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Improvements in the Variational Principle for Fluid Dynamics

The realized motion of a system minimizes the action. This is called the variational principle and con-
sidered as a guiding principle in various fields of the physics. Using this principle, we can formulate the
dynamics of a system even if it has complicated constraints. Various variational principles for the per-
fect fluid have been proposed for a long time, while Onsager’s variational principle has been useful in
formulating the dissipative dynamics in the soft matter physics. However, they have several open prob-
lems. This dissertation proposes a general framework to solve them, and provides the associated Hamil-
tonian formulation as follows.

1. The variational principle for the perfect fluid

There are two ways to describe the dynamics of fluid. The first way is the Lagrangian description,
where we track path line. The second way is the Eulerian description, where we observe the time
evolution at spatially fixed points. It is known that the equation of motion for the perfect fluid can be
derived in terms of the variational principle in the Lagrangian description, as in the mechanics of
mass particles. On the other hand, the variational principle in the Eulerian description requires some
auxiliary fields, called Clebsch potentials, to derive rotational velocity field on the isentropic condition.
However the physical meaning of the potentials has been obscure. We show that Clebsch potentials are
required to fix the endpoints of each path line in Chapter 3. Here, the mass conservation law and
adiabatic condition are holonomic constraints. Thus we can incorporate them into the action by means
of the method of undetermined multiplier.

2. The variational for a dissipative system

In a dissipative fluid, entropy is produced along the path line. It gives a non-holonomic constraint, to
which the above method cannot be applicable. However, we can minimize the action under the non-
holonomic constraint because it is expressed in terms of differential forms. Our formulation yields the
whole equation of momentum balance for a viscous fluid, although Onsager's variational principle yields
only its linear part. We show that our formulation can be also applied to viscoelastic fluid and polymer
solution in Chapter 4, and also discuss the case that dissipation is caused by diffusion in Appendix C.

3. Hamiltonian formulations

In the control theory, the optimized input minimizes the cost functional, and derives the Hamilton’s
equations as a pair of conjugate equations. In Chapter 5, we apply this theory to fluid dynamics, where
the input is the velocity field. The state variables in the Lagrangian and Eulerian descriptions are re-
spectively given by the position of fluid particles and Clebsch potentials. The resultant Hamiltonian
equation for perfect fluid is canonical. In a viscous fluid, dissipative force is added to the equation. The
associated symmetries are related to the conservation laws.

Chapter 1 describes the motivation and backgrounds, and presents the composition of this dissertation.
Chapter 2 introduces the previous researches, and explains the theory of constraints.

Chapters 3, 4, and 5 show the three main results mentioned above.

Chapter 6 summarizes this dissertation and presents future research.

Appendices A and B explain tensor calculus and material derivatives, respectively.

Appendices C and D discuss the variational principle for the two-component fluid with dissipative diffu-
sion and the relativistic perfect fluid, respectively.




