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Chapter 1

Introduction
Genome projects have revealed a striking fact that the vast majority of genomic
sequences in higher organisms do not code for proteins (Siepel et al., 2005). The
fraction of noncoding regions increases along with the complexity of organisms,
reaching as high as 98% in humans (Taft et al., 2007). Noncoding RNAs (ncRNAs)
are transcripts from the genes present in these regions, and are revolutionizing
the traditional “protein-centered” view of functional genomics (Hüttenhofer et al.,
2005). Known ncRNA families include ribosomal RNAs (rRNAs), transfer RNAs
(tRNAs), micro RNAs (miRNAs) which mediate post-transcriptional regulation
(Filipowicz et al., 2008), small nucleolar RNAs (snoRNAs) which guide modification
of other RNAs (Kiss, 2001), and riboswitches which respond to changes in metabolite
concentrations (Dambach and Winkler, 2009). Our knowledge of ncRNAs is still in
its infancy when compared to that of proteins. Figure 1.1 shows the accumulation of
database entries for ncRNAs in comparison to those for proteins. The Rfam database
for ncRNAs (Gardner et al., 2011) was started from 2002, which is much later than
1996 when the Pfam database for proteins (Punta et al., 2012) was founded. Currently,
the Rfam database collects only 3 × 106 ncRNA sequences as members in known
families, while the Pfam database amounts to 13×106 protein sequences (Figure 1.1a).
In addition, only 1973 ncRNA families are established in the Rfam database, which
is much less than 13672 protein families in the Pfam database (Figure 1.1b). To
address these issues, the development of computational methods for accurate and
efficient identification of ncRNAs has been a major goal of bioinformatics (Eddy,
2002).

In this dissertation, we present two computational methods that solve different
problems for the identification of ncRNAs. First, we propose a method that predicts
whether an input RNA is a new member of a known ncRNA family (Saito et al., 2010).
The method is useful to increase the number of member sequences in known families,
addressing the issue represented in Figure 1.1a. Second, we propose a method that
finds candidates of novel ncRNA families from a set of unannotated RNAs (Saito
et al., 2011). The method is useful to increase the number of established families,
addressing the issue represented in Figure 1.1b. The relationship of the two methods
in the identification of ncRNAs are shown in Figure 1.2. The first method performs
the annotation of genomes or transcriptomes in which each sequence is classified into
one of known families. This process leaves a set of unannotated sequences that cannot
be confidently classified into any of known families. The second method takes these
unannotated sequences as input, and finds candidates of novel families.

This dissertation is organized as follows. In the remainder of this chapter, we
introduce some basic knowledge about ncRNAs, and briefly explain the originality
of our study from the perspective of RNA informatics. In Chapter 2, a method for
predicting new members of known families are described. In Chapter 3, a method for
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Figure 1.1 The accumulation of database entries for ncRNAs in comparison to those
for proteins. For each version of a database, the number of entries are plotted against
its release date. The data are obtained from the Rfam database for ncRNAs, and the
Pfam database for proteins. (a) The accumulation in the number of member sequences
in known families. (b) The accumulation in the number of established families.

Figure 1.2 The relationship of the two methods proposed for the identification of
ncRNAs. The first method identifies new members of known families from a set of
sequences in genomes or transcriptomes. The second method identifies candidates of
novel families from a set of sequences which do not belong to any of known families.
The two methods can be combined to constitute a framework for the identification of
ncRNAs.
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Figure 1.3 Typical example of secndary structures for tRNAs. The left-hand figure
shows an entire secondary structure of a tRNAmolecule. The right-hand figure magnifies
one stem loop structure which has base pairs colored in blue.

finding candidates of novel families are described. In Chapter 4, we summarize our
study and discuss future prospects.

1.1 Secondary structures of ncRNAs
In this section, we introduce a variety of ncRNA families, focusing on the relationship
between cellular functions and secondary structures. The cellular functions of ncRNAs
are often associated with their secondary structures formed by intramolecular base
pairs (Eddy, 2001). Figure 1.3 shows a typical example of secondary structures for
tRNAs. The left-hand figure shows a secondary structure in which a tRNA molecules
folds back itself by base pairs. The structure consists of four substructures, each of
which has base pairs shown in a different color. The right-hand figure magnifies one
substructure with blue-colored base pairs. Such a substructure is called a stem-loop
structure, where a stretch of stacked base pairs is called a stem, while an unpaired
region closed by a stem is called a loop. Each ncRNA family in the Rfam database is
defined by its own secondary structure conserved through the evolution.

1.1.1 rRNAs

The rRNAs serve as a components of the ribosome, forming a complex with ribosomal
proteins. The both of small subunit (SSU) and large subunit (LSU) rRNAs have their
own secondary structure which exhibits a strong conservation. Figure 1.4a shows the
secondary structure of SSU rRNAs in bacteria. Structural domains of SSU rRNAs
are often referred to as variable regions because nucleotide sequences in these region
are frequently mutated. However, these domains are still conserved in terms of their
secondary structure due to the co-mutation of pairing nucleotides. Several studies
have suggested that the phylogenetic reconstruction based on rRNAs can be improved
when incorporating the secondary structure information (Mallatt and Winchell, 2007;
Stocsits et al., 2009).
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1.1.2 tRNAs

The tRNAs carry a specific type of amino acid, depending on their anticodons, to the
ribosome during translation. The conserved secondary structure of tRNAs is known
as a clover-leaf shape shown in Figure 1.4b. An anticodon is located in the loop
region of the anticodon arm (a stem-loop structure magnified in Figure 1.3). It has
been suggested that the the structure of tRNAs, together with those of rRNAs and
ribosomal proteins, play an important role for codon-anticodon pairing (Ogle et al.,
2003).

1.1.3 miRNAs

The miRNAs regulate the expression of messenger RNAs (mRNAs) in a
post-transcriptional manner based on the interaction via a complementary sequence
(Filipowicz et al., 2008). There have been extensive studies on a large variety of
processing pathways for the maturation of miRNAs, including those for canonical
miRNAs, canonical intronic miRNAs, and non-canonical intronic miRNAs (for review,
see (Kim et al., 2009)). Here, we only introduce the pathway for canonical miRNAs
focusing on its relationship to secondary structures. A primary transcript exhibits one
or more stem-loop structures, each of which corresponds to one mature miRNA. In a
cell nucleus, Drosha and Pasha proteins recognize and cleave each stem-loop structure,
producing a miRNA precursor (Figure 1.4c). After the export to cytoplasm, the stem
of a miRNA precursor is recognized by Dicer protein, and cleaved as a double-stranded
RNAs. Then, either side of a double-stranded RNA is loaded into Ago protein as a
mature miRNA (with a preference possibly depending on nucleotide sequences).

1.1.4 snoRNAs

The snoRNAs localize in a nucleolus, and guide the modification of other
(usually ribosomal) RNAs (Kiss, 2001). They are divided into two categories,
called C/D snoRNAs and H/ACA snoRNAs, which conduct 2’-O-methylation and
pseudourydilation of rRNAs, respectively. The conserved secondary structures for
C/D and H/ACA snoRNAs are shown in Figure 1.4d and Figure 1.4e, respectively.
C/D and H/ACA snoRNAs have sequence motifs, namely C/D box and H/ACA box
motifs, at the specific positions in the context of their secondary structures. Moreover,
the bulge loops in their secondary structures contain the sequences complementary
to target rRNAs, and the modification to rRNAs is occurred at the specific residue
in these regions.

1.1.5 Riboswitches

Riboswitches are ncRNAs which modulate the gene expression in response to changes
in metabolite concentrations (Dambach and Winkler, 2009). Usually, riboswitches
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Figure 1.4 A variety of ncRNA families and their characteristic secondary structure.
For each ncRNA family, the consensus secondary structure registered in the Rfam
database is shown. (a) SSU rRNA in bacteria (Rfam accession RF00177). (b) tRNA
(Rfam accession RF00005). (c) miRNA precursor mir-17 (Rfam accession RF00051). (d)
C/D snoRNA SNORD83 (Rfam accession RF00137). (e) H/ACA snoRNA SNORA16
(Rfam accession RF00190). (f) Purine riboswitch (Rfam accession RF00167).

are metabolite-binding domains of bacterial mRNAs, and change their secondary
structures by the binding so that the biosynthesis of the encoded proteins is regulated.
Figure 1.4f shows an example of secondary structures for purine riboswitches (when
not bound by purines). Other types of riboswitches include those for responding to
temperature changes, and those for modulating alternative splicing in fungi (Serganov
and Patel, 2007).

5



1.1.6 Other structured RNAs

There are many other ncRNAs families which can be well-characterized by their
conserved secondary structures.

Some structured RNAs are components of huge complexes formed by ncRNAs
and proteins. They include signal recognition particle (SRP) RNAs in SRPs which
target membrane proteins to the endoplasmic reticulum (Rosenblad et al., 2009), vault
RNAs in vault particles which are involved in drug resistance (Stadler et al., 2009), Y
RNAs in Ro particles which conduct the quality control of rRNAs (Perreault et al.,
2007), and small nuclear RNAs (snRNAs) such as spliceosomal RNAs in spliceosomes.
Telomerase RNAs (TRs) form a complex with telomere reverse transcriptase, and
serve as a template for telomere elongation (Harley, 2008).

There exist a wide range of ncRNAs which are derived from mature ncRNAs,
and exhibit functions other than the original ncRNAs. Some of these ncRNAs are
cleaved from stem-loop structures present in larger secondary structures, and show
miRNA-like regulatory functions. Examples are sno-derived RNAs (sdRNAs) cleaved
from snoRNAs (Taft et al., 2009a), and small vault RNAs cleaved from vault RNAs
(Persson et al., 2009).

In bacteria and retroviruses, a number of cis-acting elements are found within
mRNAs. They include internal ribosome entry sites (IRESs) which enable the 5’
cap-independent translation initiation (Lukavsky, 2009), transport elements which
allow to export intact RNAs from a cell nucleus without being processed by the RNA
splicing machinery (Smulevitch et al., 2005). Transfer-messenger RNAs (tmRNAs)
resemble both of tRNAs and mRNAs, and rescue ribosomes which accidentally stall
during the translation of degraded mRNAs (Dulebohn et al., 2007).

Prokaryotes have ncRNAs that have functional analogies to eukaryotic miRNAs,
even though the proteins for processing these ncRNAs are non-homologous those for
miRNAs (Majdalani et al., 2005). In bacteria, small regulatory RNAs are mediated
by the RNA chaperone Hfq (Aiba, 2007).

1.1.7 Non-structured RNAs

Although most ncRNA families are defined by their secondary structures, some
ncRNAs do not exhibit significant secondary structures. They include small RNAs
which do not exhibit stem-loop structures such as PIWI-interacting RNAs (piRNAs),
also known as repeat-associated short interfering RNAs (rasiRNAs) (Malone and
Hannon, 2009). In addition, tRNA-derived RNA fragments (tRFs) show a cleavage
pattern different from miRNA-like derived RNAs (Lee et al., 2009). Moreover, long
ncRNAs (lncRNAs) such as natural antisense transcripts (NATs) often lack significant
secondary structures, and seem to function by the direct sense-antisense interaction
rather than intramolecular base pairs (Lapidot and Pilpel, 2006). Promoter associated
RNAs (PARs), including long and small RNAs, also lack secondary structure (Taft
et al., 2009b).

6



Figure 1.5 Graphical and string representations of a secondary structure. In the
graphical representation, small circles represent residues in a nucleotide sequence, while
blue lines represent base pairs among residues. In the string representation, a pair of
left and right brackets represents a base pair, while dots represent unpaired residues.

As discussed later, the proposed methods in this dissertation assume that secondary
structure information is useful to evaluate functional similarity of ncRNAs. Therefore,
we cannot expect the proposed methods perform well on non-structured ncRNAs. We
specifically address the identification of structured RNAs, and non-structured RNAs
are out of the scope of our study.

1.2 RNA informatics
A secondary structure of an RNA molecule can be represented by string data along
with its nucleotide sequences. Figure 1.5 shows a secondary structure of an RNA
molecule using various notation schemes. First, we consider the most intuitive
notation in which the RNA molcule folds back itself so that base-pairing positions
connected by blue lines become close to each other. Next, we stretch the folded
molecule into a straight line, while keeping the connection between base-pairing
positions. This gives a notation in which base-pairing positions are represented by a
set of nested arcs. Then, we place a pair of brackets in each of base-pairing positions,
and a dot character in each of unpaired position. The resultant string representation
is called a dot-bracket notation, which is commonly used in RNA informatics.

Some algorithms exist for extracting secondary structure information from
nucleotide sequences using thermodynamic energy models (Zuker and Stiegler, 1981;
McCaskill, 1990). This information, in addition to nucleotide sequences, can be
exploited for the further information analysis of ncRNAs. There is a broad range
of studies on RNA informatics, including structure-aware alignment (Sankoff, 1985),
tertiary structure prediction (Parisien and Major, 2008), RNA-RNA interaction
prediction (Kato et al., 2010), and RNA-protein interaction prediction (Kazan et al.,
2010).

In the perspective of information analysis, we develop both of the two proposed
methods as applications of similarity search, a fundamental task of biological sequence
analysis. The originality of our studies is the design of similarity measures that

7



Figure 1.6 The simplest case of similarity search. Given a pair of sequences, x and y,
a similarity measure, K(x,y), is evaluated. The larger the similarity value is, the more
likely the sequences belong to the same functional family.

greatly improve the performance of similarity search for ncRNAs. We need to design
a similarity measure that compares a pair of RNAs by utilizing features related to their
biological functions. For this purpose, we employ secondary structure information in
addition to nucleotide sequences.

1.3 Similarity search and its applications
Figure 1.6 illustrates the simplest case of similarity search. Given a pair of sequences,
x and y, it is evaluated how likely they share a common biological function by using a
certain similarity measure, K(x,y). The larger the similarity value is, the more likely
the sequences belong to the same functional family. This process can be combined
with some statistical frameworks to develop a computational method for a specific
problem.

In our studies, we employ support vector machines (SVMs) (Boser et al., 1992)
for predicting new members of known ncRNA families, and clustering (Sokal and
Michener, 1958) for finding novel ncRNA families.

1.3.1 Predicting new members of known families

We can consider an input sequence as a new member of a known family if the sequence
is similar to existing members in the family. Therefore, we evaluate a similarity
measure between the sequence and each of family members. The difficulty here is that
we need to integrate multiple similarity values into one criterion for prediction. In
addition, we must discriminate true similarity to family members from false similarity
to non-members occured by chance. This problem is expressed by the following
formula:

f(x) =
∑
i

λiK(x,yi
+)−

∑
j

λjK(x,yj
−), (Eq. 1.1)

where x is an input sequence, {yi
+} is a set of family members, {yj

−} is a set of
non-members, and λi and λj are weights for the contributions of family members
and non-members, respectively. In (Eq. 1.1), the first term evaluates true similarity
to family members, while the second term evaluates false similarity to non-members.

8



Thus, we predict that an input sequence x is a new member if f(x) ≥ 0.
To determine λi and λj in (Eq. 1.1), we employ a statistical framework called

SVMs (Boser et al., 1992). Figure 1.7 illustrates SVMs for predicting new members
of know families. In a training phase, SVMs use family members {yi

+} as positive

samples, and non-members {yj
−} as negative samples. These samples are mapped into

a space where relative positions are consistent with similarity relationship defined by
K (Figure 1.7a). (The similar samples, in terms of K, are mapped to a neighborhood
in a space. SVMs determine a hyperplane in the space so that it can discriminate
family members and non-members. This is equivalent to optimize λi and λj so that
each of family members can take f(yi

+) ≥ 0, and each of non-members can take

f(yj
−) < 0. In a test phase, SVMs predict that an input sequence x is a new member

if x is mapped into the family side of the space, i.e. f(x) ≥ 0 (Figure 1.7b). For a
more precise formulation of SVMs, see (Boser et al., 1992) and (Vapnik, 1998).

In the context of SVMs, a similarity measure, K, is called a kernel function. The
performance of an SVM classifier depends critically on the design of a kernel function
since it defines relative positions in the space.

1.3.2 Finding novel families

We can find a candidate of novel family from a set of unannotated sequences by
detecting subsets in which sequences are similar to each other. Such a problem is
called clustering, and requires to evaluate a similarity measure among all pairs in a
given set.

Specifically, we employ hierarchical clustering by the weighted pair-group method
with arithmetic mean (WPGMA) algorithm (Sokal and Michener, 1958). Figure 1.8
illustrates a clustering procedure for finding novel families. Given a set of unannotated
sequences, we compute an all-against-all similarity matrix using K, and derive the
distance matrix by one minus the similarity (assuming a similarity value is normalized
to range from one to zero). The WPGMA algorithm constructs a cluster tree whose
leaves are sequences, and branches (edges) represent the distance among sequences.
We can obtain candidate families from the cluster tree by cutting the branches at
a distance threshold. For a more precise description of the WPGMA algorithm, see
(Sokal and Michener, 1958).

The performance of clustering methods depends critically on the design of a
similarity measure, K. In particular, if a similarity is inaccurate, a cluster tree
becomes unclear, and requires manual inspection to detect novel families.

1.4 Designing a similarity measures for ncRNAs
In this section, we clarify the difficulty in designing a similarity measure for ncRNAs,
and briefly explain the originality of our study.

9



Figure 1.7 Schematic diagram of SVMs for predicting a new member of a known

family. (a) In a training phase, family members {yi
+} and non-members {yj

−} are used
as positive samples and negative samples, respectively. These samples are mapped into
a space where relative positions are consistent with similarity relationship defined by K.
SVMs determine a hyperplane in the space so that it can discriminate family members
and non-members. (b) In a test phase, SVMs predict that an input sequence x is a new
member or not, depending on whether x is mapped into the family side of the space,

1.4.1 Similarity of nucleotide sequences

We can measure the similarity between two nucleotide sequences by pairwise
alignment using the Smith-Waterman (SW) algorithm (Smith and Waterman, 1981).
The SW algorithm calculates the similarity of entire sequences based on a scoring
function, Sxy(i, j), which measures the similarity between the i-th position in x
and the j-th position in y (Figure 1.9). If we do not consider secondary structure

10



Figure 1.8 Schematic diagram of clustering procedures for finding candidates of novel
families. For a set of unannotated sequences, an all-against-all similarity matrix is
computed by using K, the corresponding distance matrix is derived. A cluster tree
is constructed so that the lengths of branches (edges) represents the distance among
sequences. Candidate families are obtained from the cluster tree by cutting the branches
at a distance threshold.

information, the scoring function is simply a similarity measure for nucleotide
characters, {A, C, G, U}, i.e. a substitution matrix. We can employ a substitution
matrix such as the RIBOSUM matrix (Klein and Eddy, 2003), which corresponds to
the BLOSUM matrix for amino acid characters.

In the SW algorithm, the scoring function, Sxy(i, j), needs to be evaluated for
O(|x||y|) combinations of positions because i and j can take |x| and |y| possible
values, respectively. Consequently, the SW algorithm require the computational cost
in O(|x||y|).

1.4.2 Similarity of secondary structures

To measure the similarity of secondary structures, a straightforward approach is
to consider the scoring function between two base pairs rather than two residues.
Figure 1.10a shows this situation. The scoring function, Sxy(i, v, j, w), measures the
similarity between the base pair (i, v) in x and the base pair (j, w) in y, incorporating
secondary structure information. However, the scoring function needs to be evaluated

11



Figure 1.9 A scoring function that measures the similarity of nucleotide sequences.
The scoring function needs to be evaluated for O(|x||y|) combinations of positions
because i and j can take |x| and |y| possible values, respectively.

for O(|x|2|y|2) combination of positions because two variables exist for each of x and
y. This computation is usually prohibitive for practical applications.

One compromise is to ignore the partner of base pairs, and consider the scoring
function between two residues as shown in Figure 1.10b. The scoring function can still
incorporate secondary structure information observed from the one side of a base pair
(i.e. the information that the residue is left or right side of a base pair, or unpaired).
The scoring function needs to be evaluated only in O(|x||y|) combinations of positions,
which is the same order as the SW algorithm. However, this heuristics for the scoring
function may degrade the accuracy of resultant similarity measures. Therefore, we
compensate this approximation by incorporating additional information.

1.4.3 Profile information

In Chapter 2, we describe a new kernel function, called Profile BPLA kernel, which
predicts ncRNAs from alignment data rather than single sequences. By utilizing the
profile information of alignment data, the proposed kernel enables to calculate the
accurate similarity between ncRNAs (Figure 1.11).

We achieve better accuracy than existing methods (Morita et al., 2009; Washietl
et al., 2005; Gruber et al., 2010; Sato et al., 2008) for a wide range of families including
miRNAs, snoRNAs and riboswitches. Furthermore, our method can keep its excellent
performance under the practical condition where the quality of input alignment data
is not necessarily high. We simulate errors in alignment data suggested by previous
studies (Prakash and Tompa, 2007; Wang et al., 2007; Torarinsson et al., 2006, 2008),
and evaluate to what extent the performance of prediction methods can be influenced.
Our method is surprisingly robust against the errors even when existing methods are
severely damaged.

12



Figure 1.10 Scoring functions that measure the similarity of secondary structures.
(a) A scoring function that measures the similarity between two base pairs needs to be
evaluated for O(|x|2|y|2) combinations of positions. This is too time-consuming. (b) A
similarity measure is approximated so that it ignores the partner of base-pairing, but still
utilizes secondary structure information in each position. The approximate similarity
measure needs to be evaluated only in O(|x||y|) combinations of positions.

1.4.4 Ensemble information

In Chapter 3, we describe a new similarity measure that utilizes the ensemble
information involved when compairing ncRNAs. Our similarity measure incorporate
all possible sequence alignments and all possible secondary structures predicted from
a pair of RNAs (Figure 1.12).

13



Figure 1.11 Extension of similarity search using profile information. A similarity
measure is defined between alignment data, rather than single sequences.

We achieve the best balance between accuracy and efficiency among existing
methods (Will et al., 2007; Torarinsson et al., 2007; Sato et al., 2008). The
improvement is especially remarkable when a family to be detected has a large
diversity of member sequences. Our method can provide candidate families without
manual inspection required by existing methods. Moreover, our method is about
1000 times as fast as previous state-of-the-art methods, making it more attractive for
large-scale analysis.
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Figure 1.12 Ensemble information in the evaluation of a similarity measure. (a) Two
sequences have a lot of possible sequence alignments, which have different alignment
scores. (b) Each of two sequences has a lot of possible secondary structures, which have
different probabilities.
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Chapter 2

Robust and accurate prediction of noncoding

RNAs from aligned sequences
In this chapter, we propose a method that predicts whether an input RNA is a
new member of a known noncoding RNA (ncRNA) family (Saito et al., 2010). This
problem can be considered as an application of similarity search in which a similarity
measure between a pair of RNAs is combined with support vector machines (SVMs) to
discriminate family members from non-members. Thus, we aim to develop a similarity
measure which is called a kernel function in the context of SVMs.

To measure the similarity between a pair of RNAs accurately, one common approach
is to utilize the profile information contained in alignment data rather than single
sequences. However, this strategy involves the possibility that the quality of input
alignments can influence the performance of prediction methods. Therefore, the
evaluation of the robustness against alignment errors is necessary as well as the
development of accurate prediction methods.

We describe a new method, called Profile BPLA kernel, which predicts ncRNAs
from alignment data in combination with SVMs. Profile BPLA kernel is an extension
of base-pairing profile local alignment (BPLA) kernel which we previously developed
for the prediction from single sequences. By utilizing the profile information of
alignment data, the proposed kernel can achieve better accuracy than the original
BPLA kernel. We show that Profile BPLA kernel outperforms the existing prediction
methods which also utilize the profile information using the high-quality structural
alignment dataset. In addition to these standard benchmark tests, we extensively
evaluate the robustness of Profile BPLA kernel against errors in input alignments.
We consider two different types of error: first, that all sequences in an alignment are
actually ncRNAs but are aligned ignoring their secondary structures; second, that
an alignment contains unrelated sequences which are not ncRNAs but still aligned.
In both cases, the effects of errors on the performance of Profile BPLA kernel are
surprisingly small. Especially for the latter case, we demonstrate that Profile BPLA
kernel is more robust compared to the existing prediction methods.

2.1 Background
Reliable identification of ncRNAs is one of the major goals of recent computational
biology (Eddy, 2002; Hüttenhofer et al., 2005). To improve the reliability of
predictions, many existing methods take an alignment as input rather than a single
sequence (Backofen et al., 2007). Alignment data provide the profile information
of ncRNAs which is not evident from individual sequences; it can help to capture
detailed features of primary sequences and secondary structures. Several prediction
methods based on SVMs have been proposed with this respect, and shown to achieve
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high accuracy (Washietl et al., 2005; Gruber et al., 2010; Sato et al., 2008). Each
method has its own kernel function which defines the similarity between a pair of
alignment data and determines the accuracy of the SVM classifier. Washietl et al.
(2005) and Gruber et al. (2010) have developed RNAz, which employs radial basis
function (RBF) kernels to compute the similarity of feature vectors of alignment
data. A major contribution to its prediction is made by the structure conservation
index (SCI) based on thermodynamic energy models. This feature value assesses
whether an alignment is structurally conserved by normalizing the minimum free
energy of consensus secondary structures with the average of those for individual
sequences. Sato et al. (2008) have developed Profile stem kernel as an extension of
Stem kernel which was originally proposed for analyzing single sequences (Sakakibara
et al., 2007). The method calculates the similarity between a pair of alignment data by
summing the substitution scores for all pairs of effective (highly probable) consensus
stem structures.

In their studies, input alignments were assumed to be correct or at least not
damaging to the accuracy of the prediction methods. However, it is not necessarily
the case under the realistic conditions in genomic and transcriptomic screens. Since
aligning genomic sequences is an error-prone process (Prakash and Tompa, 2007;
Wang et al., 2007), prediction methods have to deal with low-quality alignment data
in most practical applications. For example, RNAz and Profile stem kernel utilize
consensus secondary structures as the profile information, which are known to be
degraded by the use of low-quality alignment data (Kiryu et al., 2007). The previous
studies have not fully evaluated to what extent the quality of input alignments can
influence the performance of the prediction methods.

We can consider two different types of error in alignment data: first, that all
sequences in an alignment are actually ncRNAs but are aligned ignoring their
secondary structures (Type A); second, that an alignment contains unrelated
sequences which are not ncRNAs but still aligned (Type B). Figure 2.1 shows examples
of the Type A error and the Type B error. In the remaining part of this chapter, we
use these definitions of the Type A and the Type B errors.

The Type A errors are usually involved in genomic and transcriptomic screens since
we practically use sequence-based aligners due to the high computational cost for
the construction of structural alignment data. In accordance with this convention,
the original papers of RNAz and Profile stem kernel tested their methods only on
sequence-based alignment datasets (Washietl et al., 2005; Sato et al., 2008). On the
other hand, some studies have since then attempted to detect ncRNAs from structural
alignment data obtained by realigning sequence-based alignments (Torarinsson et al.,
2006, 2008). Following these efforts, the recent update of RNAz has reported the
results that its accuracy slightly improved when using structural alignment data as
input (Gruber et al., 2010). However, the results were only on the dataset with
various ncRNA families mixed, and the improvement for each particular family was
not shown. For Profile stem kernel, similar experiments on the Type A errors have
not been presented.

The amount of the type B errors has been intensively studied using the 17-way
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Figure 2.1 Examples of the Type A error and the Type B error in alignment data.
Sequences colored with green are miRNA precursors, while those colored with red are
unrelated sequences which are not ncRNAs. (a) Example of the Type A error. The left
alignment is produced by RAF (Do et al., 2008), which is one of the most accurate tool
for structural alignment. The right alignment is produced by CLUSTALW (Thompson
et al., 1994) without considering secondary structure. The discrepancy between the two
alignments is marked by blue boxes. We call this discrepancy as the Type A error. (b)
Example of the Type B error. The left alignment is produced by CLUSTALW, and
thus may contain the Type A error. Nevertheless, the left alignment does not contain
the Type B error because all sequences in alignment are actually ncRNAs. The right
alignment contains three unrelated sequences which can be considered as the Type B
error.
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vertebrate alignment in the UCSC genome browser (Kuhn et al., 2009). One study
has estimated that 9.7% of the regions include unrelated sequences which are not
orthologous to the other sequences in the alignment (Prakash and Tompa, 2007).
More strikingly, the estimate in (Wang et al., 2007) says that 16% of the segments
aligned to ncRNA genes are wrongly included in the alignments from the viewpoint
of their secondary structures. In spite of the great significance of the Type B errors
suggested by these studies, there has been so far no systematic evaluation about their
influence to the performance of prediction methods.

In this chapter, we describe a new method, called Profile BPLA kernel, which
predicts ncRNAs from alignment data in combination with SVMs. Profile BPLA
kernel is an extension of base-pairing profile local alignment (BPLA) kernel which we
previously developed for the prediction from single sequences (Morita et al., 2009).
By utilizing the profile information of alignment data, the proposed kernel can achieve
better accuracy than the original BPLA kernel. We show that Profile BPLA kernel
outperforms the existing prediction methods which also utilize the profile information
using the high-quality structural alignment dataset. In addition to these standard
benchmark tests, we extensively evaluate the robustness of Profile BPLA kernel
against errors in input alignments. For both the Type A and the Type B errors, the
effects on the performance of Profile BPLA kernel are surprisingly small. Especially
for the Type B errors, we demonstrate that Profile BPLA kernel is more robust
compared to the existing prediction methods.

2.2 Methods
In this section, we propose an accurate and robust method for the prediction of
ncRNAs from alignment data. The proposed method, named Profile BPLA kernel, is
an extension of BPLA kernel which we previously developed for the prediction from
single sequences (Morita et al., 2009). Hence, we first review the original algorithm
of BPLA kernel, and then extend the method to alignment data.

The whole schemes of the original BPLA kernel and Profile BPLA kernel are
summarized in Figure 2.2.
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2.2.1 Notations

For an RNA sequence x, we denote its length by |x|, and the nucleotide at the i-th
position by xi. For a pair of sequences, x and y, we denote the set of all possible local
alignments in the Smith-Waterman (SW) algorithm (Smith and Waterman, 1981) by
Πxy, and one particular local alignment in Πxy by πxy. We denote the alignment
score of πxy by Score(πxy), which is calculated based on a scoring function Sxy(i, j)
for matching the i-th position in x and the j-th position in y. We design Sxy(i, j)
using a nucleotide substitution matrix s(xi, yj) as its component.

For each sequence x, we denote the set of all possible secondary structures by
Θx, and one particular secondary structure in Θx by θx. We represent a secondary
structure by θx = {θx(i, j)}i<j , where a binary variable θx(i, j) is equal to one only
when the i-th position and the j-th position in x form a base pair. In addition, for
each position i in x, we define three kinds of binary variable: Lx(i) =

∑
j:j>i θx(i, j) is

equal to one only when a pair is formed with one of the downstream positions; Rx(i) =∑
j:j<i θx(j, i) is equal to one only when a pair is formed with one of the upstream

positions; and Ux(i) = 1 − Lx(i) − Rx(i) is equal to one only when the position is
unpaired. These binary variables are converted to the corresponding probabilities by
taking the expectation over Θx. For θx(i, j), we obtain a base-pairing probability
matrix, which consists of the probabilities Px(i, j) that the i-th and the j-th positions
form a base pair:

Px(i, j) =
∑

θx∈Θx

θx(i, j)P (θx|x),

where the probability distribution P (θx|x) is computed with the McCaskill algorithm
(McCaskill, 1990) based on thermodynamic energy models. For {Lx(i), Rx(i), Ux(i)},
we obtain a base-pairing profile (Bonhoeffer et al., 1993), which consists of the
probabilities {PL

x (i), PR
x (i), PU

x (i)} that the i-th position is paired with one of the
downstream/upstream positions, or unpaired, respectively:

PL
x (i) =

∑
θx∈Θx

Lx(i)P (θx|x) =
∑

θx∈Θx

∑
j:j>i

θx(i, j)P (θx|x) =
∑
j:j>i

Px(i, j),

PR
x (i) =

∑
θx∈Θx

Rx(i)P (θx|x) =
∑

θx∈Θx

∑
j:j<i

θx(j, i)P (θx|x) =
∑
j:j<i

Px(j, i),

PU
x (i) =

∑
θx∈Θx

Ux(i)P (θx|x) = 1− PL
x (i)− PR

x (i).

For a multiple alignmentX, we denote the i-th column byXi, and the k-th sequence
by Xk. The nucleotide at the i-th position in Xk is denoted by Xk

i , which can be a
gap character.
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2.2.2 Original BPLA kernel for single sequences

A kernel function is a measure of similarity between a pair of objects and can be
used as a prediction method in combination with an SVM classifier as long as the
Mercer’s condition is satisfied (Vapnik, 1998). BPLA kernel calculates the similarity
between a pair of RNA sequences using the information of their primary sequences
and secondary structures.

The basic idea of BPLA kernel is to perform a pairwise alignment and then to
regard the alignment score as the measure of similarity. Instead of relying on one
optimal alignment, we accumulate the scores of all possible local alignments in the
SW algorithm using local alignment (LA) kernel (Saigo et al., 2004). LA kernel
between two sequences, x and y, is defined as follows:

K(x,y) =
∑

πxy∈Πxy

eβScore(πxy), (Eq. 2.1)

where β ≥ 0 is a parameter. In practice, kernel values are normalized to range from
0 to 1:

Kn(x,y) =
K(x,y)√

K(x,x)K(y,y)
. (Eq. 2.2)

Figure 2.3 shows the state transition diagram of pairwise local
alignment. Given a scoring function Sxy(i, j) for the alignment score
Score(πxy), LA kernel (Eq. 2.1) can be computed by the following
algorithm:

Initialization:
for i ∈ {0, . . . , |x|} and j ∈ {0, . . . , |y|} do
M(i, 0) = IX(i, 0) = IY (i, 0) = TX(i, 0) = TY (i, 0) = 0
M(0, j) = IX(0, j) = IY (0, j) = TX(0, j) = TY (0, j) = 0

end for
Iteration:
for i ∈ {1, . . . , |x|} and j ∈ {1, . . . , |y|} do
M(i, j) = eβSxy(i,j)(1 + IX(i− 1, j − 1) + IY (i− 1, j − 1) +M(i− 1, j − 1))
IX(i, j) = eβgM(i− 1, j) + eβdIX(i− 1, j)
IY (i, j) = eβg(M(i, j − 1) + IX(i, j − 1)) + eβdIY (i, j − 1)
TX(i, j) = M(i− 1, j) + TX(i− 1, j)
TY (i, j) = M(i, j − 1) + TX(i, j − 1) + TY (i, j − 1)

end for
Termination:
K(x,y) = 1 + TX(|x|, |y|) + TY (|x|, |y|) +M(|x|, |y|)

where the parameters g and d are penalties for gap opening and gap extension,
respectively.

To incorporate secondary structure information into the match score Sxy(i, j), we
employ the scoring function used in STRAL (Dalli et al., 2006). For each sequence
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Figure 2.3 The state transition diagram of pairwise local alignment. S is the initial
state, BX and BY are the unaligned states before the alignment, M is the match state,
IX and IY are the gap states, TX and TY are the unaligned states after the alignment,
and E is the final state.

x, we first compute a base-pairing probability matrix Px(i, j) using the Vienna RNA
package (Hofacker, 2003) which is an implementation of the McCaskill algorithm.
Subsequently, for each position i in x, we summarize the base-pairing probabilities
into the base-pairing profile {PL

x (i), PR
x (i), PU

x (i)}. We define the scoring function
Sxy(i, j) using the base-pairing profiles as follows:

Sxy(i, j) = αSstruct + Sseq

= α
(√

PL
x (i)PL

y (j) +
√
PR
x (i)PR

y (j)
)

+s(xi, yj)
√
PU
x (i)PU

y (j), (Eq. 2.3)

where α ≥ 0 is a weight parameter for structural information, and a nucleotide
substitution score s(xi, yj) captures the similarity of primary sequences. We use the
RIBOSUM 85–60 substitution matrix (Klein and Eddy, 2003) as s(xi, yj) with the
minor modification that its smallest eigenvalue is subtracted from each of its diagonal
elements in order to satisfy the Mercer’s condition.

Combining LA kernel (Eq. 2.2) with the scoring function (Eq. 2.3), we call this
method base-pairing profile local alignment (BPLA) kernel.
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2.2.3 Profile BPLA kernel for alignment data

Now we extend BPLA kernel to the prediction from alignment data. Profile BPLA
kernel for alignment data need to define the similarity between a pair of alignment
data instead of a pair of single sequences. More specifically, the new algorithm
needs to perform pairwise alignments between two alignment data, and calculate
their alignment scores. This problem reduces to the definition of a scoring function
corresponding to (Eq. 2.3) for two alignment columns instead of two sequence
positions. Both Sstruct and Sseq in (Eq. 2.3) should be extended to take into account
the profile information contained in the alignment columns.

In order to define the structural similarity Sstruct between two alignment columns,
we need a base-pairing profile for each alignment column. This can be calculated
if we define a base-pairing probability matrix for a multiple alignment. As shown
in (Kiryu et al., 2007; Hamada et al., 2009), the consensus secondary structures of
aligned sequences are accurately modeled by averaging the individual base-pairing
probability matrices. Thus, we define a base-pairing probability matrix for a multiple
alignment X as follows:

PX(i, j) =
1

N(X)

N(X)∑
k=1

P ′
Xk(i, j),

P ′
Xk(i, j) =

{
PXk′ (r(i), r(j)) (either of Xk

i or Xk
j is not a gap)

0 (otherwise),

where Xk′
is the original sequence of Xk without gaps, r(i) is the index in Xk′

corresponding to the i-th position inXk, andN(X) is the number of aligned sequences
in X.

The sequence similarity Sseq can be extended by defining a substitution score
s(·, ·) between two alignment columns. We use the averaged score of all possible
substitutions between two columns, Xi and Yj :

s(Xi, Yj) =
1

N(X)N(Y)

N(X)∑
k=1

N(Y)∑
l=1

s′(Xk
i , Y

l
j ),

s′(Xk
i , Y

l
j ) =

{
s(Xk

i , Y
l
j ) (either of Xk

i or Y l
j is not a gap)

0 (otherwise).

This is equivalent to the sum-of-pairs score, which is widely used in the problem of
group-to-group alignment for primary sequences.
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Table 2.1 Summary of the combined Rfam families.

Family NF N NS
C/D snoRNA 340 272 5

H/ACA snoRNA 133 119 5
miRNA precursor 401 431 5

Riboswitch 10 85 3
tRNA 1 83 3

Family: name of the larger category used in the performance evaluation. NF: number of smaller

families in the Rfam database which were combined. N: number of positive samples. NS: average

number of aligned sequences per sample.

2.3 Results and discussion
In this section, we examine the accuracy of Profile BPLA kernel in comparison to
the state-of-the-art prediction methods based on SVMs. Furthermore, we present a
systematic evaluation about the robustness of Profile BPLA kernel against the Type A
and the Type B errors in input alignments. See Background for the definitions of the
Type A and the Type B errors.

2.3.1 Dataset and experimental system

We created a dataset which includes 990 positive samples from five ncRNA families:
C/D snoRNAs, H/ACA snoRNAs, miRNA precursors, riboswitches, and tRNAs.
These families were collected by combining 885 smaller families in the Rfam database
(Gardner et al., 2009) into larger categories (Table 2.1). Each positive sample is
an alignment of ncRNAs, and is separated by a sequence identity of less than 60%
from the other alignment data (see Experimental details). For the construction
of input alignments, we produced two versions of the dataset: the high-quality
structural alignments by RAF (Do et al., 2008), and the sequence-based alignments
by CLUSTALW (Thompson et al., 1994). We generated negative samples which have
the same dinucleotide contents as the positives using the randomization by SISSIz
(Gesell and Washietl, 2008).

The accuracy of the prediction methods was assessed by the area under the receiver
operating characteristic (ROC) curve, i.e., the AUC. The ROC curve plots the true
positive rate TP/(TP + FN) versus false positive rate FP/(TN + FP ) for different
decision thresholds of a SVM classifier, where TP is the number of correctly predicted
positives, FP is the number of incorrectly predicted positives, TN is the number
of correctly predicted negatives, and FN is the number of incorrectly predicted
negatives. We used four-fold cross-validation with the following modifications. The
SVM classifier was trained with the same number of negative samples as the positives,
and tested on a data partition which includes eight times as many negative samples
as the positives. This problem setting is analogous to genomic and transcriptomic
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Table 2.2 Accuracy improvement by the profile information.

AUC (stdev)
Family Original BPLA kernel Profile BPLA kernel

C/D snoRNA 0.91 (0.02) 0.95 (0.02)
H/ACA snoRNA 0.93 (0.03) 0.97 (0.02)
miRNA precursor 0.96 (0.01) 0.97 (0.01)

Riboswitch 0.86 (0.04) 0.92 (0.05)
tRNA 0.98 (0.02) 1.00 (0.00)

Average 0.93 (0.02) 0.96 (0.02)

Family: name of the target ncRNA family. AUC: area under the ROC curve. Profile BPLA kernel,

which utilizes the profile information of alignment data, is compared to the original BPLA kernel for

single sequences.

screens, where the vast majority of the search space does not contain functional
ncRNA genes. Moreover, the four-fold cross validation is repeated four times with
different splits of the dataset (16 trials in total). The parameters α, β, g, and d
in Profile BPLA kernel were adapted to the training data using the gradient-based
optimization developed for the original BPLA kernel (Sato et al., 2009). Note that
we did not used the test data for the parameter optimization to avoid overfitting.

2.3.2 Accuracy improvement by the profile information

We first examined whether the proposed kernel could achieve better accuracy than
the original BPLA kernel by utilizing the profile information of alignment data.
For this purpose, the dataset of single sequences was created from the alignment
dataset described above. For positive samples, we randomly chose one sequence from
each alignment of ncRNAs. We generated negative samples which have the same
dinucleotide contents as the positives by the standard shuffling procedure (Altschul
and Erickson, 1985). Then, the proposed kernel and the original BPLA kernel were
compared using the high-quality structural alignment dataset and the corresponding
single sequence dataset, respectively.

Table 2.2 presents the experimental results. As expected, the proposed kernel
achieved the better AUC than the original BPLA kernel for the all ncRNA families.
These results suggest that the profile information contained in alignment data is useful
to improve the prediction of ncRNAs.

2.3.3 Accuracy on the high-quality structural alignment dataset

Next, we compared Profile BPLA kernel with the existing prediction methods which
also utilize the profile information. In the ideal condition, the profile information
should be extracted from high-quality alignment data such that all sequences
are actually ncRNAs and aligned taking into account their secondary structures.
Therefore, we tested the accuracy of each prediction method using the high-quality
structural alignment dataset constructed by RAF. The competitors were RNAz
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Table 2.3 Accuracy on the high-quality structural alignment dataset.

AUC (stdev)
Family Profile BPLA kernel Profile LA kernel Profile stem kernel RNAz

C/D snoRNA 0.95 (0.02) 0.79 (0.04) 0.80 (0.02) 0.78 (0.03)
H/ACA snoRNA 0.97 (0.02) 0.65 (0.20) 0.89 (0.04) 0.95 (0.03)
miRNA precursor 0.97 (0.01) 0.69 (0.02) 0.92 (0.01) 0.96 (0.01)

Riboswitch 0.92 (0.05) 0.41 (0.23) 0.77 (0.05) 0.97 (0.02)
tRNA 1.00 (0.00) 0.88 (0.03) 0.95 (0.02) 0.96 (0.02)

Average 0.96 (0.02) 0.69 (0.10) 0.86 (0.03) 0.92 (0.02)

Family: name of the target ncRNA family. AUC: area under the ROC curve. Profile BPLA kernel

is compared to the other prediction methods which also utilize the profile information of alignment

data: Profile LA kernel, Profile stem kernel, and RNAz.

Table 2.4 Accuracy on the sequence-based alignment dataset.

AUC (stdev)
Family Profile BPLA kernel Profile LA kernel Profile stem kernel RNAz

C/D snoRNA 0.95 (0.01) 0.80 (0.04) 0.80 (0.02) 0.77 (0.02)
H/ACA snoRNA 0.96 (0.02) 0.77 (0.17) 0.87 (0.03) 0.94 (0.03)
miRNA precursor 0.97 (0.01) 0.69 (0.03) 0.92 (0.02) 0.96 (0.01)

Riboswitch 0.92 (0.03) 0.38 (0.19) 0.79 (0.05) 0.94 (0.02)
tRNA 1.00 (0.00) 0.88 (0.03) 0.94 (0.03) 0.95 (0.02)

Average 0.96 (0.02) 0.70 (0.09) 0.86 (0.03) 0.91 (0.02)

Family: name of the target ncRNA family. AUC: area under the ROC curve. Profile BPLA kernel

is compared to the other prediction methods which also utilize the profile information of alignment

data: Profile LA kernel, Profile stem kernel, and RNAz.

(Washietl et al., 2005; Gruber et al., 2010) and Profile stem kernel (Sato et al.,
2008). We also performed the experiment with the profile version of LA kernel, which
does not consider secondary structure information, by setting base-pairing profiles
{Lx(i) = 0, Rx(i) = 0, Ux(i) = 1} in Profile BPLA kernel.

Table 2.3 presents the experimental results. Profile BPLA kernel outperformed
the other prediction methods except for riboswitches, and achieved the best AUC
on average. The accuracy of Profile LA kernel was severely limited compared to the
prediction methods which consider secondary structure information. However, for
C/D snoRNAs, Profile LA kernel resulted in the comparable AUC with RNAz and
Profile stem kernel. These results suggest that RNAz and Profile stem kernel may
fail to incorporate the effective information of secondary structures. Profile BPLA
kernel consistently achieved the better AUC than Profile LA kernel, showing its wide
applicability.

The superiority of Profile BPLA kernel is inherited from the original BPLA kernel.
In our previous paper (Morita et al., 2009), we have proved that the original BPLA
kernel outperforms the non-profile versions of Stem kernel and LA kernel. Our results
showed the high accuracy of BPLA kernels in the prediction from alignment data as
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well as from single sequences. (Note that the non-profile version of RNAz does not
exist since the feature values of alignment data used in the method can not be defined
for single sequences.)

2.3.4 Robustness against the Type A errors

In addition to the standard benchmark tests, we extensively evaluated the robustness
of Profile BPLA kernel against errors in input alignments. To discuss the Type A
errors, we performed the experiment using the sequence-based alignment dataset
constructed by CLUSTALW instead of the high-quality structural alignment dataset.

By comparing the results in Table 2.4 with those in Table 2.3, we can see the
robustness of each prediction method against the Type A errors. Profile BPLA
kernel achieved almost the same AUC for the two datasets, showing the comparable
robustness to RNAz and Profile stem kernel.

The robustness of Profile BPLA kernel can be attributed to its formulation. Profile
BPLA kernel utilizes averaged base-pairing probability matrices to obtain the profile
information of secondary structures. Averaged base-pairing probability matrices have
been shown to be useful for the robust modeling of consensus secondary structures
against the Type A errors (Kiryu et al., 2007). Our results showed the effectiveness
of averaging base-pairing probabilities for the robustness in the problem of ncRNA
prediction.

Our experiment provided the detailed evaluation of the robustness for each
particular ncRNA family. The recent study has reported that the accuracy of RNAz
can be slightly improved by the use of structural alignment data (Gruber et al., 2010).
However, the experiment in (Gruber et al., 2010) has been performed on the dataset
with various families mixed. In our experiment, we found that the Type A errors
had different effects on the performance of each prediction method depending on
families. This in-depth view of the robustness is especially important when we target
a particular family in genomic and transcriptomic screens.

Our results also demonstrated that Profile BPLA kernel outperformed the existing
prediction methods in the “realistic” condition considered in the previous studies
(Washietl et al., 2005; Gruber et al., 2010; Sato et al., 2008). Profile BPLA kernel
achieved the best AUC for the sequence-based alignment dataset with the Type A
errors as well as for the high-quality structural alignment dataset. In the following
experiments, we further evaluated the robustness of Profile BPLA kernel against the
Type B errors which have been neglected in the previous studies.

2.3.5 Robustness against the Type B errors

For the systematic evaluation of the robustness, we prepared a controlled series
of alignment data with different degrees of the Type B errors. Input alignments
in genomic and transcriptomic screens are typically constructed by sequence-based
alignment tools. Hence, alignment data with the Type B errors are expected to be
optimal at least under the criteria of sequence-based alignment tools, even though
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incorrect from the viewpoint of secondary structures. Based on this assumption,
we generated sequences which can be well aligned to a given alignment in terms
of primary sequences, but do not conserve its consensus secondary structure (see
Experimental details). By introducing these “unrelated” sequences, we simulated the
Type B errors in the sequence-based alignment dataset. For each positive sample in
the test data, a series of erroneous alignments was prepared by gradually replacing
ncRNA sequences with unrelated sequences. We aligned the unrelated sequences
with the remaining ncRNA sequences using CLUSTALW. The resulting alignments
were then used to make the equal-size datasets for the different fractions of unrelated
sequences ranged from 0.0 to 1.0 at intervals of 0.1. An alignment comprising n
ncRNA sequences and m unrelated sequences was included in the dataset of the
fraction f satisfying (m − 1)/(n + m) < f ≤ m/(n + m). We trained the SVM
classifiers with the original training data in the sequence-based alignment dataset,
and tested them on the datasets with the different degrees of the simulated Type B
errors. The performance was assessed by the AUC for discriminating the erroneous
alignments from the alignments consisting only of unrelated sequences.

The experimental results are shown in Figure 2.4. In this figure, zero in the
horizontal axis is equivalent to an ordinary prediction problem in which alignments
to be discriminated from negative samples do not contain any unrelated sequences.
In this situation, Profile BPLA kernel achieved the best accuracy on average, being
consistent with the results in Table 2.4. (The AUC, however, were not exactly the
same as those in Table 2.4 since we used the different kind of negative samples in
the test data between the two experiments: alignments consisting only of unrelated
sequences for Figure 2.4, and dinucleotide-controlled samples for Table 2.4.) As the
fraction of unrelated sequences increased, the AUC for RNAz rapidly fell down to the
baseline. In contrast, Profile BPLA kernel kept the discrimination at high levels until
the alignments were overwhelmed by the Type B errors. A similar tendency was seen
for Profile stem kernel, although its AUC were smaller than Profile BPLA kernel. The
performance of Profile LA kernel was seriously damaged by the Type B errors since
the method does not consider secondary structures of unrelated sequences. These
results suggest that Profile BPLA kernel is the only method which can effectively
detect ncRNAs in the presence of the Type B errors.

The observed differences in the robustness among the methods are deeply connected
with the rationales behind their predictions. RNAz detects ncRNAs by utilizing
the SCI which measures the conservation of secondary structures in an alignment.
Therefore, the experimental results for RNAz can be interpreted as showing that
unrelated sequences cause noise in a conserved secondary structure. Profile BPLA
kernel do not measure the conservation of secondary structures. Instead, we directly
calculate the similarity of secondary structures between input alignments and training
data. Hence, Profile BPLA kernel can detect an alignment containing only a few
ncRNA sequences if they are similar enough to the ncRNAs in training data, even
though the alignment itself is not structurally conserved. Figure 2.5 illustrates an
example of the Type B errors and its influences on the performance of the prediction
methods. Although RNAz accepted the native alignment (Figure 2.5a), it rejected
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Figure 2.4 Accuracy on the sequence-based alignment dataset with different fractions
of unrelated sequences. For each point, the alignments with the different fraction of
unrelated sequences were discriminated from the negative samples which consist only
of unrelated sequences. Zero in the horizontal axis corresponds to the detection of
the alignments which consist only of actual ncRNAs, i.e., an ordinary discrimination
problem without the Type B errors.
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the erroneous alignment (Figure 2.5b) due to the drastic decrease in the SCI value.
On the other hand, Profile BPLA kernel kept the SVM class probability moderate
for the erroneous alignment, accepting the seven miRNA precursors included in
the alignment. Note that the erroneous alignment in Figure 2.5b can be regarded
as conserved if we focus only on the sequence identity. This suggests that such
alignments can be produced by most alignment tools which do not consider secondary
structures. In fact, several studies have suggested that genomic alignments contain
significant amounts of the Type B errors (Prakash and Tompa, 2007; Wang et al.,
2007). Therefore, the robustness of Profile BPLA kernel is a desirable characteristic
for practical applications.

We emphasize that the Type B errors can not be corrected even if we realign the
alignments using structural alignment tools as attempted in (Torarinsson et al., 2006,
2008). In contrast to the Type A errors, the Type B errors are caused by the inclusion
of unrelated sequences rather than the small shifts of matches and gaps. To make
this point clear, we performed the same experiment as in Figure 2.4 and Figure 2.5
using RAF instead of CLUSTALW. For the training data, we used the high-quality
structural alignment dataset, and for the test data, we used the erroneous alignment
realigned by RAF. As expected, the results in Figure 2.6 and Figure 2.7 were close to
those in Figure 2.4 and Figure 2.5, respectively. In Figure 2.6, Profile BPLA kernel
outperformed the existing prediction methods for native alignments, and successfully
kept the discrimination for alignments with moderate degrees of the Type B errors.
Although the erroneous alignment in Figure 2.7b was slightly changed from that in
Figure 2.5b, the outputs of the prediction methods were not significantly improved.
These results suggest that the problem of the Type B errors is inevitable, and the
robustness of Profile BPLA kernel is essential to detect ncRNAs from low-quality
alignment data.
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Figure 2.5 Example of the Type B errors and its influence on the prediction methods.
(a) Native alignment consisting only of ncRNAs. An alignment of 10 miRNA precursors
is highly conserved in terms of both primary sequences and secondary structures.
The consensus secondary structure predicted by RNAalifold (Bernhart et al., 2008)
exhibits a well-known hairpin loop. Profile BPLA kernel and the other prediction
methods accepted this alignment. (b) Alignment with the Type B errors. Three
miRNA precursors in the native alignment were replaced with unrelated sequences,
which destroyed the consensus secondary structure. This alignment was rejected by
RNAz due to the drastic decrease in the SCI and also missed by Profile stem kernel.
Profile LA kernel was completely ruined showing the higher SVM class probability for
the erroneous alignment than that for the native one. Profile BPLA kernel was the only
method to accept the alignment by the moderate decrease in the SVM class probability
from the native one. Note that the mean pairwise identity is still high allowing this
alignment to be produced by sequence-based alignment tools.
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Figure 2.6 Accuracy on the structural alignment dataset with different fractions of
unrelated sequences. For each point, the alignments with the different fraction of
unrelated sequences were discriminated from the negative samples which consist only
of unrelated sequences. Zero in the horizontal axis corresponds to the detection of
the alignments which consist only of actual ncRNAs, i.e., an ordinary discrimination
problem without the Type B errors.
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Figure 2.7 Realigning unrelated sequences by structural alignment tools attempting
to correct the Type B errors. (a) Native alignment consisting only of ncRNAs. (b)
Alignment with the Type B errors. In contrast to the type A errors, the Type B errors
cannot be corrected even if we realign the alignments using structural alignment tools.
Profile BPLA kernel was still the only method to accept the seven miRNA precursors
in the alignment with the Type B errors.
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2.4 Experimental details

2.4.1 Combining related Rfam families

We created the datasets for the benchmark tests using the Rfam database (Gardner
et al., 2009) version 9.1. To make the tests more challenging, we combined related
Rfam families into larger categories as shown in Table 2.1. For example, the C/D
snoRNA family in Table 2.1 was established by combining the 340 Rfam families which
have the string “snoRNA; CD-box;” in the description track. The seed alignments
for these families were then split into single sequences. We performed a complete
linkage clustering using their sequence identity as the similarity function. Clusters
were determined using the similarity threshold of 60%, and we obtained one alignment
from each cluster consisting of multiple sequences.

2.4.2 Generating unrelated sequences

We generated unrelated sequences for simulating the Type B errors in alignment
data. For each larger category in Table 2.1, we took the seed alignments of the
corresponding smaller Rfam families. For each seed alignment, we constructed a
profile hidden Markov model (profile HMM) using HMMER (Eddy, 1998), and a
covariance model (CM) using INFERNAL (Nawrocki et al., 2009). Profile HMMs and
CMs are grammar models to generate sequences which can be well aligned to given
alignments, and to calculate scores for aligning generated sequences to the original
alignments. Profile HMMs do not consider the constraints of consensus secondary
structures in alignments, whereas CMs do. We generated 100000 sequences from
the profile HMM, and calculated the scores for aligning these sequences using the
profile HMM and the CM. We needed sequences which can be well aligned to a given
alignment, but do not conserve its consensus secondary structure. Therefore, we chose
the top 100 sequences whose score difference between the profile HMM and the CM
was large, and used them as the pool of unrelated sequences.

2.4.3 Software versions and options

We used the most recent version of each software, and if not specified, executed
it with the default options. We used RNAz (Washietl et al., 2005; Gruber et al.,
2010) version 2.0 and Profile stem kernel (Sato et al., 2008) version 216c. For the
computation of base-pairing probability matrices, we used the Vienna RNA package
(Hofacker, 2003) version 1.8.4. To construct the sequence-based and the structural
alignment datasets, we used CLUSTALW (Thompson et al., 1994) version 1.83 and
RAF (Do et al., 2008) version 1.00, respectively. To generate the negative samples,
we used SISSIZ version 0.1 with the option “−−simulate −−tstv −−precision 0.05
−−rna” recommended in the original paper (Gesell and Washietl, 2008). For the
prediction of the consensus secondary structures shown in Figure 2.5 and Figure 2.7,
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we used RNAalifold (Bernhart et al., 2008) included in the Vienna RNA package
version 1.8.4. To simulate the unrelated sequences for the Type B errors, we
used the HMMER package (Eddy, 1998) version 2.3.2 and the INFERNAL package
(Nawrocki et al., 2009) version 1.0. For the individual programs in the HMMER
and the INFERNAL packages, we used the following commands: “hmmbuild −g”,
“hmmsearch −E 100000”, and “cmsearch −g −T −10000 −−toponly −−no−qdb
−−fil−no−hmm −−fil−no−qdb”. Basically, these options were set because we
needed global alignments rather than local alignments for the evaluation of the Type B
errors, and wanted to calculate the exact scores for profile HMMs and CMs without
several heuristics implemented in the programs.

2.4.4 Availability

Our implementation of Profile BPLA kernel (including the original BPLA kernel for
single sequences) is freely available at http://bpla-kernel.dna.bio.keio.ac.jp/ under
the GNU general public license. It takes RNA sequences or multiple alignments, and
calculates a kernel matrix, which can be used as an input for a popular SVM tool
called LIBSVM (Fan et al., 2005). Furthermore, our software is capable of parallel
processing using the message passing interface (MPI) (Pacheco, 1996).
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2.5 Conclusion
We have described a new method for the prediction of ncRNAs from alignment data.
Our method, named Profile BPLA kernel, is an extension of BPLA kernel which was
originally developed for the prediction from single sequences (Morita et al., 2009). By
utilizing the profile information of alignment data, the proposed kernel can achieve
better accuracy than the original BPLA kernel. Furthermore, Profile BPLA kernel
outperforms the state-of-the-art prediction methods (Washietl et al., 2005; Gruber
et al., 2010; Sato et al., 2008) which also utilize the profile information.

The evaluation of the robustness against errors in input alignments is a crucial
step for the development of practical prediction methods. Even with prediction
methods showing excellent accuracy for well-curated alignment datasets, the same
performance typically cannot be expected in the practical situations which involve
significant amounts of alignment errors. Previous studies did not fully address
this issue. Through the present study, we extensively evaluated the effectiveness
of Profile BPLA kernel under the realistic conditions in which the quality of input
alignments is not necessarily high. We considered the two different types of error in
alignment data: first, that all sequences in an alignment are actually ncRNAs but
are aligned ignoring their secondary structures (Type A); second, that an alignment
contains unrelated sequences which are not ncRNAs but still aligned (Type B). Our
experiments presented the more detailed evaluation for the Type A errors than the
previous study (Gruber et al., 2010), and the first systematic evaluation for the Type B
errors. For the Type A errors, Profile BPLA kernel has the comparable robustness to
the existing prediction methods. For the Type B errors, Profile BPLA kernel achieves
the higher level of robustness than the existing prediction methods.

We conclude that Profile BPLA kernel provides a promising way for identifying
ncRNAs genes from alignment data.
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Chapter 3

Fast and accurate clustering of noncoding

RNAs using ensembles of sequence

alignments and secondary structures
In this chapter, we propose a method that finds candidates of novel noncoding RNA
(ncRNA) families from a set of unannotated RNAs (Saito et al., 2011). This problem
can be considered as an application of similarity search where clustering detects
subsets of RNAs which are similar to each other.

Several hierarchical clustering methods have been developed using similarity
measures based on the scores of structural alignment. However, the high
computational cost of exact structural alignment requires these methods to employ
approximate algorithms. Such heuristics degrade the quality of clustering results,
especially when the similarity among family members is not detectable at the primary
sequence level.

We describe a new similarity measure for the hierarchical clustering of ncRNAs. The
idea is that the reliability of approximate algorithms can be improved by utilizing the
information of suboptimal solutions in their dynamic programming (DP) frameworks.
We approximate structural alignment in a more simplified manner than the existing
methods. Instead, our method utilizes all possible sequence alignments and all possible
secondary structures, whereas the existing methods only use one optimal sequence
alignment and one optimal secondary structure. We demonstrate that this strategy
can achieve the best balance between the computational cost and the quality of the
clustering. In particular, our method can keep its high performance even when the
sequence identity of family members is less than 60%.

3.1 Background
Recently, high-throughput transcriptome sequencing has uncovered tens of thousands
of ncRNAs that lack significant homology to known families (Guttman et al., 2010;
Rederstorff et al., 2010). Thus, evaluating homology among these unannotated
transcripts, that is, clustering has become an important task to identify novel ncRNA
families (Shi et al., 2009; Weinberg et al., 2009).

Accurate clustering of ncRNAs needs a reliable similarity measure that takes into
account primary sequences and secondary structures. Given a pair of sequences
without known structures, the Sankoff algorithm (Sankoff, 1985) simultaneously
predicts their sequence alignment and consensus secondary structure (i.e., structural
alignment); thus, the obtained alignment score can be a suitable choice for a similarity
measure. However, the original Sankoff algorithm is too time-consuming to deal with
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an all-against-all comparison of many sequences required in clustering procedures.
To address this problem, similarity measures based on the approximation of the
Sankoff algorithm have been proposed, and shown to be applicable to hierarchical
clustering (Will et al., 2007; Torarinsson et al., 2007; Sato et al., 2008). Each
method has its own heuristics to reduce the huge DP matrix used in the Sankoff
algorithm. Will et al. (2007) have developed LocARNA that precludes unsure
secondary structures including low-probability base pairs. Torarinsson et al. (2007)
have developed FOLDALIGNM based on the FOLDALIGN program (Havgaard
et al., 2007) that dynamically excludes low-scoring sequence alignments by means
of length-dependent thresholds. Sato et al. (2008) have developed Stem kernel that
employs heuristics similar to LocARNA, but further precludes secondary structures
including any bifurcation.

Although the approximate Sankoff-style algorithms have enabled similarity
measures based on structural alignment, the quality of clustering results has not
been so high. In the previous studies (Will et al., 2007; Weinberg et al., 2009,
2010), resultant clusters in a hierarchical tree were quite unclear, requiring additional
verification or manual inspection. This was partly because of the diversity within one
ncRNA family. Most ncRNA families have only less than 60% identity at the primary
sequence level (Gardner et al., 2009), and cannot be correctly aligned without taking
into account secondary structures (Wilm et al., 2006). The approximate Sankoff-style
algorithms seemed to be degraded by discarding the secondary structures in the
excluded portion of the DP matrix.

To improve the reliability of the approximate Sankoff-style algorithms, we focus on
the information of suboptimal structural alignments. Among the existing methods,
LocARNA and FOLDALIGN calculate the similarity based on the score of one optimal
structural alignment. This means that these methods ignore the scores of suboptimal
structural alignments, and only use one optimal sequence alignment and one optimal
secondary structure. In contrast, Stem kernel sums up the scores of structural
alignments allowed in the approximate Sankoff-style algorithm, incorporating a subset
of sequence alignments and a subset of secondary structures. As a consequence of
this strategy, Stem kernel gives comparable clustering results to LocARNA, while
employing the more reduced DP matrix. These observations suggest the possibility
that we can design a more reliable similarity measure by utilizing all possible sequence
alignments and all possible secondary structures. This is not trivial because if we
naively try to incorporate all possible structural alignments, it will require the full-size
DP matrix used in the original Sankoff algorithm with the prohibitive computational
cost.

In this paper, we describe a new similarity measure for the hierarchical clustering
of ncRNAs. We approximate the problem of structural alignment by the two
separate problems: the prediction of sequence alignment, and the prediction of
secondary structure for each sequence. For this purpose, the Sankoff algorithm for
structural alignment is approximated by the combination of the Smith-Waterman
(SW) algorithm (Smith and Waterman, 1981) for sequence alignment, and the
McCaskill algorithm (McCaskill, 1990) for secondary structures. The approximation
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allows to obtain all possible sequence alignments from the SW algorithm, and
all possible secondary structures from the McCaskill algorithm, much faster than
obtaining all possible structural alignments from the original Sankoff algorithm. We
first describe a similarity measure using the scores of all possible sequence alignments
between two RNAs. Then, we design a scoring function for these sequence alignments
using all possible secondary structures of each of the two RNAs. We start from a
scoring function that measures the similarity between two secondary structures using
the state of base pairing at each position. The proposed scoring function is defined as
an expectation of this scoring function over all possible secondary structures of each
of the two RNAs.

We demonstrate that our method can achieve the best balance between the
computational cost and the quality of the clustering among the existing methods.
In particular, our method can keep its high performance even when the sequence
identity of family members is less than 60%.

3.2 Methods
In this section, we propose a new method for measuring the similarity between
two RNA sequences without known structures. The proposed method is applied
to the hierarchical clustering of ncRNAs with the weighted pair-group method with
arithmetic mean (WPGMA) algorithm. Given a set of sequences, we calculate an
all-against-all similarity matrix using our method. Then, we derive the distance
matrix by one minus the similarity, and obtain the cluster tree by the WPGMA
algorithm.

The idea of our similarity measure is to approximate the Sankoff algorithm for
structural alignment by the combination of the SW algorithm for sequence alignment,
and the McCaskill algorithm for secondary structures. This approximation allows to
utilize the ensembles of all possible sequence alignments and all possible secondary
structures separately from each of the two algorithms. First, we describe a similarity
measure using the scores of all possible sequence alignments between two RNAs.
Next, we design a scoring function for these alignments using all possible secondary
structures of each of the two RNAs.

3.2.1 Ensemble of all possible sequence alignments

To measure the similarity between two RNAs, one common approach is to
perform pairwise alignment, and to calculate its alignment score. The Sankoff
algorithm simultaneously models sequence alignments and secondary structures, and
is extremely time-consuming. Therefore, we first approximate the Sankoff algorithm
by the SW algorithm that only models sequence alignments apart from secondary
structures. Although this is a strong approximation, we attempt to improve the
reliability by utilizing all possible sequence alignments rather than one optimal
sequence alignment.

40



For an RNA sequence x, we denote its length by |x|. For each position 1 ≤ i ≤ |x|
in x, we denote the nucleotide by xi ∈ {A, C, G, U}.

For two sequences, x and y, let Πxy be the set of all possible sequence alignments
in the SW algorithm. Let πxy denote one particular sequence alignment in Πxy.

We calculate the similarity between x and y by accumulating the alignment score
of πxy over Πxy. For this purpose, we employ local alignment (LA) kernel (Saigo
et al., 2004) defined as follows:

K(x,y) =
∑

πxy∈Πxy

eβScore(πxy), (Eq. 3.1)

where β ≥ 0 is a parameter, and Score(πxy) is the alignment score of πxy under
a given scoring scheme (gap penalties and match scores). In practice, we take the
logarithm of LA kernel, and similarity values are normalized to range from 0 to 1:

Kn(x,y) =
logK(x,y)√

logK(x,x) logK(y,y)
. (Eq. 3.2)

The normalization of the similarity measure in (Eq. 3.2) is different from (Eq. 2.2)
in Chapter 2. The logarithm of LA kernel does not satisfy the Mercer’s condition
that is necessary for using the similarity measure in combination with support vector
machines (SVMs). In clustering problems, where SVMs are not applied, we find that
(Eq. 3.2) gives slightly better accuracy than (Eq. 2.2).

LA kernel (Eq. 3.1) can be computed by the variant of the SW algorithm as
follows:

Initialization:
for i ∈ {0, . . . , |x|} and j ∈ {0, . . . , |y|} do
M(i, 0) = IX(i, 0) = IY (i, 0) = TX(i, 0) = TY (i, 0) = 0
M(0, j) = IX(0, j) = IY (0, j) = TX(0, j) = TY (0, j) = 0

end for
Iteration:
for i ∈ {1, . . . , |x|} and j ∈ {1, . . . , |y|} do
M(i, j) = eβSxy(i,j)(1 + IX(i− 1, j − 1) + IY (i− 1, j − 1) +M(i− 1, j − 1))
IX(i, j) = eβgM(i− 1, j) + eβdIX(i− 1, j)
IY (i, j) = eβg(M(i, j − 1) + IX(i, j − 1)) + eβdIY (i, j − 1)
TX(i, j) = M(i− 1, j) + TX(i− 1, j)
TY (i, j) = M(i, j − 1) + TX(i, j − 1) + TY (i, j − 1)

end for
Termination:
K(x,y) = 1 + TX(|x|, |y|) + TY (|x|, |y|) +M(|x|, |y|)

where the parameters g and d are the penalties for gap opening and gap extension,
respectively, and Sxy(i, j) is a scoring function for matching the i-th position in x
and the j-th position in y. The design of Sxy(i, j) impacts the performance of the
resulting similarity measure, and will be described later.
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At this point, we note that our method can take into account all possible sequence
alignments in O(|x||y|) time. If we use the exact Sankoff algorithm instead, it takes
prohibitive O(|x|3|y|3) time, which is not practical. In the case of the approximate
Sankoff-style algorithms employed in the existing methods, all possible sequence
alignments cannot be incorporated to the reduced DP matrix. Therefore, LA kernel
based on the SW algorithm is an efficient way to deal with the ensemble of all possible
sequence alignments.

3.2.2 Ensemble of all possible secondary structures

To design a scoring function Sxy(i, j) for LA kernel, we need secondary structures
of x and y. As mentioned above, the Sankoff algorithm models secondary structures
simultaneously with sequence alignments which we have already modeled by the SW
algorithm. Therefore, we next employ the McCaskill algorithm that only models
secondary structures apart from sequence alignments. Although this is an additional
approximation, we attempt to improve the reliability by utilizing all possible secondary
structures rather than one optimal secondary structure.

For an RNA sequence x, let Θx be the set of all possible secondary structures.
Let θx denote one particular secondary structure in Θx. We represent a secondary
structure as a set of binary variables θx = {θx(i, j)}1≤i<j≤|x|, where θx(i, j) = 1
means that the i-th position and the j-th position in x form a base pair. For each
position 1 ≤ i ≤ |x| in x, we represent the state of base-pairing using three kinds of
binary variable: Lx(i) =

∑
j:j>i θx(i, j) = 1 means that a base pair is formed with

one of the downstream positions; Rx(i) =
∑

j:j<i θx(j, i) = 1 means that a base pair

is formed with one of the upstream positions; and Ux(i) = 1 − Lx(i) − Rx(i) = 1
means that the position is unpaired. Given a fixed pair of secondary structures, θx
and θy, we can measure the similarity between the i-th position in x and the j-th
position in y using their state of base pairing:

Wxy(i, j|θx, θy) = α (Lx(i)Ly(j) +Rx(i)Ry(j))

+s(xi, yj)Ux(i)Uy(j), (Eq. 3.3)

where α ≥ 0 is a weight parameter for structural similarity, and s(xi, yj) is a
substitution matrix for RNA sequences like the RIBOSUM 85–60 matrix (Klein and
Eddy, 2003). This scoring function takes a non-zero value in three different cases: it
takes α when both of the two positions form a base pair with one of their downstream
positions, respectively; it takes α when both of the two positions form a base pair
with one of their upstream positions, respectively; and it takes s(xi, yj) when both of
the two positions are unpaired.

The McCaskill algorithm defines a probability distribution P (θx|x) over Θx. The
binary variables θx(i, j) and {Lx(i), Rx(i), Ux(i)} are converted to the probabilities
by taking the expectation over Θx. For θx(i, j), we obtain a base-pairing probability
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Px(i, j) that the i-th and the j-th positions form a base pair:

Px(i, j) =
∑

θx∈Θx

θx(i, j)P (θx|x).

For {Lx(i), Rx(i), Ux(i)}, we obtain three kinds of probability that the i-th position
is paired with one of the downstream/upstream positions, or unpaired, respectively:

PL
x (i) =

∑
θx∈Θx

Lx(i)P (θx|x) =
∑

θx∈Θx

∑
j:j>i

θx(i, j)P (θx|x) =
∑
j:j>i

Px(i, j),

PR
x (i) =

∑
θx∈Θx

Rx(i)P (θx|x) =
∑

θx∈Θx

∑
j:j<i

θx(j, i)P (θx|x) =
∑
j:j<i

Px(j, i),

PU
x (i) =

∑
θx∈Θx

Ux(i)P (θx|x) = 1− PL
x (i)− PR

x (i).

We design a scoring function Sxy(i, j) by taking the expectation of (Eq. 3.3) over
Θx and Θy:

Sxy(i, j) =
∑

θx∈Θx

∑
θy∈Θy

Wxy(i, j|θx, θy)P (θx|x)P (θy|y)

= α
(
PL
x (i)PL

y (j) + PR
x (i)PR

y (j)
)

+s(xi, yj)P
U
x (i)PU

y (j). (Eq. 3.4)

The proposed method is obtained by combining the normalized LA kernel (Eq. 3.2)
with the scoring function (Eq. 3.4).

It should be noted that our method can take into account all possible secondary
structures in O(|x|3 + |y|3) time, owing to the McCaskill algorithm. Just as in all
possible sequence alignments, the exact Sankoff algorithm results in O(|x|3|y|3) time,
and the existing methods cannot incorporate all possible secondary structures. Our
method requires O(|x||y|)+O(|x|3+|y|3) time in total, which is more efficient than the
exact Sankoff algorithm. Therefore, our strategy that combines the SW algorithm and
the McCaskil algorithm allows to utilize the ensemble information with the reasonable
computational cost.

3.2.3 Variations of the proposed method

The scoring function (Eq. 3.4) proposed in this study is similar to the scoring function
used in BPLA kernel (Morita et al., 2009; Dalli et al., 2006). BPLA kernel is a
prediction method that we previously developed for detecting new members of known
ncRNA families. Although BPLA kernel was not applied to clustering problems in
our previous study, we here clarify its relation to the proposed method. The scoring

43



function used in BPLA kernel is defined as follows:

SBPLA
xy (i, j) = α

(√
PL
x (i)PL

y (j) +
√

PR
x (i)PR

y (j)
)

+s(xi, yj)
√

PU
x (i)PU

y (j)

= α
(
CLPL

x (i)PL
y (j) + CRPR

x (i)PR
y (j)

)
+s(xi, yj)C

UPU
x (i)PU

y (j), (Eq. 3.5)

where CL = 1/
√
PL
x (i)PL

y (j), CR = 1/
√
PR
x (i)PR

y (j), and CU = 1/
√
PU
x (i)PU

y (j).

Therefore, the scoring function (Eq. 3.5) can be regarded as a variation of the proposed
scoring function (Eq. 3.4) with the additional coefficients CL, CR, and CU . These
coefficients take large values when the probabilities P ·

x(i) and P ·
y(j) are small. That

is, BPLA kernel emphasizes the contribution of low-probability (unsure) secondary
structures compared to the proposed method. In the next section, we experimentally
verify this theoretical implication; the proposed method outperforms BPLA kernel.

Because of the resemblance between the scoring functions, (Eq. 3.4) and (Eq. 3.5),
we set the parameters of the proposed method as used in BPLA kernel: α = 1.0,
β = 0.1, g = −27, and d = −0.1

3.2.4 Availability

Our implementation of the proposed method is available for download at http://bpla-
kernel.dna.bio.keio.ac.jp/clustering/ under the GNU general public license. It takes a
set of RNA sequences in the MAF format, and produces a cluster tree in the Newick
format, which can be visualized by the ape package for the R statistical computing
environment (http://cran.r-project.org/web/packages/ape/).

3.3 Results and discussion
In this section, we examine the performance of the proposed method in the hierarchical
clustering of ncRNAs.

3.3.1 Dataset and experimental system

We compared our method with the state-of-the-art methods developed for the
hierarchical clustering of ncRNAs: LocARNA v1.5.2 (Will et al., 2007), FOLDALIGN
v2.1.1 (Havgaard et al., 2007), and Stem kernel v216c (Sato et al., 2008). We also
performed the experiments with CLUSTALW v1.83 (Thompson et al., 1994) and LA
kernel by setting {PL

x (i) = 0, PR
x (i) = 0, PU

x (i) = 1} in our method (Eq. 3.4).
We can summarize our method and the existing methods as follows. Our

method utilizes all possible sequence alignments and all possible secondary structures.
LocARNA and FOLDALIGN only use one optimal sequence alignment and one
optimal secondary structures. Stem kernel utilizes a subset of all possible sequence
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Table 3.1 Summary of the dataset.

20–39% 40–59% 60–79% 80–99%
#clusters 13 21 34 36
#members 3.2 5.0 3.8 4.6
Length 138 130 111 102

#clusters: number of reference clusters; each reference cluster represents a different ncRNA family.

#members: average number of member sequences per reference cluster. Length: average length of

sequences over all reference clusters. The dataset is divided by the sequence identity in a reference

cluster.

alignments and a subset of all possible secondary structures. CLUSTALW and LA
kernel ignore secondary structures; CLUSTALW only uses one optimal sequence
alignment, while LA kernel utilizes all possible sequence alignments.

We created a dataset as summarized in Table 3.1. This dataset was collected
from the BRAliBASE benchmark v2.1 (Wilm et al., 2006), which includes multiple
alignments of a broad range of ncRNA families established in the Rfam database
(Gardner et al., 2009). We treated each multiple alignment as a reference cluster, and
each ncRNA sequence in a multiple alignment as a member sequence. The reference
clusters were divided into four categories according to their sequence identity: 20–
39%, 40–59%, 60–79%, and 80–99%. We sampled the dataset ten times from the
BRAliBASE benchmark, and evaluated the average performance.

We produced three versions of dataset. First, we used ncRNA sequences without
modification, and named them the “normal” dataset. Second, we concatenated
random sequences to both ends of ncRNA sequences, and named them the “plus
flanking regions” dataset. This dataset was intended to simulate the situation where
we do not know the exact boundaries of unannotated transcripts. A random sequence
was generated from a ncRNA sequence so that it had the quarter length and the same
dinucleotide contents. Third, we added false reference clusters, each of which contains
one random sequence, and named them the “plus unrelated sequences” dataset. This
dataset was intended to simulate the situation where non-functional ncRNAs arise
from transcriptional noises. Therefore, we evaluated whether a false reference cluster
could be a resultant cluster with a single member. We used a quarter number of
false reference clusters compared to true reference clusters. A random sequence was
generated from a ncRNA sequence so that it had the same length and the same
dinucleotide contents.

We evaluated the overall quality of the cluster tree by the ROC analysis proposed
in (Will et al., 2007). (Note that we can obtain different resultant clusters from
a cluster tree depending on a distance threshold to cut the branches.) Given a
distance threshold, the number of true positives (TP ) was defined as the number
of sequence pairs that belong to the same reference cluster and are correctly assigned
to the same resultant cluster. Analogously, the numbers of false positives (FP ),
true negatives (TN), and false negatives (FN) are defined, respectively, by counting
the pairs from different reference clusters but the same resultant cluster, the pairs
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from different reference clusters and different resultant clusters, and the pairs from
the same reference cluster but different resultant clusters. The ROC analysis was
performed by plotting true positive rates TP/(TP + FN) versus false positive rates
FP/(TN + FP ) for different distance thresholds. The quality of the clustering was
measured by the area under the ROC curve (AUC). We measured the total time for
computing similarity matrices on a 2.53 GHz Intel Xeon processor.

Our experiments aimed to evaluate the performance of clustering methods by
reconstructing known families from a set of single sequences. This might sound
somewhat strange because the purpose of clustering approaches is to find novel
families rather than known families. However, we emphasize that known families to
be reconstructed were virtually treated as novel families throughout our experiments.
The proposed method and the other existing methods do not employ any feature
values specifically adjusted to known families. In addition, these methods do not use
training data such as member sequences of families to be detected. Therefore, the
performance of each method observed in our experiments should be applied to the
problem of finding (completely) unknown families.

3.3.2 Quality of the clustering

We first examined the quality of the clustering for the “normal” dataset (Figure 3.1).
Our method achieved the better or comparable AUC to the existing methods in all
the range of sequence identity. The accuracy of our method was especially remarkable
in the sequence identity range below 60%, where the existing methods resulted in low
AUC. This means that our method successfully grouped diverse member sequences
in each reference cluster by detecting their remote homology.

Our results can be attributed to the design of each method. The AUC of
CLUSTALW and LA kernel, which ignore secondary structures and only use sequence
alignments, drastically fell down as the sequence identity decreased. LocARNA,
FOLDALIGN, and Stem kernel, which consider secondary structures, kept the AUC
relatively moderate in the low sequence identity range. However, their accuracy was
still limited when the sequence identity was extremely low (20–39%) because these
methods only use one optimal secondary structure or a subset of secondary structures.
Our method, which utilizes all possible sequence alignments and all possible secondary
structures, achieved the sufficiently high AUC in this region. These results suggest
that our design of the similarity measure is effective for identifying a broad range of
ncRNA families.

We found that the AUC of FOLDALIGN in the sequence identity range of
40–59% was substantially better than LocARNA and Stem kernel, being comparable
to the proposed method. FOLDALIGN is different from LocARNA and Stem
kernel in its heuristics to choose the one optimal structural alignment from the
DP matrix. LocARNA and Stem kernel preclude unsure structural alignments
based on secondary structure prediction of each sequence to be aligned, and prepare
the reduced DP matrix before the computation of structural alignment. On the
other hand, FOLDALIGN initiates the computation of structural alignment with the
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Figure 3.1 Quality of the clustering for the “normal” dataset. For each sequence
identity range, the overall quality of the cluster tree is evaluated by the AUC.

full-size DP matrix as used in the original Sankoff algorithm. Then, FOLDALIGN
dynamically excludes low-scoring structural alignments along with the computation
by discarding the portion of the DP matrix by means of length-dependent thresholds.
We consider that the heuristics in FOLDALIGNmight be suitable for the low sequence
identity range because remote homology due to the covariation of base pairs can
only be detected by aligning these base pairs. Nevertheless, the serious drawback
of this strategy is that it is impossible to incorporate the structural alignments
in the excluded portion of the DP matrix that might be useful for evaluating the
similarity. In fact, the AUC of FOLDALIGN in the sequence identity range of 40–59%
was slightly worse than the proposed method that is designed to incorporate all
possible sequence alignments and all possible secondary structures. Furthermore, the
difference in AUC became more remarkable in the sequence identity range of 20–39%.
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These results suggest that suboptimal structural alignments, which are discarded by
FOLDALIGN but utilized by the proposed method, have the useful information to
improve the quality of clustering.

Figure 3.2 compares an example of the cluster tree between our method and
FOLDALIGN in the sequence identity rage of 20–39%. As indicated by AUC,
our method produced the more accurate cluster tree than FOLDALIGN, and
reconstructed ncRNA families as compact clusters. Although the cluster tree of
FOLDALIGN was largely consistent with the references in terms of its topology,
boundaries of resultant clusters were quite unclear. In the actual application of
hierarchical clustering, we need to choose a proper distance threshold for extracting
clusters from a given tree. In this sense, the cluster tree of FOLDALIGN was not
sufficient for the practical use. In fact, the previous studies that employed clustering
approaches required manual inspection to compensate for ambiguous cluster trees
(Will et al., 2007; Weinberg et al., 2009, 2010). The cluster tree of our method was
much more clear and easier to interpret than the existing methods. These results
suggest that our method can reduce human labor costs of clustering approaches, and
help to identify novel ncRNAs families.
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Table 3.2 Computational cost of the similarity measures.

Computation time (s)
Method Normal Plus flanking regions Plus unrelated sequences
Proposed 95 222 199
FOLDALIGN 71748 226066 167228
LocARNA 9704 64679 30287
Stem kernel 61 179 138
LA kernel 71 163 160
CLUSTALW 4 43 6

The total time for computing similarity matrices is shown for three versions of the dataset.

Next, we evaluated the quality of the clustering for the “plus flanking regions”
dataset (Figure 3.3), and the “plus unrelated sequences” dataset (Figure 3.4). In
both cases, we observed the same tendency as in the results for the “normal” dataset
(Figure 3.1). Our method kept high accuracy in all the range of sequence identity,
and achieved the best AUC in the sequence identity range below 60%. These results
further support the effectiveness of our method in the practical situations that involve
flanking regions and unrelated sequences.

3.3.3 Differences in the variations of the proposed method

As described in Methods, the proposed method has the theoretical advantage
compared to BPLA kernel, which can be regarded as a variation of our method.
To verify this point experimentally, we compare the proposed method and BPLA
kernel using the scoring functions (Eq. 3.4) and (Eq. 3.5), respectively.

Figure 3.5 presents the experimental results. The proposed method achieved the
slightly better AUC in the sequence identity range below 60%. These results are
consistent with the fact that BPLA kernel emphasizes the contribution of unsure
secondary structures compared to the proposed method. The proposed scoring
function (Eq. 3.4) has the theoretical justification as the expectation of the primitive
scoring function (Eq. 3.3) over all possible secondary structures. Our results provide
an experimental verification of the superiority of the proposed scoring function.

3.3.4 Computational cost

Finally, we evaluated the computational cost of the similarity measures using
three version of the dataset (Table 3.2). Our method was faster than LocARNA
and FOLDALIGN by several orders of magnitude, and achieved the comparable
computational cost to Stem kernel. Considering the high accuracy of our method
(Figures 3.1–3.4), we achieved the best balance between the computational cost and
the quality of the clustering among the existing methods.

In the design of the proposed method, our idea was to improve the reliability
of approximate algorithms by the information of suboptimal solutions in their DP
frameworks. Among LocARNA and FOLDALIGN, which only use one optimal
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Figure 3.3 Quality of the clustering for the “plus flanking regions” dataset. For each
sequence identity range, the overall quality of the cluster tree is evaluated by the AUC.

solution in their approximate Sankoff-style algorithms, there was a trade-off that
LocARNA was faster but less accurate than FOLDALIGN (Figure 3.1, and Table 3.2).
Stem kernel, which utilizes a subset of solutions in the more approximate Sankoff-style
algorithm, partly improved this problem, being faster and more accurate than
LocARNA. Our method, which utilizes all possible solutions in the combination of
the Smith-Waterman algorithm and the McCaskill algorithm, successfully overcome
the trade-off. These results suggest that our strategy is essential to enable fast and
accurate clustering of ncRNAs.
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Figure 3.4 Quality of the clustering for the “plus unrelated sequences” dataset. For
each sequence identity range, the overall quality of the cluster tree is evaluated by the
AUC.
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Figure 3.5 Differences in the variations of the proposed method. The proposed method
is compared to BPLA kernel using three versions of the dataset. Note that BPLA kernel
can be regarded as a variation of the proposed method.
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3.4 Conclusions
We have described a new method for the hierarchical clustering of ncRNAs, which
can be applied to the identification of novel ncRNA families. Our method can achieve
the best balance between the computational cost and the quality of the clustering
compared to the existing methods.

The performance of the clustering is determined by similarity measures based on
the scores of structural alignment. The existing similarity measures, which only use
one optimal structural alignment, suffer from the trade-off between time-consuming
accurate computation and fast approximate computation. Our similarity measure,
which is designed to utilize all possible sequence alignments and all possible secondary
structures, have overcome this problem. The improvement is especially remarkable
when the similarity among family members is not detectable at the primary sequence
level.

In conclusion, our method enables fast and accurate clustering of ncRNAs,
providing a promising way to explore the functional diversity of ncRNAs.
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Chapter 4

Conclusion and future work
In this dissertation, we have presented two computational methods for the
identification of noncoding RNAs (ncRNAs). The first method has been proposed
for predicting whether an input RNA is a new member of a known ncRNA family.
The second method has been proposed for finding candidates of novel ncRNA families
from a set of unannotated RNAs. Both of the proposed methods outperformed the
previous state-of-the-art methods developed for the same purposes.

Our methods can be regarded as applications of similarity search, and the originality
of our studies is the design of similarity measures for ncRNAs. In Chapter 2, we have
described Profile BPLA kernel that measures the similarity between two alignment
data of RNAs by utilizing the profile information. This similarity measure enables
to predict ncRNAs from alignment data in combination with SVMs. In Chapter 3,
we have described a similarity measure between two RNA sequences that utilizes the
ensemble information.

Similarity search is a fundamental task in biological sequence analysis, and thus
has a wide range of applications other than those addressed in this dissertation.
For example, database search is a common application of similarity search where
a similarity measure is evaluated between a query and each of database entries.
In addition, the construction of genome alignment involve a procedure in which
a similarity measure is evaluated among all pairs of short segments in genomic
sequences. Our similarity measures can be used in these applications, and may
improve the performance of existing frameworks for ncRNAs. Especially, genome-wide
alignment using secondary structure information has been one of the unsolved
problems in RNA informatics (Torarinsson et al., 2006, 2008). Accurate genome
alignments of ncRNAs can improve a series of downstream analyses such as
prediction of consensus secondary structures, and evaluation of structure conservation.
Moreover, some RNA viruses such as human immunodeficiency virus-1 (HIV-1) have
an RNA genome which can be considered as a huge structural RNA (Watts et al.,
2009). Aligning these RNA genomes using secondary structure information may
provide insights into the virus evolution at the level of secondary structures.

The similarity search methods proposed in our studies are brute-force in the sense
that these methods require to evaluate a similarity measure for all RNAs in a dataset.
For example, the first method needs to calculate Profile BPLA kernel between
training samples and all of input alignment data. The second method also needs
to calculate its similarity measure between all pairs in a given set. Although our
methods are relatively efficient among existing methods, which are also brute-force,
the computational cost will be prohibitive for extremely large datasets. To address
this issue, we are now planning to develop more efficient search algorithms based on
index-based techniques (Figure 4.1). BLAST (Altschul et al., 1990) is a widely-used
database search tool that employ the Smith-Waterman (SW) alignment score as a
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similarity measure, but avoid brute-force search by using an index-based technique.
In the method, database sequences are stored in an index which enables to find short
consecutive matches of nucleotide strings shared with a query. BLAST uses these
matches as candidates, and evaluates the SW score only for database entries sharing
the matches. As a consequence of this strategy, BLAST can achieve efficient search
even for extremely large datasets. However, the same strategy cannot be directly
applied to our similarity measures, because we cannot build an index for secondary
structure information represented by continuous probability values rather than string
data like nucleotide sequences. Therefore, we are planning to employ another strategy
called locality-sensitive hashing (LSH) (Indyk and Motwani, 1998), which recently
draws much attention in the domain of information retrieval. Index-based methods
that can incorporate secondary structure information has been one of the major goals
in RNA informatics. Index-based method for our similarity measures may realize this
goal.
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Figure 4.1 Comparison of the brute-force approach and the index-based approach in
a database search problem. (a) Brute-force approach. A query is directly compared
to each of all entries in a database using a certain similarity measure. (b) Index-based
approach. A database is converted in advance so that candidates of high-scoring entries
for a query can be found efficiently.
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and Hüttenhofer, A. RNPomics: defining the ncRNA transcriptome by cDNA library generation
from ribonucleo-protein particles. Nucleic Acids Res., 38(10):e113, 2010.

Rosenblad, M. A., Larsen, N., Samuelsson, T., and Zwieb, C. Kinship in the SRP RNA family. RNA
Biol, 6(5):508–516, 2009.

Saigo, H., Vert, J. P., Ueda, N., and Akutsu, T. Protein homology detection using string alignment
kernels. Bioinformatics, 20(11):1682–1689, 2004.

Saito, Y., Sato, K., and Sakakibara, Y. Robust and accurate prediction of noncoding RNAs from
aligned sequences. BMC Bioinformatics, 11(Suppl 7):S3, 2010.

Saito, Y., Sato, K., and Sakakibara, Y. Fast and accurate clustering of noncoding RNAs using
ensembles of sequence alignments and secondary structures. BMC Bioinformatics, 12(Suppl 1):
S48, 2011.

Sakakibara, Y., Popendorf, K., Ogawa, N., Asai, K., and Sato, K. Stem kernels for RNA sequence
analyses. J. Bioinform. Comput. Biol., 5(5):1103–1122, 2007.

Sankoff, D. Simultaneous solution of the RNA folding, alignment, and proto-sequence problems.
SIAM J. Appl Math, 45(5):810–825, 1985.

Sato, K., Mituyama, T., Asai, K., and Sakakibara, Y. Directed acyclic graph kernels for structural
RNA analysis. BMC Bioinformatics, 9:318, 2008.

Sato, K., Saito, Y., and Sakakibara, Y. Gradient-based optimization of hyperparameters for base-
pairing profile local alignment kernels. Genome Inform., 23(1):128–138, 2009.

Serganov, A. and Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression
without proteins. Nat. Rev. Genet., 8(10):776–790, 2007.

Shi, Y., Tyson, G. W., and DeLong, E. F. Metatranscriptomics reveals unique microbial small RNAs
in the ocean’s water column. Nature, 459(7244):266–269, 2009.

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H.,
Spieth, J., Hillier, L. W., Richards, S., Weinstock, G. M., Wilson, R. K., Gibbs, R. A., Kent, W. J.,
Miller, W., and Haussler, D. Evolutionarily conserved elements in vertebrate, insect, worm, and
yeast genomes. Genome Res., 15(8):1034–1050, 2005.

Smith, T. F. and Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol.,
147(1):195–197, 1981.

Smulevitch, S., Michalowski, D., Zolotukhin, A. S., Schneider, R., Bear, J., Roth, P., Pavlakis, G. N.,
and Felber, B. K. Structural and functional analysis of the RNA transport element, a member of
an extensive family present in the mouse genome. J. Virol., 79(4):2356–2365, 2005.

Sokal, R. R. and Michener, C. D. A statistical method for evaluating systematic relationships.
University of Kansas Science Bulletin, 38:1409–1438, 1958.

Stadler, P. F., Chen, J. J., Hackermuller, J., Hoffmann, S., Horn, F., Khaitovich, P., Kretzschmar,
A. K., Mosig, A., Prohaska, S. J., Qi, X., Schutt, K., and Ullmann, K. Evolution of vault RNAs.
Mol. Biol. Evol., 26(9):1975–1991, 2009.

Stocsits, R. R., Letsch, H., Hertel, J., Misof, B., and Stadler, P. F. Accurate and efficient
reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Res., 37(18):6184–6193,
2009.

Taft, R. J., Pheasant, M., and Mattick, J. S. The relationship between non-protein-coding DNA and
eukaryotic complexity. Bioessays, 29(3):288–299, 2007.

Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., and Mattick, J. S. Small
RNAs derived from snoRNAs. RNA, 15(7):1233–1240, 2009a.

Taft, R. J., Kaplan, C. D., Simons, C., and Mattick, J. S. Evolution, biogenesis and function of
promoter-associated RNAs. Cell Cycle, 8(15):2332–2338, 2009b.

61



Thompson, J. D., Higgins, D. G., and Gibson, T. J. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22(22):4673–4680, 1994.

Torarinsson, E., Sawera, M., Havgaard, J. H., Fredholm, M., and Gorodkin, J. Thousands
of corresponding human and mouse genomic regions unalignable in primary sequence contain
common RNA structure. Genome Res., 16(7):885–889, 2006.

Torarinsson, E., Havgaard, J. H., and Gorodkin, J. Multiple structural alignment and clustering of
RNA sequences. Bioinformatics, 23(8):926–932, 2007.

Torarinsson, E., Yao, Z., Wiklund, E. D., Bramsen, J. B., Hansen, C., Kjems, J., Tommerup, N.,
Ruzzo, W. L., and Gorodkin, J. Comparative genomics beyond sequence-based alignments: RNA
structures in the ENCODE regions. Genome Res., 18(2):242–251, 2008.

Vapnik, V. N. Statistical Learning Theory. Wiley, New York, 1998.
Wang, A. X., Ruzzo, W. L., and Tompa, M. How accurately is ncRNA aligned within whole-genome

multiple alignments? BMC Bioinformatics, 8:417, 2007.
Washietl, S., Hofacker, I. L., and Stadler, P. F. Fast and reliable prediction of noncoding RNAs.

Proc. Natl. Acad. Sci. U.S.A., 102(7):2454–2459, 2005.
Watts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W., Swanstrom, R., Burch,

C. L., and Weeks, K. M. Architecture and secondary structure of an entire HIV-1 RNA genome.
Nature, 460(7256):711–716, 2009.

Weinberg, Z., Perreault, J., Meyer, M. M., and Breaker, R. R. Exceptional structured noncoding
RNAs revealed by bacterial metagenome analysis. Nature, 462(7273):656–659, 2009.

Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., and Breaker, R. R.
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their
metagenomes. Genome Biol., 11(3):R31, 2010.

Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen, R. Inferring noncoding RNA
families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol., 3
(4):e65, 2007.

Wilm, A., Mainz, I., and Steger, G. An enhanced RNA alignment benchmark for sequence alignment
programs. Algorithms Mol. Biol., 1:19, 2006.

Zuker, M. and Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acids Res., 9(1):133–148, 1981.

62



Appendix A

List of publications

Journal papers (related to this dissertation)
1. Yutaka Saito, Kengo Sato, and Yasubumi Sakakibara, Robust and accurate prediction of

noncoding RNAs from aligned sequences, BMC Bioinformatics, 11(Suppl 7):S3, 2010.
2. Yutaka Saito, Kengo Sato, and Yasubumi Sakakibara, Fast and accurate clustering of

noncoding RNAs using ensembles of sequence alignments and secondary structures, BMC
Bioinformatics, 12(Suppl 1):S48, 2011.

Journal papers (others)
1. Kensuke Morita, Yutaka Saito, Kengo Sato, Kotaro Oka, Kohji Hotta, and Yasubumi

Sakakibara, Genome-wide searching with base-pairing kernel functions for noncoding RNAs:
computational and expression analysis of snoRNA families in Caenorhabditis elegans, Nucleic
Acids Research, 37(3):999–1009, 2009. (The first three authors are the joint Fisrt Authors.)

2. Yohei Okada, Yutaka Saito, Kengo Sato, and Yasubumi Sakakibara, Improved measurements
of RNA structure conservation with generalized centroid estimators, Frontiers in Genetics,
2:54, 2011.

Conference proceedings (peer-reviewed full-length papers)
1. Kengo Sato, Yutaka Saito, and Yasubumi Sakakibara, Gradient-based optimization of

hyperparameters for base-pairing profile local alignment kernels, Proceedings of the 20th
International Conference on Genome Informatics (GIW2009), pp. 128–138, Yokohama,
Japan, Dec. 2009.

International conferences
1. Masaya Abe, Sumitaka Hase, Masahiro Ogawa, Yohei Okada, Kengo Sato, Yutaka Saito,

and Yasubumi Sakakibara(*), Comprehensive analysis of small non-coding RNAs in medaka
transcriptome by deep RNA-seq approach, The 16th Annual Meeting of the RNA Society
(RNA 2011), Kyoto, Japan, Jun. 2011. (oral presentation)

2. Yutaka Saito(*) and Yasubumi Sakakibara(*), Genome-wide detections of non-coding RNAs

on genomes using kernel functions, The International Workshop on Computational Methods
for RNA analysis (Benasque 2009), Benasque, Spain, Aug. 2009. (oral presentation)

3. Kengo Sato(*), Yutaka Saito, and Yasubumi Sakakibara, Base-pairing profile local
alignment kernels for functional RNA analyses, The 17th Annual International Conference
on Intelligent Systems for Molecular Biology and The 8th European Conference on
Computational Biology (ISMB/ECCB 2009), Stockholm, Sweden, Jun. 2009. (poster
presentation)

63


