Classification? 

There are many sound features which are commonly used in the feature extraction stage, 
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such as previously introduced linear prediction cepstral coefficients (LPCC), 

Mel-frequency cepstral coefficients (MFCC), and matching pursuit (MP), etc. Haar-like 

sound feature is one of them. Inspired by the low cost and efficient feature extraction of 

Haar-like filtering used in 2-D image signal processing, this filtering method is also applied 

to some 1-D signal, for example speech/non-speech detection [82, 93, 104], acceleration 

processing [94]. This idea was firstly proposed and achieved satisfying result in 

Nishimura’s work in year 2008 [93]. Similar to the formerly introduced Mel-filters group in 

MFCC algorithm’s sound feature flow, Haar-like filters group with different scaling 

patterns is used to extract the sound feature. An appropriate filters group for specific sound 

can be achieved after the training stage (the training process is specified in Section 5.2.3). 

Therefore, the sound’s unique characteristics can be extracted and get more extinguished 

after the specific Haar-like filters group filtering. Another, the Haar-like filter possesses 

simple structure with extremely low computational cost advantage. This is helpful to realize 

less power consumption when executing the sound feature extraction inside the sensor 

node’s MCU.  

Most of the environmental sounds are “quasi-stationary” which has been introduced in 

Stager’s work [37]. That means there are certain difference and regular stationary part in the 

sound’s spectrum with time variation. Those different statuses and the status transition 

between each other in time-series sound can be modeled by a statistical HMM. After 

training the extracted Haar-like features, each sound has its own HMM classifier. The 

classification result is decided by selecting the class with the largest posteriori probability. 

In references [107, 108], applicability of application the statistical HMM to environmental 

sound processing and recognition has been discussed and proved.  

Employing the HMM as the classifier to recognize environmental sounds has been 
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developed in researches [84, 105, 106, 107, 108]. However, the sound feature in these 

researches is traditional MFCC [105], LPCC [107], combinational time and frequency 

domain features [84, 108]. The computational complexity of these sound features is high. 

This inevitably increases the power consumption when executing them inside the sensor’s 

MCU. Therefore, in this chapter, a low computational cost Haar-like sound feature with 

high performance HMM classification is used for the environmental sound recognition.  

 

5.2.2 Haar-like Sound Feature Extraction 

A: 1D Haar-like filtering 

A basic Haar-like filter hfilter(j) is denoted by Eq. (5.1) and shown in Fig. 5.2. 
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where, Wfilter is the width of the Haar-like filter hfilter(j). 
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Figure 5.2 One-Dimension (1-D) Haar-like Filter hfilter(j). 
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In comparison with the MFCC’s Mel-scale filter, Haar-like filter is simple and has a low 

calculation cost. Its filter width Wfilter and shift width Wshift between neighbor filters, as 

shown in Fig. 5.3, are adjustable. These simple controllable parameters can be designed and 

applied for the feature extraction of environment sound in our research. 

One frame length’s sound signal (256 sampling points) processed by Haar-like filtering 

is shown in Fig. 5.3. The Haar-like feature xm is calculated by the sum of the absolute 

outputs of Haar-like filtered signals: 
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where s(t) is the input sound signal and hm(k) denotes a Haar-like filter whose length can 

have a different value. Wshift is the shift width between neighbor filters. The filters number 

N in one frame is calculated as: 
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Figure 5.3 One-Dimension (1-D) Haar-like Filtering for One Frame’s Sound Signal. 
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Parameter Wshift is adjustable as α change (α is defined in Eq. (5.4)). A longer Wshift 

(larger α) helps to reduce the N value and decrease the calculation of each frame’s sound 

data accordingly. The variation of α also affects the final recognition result. When α=0, 

Wshift is set to 1. 

filtershift WW /====αααα                (5.4) 

 

B: Integral Signal (IS)  

From Eq. (5.1) and Fig. 5.2, it follows that the coefficients of the Haar-like filter are -1 

when j≤0, and then change to +1 when j>0. Thus, after the sound signal s(t) passes a Wfilter 

width Haar-like filter, the final filtering result is the absolute value of the difference 

between the sum of the sampling sound’s (-Wfilter/2, 0] and (0,Wfilter/2] two-parts data. Based 

on this and borrowing from the integral image concept introduced in work [92], a novel 

concept called Integral Signal [95] is newly utilized in this work. The Integral Signal of 

each sound frame has been calculated and stored in memory as a preprocessed intermediate 

signal for later use. It is defined as follows: 
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Therefore, the filtered sound signal calculation can be denoted as: 
 

)()2/(*2)( tISWtISWtISalueoneFilterV fitlerfilter ++++++++−−−−++++==== .    (5.6) 

 

In Eq. (5.2-a), Wfilter multiplication and Wfilter –1 addition calculations are need in order 

to obtain the filtering result of each frame sound. However, with the proposed IS method in 

Eq. (5.6), the calculations are reduced to one multiplication and two addition calculations. 

Therefore, it is obvious that the computational complexity of xm in Eq. (5.2-b) decreases. At 
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the same time, the accuracy does not deteriorate. 

 

C: Haar-like Sound Feature  

A Haar-like filters group hv = {hv1, hv2,…,hvi,…, hvn}   (1 ≤ i ≤n) chosen from M filters 

groups’ pool is utilized to extract the feature of sound sv (t). 1 ≤ v ≤p, p is the number of all 

detected sounds. hvi is an 1-D Haar-like filter which is as previous Section 5.2.2_A defined. 

Value n is the feature dimension of each sound frame. 

Two parameters that decide the pool size M are defined as HaarWidMax (Maximum 

Haar filter Width) and HaarFilNum (Haar Filters Number). M’s value is decided by 

combination expression below: 

 














====
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M .           (5.7) 

 

For each frame of sound sv (t), its Haar-like feature Xv is formed by passing the 

Haar-like filters group hv = {hv1, hv2,…, hvi,…, hvn}. Therefore, the sound feature Xv can be 

calculated by utilizing the IS method and is denoted as: 

 

{{{{ }}}}vnvivvv xxxxX ,...,,...,, 21==== ,           (5.8) 

 

where 1 ≤ i ≤n, n=HaarFilNum is the feature dimension of each sound frame, and xvi is as 

the previously introduced Haar-like feature xm. 

Sound feature plays an important role in achieving the expected final recognition results. 

With the simple Haar-like filters group and applying the IS method for the calculation, the 

extraction process to form the Haar-like sound feature can be completed with an extremely 

low computational cost. The achieved Haar-like sound features are simple and effective. 

These are very helpful in efficiently speeding up the feature extraction process and reducing 
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the calculation cost significantly to meet the energy requirement. 

 

5.2.3 Off-Line Training for the Haar-like Filters Group 

Haar-like filters group hv decides the feature Xv of the individual sound sv (t). The 

detailed training process to select the filters group hv is described in work [93]. The group’s 

selection result is based on the training error. It is evaluated by matching feature vectors 

extracted from training data against the clustering model. Minimum error yielding of the 

filters group is selected. 

Two assumptions are established in the training stage: 

� Once the value of the HaarFilNum has been decided, the dimension of all p sounds’ 

feature is the same. That is similar to how Xv in Eq. (5.8) defines (n=HaarFilNum). 

� Once an hv for the test sound sv (t) has been chosen, the left p-1 sound’s filters group 

should be chosen from the remaining M-1 candidate filters groups’ pool. This can 

guarantee that the different sound sv (t) adopts the different filters group hv. 

 

The two introduced parameters HaarWidMax and HaarFilNum in Eq. (5.7) decide the 

training complexity and searching scale during the hv’s selection stage. The size of the 

searching pool M is shown in Table 5-2 with combinations of these two parameters’ 

variation. For example, when HaarWidMax=18 and HaarFilNum=5, feature {x1, x2, x3, x4, 

x5} of each sound is according to one Haar-like filters group among M=126 filter groups 

pool. 

During hv’s training, the LBG clustering model [87] is employed to develop new cluster 

centers in work [93]. In this research, k-means cluster [96, 97] is applied instead. This is 
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because the k-means cluster is more controllable than the LBG cluster. It means that the 

number of clustering centers in LBG is split with a power of 2, whereas it can adopt a value 

less than that of the LBG in k-means clustering. Moreover, in the following HMM 

classification stage, the number of observation states in the HMM model is equal to that of 

the k-means clusters. This clustering method change is of benefit to reduce the size of 

HMM’s observation sequence, and further decreases the HMM classifier’s calculation cost. 

 

 

Table 5-2: Training Haar-like Filters Pool Size with Relation to the Two Parameters - 

“HaarWidMax” and “HaarFilNum”. 

136 [6 4 2]

1468 [8 6 4 2]
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285670562816 [16 14 12 10 8 6 4 2]
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15101010 [10 8 6 4 2]
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14 [4 2]

2 [2]
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54

14 [4 2]

2 [2]

632HaarFilNum.
HaarWidMax

 

* Below grey columns are impossible cases. Middle white columns are inexecutable cases because the 

M value is less than our target 20 testing sounds. Top grey columns are our experimental cases. 

 

5.2.4 HMM Classification 

As shown in Fig. 5.1 to classify different environmental sounds, the appropriate off-line 

trained HMM classifier λ
v
(π, A, B) for individual sound sv(t) is necessary. After obtaining 

the updated centroids of sound sv (t) by k-means clustering, an observation Oq is formed by 
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mapping the training sound vector q into a centroid index. Namely, the training vector is 

assigned to the index of the nearest centroid. Therefore, an HMM observation sequence of 

sound sv (t) can be denoted as Ov = {O1, O2 , …, Oq, …, OT}v. With the composed training 

sound’s Ov and initial HMM parameter λ
v
(π, A, B)0, the Baum-Welch algorithm is applied 

to refine the model λ
v
(π, A, B) until it converges less than ε in the HMM classifier’s training 

stage [47, 81, 98]. 

The block diagram of an on-line test sound HMM classifier is shown in Fig. 5.4. In a 

real recognition stage, the extracted Haar-like feature of the unknown test sound l is 

quantized and establishes an observation sequence Ol. After computing the probability of 

all template sounds’ P(Ol|λ
l
) (1≤ l ≤p) that employs the Viterbi algorithm [46, 47], the result 

with the highest likelihood among all the templates is recognized as the most similar to the 

test sound. 
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Figure 5.4 Block Diagram of a Test Sound’s HMM Classification. 
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After analyzing Eq. (5.9), we can find that the calculation cost is on the order of 

p×N
2
×T  for each sound. The cost is proportional to the number of all detected sounds p, 

the square of the number of state N, and the number of observations in sequence T in the 

HMM model [47, 81]. 

 

 

5.3 Experimental Process and Consideration of Some Parameters 

5.3.1 Experimental Setup and Details 

The experimental setup and details has been introduced in previous Section 3.1. In 

previous Chapter 4, the MFCC+LBG algorithm for environmental sound recognition also 

adopts the same experimental setup and data sets. 

The test target 20 different type of environmental sounds is same as Section 3.1.1 

described. In our experiments, some basic person’s daily activities are covered. For example, 

such as inside house activities, household clean, sanitary, dietetic, outside activities, and so on. 

The background environmental sounds happening with these activities are recorded with the 

wearable sensor node introduced in Fig. 1.3. 

The experimental parameters, process, and experimental data sets for the sound’s 

template training and testing input have also been introduced in the previous Chapter 3. 

When doing the experiments, we follow these introductions in Section 3.1.2. During the 

templates’ training and recognition process, each unit length of sound is one second. This 

means the algorithm(s) for our sound recognition upon the wearable sensor platform must 

finish the detection within each second as the Section 2.2.4 discussed.  
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5.3.2 Recognition Flow 

Following three major stages comprise the recognition flow as in Section 3.1.3 

introduced.  

Stage 1:  Training and getting the HMM classifier λ
v
(π, A, B) for individual sound sv(t) 

Step1: We have taken 1.0 second length sound as a unit to partition same property sounds 

from the training data sets. After Haar-like filtering these training units (Section 5.2.3 

introduces how to select a suitable Haar-like filters group), pool of sound features vectors for 

the following k-means clustering are prepared. 

Step2: After obtaining the updated centroids a sound sv (t) by k-means clustering, an 

observation sequence of the sound can be formed and denoted as Ov. 

Step3: With the composed training sound’s observation sequence Ov and initial HMM 

parameter λ
v
(π, A, B)0, the model λ

v
(π, A, B) can be refined and completed with the 

Baum-Welch algorithm’s training.  

Step4: Repeat above two steps to the other 19 sounds, we can get different HMM 

classifier λ
v
(π, A, B) of those 20 testing sounds.  

Stage 2:  Sound matching/classification 

The matching flow is same as Fig. 3.1 shown. When the input test sound comes, it is also 

segmented as 1.0 second units, and its Haar-like feature is extracted. Because the completed 

training HMM classifiers λ
v
(π, A, B) of those 20 sounds have been stored in memory, the 

probabilities of the test sound’s observation sequence Ol with those 20 different sound’s 

classifiers are calculated by employing the Viterbi algorithm individually. The smallest one is 

recognized as the most similar to the test sound. 

Stage 3:  Calculate recognition accuracy rate and algorithm’s calculation cost 
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The final recognition Accuracy Rate (AR) of our sound recognition system is defined as 

the Eq. (3.1) in Section 3.1.3 introduced. Another evaluation factor of the performance of our 

sound-context recognition system is the calculation cost. It can be determined by the amount 

of multiplication and addition calculations within the whole algorithm flow. 

 

 

5.4 Experimental Results and Discussion 

As analyzed in previous Chapter 3, the sound recognition algorithm executed on the 

wearable sensor requires that the recognition accuracy should be improved while satisfying 

the sensor node’s computational power budget. After conducting experiments and analyzing 

their results in this section, we can find that our proposed Haar+HMM algorithm for 

environmental sound recognition can successfully satisfy these requirements. 
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Figure 5.5 Average Accuracy in Function of the Parameters: HaarFilNum and 

HaarWidMax. 
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Figure 5.5 indicates how the parameters HaarFilNum and HaarWidMax affect the 

average accuracy of the sound recognition system. Among all these cases, when 

HaarFilNum=5, HaarWidMax=18, α=0 (Wshift=1), number of HMM states=7, number of 

HMM observe symbol=15, and ε=0.01, the average accuracy of the 20 sounds can reach 

highest at 98.2%. Even with HaarFilNum =2 (other parameters are identical), it can yield 

accuracy of more than 93.0%. These results greatly outperform the required minimum 

accuracy of 82% decided in Chapter 3, and also prove that our proposed Haar+HMM 

environmental sound recognition algorithm with the proposed training method is effective. 
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Figure 5.6 Average Accuracy in Function of the Parameter: HaarFilNum and α. 

 

 

Besides α=0, the recognition results of typical α=Wshift / Wfilter =0.5 and α=Wshift / Wfilter 

=1 are also illustrated in Fig. 5.6. Except for the value of α, the parameters are set as in the 

previous experiment with a maximum accuracy 98.2%. From this figure, it can be observed 

that the accuracy of all cases surpasses the required minimum accuracy of 82%. The 

variation of α does not significantly affect the accuracy of our proposed sound recognition 



 

 

 

  Chapter 5 
______________________________________________________________________________________________________________ 

 - 95 - 

system. The accuracy range is from a minimum 93.7% to a maximum 98.2%. Different 

combinational values of the HaarFilNum and α introduce only 4.5% variation. For the 

maximum accuracy which happens at HaarFilNum=5, the variation of accuracy is only 

1.9%. So the influence of the value of α on accuracy is not significant if the appropriate 

HaarFilNum is chosen. 

 

5.4.2 Comparison of Different Sound Features’ Performance  

Different sound features yield different performances. With the same HMM classifier 

utilized in Section 5.4.1, the accuracy and calculation cost of the MFCC [84] and three 

Haar-like features (α=0, 0.5, 1.0, HaarFilNum=5, HaarWidMax=18) are compared. The 

process of the MFCC feature extraction is complex which contains FFT, logarithm, discrete 

cosine transform (DCT) and many multiplication computations. On the other hand, the 

Haar-like feature only requires a small number of addition and multiplication as Eq. (5.6) 

denotes. The experimental results shown in Fig. 5.7 and Table 5-3 prove that our proposed 

Haar+HMM outperforms MFCC+HMM in terms of both accuracy and calculation cost. 

The most aggressive case with α=1.0 can obtain 96.3% accuracy by employing only 8.3% 

of MFCC’s multiplication and 8.2% of MFCC’s addition calculations. 

Parameter α is an important and effective variable that affects system’s accuracy and 

calculation cost. From Figs. 5.6, Fig. 5.7 and Table 5-3, it is evident that the average 

recognition accuracy drops by 1.3% when the value of α changes from 0 to 1. However, this 

trivial 1.9% decrease in accuracy helps to considerably reduce the calculation cost. The 

multiplication calculation can be reduced by 72.2% and the addition calculation by 79.8% 

compared with the referenced α=0 case. It is because the filters number N in Eq. (5.3) 
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deceases with increasing α and further reduces the calculation cost in sounds feature 

extraction stage dramatically. Meanwhile, the increase of α slightly deteriorates the final 

recognition accuracy. We believe this limited accuracy decrease is because most of the 

environmental sounds are quasi-stationary. 
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Figure 5.7 Performance Comparison of Proposed Haar-like and Traditional MFCC 

Sound Features with Same HMM Classifier – Average Accuracy and Multiply / 

Addition Calculation Cost (256 samples/frame). 

 

 

Table 5-3: Different Sound Feature – MFCC and Haar-like Feature (α=0, 0.5, 1.0) 
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5.4.3 Performance Comparison of Different Classifiers  

With the same α=1.0 Haar-like feature configuration used in Section 5.4.2, the 

performance of the HMM classifier is investigated with the referenced k-means and LBG 

classifiers. The comparison results are shown in Fig. 5.8, Table 5-4 and Table 5-5. The 

clusters number of the HMM and the k-means classifiers are 15. The LBG’s cluster is set to 

16 =2
4
 which is close to the k-means and HMM’s 15 clusters for comparison. It can be seen 

that the Haar+HMM algorithm achieves the highest average accuracy of 96.3% among 

these three cases.  
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Figure 5.8 Performance Comparison of LBG, k-means and HMM Classifiers with 

Same Haar-like Sound Feature (Haar-like Feature’s α=1.0). 

 

 

During the classification, the HMM classifier needs more computation than the k-means 

classifier does. As in Section 5.2.4 mentioned, the Viterbi algorithm determines the final 

recognition performance from the on-line observation sequence Ol in the HMM classification. 
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The algorithm is additionally employed to estimate the likelihood of Ol sequence which is 

calculated from the k-means cluster’s centroids developed during the off-line training stage. 

Moreover, the Viterbi algorithm itself employs many multiplications as Eq. (5.9) indicated. 

These obviously lead to an increase of multiplication calculation compared with k-means 

cluster in Fig. 5.8. 
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A

20 Test Sounds’ Recognition Confuse-Matrix

21.5

24.5

142.3

40.2

22.8

36.9

21.9

35.6

51.5

20.4

66.9

17.5

14.9

25.0

105.7

71.3

26.1

170.5

48.3

Len. (S)

Sound

Length

100%95.2%90.5%100%21A20

100%100%100%95.8%0A19

99.3%95.1%95.1%98.6%0A18

100%100%100%97.5%0A17

81.8%81.8%100%100%0A16

97.2%100%94.4%100%0A15

0

0

0

0

0

0

0

0

0

0

0

0

0

T

98.2%

100%

97.1%

100%

100%

95.5%

100%

100%

92.0%

99.1%

95.8%

96.2%

100%

100%

Acc.

Haar+

(     =0)

HMM

88.6%97.7%96.3%

90.5%100%95.2%A14

91.4%100%97.1%A13

100%96.1%100%A12

75.0%100%95.0%A11

92.4%100%100%A10

100%94.1%100%A9

50.0%100%100%A8

100%84%80.0%A7

96.2%97.1%94.3%A6

56.3%94.4%76.1%A5

76.9%100%100%A4

85.9%100%99.4%A2

79.2%100%97.9%A1

Acc.Acc.Acc.

Haar+

(    =1.0)

LBG

Haar+

(    =0.5)

HMM

Haar+

(    =1.0)

HMM

Cu*: Correctly recognized units Au*: All input sound units

***  : for space limitation, above Confuse-Matrix is for Haar+HMM (     =1.0),        =0 / 0.5 two cases, Haar+k-mean, Haar+LBG just has accuracy.  

A1:  Vacuum cleaner (house cleaning) A2:   Washing machine (wash something)            A3:  Water sound from tap (wash something)

A4:   Brush teeth            A5:   Shaving (shave beard)                                 A6:  Take shower
A7:   Hair dryer (Dry hair) A8:   Urination (man) A9:  Flush toilet (use water closet)

A10: Chewing cake (eat) A11: Drinking (drink something)                            A12: Oven-timer (toast some food) 

A13:  Walk inside room A14: Walk outside                                           A15: Run
A16: Train start (train accelerates, in train) A17: Train run (train normally runs, in train)          A18: Take umbrella in the rain

A19: Mechanical alarm                                           A20: Telephone ring (telephone comes)

α α α α α

α α
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5.4.4 Performance Comparison of Whole System  

Performance comparison of the recognition algorithms of different environmental 

sounds is illustrated in Table 5-5 and Fig. 5.9. Results of four algorithms – MFCC+HMM, 

Haar+LBG, Haar+k-mean, and Haar+HMM are compared. Among them, accuracy of the 

three algorithms: MFCC+HMM, Haar+LBG, Haar+HMM outperforms the 82% benchmark 

decided in Chapter 3. The highest accuracy is achieved by the Haar+HMM algorithm. 

In Fig. 5.9, we also find that the sound feature extracted by the Haar-like filtering needs 

less calculation energy than the MFCC filtering. Three algorithms with the Haar-like 

feature are executable based upon the wearable sensor’s energy budget. However, the 

MFCC sound feature with the HMM classifier is so complicated that it goes beyond the 

0.75 mil. nJ/s calculation energy benchmark. Compared with the Haar+k-mean method, the 

Haar+HMM algorithm’s calculation energy increases 0.661–0.483=0.178 mil. nJ/s. 

However, the accuracy obviously increases by a further 96.3%–81.9%=14.4% due to the 

effective HMM classification. These results prove that the HMM classifier has better 

accuracy performance than the k-mean classifier with more calculation cost.  

Within the top left region confined by the two benchmarks in Fig. 5.9, the Haar+HMM 

algorithm achieves better comprehensive performance. As a baseline for comparison, the 

Haar+LBG algorithm proposed by Nishimura is employed [93]. Our proposed Haar+HMM 

method consumes a little more energy 0.661–0.509=0.152 mil. nJ/s compared to the 

Haar+LBG spends. However, it can achieve a much higher 96.3% accuracy than the 

Haar+LBG’s 88.6%. When the requirement of the calculation energy becomes stricter, 

Haar+LBG can be a candidate solution. 

 



 

 

 

  Chapter 5 
______________________________________________________________________________________________________________ 

 - 100 - 

 

Table 5-5: Comprehensive Performance Comparison of Four Different Sound 

Recognition Algorithms - MFCC+HMM, Haar+LBG, Haar+k-means, Haar+HMM (1 

Second / unit =124 Frames in Each Second Sound unit, Haar-like Feature’s α=1.0). 

0.405

0.390

0.414

1.580

Add

0.358

0.238

0.250

1.563

Mul.

Total (F+C)

(mil.)

0.661

0.483

0.509

2.920

0.306

0.186

0.198

0.938

Mul. 

0.052

0.052

0.052

0.625

Mul. Add. Add

0.8880.69288.7%
MFCC  +  HMM

(Mel-filters=22, training centroids=15)

0.3340.05681.9% 
Haar +  k-means

(HaarFilNum=5, training centroids=15)

0.3580.05688.6% 
Haar +  LBG

(HaarFilNum=5, LBG codebooks=16)

0.349

Classifier (C)

(mil.) Energy *

(mil. nJ)

0.05696.3%
Haar +  HMM

(HaarFilNum=5, training centroids=15)

Feature (F)

(mil.)Average 

Accuracy 
Feature + Classifier
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0.198
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Mul. 
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Mul. Add. Add
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MFCC  +  HMM

(Mel-filters=22, training centroids=15)

0.3340.05681.9% 
Haar +  k-means

(HaarFilNum=5, training centroids=15)

0.3580.05688.6% 
Haar +  LBG

(HaarFilNum=5, LBG codebooks=16)
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Classifier (C)

(mil.) Energy *

(mil. nJ)

0.05696.3%
Haar +  HMM

(HaarFilNum=5, training centroids=15)
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* The whole Energy = 1.44nJ × Mul. + 0.36nJ × Add (mil. nJ) based on Section 3’s discussion. 
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Figure 5.9 Performance Comparison of MFCC+HMM, Haar+LBG, Haar+k-means, 

and Haar+HMM (Haar-like Feature’s α=1.0). (* Ref. [93_J. Nishimura_ICSP’2008]) 
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5.5 Chapter Summary 

As in Chapter 3 discussed, two factors benchmark values for evaluation of our proposed 

sound recognition algorithms have been decided. Because Haar-like filtering possesses low 

cost calculation character in sound feature extraction stage and HMM classifier possesses 

high recognition performance character in classification stage, our newly proposed 

Haar+HMM algorithm is utilized for the sounds recognition in this chapter.  

Twenty different typical daily activities’ background sounds are recognized. The 

recognition accuracy reaches 96.3% which outperforms required 82%. At the same time, 

the energy spent on our proposed sound recognition algorithm is within the energy budget. 

These results prove that our proposed Haar+HMM algorithm can successfully solve the 

problems and satisfy the settled both accuracy and calculation cost requirements. 
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Chapter 6   Conclusions 
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In this chapter, conclusion of our research - “Low-Complex Environmental Sound 

Recognition Algorithms for Power-Aware Wireless Sensor Networks” is delivered. Some 

potential future working directions for the next research stage will also be proposed.  

 

6.1 Conclusions 

With the rapid development of the wireless sensor networks (WSNs), wearable sensing 

and computation technologies, understanding individual’s activities, social interaction, and 

group dynamics of a certain society becomes possible and plays an important role for creation 

a ubiquitous information society around us. This will inevitably enrich our life’s content and 

improve our society’s efficiency.  

Environmental background sound is a good context indicator for human activities, and 

contains rich information for identifying individual and social behaviors. Therefore, many 

front-end wearable devices in the WSNs system with sound recognition function are widely 

used to trace and understand human activities. Because those front-end sensor nodes are low 

powered and the WSNs system has limited resource, design of these sound-based context 

recognition algorithms has two major challenges: limited computation resources and a strict 

power consumption requirement. Therefore, we address to develop a new sound recognition 

algorithm which can achieve high recognition accuracy while still meeting the wearable 

sensor’s power requirement in the dissertation.  

In Chapter 2, our power-aware front-end sensor node’s hardware platform and software 

level recognition flow are introduced. The hardware parameters will be used for the 

evaluation of power consumption in the following Chapter 3 is specified. Important 

assumptions and constrains for the research are also discussed and explained. Finally, aiming 
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at achieving certain high recognition accuracy with less power consumption, we propose our 

basic approaches to satisfy this requirement in algorithm level.  

In Chapter 3, the test sounds, experimental setup and details for our research are firstly 

introduced. Because the power budget of the wearable sensor node for our sound processing 

is limited, evaluation to the recognition algorithms must consider both accuracy and 

calculation cost. As the system’s accuracy rate concerned, it has been decided as 82% by 

referencing relative researches. Another, the “Calculation Cost and General Energy 

Evaluation” method is utilized to calculate the power consumption of the algorithm executed 

inside the MCU of the node. The evaluation benchmarks of these two factors are concluded 

and illustrated in Fig. 3.2. To accomplish a proper sound recognition upon the power-aware 

sensor node, the algorithm must satisfy these two benchmarks.  

In Chapter 4, MFCC+LBG algorithm is proposed to recognize the background 

environmental sound. Twenty typical daily activities sounds are recognized. As the system’s 

two important factors – recognition accuracy and algorithm’s calculation cost, we have a 

thorough study. Finally, the approximate power consumption of executing the algorithm upon 

our wearable sensor node has been evaluated. Compared with our previous study by utilizing 

MFCC+DTW method, the optimized MFCC+LBG sound recognition algorithm improves the 

recognition accuracy to 92.5%, better than 84.8% with the MFCC+DTW. If the algorithm is 

executed on our wearable sensor node, the power consumption is much less than that of 

MFCC+DTW method. However, the MFCC+LBG’s power consumption (0.883mil. nJ/s) 

does not qualify the benchmark requirement (0.75mil. nJ/s) through the power consumption 

evaluation.  

In Chapter 5, because Haar-like filtering possesses low cost calculation character in 

sound feature extraction stage and HMM classifier possesses high recognition performance 
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character in classification stage, our newly proposed Haar+HMM algorithm is utilized for 

the sounds recognition in this chapter. Twenty different typical daily activities’ background 

sounds are recognized. The recognition accuracy reaches 96.3% which outperforms 

required 82%. At the same time, the energy spent on our proposed sound recognition 

algorithm is within the energy budget. These results prove that our proposed Haar+HMM 

algorithm can successfully solve the problems and satisfy the settled both accuracy and 

power consumption requirements. 

 

 

6.2 Scope of Future Work 

In this dissertation, the low-complex environmental sound recognition algorithms have 

been proposed. Based on the wearable sensor node electrical parameters, the power 

consumption of execution those algorithms on the sensor’s platform have been approximately 

evaluated. The future researches can be continued as the following research directions 

described. 

 

In a software level point of view 

1: In this research, our test target 20 environmental background sounds are mainly 

produced from household activities. Sound-context recognition targets can be extended to 

more complex social activities, such as meeting and discussion, shopping, etc.   

2: From the Table 5-5 of Chapter 5, we notice that the HMM classifier occupies much 

proportion of the total computational cost compared with the Haar-like sound feature. In 

order to further decrease the whole algorithm’s calculation cost while without compromising 
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the accuracy, there might be some improvement for the HMM classifier. References [Chapter 

5 of Ref. 61, 101, 102] have already had certain study and discussion.  

3: In this research, our proposed solutions focus on algorithm level study. By using the 

proposed environmental sound recognition algorithms, it can achieve satisfying results by 

employing the low complexity Haar-like sound feature with high performance HMM 

classifier. After the sound recognition algorithm has been decided, how to optimize the 

detection system to achieve a better performance can be another research direction. In 

Stager’s research [36, 37], the author proposed some methods to trade off and optimize the 

two important parameters - “recognition accuracy” and “power consumption” of a 

sound-context recognition system. Similar methodology can be a potential research direction 

of the future work.  

 

In a hardware level point of view 

1: Through the accuracy and power consumption evaluation, the results prove that our 

proposed algorithms are valid to be implemented on the power-aware wearable sensor node 

(Fig. 1.3 and Fig. 2.1), and ideal detection performance can be achieved. Therefore, to 

implement the sound-context detection algorithms on the senor node will be one of our future 

research directions. With the WSNs system platform, the implemented algorithm’s 

performance is to be evaluated.  

2: Integrate with other type of sensor(s) [12, 15, 17, 109], such as accelerometer, IR 

sensor, thermo sensor, etc. to enhance daily activity recognition function by using wireless 

sensor networks (WSNs) system is also a potential research direction. 
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List of Abbreviations 

 

ADC     analog to digital converter 

AR      Accuracy Rate 

Au      All input sound units 

CPU      central processing unit 

Cu      Correctly recognized units 

DCT      discrete cosine transform 

DSP      digital signal processor 

DTW     dynamic time wrapping 

HMM     hidden Markov mode 

FFT      fast Fourier transformation 

FPGA     field-programmable gate array 

fps      frame per second  

GMM      Gaussian mixture model 

IC      integrated circuit 

IR      infrared ray 

IS      integral signal 

LDA      linear discriminant analysis 

LBG      Linde-Buzo-Gray algorithm 

LPCC      linear prediction cepstral coefficients 

MCU     micro control unit 

MEMS     micro-electro-mechanical system 
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MFCC     Mel-frequency cepstral coefficients 

MP       matching pursuit 

PDA      personal digital assistant 

RAM     random access memory 

RF      radio frequency 

ROM     read only memory 

SVM     support vector machine 

VLSI     very-large-scale integration 

VQ      vector quantization  

WSNs     wireless sensor networks 


