

Thesis for the Degree of Ph.D. in Science

Algorithms for comparing and
visualizing genome-scale datasets

January 2013

Graduate School of Science and Technology
Keio University

Kristoffer Popendorf

主 論 文 要 旨

報告番号 ○甲 乙 第 号 氏 名 ポペンドフ クリストファー

主論文題目：
Algorithms for comparing and visualizing genome-scale datasets

（ゲノム規模データセットの比較解析および視覚化するためのアルゴリズム）

（内容の要旨）

近年の超並列シークエンシング技術の発展によって、ゲノムに関するデータを新しく生成するコ

ストと時間が急速に下がり、ゲノムを解読するプロジェクトの数が急激に増えている。現在2,547
種の真核生物と12,460 種の原核生物のゲノム解読プロジェクトが進行中である。また、ヒトやチ
ンパンジー，マウスなどの57種の脊椎動物のゲノムがドラフト配列として完成されたので、ヒト
に関連するゲノム解析を強力に推し進めることができる時代になった。しかし処理するべきデータ
の量と配列の数が指数的に増えているため、従来の解析手法をそのまま適用すると非現実的なコス
トがかかってしまう。
 本論文では、ゲノム規模データセットを解析するための２つのアルゴリズムを提案する。第１の
アルゴリズムは、複数のゲノムから相同領域を並列計算機で検索するためのアルゴリズムの構築で
ある。第２のアルゴリズムは、近年開発された次世代シークエンサーから生成される大量のリード
データを解析した結果を視覚的に分かりやすい形で高速に表示するアルゴリズムである。
第１章では、ゲノム解読と比較ゲノム解析、次世代シークエンスデータとその解析および問題点

について述べた。
 第２章では、相同領域を検索するために開発したMurasakiと呼ばれるアルゴリズムについて述
べた。複数の大規模な全ゲノムでも効率的に比較できるようにするために、計算機クラスターを用
いた並列計算によって高速にゲノム比較が計算できる手法を開発した。並列計算の効率を保証する
ために、ハッシュ関数の計算および計算ジョブの振り分け方に関する新しいアルゴリズムを実装し
た。脊椎動物のゲノムデータを用いた検証実験により、相同領域の検出精度、並列計算の効率のい
ずれにおいても既存手法よりも優れていることを確認した。
 第３章では、大量のシークエンスデータを解析した結果を高速に表示するアルゴリズムについて
述べた。次世代シークエンサーから生成された何千万本の短いリード配列は、リードマッピングの
プログラムを用いて参照ゲノムに配置される。配置されたリードマッピングの形状から生物学的な
解析を行うためには、全ゲノム領域中の形状を高速に視覚化するためのソフトウエアが必要であ
る。哺乳類規模の大きなゲノムに大量のリードデータをマッピングした場合、ゲノムレベルで俯瞰
する表示から一塩基レベルでの詳細な表示までをスムーズに可視化するプログラムは存在しない。
そこで、Samscopeと呼ばれるコンピュータグラフィックスの手法を取り入れた新しい表示プログ
ラムを開発した。チキンゲノムのセントロメア解析において、Samscopeはタンパク質結合部位を
ゲノム配列から視覚的に発見することに威力を発揮することが示された。
第４章では、本研究を総括するとともに、提案した２つのアルゴリズムについて他のゲノム解析

問題への応用可能性を議論した。

SUMMARY OF Ph.D. DISSERTATION
School

School of Fundamental Science
and Technology

Student Identification Number

80745137

SURNAME, First name

POPENDORF, Kristoffer

Title

Algorithms for comparing and visualizing genome-scale datasets

Abstract

 Recent years have seen a massive explosion in the number, complexity, and raw volume of
new sequencing data thanks to advances in modern sequencing technology. In particular the
advent of massively parallel sequencing, or colloquially “Next Generation Sequencing” or
“NGS,” has opened up a new world of sequencing applications that were once impractical at
best. Whole bacteria can now sequenced in a matter of days, new mammalian genomes can
be sequenced for a fraction of what they once cost, and well known species like homo sapiens
can be re-sequenced to discover novel genetic variants for less than a $1000. In the first
chapter of this dissertation, we review the current state of genomics sequencing technology,
its applications, and current challenges.
 One of the products of this sequencing explosion has been a wealth of newly sequenced
genomes, including 57 vertebrates. With such rich data concerning some of our closest
evolutionary relatives, comparative genomics studies promise to provide great insight into
our physiology and development though analysis of similarities of whole genomes across
multiple species. However, existing comparative genomics tools are capable of dealing with a
few chromosomes at one time, and require excessive computational resources to keep pace
with the vast number of genomes rapidly becoming available. To address this problem, we
introduce a new approach to parallel sequence similarity search which offers efficient use of
cluster computing resources to provide the scalability necessary to analyze current and
future genome projects. We've named this algorithm Murasaki, and its details are described
in Chapter 2.
 Another application of NGS technology has been in areas of transcriptome, regulation, and
variant analysis. Two relatively new applications unique to NGS use the massive number of
reads available from NGS to assay RNA products by sequencing the RNA itself (RNA-Seq),
or capture and sequence the DNA bound to specific transcription factors or DNA-binding
proteins (ChIP-Seq). The data from these experiments can be hard to understand because of
the scale of the data involved is overwhelming and requires some practical reduction to find
features of interest before conducting a more detailed investigation. Existing techniques for
visualizing NGS data has been limited to examining small regions and/or offered limited
support RNA-Seq/ChIP-Seq features. To address this problem we propose a new algorithm
and data format implemented in our program, Samscope, described in chapter 3.
 In chapter 4 we summarize the impact of these new approaches, and examine their
potential future areas of development.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Comparing Genomes . 3

1.2.1 Comparative Genomes 3
1.2.2 Homology search . 4
1.2.3 Murasaki and Past Work 5

1.3 Short read visualization . 6
1.3.1 Massively parallel sequencers 6
1.3.2 Short Read Mapping 7
1.3.3 DNA-Seq . 8
1.3.4 RNA-Seq . 8
1.3.5 ChIP-Seq . 8

2 Murasaki: Parallel Anchoring 11
2.1 Introduction . 11

2.1.1 Anchoring . 12
2.1.2 Previous Work . 12
2.1.3 Motivation . 15
2.1.4 Parallelization . 16

2.2 Implementation . 17
2.2.1 Algorithm Outline . 17
2.2.2 Parallelization . 19
2.2.3 Hash function generation 24

2.3 Results . 26
2.3.1 Experiment Design . 26
2.3.2 Comparison to existing methods 27
2.3.3 Adaptive hash algorithm performance 33
2.3.4 Scalability in cluster-computing environments 36
2.3.5 Performance on large inputs 38

2.4 Discussion . 38
2.4.1 Choice of comparison algorithm 38

i

ii CONTENTS

2.4.2 Bottlenecks in parallelization 43
2.4.3 Parallel overhead . 44

2.5 Conclusions . 44

3 Samscope: interactive SAM viewing 47
3.1 Introduction . 47
3.2 Methods and Implementation 48

3.2.1 Displaying individual reads 51
3.2.2 Memory requirements 53
3.2.3 Time requirements . 53

3.3 Results . 55
3.3.1 BIP generation benchmarks 55

3.4 Discussion . 61

4 Conclusions and Future Work 63
4.1 Multiple genome comparison 63

4.1.1 Future work for multiple genome comparison 63
4.2 Visualization of large genomic data sets 64

4.2.1 Future work for visualization of large genomic data sets 65

Acknowledgements 67

A Abbreviations 69

B Murasaki: Supplemental details 71
B.1 Implementation . 71

B.1.1 Hash Functions . 71
B.1.2 Implementation Details 76
B.1.3 Data structures . 76
B.1.4 Hash function fitness 77

B.2 Results . 77
B.2.1 Pattern selection . 77
B.2.2 Murasaki Runtime Parameters 78
B.2.3 Pairwise Multiz with Roast 78

C Appendix: Samscope 83
C.1 BIP File format . 83

C.1.1 Description . 83
C.1.2 Specification . 83

References 88

CONTENTS iii

List of Figures 96

Chapter 1

Introduction

1.1 Overview

Advances in robotics, chemistry, and imaging have allowed modern biology
to gather more data more quickly ever before. In particular recent advances
in sequencing technology have made genetic sequencing common place, to
the point that unknown bacteria can be sequenced and assembled in a mat-
ter of days for a few thousand dollars (Schatz, Witkowski, and McCombie,
2012). These advances in sequencing technology have allowed the collection of
available sequence data to grow exponentially. As of this writing in October
2012, the Genomes OnLine Database (GOLD) lists 3776 completed genomes
(3595 prokaryotes and 181 eukaryotes), and 14710 new genome projects in
progress (Pagani et al., 2012). As the number and scale of available sequences
has increased, so too has the complexity of analyzing such large scale data.
There are two primary aspects to this complexity:

1. The operational cost of running analysis algorithms over large genomic
data at scale.

2. The task of allowing human researchers access to massive amounts
of data to users through conventional computing resources (i.e. the
keyboard, mouse, and monitor).

In this dissertation we present my work in addressing problems specific
to these two aspects. In the first problem, the running cost of analysis of
multiple large genomes, we consider the task of homology search across mul-
tiple genomes. Homology search is a fundamental problem in biology and the
first step for a variety of tasks. Moore’s law predicts an approximate dou-
bling in the number of transistors on microprocessors every 2 years (Moore

1

2 CHAPTER 1. INTRODUCTION

et al., 1965). It is however an over simplification to conclude that Moore’s
law makes previous alignment algorithms for homology search sufficient for
keeping pace with the exponential growth of sequence data. While the num-
ber of transistors per chip has kept pace with the expected exponential curve
to date, the speed of individual CPUs has plateaued and has not increased in
recent years now, due primarily to increasing thermal density on micropro-
cessors the limits of thermal noise in modern semiconductor design (Kish,
2002). Modern processors have developed “horizontally,” putting multiple
processors (“cores”) on the same chip, designed to function in parallel. Un-
fortunately, software design methods have not kept pace with the horizontal
parallel growth of processors. Outside of the trivially parallelizable prob-
lems, parallel and concurrent software design remains a complicated world
of individually crafted solutions to specific problems. Consequently the vast
majority of algorithm design in the biology community is focused on serial
(non-concurrent) algorithms. However as we approach the quantum mechani-
cal limitations of individual processing units regarding size and thermal noise,
it is critical that we develop new scalable approaches to use parallel comput-
ing architectures to solve biology problems. The approach we describe in this
dissertation is a novel and efficient approach for running homology search in
concurrently over commodity CPUs and networks.

The second problem is one of human interaction. In Chapter 3 we de-
scribe a novel approach for visualizing complex next-generation sequencing
data across whole genomes at interactive rates. Modern displays can display
images with dimensions of about a thousand pixels on a side (the current
standard is “FullHD” at 1920 x 1080 pixels). This is a limit of both the dis-
play media and bandwidth necessary to push millions of pixels per second
over a wire from the controlling computer. More importantly, on the human
user end, at the most acute point of our visual field (the fovea) we can discern
at most 50 cycles per degree (i.e. being able to discern line 100 µm thick lines
at a distance of 50 cm) (Russ, 2007). The consequence of our limited visual
acuity is that, even assuming optimal display medium technology, we would
need a display 100 km long to draw a graph showing 1 data point for all 3
billion bases of the human genome (or about 500 km long using commodity
PC displays). This is obviously impractical, so genome browsers historically
have approached “genome display” problems with a button based “scroll and
zoom” interface, as in the UCSC genome browser (Karolchik et al., 2003)
and EBI’s Ensembl (Hubbard et al., 2002). While appropriate for genes and
relatively continuous features like “GC Content”, this approach is awkward
at best for analysis of modern data sources such as ChIP-SEQ and RNA-
Seq, where per-base values are highly discontinuous. This is because while
features like “GC Content” or gene content are reasonably summarized as a

1.2. COMPARING GENOMES 3

single scalar feature like an “average” over 100 bases or even a million bases,
the complex expression patterns in data sets such as ChIP-Seq and RNA-Seq
are lost when reduced to a single value such as an “average”.

In this chapter we’ll provide a brief summary and background describing
these two problems, and our approaches to address them.

1.2 Comparing Genomes

Continued developments in sequencing technology (Schatz, Witkowski, and
McCombie, 2012) are driving an explosion in new sequencing projects in
almost every taxa and increasing breaking traditional “taxonomy” boundaries
with metagenomics projects, where DNA is collected from all the organisms
in a given environment (e.g. a bucket of seawater, or a patient’s lungs)(Pagani
et al., 2012). For the vast maority of these projects, the raw DNA data means
very little on its own, however it is very powerful in the context of other
sequence data. The study of genomic sequences in the context of others can
be broadly termed “comparative genomics.”

1.2.1 Comparative Genomes

Comparative genomics is a broad term which can be made to encompass
almost any study which involves comparing sequences from one genome to
another. There are numerous biological applications to comparative genomics
studies. For example, to better understand the evolutionary mechanisms of
genomic rearrangement, researchers have examined the large scale genomic
rearrangements between human and other genomes (the mouse genome in
particular) (Alekseyev and Pevzner, 2007) looking for evidence of some ge-
nomic signals which might predispose some sites to rearrangement. Even the
discovery that intrachromosomal rearrangements are more frequent than in-
terchromosomal rearrangements (Pevzner and Tesler, 2003) was a significant
breakthrough which required exhaustively searching for homologous regions
of the human and mouse genomes.

Where previous studies have shown the involvement of certain genes in
human development, comparative genomics analysis has been used to uncover
new insights. For example, a mutation in the FOXP2 gene was previously
shown to be related to a severe speech and language disorder (Fisher et al.,
1998), but as advances in sequencing technology made possible the sequenc-
ing of FOXP2 in other closely related species, we now know that FOXP2 is
very strongly conserved among most mammals, but humans show a unique
mutation (Enard et al., 2002). Now that so many more complex genomes (in

4 CHAPTER 1. INTRODUCTION

particular vertebrates) have been sequenced, measures of “taxa-wide conser-
vation” have become a commonly used feature for genomic analysis (Miller et
al., 2007). Building on this technique, further studies looking at short regions
highly conserved regions in mammals have used comparative genomics anal-
ysis to identify a series of “human accelerated regions” where humans show
unusually high mutation rates compared to their primate relatives (Pollard
et al., 2006). Studies such as this provide valuable insights not only into evo-
lutionary mechanisms and methods to analyze genomic data for artifacts of
evolutionary history, but also into what makes us essentially human. Now
that so many more complex genomes (in particular vertebrates) have been
sequenced, measures of “taxa-wide conservation” have become a commonly
used feature for genomic analysis (Miller et al., 2007).

1.2.2 Homology search

Comparative genomics applications depend on the identification of regions of
high similarity, and most with the stipulation that the similarity is the result
of sharing a common ancestor. Sequences that share a common ancestor are
by definition “homologous sequences” (Koonin, 2005) and as a consequence
usually more similar to each other than unrelated genes or genomes. Because
related sequences are expected to be similar, similarity itself is often used as
representative of homology (usually assessed with some estimation of a p-
value representing the probability that the sequences are similar by random
chance rather than by common ancestry) (Altschul et al., 1990). Thus the
task of finding likely homologs is usually well addressed by searching for
“unusually similar” regions of sequence, and the terms “homology search” and
“similarity search” are often used interchangeably (even if, strictly speaking,
they have distinct different meanings). We use the term “homology search”
here for simplicity and consistency with other “similarity search” literature.

As described above, the task of identifying likely homologous sequences
requires the selection of subsequences which are so similar they’re unlikely to
have occurred by random chance. Given a sequence length n, there are triv-
ially 2n different subsequences we might select. It’s obvious that trying each
subsequence in turn would be a very slow approach, and in fact finding the
longest common subsequence in the general case is an NP-Complete prob-
lem (Maier, 1978). However given an alphabet of constant size and constant
number of sequences (as is the case for genomes), the ubiquitous Smith-
Waterman algorithm (Smith and Waterman, 1981) provides a polynomial
time solution to find all optimal scoring local alignments. Here a local align-
ment implies a selection of insertion/deletion/mutation operations relating
the sequences under consideration. However, the time and space required for

1.2. COMPARING GENOMES 5

Smith-Waterman isO(NS) where S is the number of number of sequences and
N is length of the longest input sequence. Because of the sensitivity achieved
by considering all possible alignments, there has been interest in producing
FPGA (Li, Shum, and Truong, 2007) and ASIC (Han and Parameswaran,
2002) implementations of Smith-Wateman, these implementations acceler-
ate the Smith-Waterman each process but do not solve the fundamental
the O(NS) scaling problem. The general consensus is that comparing more
than 2 sequences at once or sequences longer than a few kilobases requires a
heuristic to limit the search space to a subset of likely optimal alignments.

1.2.3 Murasaki and Past Work

Starting with FASTA (Pearson and Lipman, 1988) these heuristics have gen-
erally focused on some series of exact-matching bases. FASTA and many
algorithms after it build a look-up table of k-mers. K-mers are k length
strings from the alphabet of sequences under investigation, Σ. In FASTA
and algorithms like BLAST after it (Altschul et al., 1990), more sensitive
alignments are only considered in the subsequences surrounding a matching
k-mer (thus ensuring a certain degree of similarity before exploring a more
expensive calculation). A complete lookup table to contain all possible k-
mer seeds thus includes Σk entries. In the literature, this lookup table gets
called hash table, however typically in practice no “hashing” in the traditional
sense is involved (or the hash function is an identity function H(x) = x), as
in practice all k-mers are expected to appear somewhere in the sequence for
small values of k. A matching set of subsequences of sufficient similarity to
trigger a more expensive alignment is called an “anchor.” Using larger values
for k increase the minimal level of similarity required; this can be thought of
as trading sensitivity for speed. In general the subsequences that are used
to locate anchors are termed “seeds,” though so far we’ve only considered
k-mers. PatternHunter (Ma, Tromp, and Li, 2002) introduced the idea of us-
ing “spaced seeds,” where specific bases in the seed are not required to match
to increase sensitivity while requiring the same number of matching bases.
This strategy is easily implemented in place of existing k-mer tables, and
was soon implemented in BLASTZ (Schwartz et al., 2003), which was in use
for pairwise whole genome comparison. All of the above algorithms however
consider only pairwise alignment and do not directly address multiple align-
ment. TBA implemented a multiple alignment algorithms on top of BLASTZ
(Blanchette et al., 2004) using all (S−2)(S−1)

2
(or O(S2)) pairwise alignments

of a set of S sequences. When the total length of all input sequences is N ,
this allows the calculation of anchors in S2N time. ROAST (Miller et al.,
2007) provided an additional short-cutting heuristic to the MULTIZ align-

6 CHAPTER 1. INTRODUCTION

ment algorithm part of TBA, where a guide tree could be used to align all
s1, s2, · · ·Sn−1 sequences to one reference sequence sn, thus ostensibly reduc-
ing the cost for anchoring where a guide tree is already known to O(SN)
rather than O(S2N) with TBA. However calculating a guide tree through
ordinary methods will again require O(S2N) time (Thompson, Higgins, and
Gibson, 1994).

Murasaki provides an alternative way of anchoring multiple large se-
quences without relying on guide trees or calculating O(S2) pairwise align-
ments. The core idea for doing this is to keep all sequences under consid-
eration in the hash table. This greatly increases the size of the hash table,
therefore Murasaki implements a variety of features to increase the storage
efficiency of its hash table. Furthermore Murasaki introduces a novel method
for parallelization of anchoring by distributing the task of calculating, stor-
ing, and ultimately computing anchors from the hash table across a computer
cluster. Great care was given to implement a distributed algorithm using MPI
to achieve near constant and balanced use of resources, ultimately achieving
extremely high efficiency. The process is described in detail in Chapter 2.

1.3 Short read visualization

As we describe in Section 1.3.1, the new generation of massively parallel
sequencing technologies has enabled millions of reads to be generated for a
fraction of what they used to cost. This massive influx of new data has lead
to a variety of new biological applications, but also introduced new bioinfor-
matics challenges to making sense of the data. When trying to interpret new
data, and check for unusual occurrences, traditional analysis tools designed
for a relatively small number of long reads produced with capillary technolo-
gies are generally impractical. The vast scale of the data from massively
parallel sequencers must be distilled into human digestible chunks, and there
have been a number of applications which do so in a visual fashion, such as
SAMtools (Li et al., 2009), Tablet (Milne et al., 2010), and the “Integrative
genomics viewer” (IGV) (Robinson et al., 2011). We introduce a new visu-
alization tool, Samscope, which allows users a highly responsive view of a
wide variety of statistics of their data in an easily comparable and extensible
format.

1.3.1 Massively parallel sequencers

The main propellant behind the current sequence explosion is relative af-
fordability of sequencing using the latest massively parallel sequencing tech-

1.3. SHORT READ VISUALIZATION 7

nologies (Rogers and Venter, 2005). Rather than feeding individually pre-
pared and amplified samples through individual capillaries as with tradi-
tional Sanger sequencing (Sanger, Coulson, et al., 1975), massively parallel
sequencing technologies amplify millions of DNA templates simultaneously,
and read them without manipulating individual samples. This dramatically
reduces the cost of sequencing while vastly increasing the total throughput
of a single sequencing machine.

There are many variations of massively parallel sequencing technology
available, and currently each has carved out some niche market for which they
are still currently the best for certain applications. Future developments from
companies like Pacific Bio and nanopore sequencers promise new capabilities
which could supersede some of the current technologies, but so far the major
technologies are: Illumina’s Genome Analyzer and HiSeq series, Roche’s 454,
Life Technologies’ SOLiD and Ion Torrent sequencer technologies (Glenn,
2011). Despite their varying technologies and varying release dates, all of
these new sequencing technologies are typically labeled “Next-generation se-
quencers” (NGS) in the literature, begging the question of where to draw
generational lines. Some claim that “2nd generation sequencers” should in-
clude all of the above technologies, and “3rd generation sequencers” should
include single molecule sequencing technologies, like PacBio and and HeliS-
cope (Glenn, 2011). But for the purpose of this discussion, the important
factor linking all of them is that they produce millions of short reads.

The new massively parallel nature of these sequencers has enabled new
sequencing protocols for new biological inquiries. We describe a few them
here for reference.

1.3.2 Short Read Mapping

Outside of de-novo sequencing, where the source genome for the short reads
being produced is unknown, the origin of the reads under examination is
typically known. An assembled reference genome sequence is used to align
reads to the origin genome. After reads are aligned to the reference genome,
various features can be calculated, such as variances between the sample and
reference genomes, or the relative abundance of different genome sequences
in the sample. As described in Section 1.2.2, alignment is a hard prob-
lem, and many variations of short read alignment programs have emerged,
such as SHRiMP (Rumble et al., 2009), BWA (Li and Durbin, 2009), and
Bowtie (Langmead et al., 2009). Fortunately a single format, SAM (Sequence
Alignment/Map) and its compressed binary cousin BAM (Li et al., 2009),
have emerged as the lingua franca of short read mapping data. This com-
mon language has allowed bioinformaticians to build complex yet portable

8 CHAPTER 1. INTRODUCTION

analysis and visualization tools and pipelines around a common file format.

1.3.3 DNA-Seq

DNA-Seq is the traditional “genome sequencing” task where a researcher
seeks to find out the DNA content and structure of a sample. When us-
ing NGS, samples are typically fragmented into short strands a few hundred
bases in length. Now most sequencers offer some form paired end sequenc-
ing, allowing researchers to sequence both ends of the fragment. Using this
“paired end” data, the distance between the reads can be inferred to aid in
de novo assembly (Pevzner and Tang, 2001; Zerbino and Birney, 2008), or
in detection of structural variants (Tuzun et al., 2005). There are numerous
variations on the DNA preparation technique (Teer et al., 2010), for exam-
ple enriching only the DNA fragments which belong to known gene exons
or matching some other user defined template. These enrichment techniques
are typically used to increase coverage and consequently sensitivity over a
specific genomic domain of interest, for example for detecting rare variants
in a highly heterogeneous sample.

When visualizing the results of DNA-Seq runs, users often want to check
for areas of unusually low or high coverage, examine areas with unusually high
mutation rates or rearrangements, and look for clues that might indicate the
origin of the unusual result, such as strand or G/C bias.

1.3.4 RNA-Seq

RNA-Seq is analogous to expressed sequence tags (EST) or serial analysis
of gene expression (SAGE) in traditional sequencing, however many RNA
fragments are reported in parallel. Typically mRNA is fragmented, PCR
amplified, and converted to cDNA, after which it can be prepared and read
in the same fashion as DNA-Seq (Mortazavi et al., 2008).

RNA-Seq poses a different challenge to visualize in that a large range of
different expression values are expected, and across large swaths of genome
most expression values will be at or near 0.

1.3.5 ChIP-Seq

ChIP-Seq or “Chromatin immunoprecipitation followed by sequencing” uses
protein-antibody interaction to capture DNA fragments bound to a protein
of interest (POI) (Park, 2009). Transcription factors and their binding sites
have been the focus of numerous gene regulatory network studies for years
(Farnham, 2009), however until recently it has been hard to experimentally

1.3. SHORT READ VISUALIZATION 9

characterize the binding sites of DNA-interacting proteins. ChIP-Seq makes
it possible to map the binding sites of a given protein across an entire genome
in a single experiment. The typical protocol involves crosslinking proteins to
the DNA using a reagent such as formaldehyde, then shearing the DNA into
short fragments (200-600bp in length). Antibodies bound to a substrate are
used to collect only those fragments which are bound to the POI, while the
other fragments are washed away. The crosslinks are reversed, releasing the
protein, and the remaining DNA can be sequenced as in DNA-Seq.

An interesting side effect of the ChIP-Seq process is that because only a
single strand of DNA bound by the original POI is retained, the resulting
reads are thus easily retained as strand specific. Furthermore, as the original
binding site of the POI can be assumed to be present on all DNA fragments
(and expected to be closer to the middle than the ends), the resulting read
coverage is a bimodal distribution with reads on the “forward” strand clus-
tered on one side, and the “reverse complement” strand on the other (Park,
2009). Subtracting the “reverse coverage” from the “forward coverage” yields
a “read polarity” value. Binding sites can be inferred in areas of high coverage
to occur around the polarity “zero-crossing point.” Samscope makes visual-
ization of these types of characteristics simple and intuitive. See Chapter 3
for details.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Murasaki: A Fast, Parallelizable
Algorithm to Find Anchors from
Multiple Genomes

2.1 Introduction

“Homology search” plays a fundamental role in a variety of sequence analysis
studies. The goal of a homology search is usually some form of the Longest
Common Subsequence (LCS) problem. In the most general form, with an un-
bounded number of sequences, LCS is an NP-Complete problem, therefore
any attempts to solve the problem quickly and at scale are forced to recog-
nize only a limited subset of the problem. Limiting the number of sequences
under comparison to some fixed number N allows the now ubiquitous Smith-
Waterman polynomial-time dynamic programming solution (Smith and Wa-
terman, 1981) to be used. Like most NP-Complete problems, what is easy for
a few small objects becomes impractical for larger more numerous objects.
Indeed the time and space requirements of Smith-Waterman are considered
prohibitive for large (or more critically numerous) sequences, leading to the
evolution of modern homology search algorithms that employ some heuristic
to provide an approximation of the exact LCS solution. Newer algorithms
like FASTA (Pearson and Lipman, 1988) and later BLAST (Altschul et al.,
1990) and its derivatives (PatternHunter, BLASTZ, Mauve, etc.) rely on sub-
sequences of unusually high conservation to “anchor” a search to a smaller
area where a more detailed homology search can be conducted in reasonable
time, from which the term anchor is derived. The increasing availability of
sequences and the now common need to align multiple whole genomes has re-
peatedly pushed each of these homology search algorithms to the point where

11

12 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

they are no longer viable, demanding the development of software that takes
advantage of new technologies and novel algorithms with refined heuristics.
Our software, Murasaki, is yet another entry in this tradition. We also follow
the UNIX tradition of making a tool to do one job and do it well. Thus we
confine the scope of Murasaki to that of anchor search on multiple genomes
only, and leave the question of what to do with anchors to other tools fur-
ther down the toolchain. Our goal was to create an efficient flexible way to
search for anchors that meet arbitrary constraints across multiple genomes
(as opposed to simple pairwise comparisons) while taking advantage of the in-
creasingly multi-core and distributed computational environments available
to researchers.

2.1.1 Anchoring

The term “anchor” generally refers to well-conserved short regions among two
or more genomes, and is biologically defined as a short gene-coding region
or an exon in a long gene or non-coding region (including functional RNAs)
where no rearrangement occurs. Computationally, anchors are generally de-
termined by identifying occurrences of matching k-mers and extending or
combining them as high scoring pairs.

The task of finding anchors is considerably different from producing align-
ments. Finding anchors is only the first step of BLAST (Altschul et al., 1990),
in that BLAST produces lots of anchoring pairs and tries to extend them.
Mauve (Darling et al., 2004), for example, relies on anchors only for finding
the endpoints of alignable collinear regions. Therefore, anchoring alone is not
expected to be as sensitive as exhaustive gapped-alignment, but anchoring
multiple genomes can rapidly yield information that can be used to reduce
the computation time of multiple genome alignments (Brudno et al., 2003),
to infer genome rearrangements through synteny identification (Bourque and
Pevzner, 2002), to find conserved non-coding RNA regions which are usually
much shorter than protein-coding regions, and to execute genome-wide evo-
lution analysis such as the identification of ultraconserved regions (Bejerano
et al., 2004).

2.1.2 Previous Work

Modern homology search programs generally rely on some efficiently search-
able data structure to index the locations of short subsequences (we will
call these subsequences “seeds”). There have been many approaches to doing
this. Mauve (Darling et al., 2004) uses a sorted list that is simple and space
efficient, and because Mauve prunes all but the unique seeds, usually fast.

2.1. INTRODUCTION 13

MUMmer (Delcher et al., 1999) and later ramaco (Ohlebusch and Kurtz,
2008) use suffix trees to find short exact matches. The latter implements a
pairwise comparison based approach to finding matches across multiple se-
quences while relaxing the “unique” constraint of multiMUMs, however offers
little opportunity for parallelization and is limited by the space requirements
of its tree structures. The speed gains from FASTA/BLAST and the vast
majority of popular modern derivatives such as BLASTZ (Schwartz et al.,
2003) come from storing the seed index in a hash table where look-up of a
given seed is constant time. In practice this hash table is generally a block
of contiguous memory in the computer, such that we might think of it as
a table of M entries, T0, T1, T2, . . . TM . Key-value pairs (K,V) might then
be recorded in the table by storing V in the entry Ti specified by a hashing
function H(K) (i.e., where the hash i of K is defined by i = H(K)). For
homology-finding, the key K would generally be a “seed” (e.g., ATGC), and
the value V would be the location in the input sequence(s) at which it oc-
curs. Because ATGC might occur any number of times, hash table entries
are often some list-like data-structure that allows a different V to be stored
for each incidence of the same seed K. The performance of a hash table then
depends on the ability to find the entries that match a given key quickly.
In other words if H(K) is slow, or storing to and retrieving from Ti is slow,
performance deteriorates. Ideally H(K) produces a different hash Ti for ev-
ery different value of K, but when two keys Ki and Kj such that Ki 6= Kj

produce the same hash (i.e., H(Ki) = H(Kj)) separating their values Vi and
Vj in the hash table requires additional work. These events are called “col-
lisions.” Thus to minimize the time spent resolving collisions, the selection
of a hash function H that avoids collisions is at least as important as how
to resolve them. In cases where the maximum number of keys is small, as
in PatternHunter and BLASTZ where keys are at most 12 or 14 bases (lim-
iting the number of possible keys to 412 or 414 respectively), the size of the
hash table M can be chosen to accommodate all possible keys, and the hash
function H(Ki) can simply be the position of Ki in an enumerated list of all
possible values of K (if we think of a string of nucleotides as a base 4 num-
ber, thus H(Ki) becomes the trivial identity function H(Ki) = Ki). This
is the standard method used by most existing hash-based homology search
algorithms, and is acceptable for a small number of keys. However the size
of the hash table required to guarantee no collisions increases exponentially
with the length of keys (e.g., when using longer k-mers). Given 14 bases
alone requires 2.68× 108 entries, which at even a modest 32 bits per entry is
1GB of memory, 15 bases requires then 1.07× 109 entries and 4GB, 19 bases
requires 2.7× 1011 entries and 1TB and so on, it’s obvious that if one wants
to use longer keys a different solution is required. BLAST and BLASTZ limit

14 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

this exponential expansion by using only the first N bases as a key when the
key length exceeds a predefined threshold.

Ma et al. introduced the notion of spaced seed patterns to homology-
search in PatternHunter (Ma, Tromp, and Li, 2002). Spaced seed patterns
are typically represented as a string of 1s and 0s, where 1s represent bases
that contribute to a “seed” and 0s do not. For example given the pattern 1011
and the sequence “ATGC”, we could generate two seeds, “A.GC” and “G.AT” (the
reverse complement) where the “.” (period) characters are disregarded or can
be thought of as matching anything, as in regular expressions. The weight of
a pattern refers to the number of 1s in the pattern. Ma et al. showed that a
spaced seed pattern is more sensitive to weak similarities than a non-spaced
seed pattern of the same weight, leading to a small revolution in homology-
search as programs were modified to incorporate spaced seeds. Calculating so
called “optimal seed patterns” becomes a challenge for long seeds (Preparata,
Zhang, and Choi, 2005). In general, however, shorter and lighter patterns are
expected to be more sensitive while longer and heavier patterns are expected
to increase specificity. The use of spaced seeds complicates the generation of
hash functions, often limiting the choice of patterns (for example, BLASTZ
offers users the choice of 2 spaced seed patterns).

When the MegaBLAST and BLASTZ approach of hashing using only
the first N bases is applied to spaced seed patterns, we refer to this as the
First-N approach. To examine the situations in which this First-N approach
is suboptimal, considering genome hashing from a Shannon entropy perspec-
tive is helpful. Because a weight w seed Ki has at most w random symbols
from an alphabet of {A,C,G,T}, Ki has at most 2w bits of information. The
naive First-N approach to getting an h bit hash out of a 2w bit seed is sim-
ply to start reading bits from one end and stop once h bits are collected,
as described above for BLAST and BLASTZ. If each base were statistically
independent, any sampling of h bits from the key Ki would be equally ef-
fective. In reality, however, each base of a k-mer is far from statistically
independent. In fact, the average conditional entropy of a base genome given
the previous bases is estimated to be closer to 1 bit per base (Tabus and Ko-
rodi, 2008)(Farach et al., 1995). Therefore, the naive approach is expected to
provide poor utilization of the available hash key space. We confirm this in
Results (Chapter 2.3). At the other end of the complexity spectrum, we can
expect near uniform utilization of the hash key space by passing all 2w bits to
a cryptographically secure pseudorandom hash function like SHA-1 (National
Institute of Standards and Technology (NIST), 2002) or MD5 (Rivest, 1992).
SHA-1 and MD5 are often used as hash algorithms where the characteristics
of the key domain are unknown and uniform utilization of the hash range is
critical (such as in file systems (Quinlan and Dorward, 2002) to prevent data

2.1. INTRODUCTION 15

loss). MD5 has recently been shown to be vulnerable to a variety of crypt-
analysis attacks designed to generate colliding keys for a given key rendering
it unsuitable for security purposes; however MD5 is faster than SHA-1 and
the cryptanalytic attacks are irrelevant to our purposes here. These crypto-
graphic hash functions are, however, computationally expensive and produce
256 bit hashes from which we can use only a small fraction. In Murasaki
we introduce a novel hash function generation algorithm to automatically
generate hash functions from arbitrary spaced seed patterns that approxi-
mate maximal hash key space utilization in a computationally inexpensive
manner, which we term the “adaptive hash algorithm.” The details of this
algorithm are explained in Section 2.2.

2.1.3 Motivation

Identification of anchors (or seeds for alignment) for whole-genome compar-
ison plays a fundamental role in comparative genomic analyses because it
is required to compute genome-scale multiple alignments (Waterston et al.,
2002; Dewey et al., 2006; Gibbs et al., 2004), and to infer among multi-
ple genomes orthologous genomic segments descendended from the common
ancestor without any rearrangement (Hachiya et al., 2009). A common ap-
proach for the identification of anchors among multiple sequences, used by
TBA (Blanchette et al., 2004), first detects anchors between every pair of
sequences, and then progressively integrates pairwise anchors to form an-
chors across multiple sequences. For a given number of sequences (N), this
approach requires NC2 computations of pairwise anchors. Naturally this
progressive approach requires quadratic (O(N2)) time with respect to the
number of sequences. Linear time variations on this approach exist when
alignments to a single reference sequence are appropriate (eg. the UCSC
human conservation track (Miller et al., 2007)), however these have their
own limitations which we describe in Section 2.4.1. Current progress in se-
quencing technologies accelerates the accumulation of completely sequenced
genomes: 1,139 Prokaryotic and 129 Eukaryotic genomes are now available
as of this writing (6th May, 2010) according to the GOLD database (Liolios
et al., 2008). The rapidly increasing number of available genomes poses a scal-
ability challenge for bioinformatics tools where computational cost is bound
to the number of sequences. Progressive alignment is further complicated by
the potential to introduce errors or bias based on the phylogenetic trees se-
lected for progressive alignment and accumulate pairwise errors at each stage
of the alignment (Kemena and Notredame, 2009). To address these issues,
we propose an alternative to the progressive approach allowing the identi-
fication of multi-sequence anchors simultaneously wherein all sequences are

16 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

hashed simultaneously and well-conserved anchors are computed in a single
pass. This allows us to compute anchors across multiple genomes with an
approximately linear cost without any pairwise comparisons or tree inference.

2.1.4 Parallelization

With processor densities now pushing the constraints of physics for speed (Kish,
2002), chip manufacturers have abandoned increasing clock speeds in favor
of adding multiple cores and increased parallelism. To deal with the expo-
nentially increasing amount of sequence data available from new sequencing
technologies (Bentley et al., 2008), new algorithms need to be designed to
take advantage of multicore and cluster computing environments in order to
keep up. Furthermore, conventional computer architectures impose a strict
limit on the amount of maximum amount of RAM usable in a single ma-
chine. This has pushed developers working on whole genome data, as with
ABySS (Simpson et al., 2009), to use cluster computing to avoid memory
barriers even if there is little gain in computational speed (or even a decline).

When using progressive alignment tools such as BLASTZ and TBA, the
NC2 comparisons for each pair of sequences are independent and therefore
trivially parallelizable. Any finer grained parallelization (necessary to use
more than NC2 processors), requires breaking the n sequences into smaller
fragments that can be aligned independently (the technique used for Human
and Mouse genomes in (Schwartz et al., 2003)). This fragmentation is in fact
necessary with software like BLASTZ for mammalian scale genomes where
the genome as a whole is too large to be processed by the alignment soft-
ware in a single pass. Breaking each sequence into M fragments incurs an
additional cost for each pair {Si, Sj} of the NC2 comparisons. With fragmen-
tation each comparison is shorter, however each base is considered at least M
times more than it was without fragmentation. This is because all M frag-
ments of sequence Si must be compared with all M fragments of sequence Sj

and each fragment gets re-indexed and anchored each time. In Murasaki we
eliminate both the NC2 and fragmentation costs by introducing a novel fine
grained yet highly efficient approach to parallel anchoring using an unlimited
number of processors independent of the number of sequences or fragments
under comparison.

2.2. IMPLEMENTATION 17

2.2 Implementation

2.2.1 Algorithm Outline

At its most primitive definition, Murasaki takes as input a set of DNA se-
quences, a spaced seed pattern, and provides as output a series of anchors.

Anchors are defined in Murasaki as a set of intervals across some subset of
the input sequences. Each anchor contains at least one set of matching seeds.
Here a seed refers to an input substring when masked by the spaced seed pat-
tern. When an anchor is initially constructed based on a set of matching
seeds, both ends are extended by an ungapped alignment until the mini-
mum pairwise score falls below the X-dropoff parameter as in BLAST and
BLASTZ (Schwartz et al., 2003). Overlapping collinear anchors are coalesced
to form larger anchors, as in Figure 2.1.

Because our goal is to find and extend matching seeds, the role of the
hash table is to accelerate the identification of matching seed sets. FASTA,
BLAST, and BLASTZ all rely on hash table-like indices to find matching
seeds in constant time. Mauve uses a “sorted k-mer list” where k-mers (or in
later versions pattern masked k-mers) are stored in a list and sorted. Suffix
trees and other tree-based approaches use some tree-like structure to accom-
plish the sorted index task. As described in Previous Work (Section 2.1.2),
the strict one-to-one hash table-like approaches in the FASTA derivatives
limit the size of seeds to log4M where M is the size of the hash table.
Murasaki uses a hybrid approach mixing hash tables with a fast comparison
based collision resolution mechanism to reduce the number of comparisons
needed to find matching seed sets. Hashes are generated from seeds such
that if two seeds Ki and Kj match, they necessarily produce the same hash
(i.e., Ki = Kj ⇒ H(Ki) = H(Kj)), therefore all matching seeds will reside
in the same location within the hash table. Collisions are resolved by either
using chaining and a sort or by open addressing.

The algorithm is as follows:

1. Load the input sequences as 2-bit codes.

2. Determine hash parameters and hash function H.

3. For each location L across all input sequences (on both forward and
antisense strands):

(a) Compute a hash h for the seed K at location L based on the input
sequence and hash function H

(b) Store the pair (K,L) into location H(K) in the hash table.

18 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Figure 2.1: Here we illustrate an example of how anchor coalescing is pro-
cessed. In A we show 3 anchors spanning 3 sequences represented by 3 sets
of arrows: red, green, and blue. The green anchor overlaps the red anchor
in all sequences, and maintains colinearity, therefore they can be coalesced.
However the overlap of green and blue occurs only in Sequence 1, therefore
they cannot be coalesced. B shows the results of the coalescing of green and
red with the resulting anchor shown in yellow.

2.2. IMPLEMENTATION 19

At this point all matching locations (“seeds”) share the same hash key
and therefore share the same locations in the hash table.

4. Extract all matching sets of seeds from each entry of the hash table
(i.e., “invert” the hash table).

5. For each set of matching seeds:

(a) Make a new anchor A for each subset of seeds such that there is
exactly one seed from each sequence.

(b) Extend each new anchor A by ungapped alignment.

(c) Coalesce each new anchor with pre-existing existing anchors.

The hash table inversion and anchor generation steps are illustrated in
Figure 2.2. Murasaki optionally supports partial matches, also known as
“islands” where some number of sequences may be missing. In this case L
for sequences up to the specified number of missing sequences are considered
anchored at a special ∅ location.

It is worth noting at this point that the size of the hash table is a critical
factor. Our hash table size is defined to be exactly 2b where b is the “hashbits”
parameter, describing the number of bits expressed in hash values. The
events where H(vi) = H(vj) and vi 6= vj are termed “hash collisions.” While
careful selection of a hash function can reduce the number of hash collisions,
the pigeon hole principle guarantees that some collisions must occur if the
number of distinct seeds is greater than the size of the hash table. Even
given a perfectly balanced hash function, where a seed selected at random
has an equal probability of mapping to any key, the expected number of
collisions per key is 4w

2b
= 22w

2b
= 22w−b, where w is the weight of the pattern.

Therefore, increasing the value of b by one is expected to reduce the number
of collisions by half, dramatically reducing the time required to invert the
hash table and extract matching seeds. This trade-off of memory for speed
is common in hash tables and in data structures overall, but Murasaki is
the only existing hash-based anchoring algorithm to separate the selection
of spaced seed patterns from the data structure used to index the input
sequences. This gives the user separate tunable parameters that allow control
of sensitivity/specificity independent of the memory footprint on the system.

2.2.2 Parallelization

Murasaki’s approach lends itself to parallelization at several points. First,
the order in which individual seeds are hashed is irrelevant, and therefore we

20 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Figure 2.2: Here we show a simplified example of how matching seed sets
are extracted from the hash table and converted into anchors. A shows one
row (Ti out of T0 . . . TN) of the hash table. Several (K,V) pairs have been
inserted into the hash table. V indicates a position in the input sequences
at which K occurs. Because K is necessarily implied by V Murasaki only
stores V , however here both K and V are shown for clarity. Different values
of K have also been colored differently to note their difference. First, this
row is sorted with the result shown in B. The extents of each matching seed
set can then be found in O(logN) time by binary search. These matching
seed sets are extracted into a series of lists, as shown in C, which are then
used to construct anchors, as shown in D.

2.2. IMPLEMENTATION 21

can devote as many CPUs to hashing as desired. The storage of locations
into the hash table may require traversing and updating some form of list
or tree structure, and which takes time comparable to that of computing a
hash. Only one CPU can modify a list or tree at a time; however, if the
lists are independent, CPUs can work on independent lists or without risk
of interfering with each other. “Inverting” entries in the hash table can also
occur in any order, and the more CPUs we apply to this task the faster it will
finish. Therefore we divide all available computational nodes into one of two
disjoint sets: “hasher nodes” and “storage nodes.” These nodes function in a
“producer/consumer” model where one set performs one half of an operation
and passes the result to a node in the opposite set. Fundamentally the
parallel algorithm works as follows:

1. All nodes load input sequences as 2-bit codes.

2. Hash parameters and a hash function H are generated.

3. Nodes are assigned a job as either “hasher” or “storage.”

4. The input sequence is divided into contiguous segments, one for each
hasher.

5. Storage nodes are assigned a contiguous interval of the hash table to
manage.

6. Each hasher node

(a) computes a hash h for the seed K at location L based on the hash
function H(K).

(b) sends this (K,L) pair to the storage node responsible for K.

7. Meanwhile, each storage node

(a) receives a (K,L) pair from a hasher node.

(b) stores L into location h within the hash table.

8. Hasher and storage nodes now switch roles, the storage nodes becoming
producers, and the hasher nodes becoming consumers.

9. Each storage node

(a) inverts one row of the hash table at a time.

(b) sends the each resulting set of matching seeds to an arbitrary
hasher node.

22 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

10. Meanwhile each hasher node, now maintaining an independent set of
anchors

(a) receives a set of matching seeds from a storage node.

(b) makes a new anchor A for each subset of seeds such that there is
exactly one seed from each sequence.

(c) extends each new anchor A by ungapped alignment.

(d) coalesces each new anchor with pre-existing anchors.

11. Once all hasher nodes have finished receiving and building anchors,
hasher nodes have to merge these anchors between them. This is the
“distributed merge” step. Initially all hasher nodes contain unmerged
anchors and are considered “active.”

12. Active hashers are broken into “sender/receiver” pairs, such that hasher
2n receives anchors from hasher 2n + 1.

13. Anchors are merged by the receiver into the pre-existing anchor set,
just as new anchors were in the sequential algorithm.

14. Hashers that have finished sending are deactivated, and the remaining
hashers repeat the process from step 12 until all anchors reside on a
single hasher.

The final “distributed merge” step 11 above is unique to the parallel al-
gorithm, and is the only place where additional overhead for parallelization
is introduced. The memory overhead is minimal, and because the number
of active hashers is halved at each iteration, the distributed merge step re-
quires only dlog2Ne (where N is the number of participating hasher nodes)
iterations to complete. The parallel algorithm is summarized in Figure 2.3.

Most modern workstations and servers used in cluster environments gen-
erally have a limited amount of RAM available. Therefore, Murasaki’s par-
allelization scheme presents a useful advantage in that it allows the biggest
memory requirement, the hash table, to be distributed across an arbitrary
number of machines. This enables the use of proportionately larger hash
tables and thereby enables fast indexing of larger sequences such as multiple
whole mammalian genomes. Murasaki automatically exploits this increased
available memory by incrementing the hashbits parameter (doubling the size
of the hash table) each time the number of machines available in a cluster
doubles.

2.2. IMPLEMENTATION 23

Figure 2.3: Here we show a simplified 8 node example of the parallel Murasaki
algorithm. The time axis shows the progression of steps and is not drawn to
scale. At A Each hasher node is assigned an equal part of the sequence data
(depicted as yellow-blue line), and each storage node is assigned a part of the
hash table (depicted as a red-blue line). At B nodes have been divided into
“hasher nodes” (shown as blue pentagons) and “storage nodes” (shown as red
hexagons). Here hasher nodes act as producers, hashing the input sequence
and passing (K,V) pairs to the storage nodes which store them in the hash
table. At C, the producer/consumer roles are switched such that storage
nodes extract matching seed sets from the hash table and send them to hash
nodes. Once all matching seed sets have been extracted, the storage nodes
are finished and can be terminated (indicated by the lighter coloring in D).
At this point each hasher node has an independent anchor tree. Hasher nodes
are divided into pairs, with one node sending all of its anchors to the other.
These anchors are merged using the normal coalescing algorithm. Once a
hasher has finished sending, it can be terminated. Because the number of
hasher nodes is halved at each iteration, this merge step finishes in dlog2Ne
iterations, where N is the number of hasher nodes. At E only one hasher
node remains which handles any additional scoring and filtering of anchors,
and outputs the final result.

24 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

2.2.3 Hash function generation

As described above, the choice of hash function determines the efficiency with
which the hash table can be utilized. Therefore, it is important that the hash
function be chosen with care. The ultimate goal of the hash function is to
provide a means of reducing the number of operations necessary to identify
all seeds matching a given seed Ki. Therefore, we would like each key of the
hash table to be shared by as few seeds as possible. The “ideal” hash func-
tion provides minimal collisions while requiring only minimal computation
to calculate H(Ki).

To describe our adaptive hash algorithm, first recall that input sequences
in Murasaki are stored with two bits per base. Thus a “word” (the most
primitive computational unit on which a CPU can operate) in a modern
64-bit CPU contains 32 bases, and a 32-bit word would contain 16 bases;
however the algorithm itself works with any arbitrary word size W . The
spaced seed pattern is also expressed in the same two bits per base format,
and therefore consists of several words P0, P1, . . . , Pn, where n is number
of words required to express the pattern (n is therefore d l

W
e where l is the

pattern length). An example seed and resulting words are shown in Figure 2.4
part A. Hashing by any of the above algorithms requires first that the bases
ignored by the spaced seed pattern (the 0s) are masked (or eliminated). This
can be accomplished for any given location v in the input sequence by simple
bitwise AND operation. Because this operation will be repeated for each
position in the genome, a pattern-sized buffer (which we call a window) of
n words (I0..n) is prepared to facilitate this calculation. n + 1 words from
v are copied into the window and bit shifted to align v to the initial word
boundary. The spaced seed masked word Si can be computed as the simple
bitwise AND of Ii and Pi. When hashing the whole input sequence, after
hashing one window, the next window can be calculated by again simply bit
shifting each word I0..n and recalculating the bitwise AND for S0..n.

This provides a framework for running arbitrary hash algorithms on
spaced seeds. However no single one of these words alone is likely to make a
good hash, as the masked bases in them provide zero entropy, and because
the other bases aren’t expected to be conditionally independent. To maxi-
mize the entropy of the hash, it is useful to combine words from across the
breadth of the pattern. Therefore our adaptive hash algorithm generator
dynamically generates hash functions in terms of a set of input pairs (i, j) in
which i indicates which word of the window to select, and j specifies a bit
shift to apply to that word (positive and negative values indicating right and
left shifts, respectively). The hash itself is computed by XORing the result of
Si � j (or Si � −j if j is negative) of all (i, j) input pairs. This process is

2.2. IMPLEMENTATION 25

Figure 2.4: Here we show an example hash function and how it is calculated.
A illustrates how a seed might be stored in memory on a 32-bit machine. We
show 32 bases of sequence stored in two 32-bit (16 base) words. The spaced
seed pattern we’re using as an example here is 32 bases long, with a weight
of 16. The last line of A shows the input sequence after being masked by
the spaced seed pattern, where the masked bases have been replaced with .
(periods). B1 shows an example hash function, expressed in C terms as a
series of words (w[0] or w[1]), in most cases bit shifted left (<<) or right
(>>), and collectively XOR’d together (the ˆ operator). B2 shows the section
of sequence being selected by each bit shifted XOR term. B3 shows the actual
XOR calculation that takes place with each bit shifted term expressed both
as DNA bases and in binary. The highlighted regions show positions in the
hash affected by the input sequence, with the color indicating the XOR term
from which they originated. The final resulting hash is shown on the bottom
line.

26 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

illustrated with a practical example in Figure 2.4.
These hash functions themselves are simple and fast to compute; however

the number of possible hash functions is extreme. For any given spaced seed
pattern of length l, there are d l

W
e choices of word, and 2(W − 1) choices

of shifts for each hash input pair, and therefore 2l(W − 1)/d l
W
e possible

pairs. Because input pairs are combined by XOR, applying the same input
twice is equivalent to not applying it at all. Therefore there are exactly
22l(W−1)/d l

W
e or O(2l) possible hash functions. The vast majority of these

hash functions are undesirable as they use an excessive number of inputs
or leave some parts of the hash underutilized. Therefore finding the “good”
hash functions is a nontrivial problem. Our adaptive hash generator solves
this problem by using a genetic algorithm to iteratively explore the space
of possible hash functions. In this approach, we create a population of (ini-
tially random) hash functions, and each cycle they are evaluated for “fitness”
based on their expected entropy and computation cost (method described
in Section B.1.4). The highest scoring third of hash functions are randomly
combined and mutated to generate new hash functions, and the lowest scor-
ing third are eliminated. By default we start with 100 hash functions, and
repeat for at least 1000 cycles or until the marginal improvement of the best
hash function drops below a given threshold.

2.3 Results

2.3.1 Experiment Design

Because Murasaki focuses solely on multisequence anchor identification, it is
difficult to identify a “drop-in replacement” from existing toolchains against
which to compare Murasaki. Murasaki has already been used in several
projects including orthologous segment mapping (Hachiya et al., 2009), and
a study of Pseudomonas aeruginosa that revealed the occurrences of large
inversions in various P. aeruginosa chromosomes (Mathee et al., 2008); so it
is known empirically to be a useful tool. To quantitatively test accuracy and
efficiency of Murasaki we evaluated Murasaki’s performance under several
controlled scenarios with respect to speed and accuracy. Our tests focus on
either whole genomes, or when the whole genome would be cost-prohibitive,
just the X chromosome for expediency. The concerns that we address in our
testing include:

1. Comparison to existing methods

2. Adaptive hash algorithm performance

2.3. RESULTS 27

3. Parallelization and scalability in cluster-computing environments

4. Performance on large inputs

Lacking a perfect drop-in replacement for an existing method, we chose to
work with BLASTZ (Schwartz et al., 2003) to generate pairwise anchors and
TBA (Blanchette et al., 2004) to combine BLASTZ’s anchors into multi-
sequence anchors when needed. BLASTZ is widely used as another Swiss-
army knife of homology search, and provides options to return anchors at the
ungapped-alignment stage similar to Murasaki. We cannot force BLASTZ to
use longer spaced seed patterns, and recognize this is not BLASTZ’s intended
use, but it can be made to fulfill the same basic anchor finding functions.
The combination of BLASTZ with TBA is consistent with the intended use
of TBA. We use blastz.v7 with options “C=3 T=4 M=100 K=6000” to run
BLASTZ with pattern settings similar to Murasaki. The “C=3” parameter
skips the gapped extension and chaining steps, outputting only HSPs (“high
scoring pairs”), effectively anchors just like those of Murasaki. The “K=6000”
score threshold was selected based on existing studies using BLASTZ on
mammalian genomes (Schwartz et al., 2003). For TBA, we used tba.v12 with
default parameters and TBA’s all_bz program to run BLASTZ with the
above specifications. Murasaki’s parameters, primarily “–scorefilter=6000”
and “–mergefilter=100”, approximate the BLASTZ settings. “Mergefilter”
prevents generating anchors from seeds which would incur more than the
specified number of anchors, tagging these regions as “repeats”. Additionally
repeat masked sequences (Smit, R, and Green, 1996-2004) were obtained
from the Ensembl genome database (Hubbard et al., 2002). Although the
Murasaki “mergefilter” option provides some robustness against repeats, for
mammalian genomes using repeat masked sequences reduces the amount of
sequence that must be hashed and stored in memory by approximately one
half (see Section B.2.2).

2.3.2 Comparison to existing methods

We applied both Murasaki and the BLASTZ+TBA approach described above
to the X chromosomes of eight mammals: human, mouse, rat, chimp, rhe-
sus, orangutan, dog, and cow. We compared every combinatorial choice of
two species, then every choice of three species, and so on. For the final case
of eight species, we repeated the test five times to account for variability
in computation time. For Murasaki we used the 24 base spaced seed pat-
tern 101111110101110111110011 to have a pattern close to the BLASTZ
level of sensitivity (the method used to choose that pattern is explained in
Chapter B).

28 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

First we show that Murasaki and TBA have comparable accuracy. Be-
cause Murasaki is using different spaced seeds than BLASTZ and requires
that seeds match in all input sequences (unlike TBA where less similar
matches are introduced during progressive multiple alignment), a direct com-
parison of individual anchors between Murasaki and TBA is not helpful as
we would not expect them to find the same anchors. However, we would
expect that both Murasaki and TBA should accurately anchor areas of sig-
nificant similarity such as orthologous genes, and that both Murasaki and
TBA would find anchors in same vicinity regardless of gene content (i.e.,
anchoring the same orthologous segments). We use those two ideas as the
basis for our comparison.

First, we evaluated the precision and recall of Murasaki and TBA in terms
of anchors found in orthologous genes. Sets of orthologous genes were used
as defined in (Hachiya et al., 2009) and retrieved from the SPEED ortholog
database (Vallender et al., 2006). Here “recall” and “precision” are defined in
terms of “consistency” such that each anchor overlapping a known ortholog is
classified as either “consistent” or “inconsistent,” and anchors not overlapping
any known ortholog are neither. An anchor is counted as “consistent” if and
only if it overlaps each member of the orthologous gene set. Likewise an
anchor is “inconsistent” if and only if it overlaps at least one member of an
orthologous gene set but fails to overlap at least one of the other orthologous
genes. “Recall” is then defined as the ratio of orthologous gene sets correctly
detected by at least one consistent anchor compared with the total number of
orthologous gene sets. “Precision” is defined as the ratio of consistent anchors
to the number of anchors either consistent or inconsistent. As a combined
overall score, we compute the F-score which is defined as the harmonic mean
of precision (P) and recall (R):

F = 2(PR)/(P + R)

As shown in Figure 2.5, both Murasaki and TBA are similar terms of both
precision and recall. For Murasaki, that recall drops off as more sequences are
added; however, precision increases significantly. The same trend is visible in
TBA; however, the effect is more pronounced in Murasaki where the increase
in precision is far more significant, resulting in a significantly higher overall
F-score, as shown in Table 2.1. The primary reason for this difference in
performance characteristics is that Murasaki anchors are calculated across
multiple genomes simultaneously rather than progressively, decreasing the
number of erroneous matches at the cost of some sensitivity.

Second, we used the anchors produced by each algorithm to predict or-
thologous segments. Orthologous segments refer to an uninterrupted re-

2.3. RESULTS 29

Figure 2.5: This graph examines the consistency of anchors with known
orthologs when comparing varying numbers of multiple mammalian X chro-
mosomes (from 2 to 8 different species), using both Murasaki and TBA.
Consistency is evaluated in terms of recall (the percent of known orthologs
anchored), and precision (the percent of anchors incident on known orthologs
to correctly include the other known orthologous set members). The solid
line represents the median of all tests for that number of species, while the
dashed lines represent the first and third quartiles. In this graph it can be
seen that as the number of species increases, both precision and recall de-
cline with both Murasaki and TBA, however Murasaki’s precision remains
significantly higher than TBA.

30 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

gion of collinear homology between several genomes; that is segments un-
likely to have undergone genomic rearrangement from their common ances-
tor(Hachiya et al., 2009). There are a number of algorithms for identifying
orthologous segments, the most simple of which is GRIMM-Synteny (Pevzner
and Tesler, 2003) where anchors at distances less than a user-specified thresh-
old are merged into “syntenic blocks.” In this study, we chose to use OS-
finder(Hachiya et al., 2009) because it uses Markov chain models to find
optimal parameters by maximizing the likelihood of the input dataset. This
approach provides an anchor algorithm agnostic means to predict orthologous
segments using anchors from either Murasaki or TBA.

We compared the orthologous segments from OSfinder in terms of the
extent to which the resulting orthologous segments overlap as measured in
base pairs, and again in terms of orthologous gene recall and precision as
confirmation. As shown in Figure 2.6, the orthologous segments detected
via both Murasaki and TBA share over 90% of the same bases for multiple
alignments and, and over 99% at in pair-wise comparisons. To confirm that
OSfinder’s orthologous segments are accurate when using either algorithm,
we evaluated the orthologous segments as before in terms of consistency with
known orthologous genes. In terms of orthologous gene consistency, there was
no significant difference between orthologous segments using Murasaki, TBA,
and Roast as shown in Figure 2.7.

Finally we compare computation time. We are only concerned about
time spent on anchor computation. Because in TBA we cannot separate
its time spent generating progressive alignments from time spent generating
multigenome anchors, we ignore the computation time from TBA and report
only BLASTZ time. Consequently this slightly underreports the actual time
required to generate multigenome anchors using BLASTZ and TBA, but if
Murasaki is faster than the BLASTZ computation portion alone, then it is
necessarily faster than BLASTZ and TBA combined; therefore, this com-
parison is sufficient for our purposes. The resulting computation times are
shown in Figure 2.8. For pair-wise comparisons, BLASTZ is faster; however,
when anchoring three or more sequences, Murasaki is significantly faster than
BLASTZ. Because using TBA requires each pair-wise comparison, the com-
putation time increases quadratically with each additional sequence under
comparison. On the other hand, Murasaki’s computation time increases at
approximately anN logN rate (however for these cases with only two to eight
mammalian genomes, only the linear N term is apparent). This is because
all matching seeds are found simultaneously after being entered in the hash
table together; therefore because Murasaki’s runtime is bounded by the to-
tal input length N , not sequence number. The difference between Murasaki
and pair-wise methods increases dramatically as the number of sequences

2.3. RESULTS 31

Figure 2.6: This graph shows the result of comparing othologous segments as
identified by OSfinder using anchors from Murasaki and TBA. The quantities
shown here are the percent of base pairs in each orthologous segment shared
by the other. The solid line represents the median of all tests for that number
of species, while the dashed lines represent the first and third quartiles. For
example, with anchors generated from all 8 species, 94% of the base pairs in
the orthologous segments generated from TBA’s anchors were also identified
as part of an overlapping orthologous segment by anchors from Murasaki.

32 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Figure 2.7: This graph shows the result of evaluating the orthologous seg-
ments returned produced by anchors from Murasaki, TBA, and Roast with
OSfinder. The solid line represents the median of all tests for that number
of species, while the dashed lines represent the first and third quartiles. The
precision and recall are calculated as described in Section 2.3.2. The orthol-
ogous segments produced using both TBA and Murasaki are nearly identical
in terms of recall, however Murasaki outperforms TBA in terms of precision
in our comparisons of large numbers of species. We note however that both
Murasaki and TBA perform very well with all precision and recall scores
above 90%.

2.3. RESULTS 33

increases. The computation times for these tests are shown in Table 2.1.

2.3.3 Adaptive hash algorithm performance

To evaluate the performance of our adaptive hash algorithm, we compared
it with the standard cryptographic SHA-1 and MD5 hash algorithms, and
the First-N approach. Being designed for cryptographic use, we expect SHA-
1 and MD5 hash algorithms to provide near-random utilization of the key
space while being more computationally expensive. To test this, we ran
Murasaki on Human and Mouse X chromosomes using five different patterns,
over different hashbits settings, repeating each trial four times. We then
compared the number of unique keys produced by each hash function to the
median number of keys produced by the adaptive hash algorithm, as shown
in Table 2.2. Our adaptive hash algorithm performs within %0.05 of the
cryptographic hash functions, while the naive First-N approach lags 32%
behind any of the others. We find that as hash keys are used, fewer collisions
require less work to invert the hash table, resulting in faster extraction times,
as shown in Table 2.2. Table 2.2 also shows the computational time required
to hash the input sequences under each hash function. As expected, the
cryptographic functions were significantly (between 52% and 80%) slower.
It is worth noting that hash computation times required by our naive First-
N hash function exceeded even the cryptographic MD5 and SHA-1 hash
functions. Even though calculation of our naive First-N hash function is
conceptually extremely simple, it is computationally inefficient compared to
hash functions that incorporate spaces using the pattern optimized approach
used in the adaptive and cryptographic hash functions. The combined effect
of hash time and extraction time is apparent in Table 2.2, showing the total
processing time required using each hash function. Overall run-time using the
adaptive hasher was 15% to 20% faster than the cryptographic hashers, and
23% to 30% faster than the naive approach. Percentages of key utilization,
and times for extracting and hashing are shown relative to our adaptive
hasher in supplemental Figures S1, S2, and S3.

We also tested Murasaki on Human and Mouse X chromosomes using
different random patterns of lengths from 48 to 1024 at multiples of 16. Five
random patterns were generated for each length, and each pattern had a
weight 75% of its length. Each test was repeated three times to reduce the
variability in timing. As shown in Figure 2.9, the adaptive hash functions
consistently outperformed MD5 in hashing time while maintaining an extrac-
tion time almost identical to MD5. The stair-step appearance of the hash
times of MD5 is due to the way that MD5 processes input in blocks, and
when input lengths roll over such a block boundary, a new round of calcula-

34 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Table 2.1: Multiple X Chromosome Test Results

BLASTZ + TBA Murasaki
Species Time (s) Recall Precision F-Score Time (s) Recall Precision F-Score

2 154 0.981 0.936 0.956 349 0.981 0.931 0.954
3 459 0.972 0.869 0.916 457 0.969 0.888 0.924
4 906 0.967 0.824 0.890 587 0.960 0.866 0.910
5 1489 0.964 0.788 0.869 806 0.951 0.856 0.899
6 2276 0.961 0.766 0.852 961 0.941 0.852 0.892
7 3215 0.957 0.730 0.828 1133 0.934 0.843 0.889
8 4437 0.955 0.712 0.816 1516 0.924 0.834 0.877

This table shows the median statistics from the multiple X chromosome test. Median total
computation time, recall, precision, and F-score are shown for each number of species
compared using both Murasaki and BLASTZ+TBA. The BLASTZ+TBA computation
time includes only the BLASTZ portion of the calculations.

Table 2.2: Total Computational Time by Hash Algorithm and Hashbits
Hash algorithm

Statistic measured Adaptive MD5 SHA-1 First-N
Hash Time (s) 124.908 188.449 208.954 218.202

Extract Time (s) 200.554 197.254 196.82 218.334
Total Time (s) 325.798 386.706 405.385 437.65
Hash keys used 1 1.00018 1.00018 0.71606

This table shows the median total computational time, along with separate times to hash
and extract anchors required by different hash algorithms when anchoring human and
mouse X chromosomes. The final line shows the median number of hash keys used by each
hash algorithm relative to the number used by the Adaptive hash algorithm.

2.3. RESULTS 35

Figure 2.8: This graph compares the computational time required to compare
multiple X mammalian X chromosomes using Murasaki and the BLASTZ
component of TBA. Because TBA requires all pairwise comparisons of the
genomes under alignment, the time required for TBA grows quadratically,
while Murasaki’s time is near linear. The solid line represents the median of
all tests for that number of species, while the dashed lines represent the first
and third quartiles.

36 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

tions is incurred. In contrast the hash time for the adaptive hash algorithm
grows very slowly with regard to pattern length, because estimation of the
expected hash function entropy allows Murasaki to predict the point at which
adding additional inputs no longer provides significant gains for the current
hash key size. The percentages of keyspace used with these long patterns is
shown in supplemental Figure S4.

2.3.4 Scalability in cluster-computing environments

Based on the parallel algorithm design, we expect the peak efficiency of the
parallel computation to vary depending on the interconnect speed of the
nodes; however because the computationally intensive tasks can be split into
independent sets and divided evenly between nodes, we expect the execution
time to decrease by a multiple of the number of active nodes. In other words,
for p processors and a given input, where Murasaki finish in time T (p), we
expect the speedup S(p) to grow linearly with p as in S(p) = c × T (1)

T (p)
for

some constant c.
To test Murasaki against this hypothetical performance, we used Murasaki

to anchor Human and Mouse chromosomes using between 2 and 40 processors
across 10 machines. We used OpenMPI on Torque as our MPI implementa-
tion, and each CPU was a dual core Opteron 2220 SE, with two CPUs per
machine (ie. 4 cores per machine) and had between 16GB and 32GB of RAM
available. In fact, because the amount of RAM available for use as a hash
table grows with the number of machines used, the actual speed-up may be
greater than linear for large inputs and large numbers of processor elements.
To test the scalability of Murasaki on large inputs, we ran our tests using and
the whole human and mouse genomes across the largest number of CPUs we
had available.

Figure 2.10 shows the resulting decrease in wall clock time required as
the number of processors increases, and the coressponding speedup value.
Because the whole genome comparison requires too much memory for any
single machine in our cluster, T (1) is estimated to be 4 × T (4). We have
fitted least-squares linear regression lines to each set of values, and found the
speedup constant c to be 1.000368 with R2 = 0.9984. While the T (1) value
is available only as an estimate, the close fit to a linear model shows that the
algorithm scales favorably. Critically the parallel efficiency (E(p) = T (1)

pT (p)
=

S(p)
p
) shown in Figure 2.11 appears to increase with respect to the number

processors, the most desirable yet elusive pattern in parallel algorithms. This
increase in efficiency is due in part to the increasing hash table size; however
all tests with p ≥ 10 have access to all the machines’ memory and utlize the

2.3. RESULTS 37

Figure 2.9: This graph shows the hash and extract computation time required
to compare human and mouse X chromosomes using very long patterns, and
the difference between MD5 and Adaptive hash algorithms. The difference
between MD5 and Adaptive in hash time grows significantly with pattern
length, whereas the difference in extraction time is minuscule compared with
the overall time required.

38 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

same 232 entry hash table, therefore we speculate that the remaining increase
likely relates to improved scheduling and cache performance as each nodes’
work becomes increasingly localized.

2.3.5 Performance on large inputs

To test the scalability of Murasaki for full multiple genome comparisons,
we repeated the comparison to existing multiple alignment methods
test on eight mammals (human, mouse, rat, chimp, rhesus, orangutan, dog,
and cow), however this time using the whole genome rather than just the X
chromosomes. Again, for BLASTZ and TBA we measure only the compu-
tational of BLASTZ alone. We used the same pattern and other settings as
before; however, this time we ran Murasaki in parallel across 10 machines
using 40 cores as in the scalability test above, using a fix hash bits set-
ting of 29. We report the total median CPU time used by Murasaki and
BLASTZ along with recall, precision, and F-score statistics in Table 2.3 for
all combinations for each number of sequences. The scalability cost of the
BLASTZ+TBA combination is even more striking in this case as BLASTZ is
unable to compare input whole genomes, requiring the user to compare each
chromosome combination (Human-1 and Chimp-1, Human-1 and Chimp-2,
etc.) for each species combination (Human and Chimp, Human and Rhesus,
etc.). Consequently the resulting graph of these times shown in Figure 2.12
makes Murasaki appear nearly constant by comparison to BLASTZ. When
evaluated against gene orthology dataset as in the test cases above, the over-
all first, second, and third quartile F-Scores from all combinations of these
whole genomes are 0.832, 0.861, and 0.896 respectively, leading us to believe
that these anchors are approximately as accurate as those found in the X
chromosome tests above.

The eight species comparison anchors (drawn using GMV(Osana, Popen-
dorf, and Sakakibara, In preparation)) are shown in Figure 2.13. All of
these comparisons are available for download and interactive browsing with
GMV(Osana, Popendorf, and Sakakibara, In preparation) from the Murasaki
website (http://murasaki.dna.bio.keio.ac.jp).

2.4 Discussion

2.4.1 Choice of comparison algorithm

Because BLASTZ is optimized for pair-wise comparisons, it can be expected
to do well on a small number of inputs. However, because all-by-all com-

http://murasaki.dna.bio.keio.ac.jp

2.4. DISCUSSION 39

Figure 2.10: This graph shows the computational time required for a com-
parison of human and mouse genomes using different numbers of processors.
The wall clock time is shown in red using the left axis with the corresponding
“speedup” (S(p) = c× T (1)

T (p)
) shown in green using the right axis. Least-squares

regression lines have been fitted to each dataset, highlighting the near per-
fectly linear speedup and inversely decreasing wall clock times.

40 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Figure 2.11: This graph shows the parallel computation “efficiency” (E(p) =
T (1)
pT (p)

= S(p)
p
) achieved during comparisons of human and mouse genomes

using different numbers of processors. Least-squares regression lines have
been fitted to each dataset, highlighting increase in effiency with respect to
number of processors.

2.4. DISCUSSION 41

Figure 2.12: This graph shows the median CPU time in days required to
anchor different numbers of mammalian whole genomes using TBA and
Murasaki. The times for TBA include only the time spent on pairwise
BLASTZ comparisons. The solid line represents the median of all tests for
that number of species, while the dashed lines represent the first and third
quartiles.

42 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Figure 2.13: This figure shows the resulting anchors from our comparison
of 8 mammalian genomes (from top to bottom): rhesus, chimp, human,
orangutan, cow, mouse, rat, and dog. Anchors are drawn as colored lines
from one sequence to the next. The color is determined by the anchor’s
position in the first (rhesus) genome, making it easier to see rearrangements
and where the other genomes are related. Chromosomes are denoted by
the number shown between I and J symbols along each genome. The sex
chromosomes are shown at the right end (e.g., 23 (X) and 24 (Y) for human).
For a larger image see doi:10.1371/journal.pone.0012651.

doi:10.1371/journal.pone.0012651

2.4. DISCUSSION 43

parisons are required to generate multiple alignments, the time required is
expected to grow quadratically with the number of input sequences. In
contrast, Murasaki is designed to compare an arbitrarily large number of
genomes simultaneously, and assuming a linearly bounded number of an-
chors, the computation time for Murasaki is expected to be approximately
O(NlogN) for a total input length of N .

It might then seem that rather than BLASTZ, a better comparison of
Murasaki would be to a natively “multiple” alignment program like Mauve;
however it is important to note that Murasaki performs a fundamentally
different function than Mauve in that Mauve aligns whole collinear regions
bounded by unique anchors. While these anchors are in some ways analogous
to Murasaki’s anchors, the requirement of “unique anchors” puts Mauve in
a fundamentally different arena, where its strength lies in alignment rather
than anchoring. Also, while Mauve is well suited to bacterial genomes, it is
not well suited for mammalian scale genomes (it is reportedly not impossi-
ble (Darling et al., 2004), but this use is not recommended, it does not work
without applying some undocumented options to perform the necessary out
of core sort, and we could not replicate or verify the results).

We also tested another alternative from the TBA package called Roast
which appears to implement the method described in (Miller et al., 2007)
which builds a multiple alignment based on pairwise comparisons between
a reference sequence and all other sequences, thus in theory requiring time
linear with respect to the number of sequences, similar to Murasaki. How-
ever due to an apparent bug in the implementation, Roast is actually worse
than TBA in some cases. Even assuming that the were fixed, however, the
fragmentation required to compare sequences via BLASTZ results in time re-
quirements which grow several times faster than Murasaki at whole genome
scales. The results from our fixed version of Roast and the native Roast
comparison are included and discussed in Section B.2.3.

2.4.2 Bottlenecks in parallelization

Under the parallel algorithm, when hasher nodes send seeds to storage nodes,
the choice of storage node is determined by the hash key. This means that
balance and contention between storage nodes is, ultimately, determined by
the input sequences. For example a sequence containing only one type of
base (e.g., 4 Gbp of AAAAA) would necessarily all get sent to the same
storage node, causing a less than optimal distribution of storage and heavy
contention for that node. This is in fact the worst case, and highly improbable
with real-world genomes, but similar factors can unbalance the load between
storage nodes. This problem is mitigated by the near uniform random output

44 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

of Murasaki’s hash functions, making it approximately equally unlikely that
any two given seeds share the same node, but it does not help the worst case.
A modification to the hash table data structure might allow storage nodes to
dynamically update their active hash table region, and redirect overexpressed
seeds to less heavily loaded storage nodes. This would of course require some
additional overhead.

2.4.3 Parallel overhead

While adding machines to a cluster can increase the amount of available
RAM indefinitely, the storage of the input sequences themselves in memory
incurs a constant cost per machine added. Shared memory is used to mitigate
this cost by loading only one copy per machine (rather than per processor),
and input sequences are stored 2 bits per bp. However, as the size of the
input sequence grows, at some point merely loading all the sequences into
memory exhausts the system’s memory. Thus the smallest memory machine
in the network effectively limits the maximum input size of Murasaki. For
example loading all 3.1× 109 bp of the human genome takes about 738MB.
Comparing ten mammals requires at least 7GB per machine, and that is not
including any space for the hash table.

2.5 Conclusions
We have shown that our anchoring algorithm Murasaki produces accurate an-
chors across multiple genomes with a computational efficiency significantly
greater than existing methods. Its adaptive hash function generation algo-
rithm provides an efficient method to use arbitrary spaced seeds of any length
with collision rates close to pseudorandom one-way cryptographic hash al-
gorithms at a fraction of the computational cost. Additionally, our method
is highly scalable, allowing whole computer clusters to be fully utilized for
large-scale multiple genome comparison.

2.5. CONCLUSIONS 45

Table 2.3: Mammal Whole Genome Comparisons
Species TBA-

BLASTZ
CPU Time
(days)

Murasaki
CPU Time
(days)

Recall Precision F-Score

2 0.632 0.991 0.971 0.910 0.925
3 1.901 0.780 0.953 0.863 0.900
4 3.808 0.741 0.922 0.832 0.867
5 6.351 0.864 0.887 0.807 0.840
6 9.534 0.951 0.855 0.790 0.818
7 13.328 1.093 0.824 0.768 0.797
8 17.796 1.180 0.790 0.764 0.777

This table shows median computation times and accuracy for mammal whole genome
comparisons with respect to each number of species under comparison. Recall, precision,
and F-Score were calculated from Murasaki anchors only.

46 CHAPTER 2. MURASAKI: PARALLEL ANCHORING

Chapter 3

Samscope: An OpenGL based
real-time interactive scale-free
SAM viewer

3.1 Introduction

Next generation sequencing workflows often involve mapping reads onto refer-
ence genomes using tools such as SHRiMP2 (David et al., 2011), Bowtie (Lang-
mead et al., 2009), and others. Mapping determines the likely point of origin
(or origins) of a given read. Despite the multitude of different mapping
methods and software, the SAM (Sequence Alignment/Map) format (Li et
al., 2009) and the associated binary encoding (BAM) have emerged as the
lingua franca of next generation sequencing (NGS) mapping file formats. For
many projects using SAM data, it’s desirable to visually inspect the results of
mapping for quality control and exploration. However, because a single NGS
run can provide millions of reads from billions of bases of genome sequence,
simply opening up a SAM file and making sense of the content is a nontrivial
problem. The two main problems in visualization of a SAM data set are:

1. Sam files are structured in terms of reads. To calculate coverage of a
given base, we have to look at each read and see which bases it maps
to, then count how many times that base has been mapped.

2. Most computers only have 1000 to 2000 pixel wide displays with which
to visualize billions of data points.

As visualization is a common need, a variety of tools have been introduced
to view SAM data in different ways. For example “samtools tview” (Li et al.,

47

48 CHAPTER 3. SAMSCOPE: INTERACTIVE SAM VIEWING

2009) provides an interactive text-based viewer which shows each base of
each read and reference genome as a character in a text terminal. This
can be useful for inspecting narrow regions (about 100 bases) with fewer
reads than terminal rows (about 30), but not helpful for examining larger
regions or deeper coverage. “Tablet” (Milne et al., 2010) and its close cousin
“IGB” (Nicol et al., 2009) both provide Java based graphical interfaces for
drawing reads against a reference sequence where each base is represented as
a colored rectangle. Both can summarize overall coverage with a secondary
visualization track. However both Tablet and IGB draw each read similar to
“samtools tview”, limiting their speed and effectiveness when a large number
of reads would be in view. “Integrative Genomics Viewer” (IGV) (Robinson et
al., 2011) can load SAM/BAM files providing detailed inspection capabilities,
and provides a “mean coverage” track given proper pre-processing, which
can scale to arbitrary genome sizes. For applications like ChIP-Seq (Pepke,
Wold, and Mortazavi, 2009) or RNA-Seq however, “mean coverage” is not
necessarily helpful and hard to use at large scales, as most coverage values
are at zero or near zero.

We needed a flexible method to visualize and interactively inspect vari-
ous features from large numbers of reads across mammalian-scale genomes
while addressing the problems above, so we developed our own approach in
Samscope.

3D computer graphics addresses a similar problem when drawing textures
on distant 3D objects: how to efficiently generate a reasonable approximation
of millions of points of color data into one screen pixel. A solution known
as MIP mapping (Williams, 1983) has become a mainstay of modern 3D
rendering; in it a series of filtered copies of each texture are pre-calculated
at exponentially decreasing resolutions. Thus when a distant object is ren-
dered, rather than sampling millions of points to calculate the combined
contribution to one screen pixel, an approximation is achieved with just a
few samples from a lower resolution copy. We apply the MIP map concept
to genome visualization in Samscope.

3.2 Methods and Implementation

Samscope adopts a layer-based display model, where each layer reflects a
SAM mapping feature, such as coverage. Layers are stored as BAM MIP
Maps (“BIPs”) on disk in a binary format allowing instantaneous navigation
with minimal memory requirements. Multiple layers can be displayed simul-
taneously as different colors, and in multiple synchronized windows. This
layer-based design makes it simple to display results from multiple SAM files

3.2. METHODS AND IMPLEMENTATION 49

as different layers, and visually compare results from different experiments.
Samscope supports a variety of feature calculations for different applications.
For example, in ChIP-Seq the difference in number of reads mapped to the
forward strand compared to the reverse strand (what we term “polarity”)
results in a characteristic zero-crossing inverted-peak pair which, in conjunc-
tion with coverage, often reflects protein binding sites (Pepke, Wold, and
Mortazavi, 2009). Samscope allows easy composition of data layers into com-
pound data layers, such as polarity; “forward” and “reverse” count layers are
generated, from which overall “coverage” (the sum) and “polarity” (the dif-
ference) are derived (shown in Figure 3.1). This design allows for fast and
memory efficient pre-processing of huge data sets, as data primitives can be
stored on disk and accessed at random as needed.

To generate BIPs we adapt the traditional graphics MIP map approach
to sampling one-dimensional data series. The pre-processing algorithm is as
follows:

1. Calculate the full resolution series with one value for each base of ref-
erence genome, forming a series of columns with one value each.

2. Merge data from adjacent columns generating half the number of com-
posite columns. To merge two columns, combine values from each col-
umn as value/frequency tuples. For example, if the value “3” occurred
twice in each column, a single tuple {3,4} would be retained.

3. If the number of value/frequency tuples in the current column exceeds
a user adjustable maximum, retain a subset; the most frequent values
are prioritized, along with the extreme maximum and minimum values.

4. The merged column data and an index reference for fast random look-
up are stored to disk.

5. Steps 2-4 are repeated until only one column remains.

To render a given region of data, a set of columns is selected to match the
pixel width of the display window. For example, if rendering a 50Mbp region
in a 1024 pixel wide window, data from the 16th “column merge” iteration
is selected, such that each column represents a sample from the underlying
216 = 65,536 bases. Thus the display can be rendered with data from 763
precomputed columns.

This approach has some practical benefits:

• To draw one screen of P pixels, at most O(P) values must be read
and drawn. Fast rendering allows us to abandon scroll bars, and adopt
an intuitive mouse-based “pan and zoom” interface familiar to users of
Google Maps (http://maps.google.com).

http://maps.google.com

50 CHAPTER 3. SAMSCOPE: INTERACTIVE SAM VIEWING

Figure 3.1: This screenshot shows “forward, reverse, and polarity” layers
from a ChIP-Seq analysis of CENPA focusing on a 500bp region at in Z
chromosome centromere of chicken (Shang et al., 2010). The periodic waves
visible here are presumably related to structural influence of exposed binding
sites.

3.2. METHODS AND IMPLEMENTATION 51

• The pre-processed data retains multiple values per column, allows Sam-
scope to change the rendering style at run-time to a representative
spectrum of values at each column, or an average value, or maxima
and minima or other arbitrary effects.

• Complex features (such as peaks in ChIP-Seq and RNA-Seq) are visible
at genome-scale, and not obscured by techniques like averaging as used
in previous tools like IGV and MAQ (Li, Ruan, and Durbin, 2008).

• Because only the values on the screen at any given moment need to be
retained in memory, there is little need for large amounts of memory
or a fast CPU.

• Just as BIP display only needs a few columns in memory at a time, BIP
generation only needs the values for each pair of columns. Completed
columns can be immoderately swapped to disk and will be loaded at
most once more duration the generation phase. Thus Samscope can run
perfectly well on an average laptop computer for both BIP generation
as well as viewing.

• Finally, because empty columns do not need to store any data values,
and because BIP files are stored as “sparse files” on disk, BIP files are
well suited for sparse data like exomes or ChIP-Seq.

Sequence parameters (such as chromosome name and length) are obtained
from the source SAM/BAM file itself, eliminating any additional sequence
setup steps as are required in programs like IGV. Annotation data from
GFF/GTF files are displayed if available (see Figure 3.2).

3.2.1 Displaying individual reads

While displaying aggregate statistics of mapping results is extremely useful
and often sufficient for visualization, very often a use will want to examine
the reads present behind an unusual or suspicious feature. As described in
Section 3.1, due to the scale of read data, it’s impractical and not useful
to draw a full genome of reads, and features with thousands pose the same
problem. The first problem, that of a long genome, is partially addressed
by the existing BAM index structure from SAMtools (Li et al., 2009). The
BAM index allows us to load reads that occur after a given point in a given
chromosome. However, because read length (and insert length for paired end
reads even more so) varies, to draw the left edge of the screen in a consistent
fashion some bounded area around the current viewing window is polled.
When a read is in view, its data is parsed to determine the aligned bases and
calculate where mutations occurred. Per base statistics like mutation counts

52 CHAPTER 3. SAMSCOPE: INTERACTIVE SAM VIEWING

Figure 3.2: This screenshot shows coverage from an RNA-Seq experiment on
a 7072bp region of Bacillus subtilis subsp. natto BEST195. Gene annotations
are shown as green bars below the X axis.

3.2. METHODS AND IMPLEMENTATION 53

Figure 3.3: This screenshot shows a fulled zoomed in view of part of a
Bacillus Subtilis variant strain of natto. The cross-hairs are moused over a
variant base in one of the reads, showing that base’s position in the read
quality graph as well as statistics for that base. The reference sequence is
derived from the SAM data and shown at the bottom of the screen.

and variant consensus calls are also calculate when per base data is drawn
(or would be otherwise visible, as by mousing-over the reference/consensus
bars along the bottom of the screen). This derived per-base data is cached in
a Samscope specific while the read is in view. This cache allows us to address
the second problem of genomic features with thousands more reads than are
visible on the screen at any one time. Only reads which are physically visible
(i.e. aren’t obscured by attempting to draw more than 2 reads in the same
pixel) are drawn and thus only a fraction of reads need be cached in memory.
If the user zooms in or pans to make other reads visible, their data is fetched
as necessary. Furthermore read processing is done between frame updates,
so viewing frame-rate is minimally impacted. An example of the individual
read rendering is shown in Figure 3.3.

54 CHAPTER 3. SAMSCOPE: INTERACTIVE SAM VIEWING

3.2.2 Memory requirements

When viewing BIP data files, all necessary data is paged from disk using the
POSIX mmap function, at most few megabytes of memory are necessary for
rendering any given view of the data. If the system runs low on memory
and experiences memory pressure, pages of BIP files are easily dropped from
memory by the host operating system because they are loaded as “read-only”
and never require rewriting to disk (as a typical virtual memory “swap space”
would require). Most operating systems drop “least recently used” pages first,
so most users will not even notice this occurring.

For generating BIP data files, if the input data is sorted, the data for
one base of the reference sequence has been completed, that base will never
be visited again, therefore it can be safely flushed to disk and dropped from
memory. Because data is written using POSIX’s mmap function, this happens
automatically if the system needs more memory. If the input data is not
sorted, the RAM costs are bounded by the size of the reference sequence. In
general the cost is expected to be between 1 and 8 bytes of RAM per base
depends on the number of layers being simultaneously generated, and the
precision of the data type used for storing the layer data. 2 bytes precision
per base is the default, and generating 2 layers simultaneously is typical
(forward and reverse), thus an estimate of 12gb of RAM for human reference
is reasonable.

3.2.3 Time requirements

The time to generate BIP data files for Samscope is effectively O((N +
M)(L)), where N is the size of input data (in bases), M is the size of the ref-
erence genome, and L is the number of layers being generated. All bases are
read in and statistics are counted for each base requiring O(N) time. This
works even with insufficient RAM if reads are sorted. If ValuePrecision×M
memory is available, it completes in O(N) time regardless of whether or not
reads are sorted. Each MIP map contains at half the columns of the previous
iteration, thus finishing in O(M) time. Finally, while some layers can be gen-
erated concurrently and don’t require additional passes over the O(N) read
data, some layers depend on prior layers (e.g. polarity = forward - reverse)
and some layer types are not presently generated concurrently. Furthermore
some users may wish to limit concurrency (see –maxconcur) to limit memory
consumption, requiring an additional O(L) passes over the data.

3.3. RESULTS 55

3.3 Results

3.3.1 BIP generation benchmarks

We’ve included some benchmarks on a variety of data sets (see Table 3.1) on
a series of different computer environments described in Table 3.2, Table 3.3,
and Table 3.4. As a practical benchmark on human reference, a coverage
BIP file can be generated from 54M 120bp mapped reads on a server with
96GB of RAM in 12 minutes, or on an ordinary desktop with 6GB of RAM
in 19 minutes.

56
C

H
A

P
T

E
R

3.
SA

M
SC

O
P

E
:IN

T
E

R
A

C
T

IV
E

SA
M

V
IE

W
IN

G

Table 3.1: Datasets
dataset reads read-

length
approx.

bases
reference

size
prep.

type
reference notes

Yan-11 ∼54M 120bp 6.48Gbp 3.1Gbp Exome cap-
ture

doi:10.-
1038/-
ng.788

There are
18 different
biological
replicates
for this
data. We
show the
means from
runs on all
of these.

Natto 24.3M 80bp 1.9Gbp 4.09Mbp RNA-Seq doi:10.1186/-
1471-2164-
11-243

Chicken 689.9K 36bp 24.8Mbp 74.6Mbp ChIP-Seq doi:10.1101/-
gr.106245-
.110

selected
reads
mapped to
one custom-
built Z
chro-
mosome
assembly
only.

3.3.
R

E
SU

LT
S

57

Table 3.2: Intel Xeon E5540 @ 2.53GHz and 96GB RAM
This is a Sun Fire X2270 from 2009. Not too fast, but with lots of RAM. This is running Debian Lenny.

dataset layers time (s) peak memory
(GB)

space on disk notes

Yan-11 1 748.0 13.8 14.7GB Coverage only.
Yan-11 9 1954.6 57.5 26.7GB layers are all

bases counts,
called, minor
allele freq/millis.

Chicken 4 58.0 1.1 331MB layers are for-
ward/reverse,
coverage, polar-
ity.

Natto 12 248 0.8 389MB layers are bases
counts, mi-
nor/major allele
frequency, mul-
timap counts,
coverage, for-
ward/reverse.

Natto 1 30.0 0 (10.0MB) 65MB coverage only.

58
C

H
A

P
T

E
R

3.
SA

M
SC

O
P

E
:IN

T
E

R
A

C
T

IV
E

SA
M

V
IE

W
IN

G

Table 3.3: Dual-core AMD opteron 2220 SE @ 2.8GHz with 23GB of RAM.
This is an old IBM System x3455 from 2007. Running Debian Lenny.

dataset layers time (s) peak memory
(GB)

space on disk notes

Yan-11 1 748.0 13.8 14.7GB
Yan-11 9 14315.2 (∼4.2 h) 24.9 25.6GB This pushes

beyond the
physical RAM
capacity of this
machine and
demonstrates
Samscope using
paging in the
worst possible
case (as minor
alleles layers
depend on base
data layers being
calculated first).

Natto 1 35.0 0 (8.5MB) 65MB
Chicken 4 60 2.1 331MB

3.3.
R

E
SU

LT
S

59

Table 3.4: Intel Core i7 930 @ 2.8 GHz with 6GB of RAM
This is a standard HP Pavilion desktop from 2010 with the factory standard 6GB of RAM. This computer doesn’t
have nearly enough RAM to hold all the active data in RAM, so we use it to demonstrate the disk-backed BIP
generation capabilities of Samscope. This is running Debian Squeeze.

dataset layers time (s) peak memory
(GB)

space on disk notes

Yan-11 1 1145.3 5.7 14.7GB This demon-
strates paging
in less extreme
conditions (only
1 layer to page).

Yan-11 9 17853.0 5.7 25.6GB Not significantly
worse than the
23GB machine
above.

Natto 12 218.1 0.9 389MB
Natto 1 27.0 0 (21.5MB) 65MB
Chicken 4 58.0 1.8 331MB

60 CHAPTER 3. SAMSCOPE: INTERACTIVE SAM VIEWING

Environment

All disk access is to a central NFS server (backed with ZFS running lzjb
compression) over gigabit ethernet. These trials used Samscope 1.4.6.1.

3.4. DISCUSSION 61

3.4 Discussion
Samscope’s BIP format is similar in its goal to the BigBed and BigWig (Kent
et al., 2010). However where BigBed/BigWig use B-trees and a complex data
layout suitable for remote access over HTTP, Samscope uses a much simpler
flat file format designed for local access through the POSIX mmap function.
This design allows the entire process to run efficiently on commodity hard-
ware. Samscope can be more efficient for its purpose because where BigBed
is designed to contain any arbitrary annotation (e.g. scores from overlap-
ping alignments, etc.), Samscope focuses on per base aggregate statistics
(e.g. coverage, polarity, etc.). We find the BigBed and BIP formats to be
complementary in this sense.

62 CHAPTER 3. SAMSCOPE: INTERACTIVE SAM VIEWING

Chapter 4

Conclusions and Future Work

In this dissertation we’ve examined two different challenges that arise when
working with large scale genomes: the task of comparing the genomes them-
selves, and the task of making large genome scale data understandable to
human users.

4.1 Multiple genome comparison

As the cost of sequencing continues to fall, the number of complex genomes
such as plants and mammals sequenced is expected to continue increasing
exponentially. Given that processor clock speeds are no longer increasing, in
order to keep pace with the growing number of new sequences the bioinfor-
matics community must consider alternatives that can scale with distributed
computing solutions. In Chapter 2, we demonstrated a highly scalable ap-
proach for strong homology search across multiple genomes. We showed that
its accuracy for tasks like orthologous segment identification is comparable to
existing methods, while being far more efficient in terms of resource utiliza-
tion. We showed that performance scales linearly when run on concurrently
on a cluster network, which is the nearly optimal best case outcome for dis-
tributed computing designs.

4.1.1 Future work for multiple genome comparison

Selection of an appropriate seed pattern remains a challenging problem for
applying Murasaki and similar matching algorithms. Selecting a longer pat-
tern will likely lead to lower recall of distant homologies, while selecting
a shorter pattern can lead to reduced precision and slower performance as
unrelated regions are considered as potential anchors. Hash table based al-

63

64 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

gorithms in the past have tried to avoid this problem with techniques like
“Daughter Seeds” (Csuros and Ma, 2007) where multiple hashes are calculated
and multiple entries stored for each location of a genome. Unfortunately this
naturally carries the significant cost of extra hashing and hash table storage
for limited gains in sensitivity. Recent advances in algorithms supporting suf-
fix arrays as practical large scale text indexes (Ferragina and Manzini, 2000)
have spurred development of BWT (Burrows-Wheeler Transform) (Burrows
and Wheeler, 1994) based alignment algorithms including LAST (Kiełbasa
et al., 2011) which exploit BWT to create compressed indexes which require
a fraction of the memory ordinarily required by hash tables. LAST also uses
these suffix arrays to avoid the question of selecting a single seed by explor-
ing multiple matching suffixes. This BWT-based index approach works very
well for pairwise alignment, and creating multiple indexes (or including all
sequences in one index) would seem to provide a straight forward approach
to multiple alignment. Suffix array creation is a relatively expensive task,
however recently a new parallel approach for construction of suffix arrays
has been introduced (Kulla and Sanders, 2007), which suggests a potential
way to help solve the index creation problem. This, combined with a q-gram
lemma based matching approach, like that used in SHRiMP2 (David et al.,
2011) where k matching q-grams inside a given length of sequence indicate
the presence of similar subsequences, could also be used to provide more sen-
sitive search for alignments including insertions and deletions (indels). The
parallelization of the search for nearby q-mers may however prove to be a
challenging bottleneck to large scale homology search. The Murasaki algo-
rithm as is remains extremely fast and efficient for cases where single pattern
based seed matching is appropriate (such as relatively closely related se-
quences or searches for strongly conserved regions), however implementation
of a compressed suffix array index on top of the Murasaki parallel anchor
building algorithm could prove to be very powerful for remote homology
search.

4.2 Visualization of large genomic data sets

In Chapter 3 we introduced a new approach to visualizing genome next gen-
eration sequencing data. Our approach introduces a novel data format and
browser which allows extremely fast drawing of data sets to the screen. This
allows researches a fluid intuitive browsing experience where they can explore
their data visually, easily notice patterns, and then investigate in more detail.
Because data retrieval and display can run quickly using our data format,
users can easily display multiple data sets simultaneously and compare fea-

4.2. VISUALIZATION OF LARGE GENOMIC DATA SETS 65

tures visually all on a commodity PC. The interface enabled by this approach
is extremely intuitive, as evidenced by a similar a design that appeared after
our publication in MGAviewer (Zhu et al., 2012).

4.2.1 Future work for visualization of large genomic data
sets

While Samscope is fast and highly efficient once preprocessing is done, for
large genomes with lots of data, preprocessing can take a few hours and use
dozens of gigabytes of disk storage. While this is reasonable for most in-
vestigators of a particular problem, users wishing to share their Samscope
view with the world must also distribute these large data files, which can be
time consuming or impractical. BigWig and BigBed (Kent et al., 2010) pro-
vide an R tree based format designed for distributing only the data currently
being viewed over an internet connection. This format could be modified
to include Samscope-style arbitrary data sets, however the caching memory
and architecture development necessary to create a Samscope-style viewer
instantly responsive to mouse movements would likely be considerable, and
increase the overall minimum running requirements. Rather, we propose that
the the development of a sparse index format (in place of the existing dense
index format which requires entries for all columns whether populated or
not) would allow the efficient distribution of small subsets of BIP files. Fur-
thermore, if fashioned as something like a B∗-Tree (Knuth, 1973), the index
could be made efficient for offline remote storage, similar to BigBed. The
cost for generating such an index might, however, be significantly higher.
The existing Samscope BIP format is extremely efficient systems with fast
access to local storage (even over NFS), and the local browsing enabled by
this format provides a complementary format to BigBed.

66 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

Acknowledgements

I’d like to acknowledge the help and support of several people who made this
dissertation possible. Yasubumi Sakakibara has been helpful to me from the
very beginning, welcoming me to his lab and helping me navigate the various
avenues of Japanese bureaucracy. He has helped me in in my research as well
as in my personal life. I’d also like to thank Yasunori Osana who worked with
me on many research projects and introduced me to many fundamentals of
computer architecture and engineering. Yasunori Osana has also taught me
much about Japan in general and has been a great personal support. And
finally I’d like to thank Tsuyoshi Hacchiya, who has been welcoming to me
from my beginning in Sakakibara Lab, and has always been helpful in research
and as a personal friend. Thank you all.

67

68 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

Appendix A

Abbreviations

CPU central processing unit.
FPR false positive rate.
GPU graphics processing unit.
IGV “Integrative Genomics Viewer” (Robinson et al., 2011).
IGB “Integrated Genome Browser” (Nicol et al., 2009)
MIMD multiple instruction, multiple data (c.f. SIMD).
MIP Latin phrase “multum in parvo,” meaning “much in little.”
NGS next generation sequencing/sequencer
SAM “Sequence Alignment/Map” a file format designed for storing mapped NGS read data.
SIMD single instruction, multiple data (c.f. MIMD).
TPR true positive rate.

69

70 APPENDIX A. ABBREVIATIONS

Appendix B

Murasaki: Supplemental details

B.1 Implementation

B.1.1 Hash Functions

Because the difference between the naive First-n approach and the others
dwarfs the difference between any of the other differences, we look at only
the 3 high-performing algorithms in Figure B.1. We note that our adaptive
hash algorithm starts to diverge only slightly when the key size increases
above 25, and even then remains within 0.05% of the same number of keys as
the cryptographic hashers, whereas the naive First-n approach is 32% behind
any of the others.

We find that as more hash keys are used, fewer collisions require less work
to invert the hash table, resulting in faster extraction times. Figure B.2. We
also measured the computational time required to hash the input sequences
under each hash function, as shown in Figure B.3.

The extraction times when using MD5 versus adaptive hash functions
start to diverge slightly as pattern size increases. This divergence is a di-
rect consequence of the divergence in hash key space utilization between the
adaptive hasher and MD5 for very large patterns, as shown in Figure B.4.
The extent to which this divergence occurs and where it starts is in fact
tunable via a parameter in the hash function generator genetic algorithm;
however, for such long patterns we consider this divergence reasonable, as it
has a minimal impact on the extraction time but a great savings on the hash
time.

71

72 APPENDIX B. MURASAKI: SUPPLEMENTAL DETAILS

Figure B.1: This graph doesn’t include First-N in order to examine, and
adaptive hash results to examine the minute difference between Adaptive,
SHA-1, and MD5. Only for large hash keys (high values of hashbits) does
adaptive diverge significantly from SHA-1 and MD5, and even then the dif-
ference is minuscule.

B.1. IMPLEMENTATION 73

Figure B.2: This graph shows the relative time required to extract matching
seed sets from the hash table under different hash functions compared to the
median time required our adaptive hash function. The solid line shows the
median of all trials while the dashed lines show the first and third quartiles.

74 APPENDIX B. MURASAKI: SUPPLEMENTAL DETAILS

Figure B.3: Here we examine the difference in time required to compute
hashes store each (K,V) pair at different hashbits settings, again compared
to our adaptive hash method. It’s interesting to note that the naive First-n
approach performs more poorly than even the slowest cryptographic hasher.

B.1. IMPLEMENTATION 75

Figure B.4: This graph shows the percent of possible hash keys produced by
Adaptive and MD5 hash functions when hashing Human and Mouse X chro-
mosomes. The number of hash keys possible increases with pattern length
because the number of observed unique seeds increases. Our adaptive hash
algorithm keeps up with MD5 even for extremely long patterns.

76 APPENDIX B. MURASAKI: SUPPLEMENTAL DETAILS

B.1.2 Implementation Details

Due to the wide variety of applications to which Murasaki is applied, we have
built in a wide variety of user-tunable parameters to optimize Murasaki for
various special purposes (such as hashing only every k bases as in BLAT (Kent,
2002) and PASH (Ken J. Kalafus, 2004), defining alternative scoring/filtering
parameters, or changing resource allocation when run in parallel). Most of
the user-tunable parameters are determined automatically based on the in-
put data and/or the user’s computer environment. The main user-tunable
parameter determining run time is the size of hash keys to use (which directly
determines the hash table size), which we will call the “hashbits” parameter.

When storing hash keys, because K is the product of the location L and
the “spaced seed pattern” parameter, K is determined implicitly by L and
thus is never actually stored, but simply calculated as needed based on L.

B.1.3 Data structures

There are two important data structures within Murasaki.

1. The hash table structure

2. The anchor data structure

First, the hash table itself can be structured to use either chaining or
open addressing. Under chaining, each entry of the hash table can contain
values corresponding to multiple keys. When a collision occurs, where Ki 6=
Kj ∧ H(Ki) = H(Kj), then both corresponding Li and Lj are stored at
the same entry within the hash table, and disambiguated by some other
means specific to the table entry structure. Under open addressing, the hash
generated by H(Ki) indicates the first place to probe for Ki. If some (Kj, Lj)
pair is already stored there such that Ki 6= Kj (i.e., a collision has occurred),
then subsequent addresses are probed until either a matching K is found,
or an empty address is found. There are many variations on how to probe,
and Murasaki implements two (linear and quadratic probing (Knuth, 1973)),
but the idea remains the same. Open Addressing offers the advantage that
there is no sort required to disambiguate non-matching seeds from within
a single hash table entry. However a limitation of this design is that it
is impossible to store more seeds than there are entries in the hash table.
Murasaki automatically chooses whether to use chaining or open addressing
based on the size of the input sequences (and thus the number of potential
seeds) and the hash table size available.

The second key data structure is that for storing anchors themselves.
Anchors are stored as a set of intervals indicating the beginning and end of the

B.2. RESULTS 77

region anchored on each input sequence. These intervals are stored in Interval
Trees (Cormen, Leiserson, and Rivest, 1990). Interval Trees provide a simple
O(logA) method (where A is the number of anchors) to find overlapping
regions, thereby facilitating the merging of anchors.

B.1.4 Hash function fitness

Determining the exact entropy content of a given hash function is a diffi-
cult problem with limited rewards compared with a good approximation;
therefore, Murasaki employs an ad hoc method to estimate the entropy of
the hash function. A bipartite graph is created consisting of entropy source
nodes (the unmasked bases in the spaced seed pattern) and entropy sink
nodes (each pair of bits in the hash key) where an edge is drawn if that base
in the seed affects that bit in the hash. Each source node is allocated one
unit of entropy (approximating the optimal 2 bits per base measure) that is
then divided equally to weight the exiting edges. The entropy at each sink
is then estimated as the summed weight of incoming edges, optionally mod-
ified by a “correlation penalty” in the range (0, .2]. The correlation penalty
decreases inversely with the mean distance between source node pairs, with
a maximum value of 0.2 assigned for adjacent bases. A correlation penalty
like this is appropriate where input sequences are expected to conform to a
Markov process (as is the case for DNA), but this may not be the case for
all sequences. Finally, the estimated entropy is balanced against the compu-
tational cost of the function to determine the final fitness score.

B.2 Results

B.2.1 Pattern selection

We used a relatively arbitrary method for selecting the 24 base pattern
(101111110101110111110011) used for tests comparing Murasaki to BLASTZ.
We compared human and mouse X chromosomes using random patterns with
lengths from 16 to 128. Patterns with lengths near 24 had sensitivity and
specificity characteristics near that of BLASTZ while maintaining fast com-
putational speed. We arbitrarily chose the highest scoring of our randomly
generated length 24 patterns. We recognize that pattern choice is a com-
plicated and important factor in the performance of ours and any other
pattern-based homology search algorithm, and don’t claim to have offered
any better solutions to the problem of pattern choice, however our algorithm
does provide a means run accurate searches using patterns selected by any

78 APPENDIX B. MURASAKI: SUPPLEMENTAL DETAILS

method. We hope this provides a useful tool for experimenting with different
pattern selection methods, and will look at ways to refine pattern selection
in future work.

B.2.2 Murasaki Runtime Parameters

We also used the options “–mergefilter=100 and –scorefilter=6000” which is
roughly equivalent to BLASTZ’s “M=100 K=6000” options. “Mergefilter”
limits the number of anchors that can be derived from any one seed to the
number specified; any seeds which exceed this limit are tagged “repeats” and
their locations are output separately. “Scorefilter” requires that all anchors
have a minimum ungapped pairwise alignment score of at least the given
threshold. For the exact meaning and usage of “mergefilter” and “scorefilter”
see Murasaki’s documentation. Furthermore, because the default TBA be-
havior is to pass its BLASTZ output through a program that removes all but
the highest scoring regions among overlapping regions in a pair-wise compar-
ison (similar to AxtBest in (Schwartz et al., 2003)), to provide a fair com-
parison, we filtered Murasaki’s anchors the same way using the align-best
tool provided in the Murasaki distribution.

The “mergefilter” filter alone can prevent the combinatorially explosive
consequences of repeats, however in our mammalian sequence tests we use
repeat masked sequences to reduce the amount of sequence hashed and stored
in memory. We used the RepeatMasker (Smit, R, and Green, 1996-2004)
masked sequences in release 53 of the Ensembl genome database (Hubbard
et al., 2002). The genome sizes and fraction masked by RepeatMasker is
shown in Table B.2.2.

B.2.3 Pairwise Multiz with Roast

We also tested another alternative from the TBA package called Roast which
appears to implement the method described in (Miller et al., 2007) which
builds a multiple alignment based on pairwise comparisons between a refer-
ence sequence and all other sequences, thus in theory requiring time linear
with respect to the number of sequences, similar to Murasaki. However due to
an apparent bug in the implementation, Roast actually is actually worse than
TBA in some cases. The bug causes comparisons of each sequence to itself to
be included in the set of pairwise comparisons performed for each alignment
(for example “human-human” in a comparison of “human and mouse”). This
is entirely unnecessary for the Multiz portion of the computation, but gener-
ally takes more than any other pair because of the large number of matches.

B.2. RESULTS 79

This bug is fairly simple to fix, however may be beyond the reach of biolo-
gists without some programming ability, therefore we tested both versions.
The results are shown in Figure B.5. Because BLASTZ cannot handle whole
genomes in a single pass, input has to be broken up into chromosome sized
fragments. This means that what was a comparison of “human x mouse” in
Murasaki, becomes a comparison of “human-1 x mouse-1 + human-1 x mouse-
2 + ... human-1 x mouse-M + human-2 x mouse-1 + human2 x mouse-2 + ...
human-M x mouse-M.” Each comparison is shorter (N/M in size), however
we now do M2 times as many, requiring O(NM) time. However, because M
is forced by the constraints of the system to be N/S where S is the maxi-
mum size the computer system can handle, O(M) = O(N/S) = O(N) and
therefore the asymtotic time requirements of Roast must be O(N2). The
behavior of Roast on small sequences, on the other hand, is nearly identical
to Murasaki, and is shown in Figure B.6.

80 APPENDIX B. MURASAKI: SUPPLEMENTAL DETAILS

Table B.1: Genome Sizes
Species Total Bases (MB) Masked Bases (MB) Fraction masked
Human 2855.344 1434.406 0.502
Chimp 2752.356 1402.532 0.510
Rhesus 2646.263 1375.097 0.520

Orangutan 2722.968 1348.973 0.495
Mouse 2558.509 1443.026 0.564

Rat 2477.054 1386.647 0.560
Dog 2309.875 1367.003 0.592
Cow 2466.956 1319.883 0.535

This table shows the sequence sizes used in the mammalian whole genome and comparisons
and the respective fractions masked by RepeatMasker (Smit, R, and Green, 1996-2004).

Figure B.5: This graph shows the median CPU time in days required to an-
chor different numbers of mammalian whole genomes using TBA, Murasaki,
and the patched and unpatched versions of Roast. The times for TBA and
Roast include only the time spent on pairwise BLASTZ comparisons. The
solid line represents the median of all tests for that number of species, while
the dashed lines represent the first and third quartiles.

B.2. RESULTS 81

Figure B.6: This graph compares the computational time required to
compare multiple X mammalian X chromosomes using Murasaki and the
BLASTZ components of TBA, Roast, and our patched version of Roast. Be-
cause TBA requires all pairwise comparisons of the genomes under alignment,
the time required for TBA grows quadratically, while Murasaki’s time is near
linear. The solid line represents the median of all tests for that number of
species, while the dashed lines represent the first and third quartiles.

82 APPENDIX B. MURASAKI: SUPPLEMENTAL DETAILS

Appendix C

Appendix: Samscope

C.1 BIP File format

C.1.1 Description

Samscope uses a binary format for storing MIP maps of data like coverage.
This makes it possible view data while zoomed out to any scale without
sampling each individual component base. We call our format “BIP” for
“B inary mIP map”. This data is layed out in a flat format with indices
for accessing data as fast as possible. At present, BIP we implement no
compression, because we assume that NGS users will have a lot of spare disk
space. File system compression (as in wikipedia:ZFS, wikipedia:btrfs, and
wikipedia:ReiserFS) works very well if you really want compression.

The BIP file format supports multiple layers per BIP file, however the
current version Samscope outputs each layer to a separate file for easier
management by users.

C.1.2 Specification

The file format consists of a fixed sized header, followed by a variable size
header (describing things like names of the content), followed by a the layer
data itself. Strings are expressed as "length" (expressed as a SizeUnit) fol-
lowed by the string itself (exactly "length" bytes).

83

84 APPENDIX C. APPENDIX: SAMSCOPE

Fixed header

Field Type Size or count Description
magic bytes 8 Contains

"\x04\-
0am\0BIP"
(Nothing good
happens at 4
am). Identifies
file type.

version uint8 1 Format version.
Parsers are not
required to sup-
port all versions,
but should check
this value and
error gracefully
if they can’t sup-
port this ver-
sion. This speci-
fication refers to
version 1 and 2.

byte order uint16 2 Contains
0x1234. De-
notes byte order
of creating ma-
chine. Parsers
are not required
to read files us-
ing byte orders
or data sizes
unsupported
by their archi-
tecture (but
they should
check using this
header data and
error gracefully
if they can’t
read the BIP).

SizeUnit uint8 1 How many bytes
to use in ex-
pressing data
lengths and
indices.

(continued below)

http://www.ted.com/talks/rives_on_4_a_m.html
http://www.ted.com/talks/rives_on_4_a_m.html
http://www.ted.com/talks/rives_on_4_a_m.html

C.1. BIP FILE FORMAT 85

(Fixed header continued)

Field Type Size or count Description
CoordSize2 uint8 1 How many

bytes to use
in expressing
value coordi-
nates (should
be large enough
to express total
target length).

CounterSize2 uint8 1 How many bytes
to use in ex-
pressing data
values.

RangeUnitSize2 uint8 1 How many bytes
to use in ex-
pressing counter
ranges (should
be greater than
CounterSize).

headerLength uint SizeUnit Length of full
header (includ-
ing both fixed
and variable
parts).

globalHistoDetail uint Counter∗ Maximum num-
ber of values per
MIP column.

Note: the CoordSize, CounterSize, and RangeUnitSize fields marked with
2 are part of BIP format 2, and simply omitted in version 1. There are no
other differences between versions 1 and 2.

86 APPENDIX C. APPENDIX: SAMSCOPE

Variable length header

Field Type Size Description
targetCount uint SizeUnit How many tar-

gets in this BIP?
∗ targetDescription variable name and length

of N targets
(repeats target-
Count times)

layerCount uint SizeUnit How many lay-
ers in this BIP?

∗ layerDescription variable name and range
of N layers
(repeats layer-
Count times)

endFlag char 9 "!!!@@@!!!" nice
ASCII readable
marker to sig-
nal end of vari-
able header (just
a sanity check,
really).

Target Description

Field Type Size Description
startPoint uint Coord start point of

target
name string∗ variable name of target

Layer Description

Field Type Size Description
name string∗ variable name of the

layer
rangei pair < Range-

Unit, RangeUnit
>

RangeUnit × 2 highest and low-
est value within
target i.

rangei+1 repeats for each
target

C.1. BIP FILE FORMAT 87

Layer data

Each layer includes a “base coverage” data segment and dlog2Ne MipMap
segments (for N bases of target sequence).

The first “base coverage” data segment has 1 value for each base. This
is listed completely flat, 1 Counter per base. The subsequent MipMaps are
variable in length, depending on the number of distinct values per column,
with an index describing the start of each column.

Each segment starts immediately after the end of the previous one, thus
their start addresses are calculated by first the end of the variable header
data, then by the end of the first base coverage, then by the end of the
MipMap data, and so on.

Base coverage

The base coverage starts at the end of the variable header and continues for
exactly the number of total bases as determined by the sum of target lengths.

Field Type Size Description
baseCoverage Counter[] Counter × total-

Length
array of data
values, 1 per
base.

MIP Maps

Each MIP map coverages half the columns as the previous iteration (rounding
up). MIP maps continue until only 1 column remains (this MIP map too is
stored, however it is the last). Each mip map is preceded by its index (without
which the total length would be unknown). The index indicates the number
of HistoElem pairs (literally just 2 Counters) in to the MIP at which each
column starts. In other words:

//assume we have a MIP map of HistoElem’s start at map
HistoElem *map="first byte after end of last segment";
//Column i can be defined as going from:
HistoElem *begin=map+index[i];
//and ending at:
HistoElem *end=map+index[i+1];

Note that the last value in the index merely points to the end of the array
(and next BIP segment, if one exists). Therefore there is 1 more index entry
than there are columns. The "HistoElem" type merely consists of a pair of
Counters, the first referring to the number of times the value is repeated in
the column, and the second refers to the value being repeated.

88 APPENDIX C. APPENDIX: SAMSCOPE

Field Type Size Description
index SizeUnit[] number of

remaining
columns +1

Index of His-
toElems in the
MIP map

MIPmap HistoElem[] variable Array of His-
togram ele-
ments.

Bibliography

Alekseyev, Max A. and Pavel A. Pevzner (Nov. 2007). “Are There Rearrange-
ment Hotspots in the Human Genome?” In: PLoS Computation Biology
3.11, e209. doi: 10.1371/journal.pcbi.0030209.

Altschul, S. F. et al. (1990). “Basic local alignment search tool”. In: Journal
of Molecular Biology 215, pp. 403–410.

Bejerano, Gill et al. (2004). “Ultraconserved Elements in the Human Genome”.
In: Science 304.5675, pp. 1321–1325. doi: 10.1126/science.1098119.
eprint: http://www.sciencemag.org/cgi/reprint/304/5675/1321.
pdf. url: http://www.sciencemag.org/cgi/content/abstract/304/
5675/1321.

Bentley, D. R. et al. (2008). “Accurate whole human genome sequencing using
reversible terminator chemistry”. In: Nature 456, pp. 53–59.

Blanchette, Mathieu et al. (2004). “Aligning Multiple Genomic Sequences
With the Threaded Blockset Aligner”. In:Genome Research 14.4, pp. 708–
715. doi: 10.1101/gr.1933104. eprint: http://genome.cshlp.org/
content/14/4/708.full.pdf+html. url: http://genome.cshlp.org/
content/14/4/708.abstract.

Bourque, Guillaume and Pavel A. Pevzner (2002). “Genome-Scale Evolution:
Reconstructing Gene Orders in the Ancestral Species”. In: Genome Re-
search 12.1, pp. 26–36. eprint: http://www.genome.org/cgi/reprint/
12/1/26.pdf. url: http://www.genome.org/cgi/content/abstract/
12/1/26.

Brudno, Michael et al. (2003). “LAGAN and Multi-LAGAN: Efficient Tools
for Large-Scale Multiple Alignment of Genomic DNA”. In: Genome Re-
search 13.4, pp. 721–731. doi: 10.1101/gr.926603. eprint: http://www.
genome.org/cgi/reprint/13/4/721.pdf. url: http://www.genome.
org/cgi/content/abstract/13/4/721.

Burrows, M. and D.J. Wheeler (1994). A block-sorting lossless data com-
pression algorithm. Tech. rep. 124. Palo Alto, CA: Digital Equipment
Corporation, Systems Research Center.

89

http://dx.doi.org/10.1371/journal.pcbi.0030209
http://dx.doi.org/10.1126/science.1098119
http://www.sciencemag.org/cgi/reprint/304/5675/1321.pdf
http://www.sciencemag.org/cgi/reprint/304/5675/1321.pdf
http://www.sciencemag.org/cgi/content/abstract/304/5675/1321
http://www.sciencemag.org/cgi/content/abstract/304/5675/1321
http://dx.doi.org/10.1101/gr.1933104
http://genome.cshlp.org/content/14/4/708.full.pdf+html
http://genome.cshlp.org/content/14/4/708.full.pdf+html
http://genome.cshlp.org/content/14/4/708.abstract
http://genome.cshlp.org/content/14/4/708.abstract
http://www.genome.org/cgi/reprint/12/1/26.pdf
http://www.genome.org/cgi/reprint/12/1/26.pdf
http://www.genome.org/cgi/content/abstract/12/1/26
http://www.genome.org/cgi/content/abstract/12/1/26
http://dx.doi.org/10.1101/gr.926603
http://www.genome.org/cgi/reprint/13/4/721.pdf
http://www.genome.org/cgi/reprint/13/4/721.pdf
http://www.genome.org/cgi/content/abstract/13/4/721
http://www.genome.org/cgi/content/abstract/13/4/721

90 BIBLIOGRAPHY

Cormen, T., C. Leiserson, and R. Rivest (1990). Introduction to Algorithms.
MIT Press.

Csuros, M. and B. Ma (2007). “Rapid homology search with neighbor seeds”.
In: Algorithmica 48.2, pp. 187–202.

Darling, Aaron C.E. et al. (2004). “Mauve: Multiple Alignment of Conserved
Genomic Sequence With Rearrangements”. In: Genome Research 14.7,
pp. 1394–1403. doi: 10.1101/gr.2289704. eprint: http://www.genome.
org/cgi/reprint/14/7/1394.pdf. url: http://www.genome.org/
cgi/content/abstract/14/7/1394.

David, M. et al. (2011). “SHRiMP2: sensitive yet practical SHort Read Map-
ping”. In: Bioinformatics 27, pp. 1011–1012.

Delcher, AL et al. (1999). “Alignment of whole genomes”. In: Nucleic Acids
Research 27.11, pp. 2369–2376. doi: 10.1093/nar/27.11.2369. eprint:
http://nar.oxfordjournals.org/cgi/reprint/27/11/2369.pdf.
url: http://nar.oxfordjournals.org/cgi/content/abstract/27/
11/2369.

Dewey, C. N. et al. (2006). “Parametric alignment of Drosophila genomes”.
In: PLoS Computational Biology 2, e73.

Enard, W. et al. (2002). “Molecular evolution of FOXP2, a gene involved in
speech and language”. In: Nature 418.6900, pp. 869–872.

Farach, Martin et al. (1995). “On the entropy of DNA: algorithms and mea-
surements based on memory and rapid convergence”. In: SODA ’95: Pro-
ceedings of the sixth annual ACM-SIAM symposium on Discrete algo-
rithms. San Francisco, California, United States: Society for Industrial
and Applied Mathematics, pp. 48–57. isbn: 0-89871-349-8.

Farnham, P.J. (2009). “Insights from genomic profiling of transcription fac-
tors”. In: Nature Reviews Genetics 10.9, pp. 605–616.

Ferragina, P. and G. Manzini (2000). “Opportunistic data structures with
applications”. In: Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on. IEEE, pp. 390–398.

Fisher, S.E. et al. (1998). “Localisation of a gene implicated in a severe speech
and language disorder”. In: Nature genetics 18.2, pp. 168–170.

Gibbs, R. A. et al. (2004). “Genome sequence of the Brown Norway rat yields
insights into mammalian evolution.” In: Nature 428.6982, pp. 493–521.

Glenn, T.C. (2011). “Field guide to next-generation DNA sequencers”. In:
Molecular Ecology Resources 11.5, pp. 759–769.

Hachiya, Tsuyoshi et al. (2009). “Accurate identification of orthologous seg-
ments among multiple genomes”. In: Bioinformatics 25.7, pp. 853–860.
doi: 10.1093/bioinformatics/btp070. eprint: http://bioinformatics.
oxfordjournals.org/cgi/reprint/25/7/853.pdf. url: http://

http://dx.doi.org/10.1101/gr.2289704
http://www.genome.org/cgi/reprint/14/7/1394.pdf
http://www.genome.org/cgi/reprint/14/7/1394.pdf
http://www.genome.org/cgi/content/abstract/14/7/1394
http://www.genome.org/cgi/content/abstract/14/7/1394
http://dx.doi.org/10.1093/nar/27.11.2369
http://nar.oxfordjournals.org/cgi/reprint/27/11/2369.pdf
http://nar.oxfordjournals.org/cgi/content/abstract/27/11/2369
http://nar.oxfordjournals.org/cgi/content/abstract/27/11/2369
http://dx.doi.org/10.1093/bioinformatics/btp070
http://bioinformatics.oxfordjournals.org/cgi/reprint/25/7/853.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/25/7/853.pdf
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/7/853

BIBLIOGRAPHY 91

bioinformatics.oxfordjournals.org/cgi/content/abstract/25/7/
853.

Han, T. and S. Parameswaran (2002). “SWASAD: an ASIC design for high
speed DNA sequence matching”. In:Design Automation Conference, 2002.
Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th
International Conference on VLSI Design. Proceedings. IEEE, pp. 541–
546.

Hubbard, T. et al. (2002). “The Ensembl genome database project”. In: Nu-
cleic Acids Research 30.1, pp. 38–41.

Karolchik, D. et al. (2003). “The UCSC Genome Browser Database”. In:
Nucleic Acids Research 31.1, pp. 51–54. doi: 10.1093/nar/gkg129.
eprint: http://nar.oxfordjournals.org/cgi/reprint/31/1/51.pdf.
url: http://nar.oxfordjournals.org/cgi/content/abstract/31/
1/51.

Kemena, Carsten and Cedric Notredame (2009). “Upcoming challenges for
multiple sequence alignment methods in the high-throughput era”. In:
Bioinformatics 25.19, pp. 2455–2465. doi: 10.1093/bioinformatics/
btp452. eprint: http://bioinformatics.oxfordjournals.org/cgi/
reprint/25/19/2455.pdf. url: http://bioinformatics.oxfordjournals.
org/cgi/content/abstract/25/19/2455.

Ken J. Kalafus Andrew R. Jackson, Aleksandar Milosavljevic (2004). “Pash:
Efficient Genome-Scale Sequence Anchoring by Positional Hashing”. In:
Genome Research 14, pp. 672–678. doi: 10.1101/gr.1963804.

Kent, W. J. et al. (2010). “BigWig and BigBed: enabling browsing of large
distributed datasets”. In: Bioinformatics 26, pp. 2204–2207.

Kent, W. James (2002). “BLAT—The BLAST-Like Alignment Tool”. In:
Genome Research 12.4, pp. 656–664. doi: 10.1101/gr.229202. eprint:
http://www.genome.org/cgi/reprint/12/4/656.pdf. url: http:
//www.genome.org/cgi/content/abstract/12/4/656.

Kiełbasa, S.M. et al. (2011). “Adaptive seeds tame genomic sequence com-
parison”. In: Genome Research 21.3, pp. 487–493.

Kish, Laszlo B. (2002). “End of Moore’s law: thermal (noise) death of integra-
tion in micro and nano electronics”. In: Physics Letters A 305.3-4, pp. 144
–149. issn: 0375-9601. doi: DOI:10.1016/S0375-9601(02)01365-8.
url: http://www.sciencedirect.com/science/article/B6TVM-
475B5CK-1/2/3e881305a670968756f015af1fc1f22f.

Knuth, Donald E. (1973). Sorting and Searching, volume 3 of The art of
computer programming. Addison Wesley.

Koonin, E.V. (2005). “Orthologs, paralogs, and evolutionary genomics”. In:
Annual Review of Genetics 39, pp. 309–338.

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/7/853
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/7/853
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/7/853
http://dx.doi.org/10.1093/nar/gkg129
http://nar.oxfordjournals.org/cgi/reprint/31/1/51.pdf
http://nar.oxfordjournals.org/cgi/content/abstract/31/1/51
http://nar.oxfordjournals.org/cgi/content/abstract/31/1/51
http://dx.doi.org/10.1093/bioinformatics/btp452
http://dx.doi.org/10.1093/bioinformatics/btp452
http://bioinformatics.oxfordjournals.org/cgi/reprint/25/19/2455.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/25/19/2455.pdf
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/19/2455
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/19/2455
http://dx.doi.org/10.1101/gr.1963804
http://dx.doi.org/10.1101/gr.229202
http://www.genome.org/cgi/reprint/12/4/656.pdf
http://www.genome.org/cgi/content/abstract/12/4/656
http://www.genome.org/cgi/content/abstract/12/4/656
http://dx.doi.org/DOI: 10.1016/S0375-9601(02)01365-8
http://www.sciencedirect.com/science/article/B6TVM-475B5CK-1/2/3e881305a670968756f015af1fc1f22f
http://www.sciencedirect.com/science/article/B6TVM-475B5CK-1/2/3e881305a670968756f015af1fc1f22f

92 BIBLIOGRAPHY

Kulla, F. and P. Sanders (2007). “Scalable parallel suffix array construction”.
In: Parallel Computing 33.9, pp. 605–612.

Langmead, B. et al. (2009). “Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome”. In: Genome Biology 10,
R25.

Li, H. and R. Durbin (2009). “Fast and accurate short read alignment with
Burrows-Wheeler transform”. In: Bioinformatics 25, pp. 1754–1760.

Li, H., J. Ruan, and R. Durbin (2008). “Mapping short DNA sequencing reads
and calling variants using mapping quality scores”. In: Genome Research
18, pp. 1851–1858.

Li, H. et al. (2009). “The Sequence Alignment/Map format and SAMtools”.
In: Bioinformatics 25, pp. 2078–2079.

Li, I.T.S., W. Shum, and K. Truong (2007). “160-fold acceleration of the
Smith-Waterman algorithm using a field programmable gate array (FPGA)”.
In: BMC Bioinformatics 8.1, p. 185.

Liolios, K. et al. (2008). “The Genomes On Line Database (GOLD) in 2007:
status of genomic and metagenomic projects and their associated meta-
data”. In: Nucleic Acids Research 36, pp. D475–479.

Ma, Bin, John Tromp, and Ming Li (2002). “PatternHunter: faster and more
sensitive homology search”. In: Bioinformatics 18.3, pp. 440–445.

Maier, D. (1978). “The complexity of some problems on subsequences and
supersequences”. In: Journal of the ACM (JACM) 25.2, pp. 322–336.

Mathee, Kalai et al. (2008). “Dynamics of Pseudomonas aeruginosa genome
evolution”. In: Proceedings of the National Academy of Sciences 105.8,
pp. 3100–3105. doi: 10.1073/pnas.0711982105. eprint: http://www.
pnas.org/content/105/8/3100.full.pdf+html. url: http://www.
pnas.org/content/105/8/3100.abstract.

Miller, W. et al. (2007). “28-way vertebrate alignment and conservation track
in the UCSC Genome Browser”. In: Genome Research 17, pp. 1797–1808.

Milne, I. et al. (2010). “Tablet–next generation sequence assembly visualiza-
tion”. In: Bioinformatics 26, pp. 401–402.

Moore, G.E. et al. (1965). “Cramming more components onto integrated
circuits”. In: Proceedings of the IEEE 38.8, p. 114.

Mortazavi, A. et al. (2008). “Mapping and quantifying mammalian transcrip-
tomes by RNA-Seq”. In: Nature Methods 5.7, pp. 621–628.

National Institute of Standards and Technology (NIST) (2002). FIPS-180-2:
Secure Hash Standard. url: http://www.itl.nist.gov/fipspubs/.

Nicol, J. W. et al. (2009). “The Integrated Genome Browser: free software for
distribution and exploration of genome-scale datasets”. In: Bioinformatics
25, pp. 2730–2731.

http://dx.doi.org/10.1073/pnas.0711982105
http://www.pnas.org/content/105/8/3100.full.pdf+html
http://www.pnas.org/content/105/8/3100.full.pdf+html
http://www.pnas.org/content/105/8/3100.abstract
http://www.pnas.org/content/105/8/3100.abstract
http://www.itl.nist.gov/fipspubs/

BIBLIOGRAPHY 93

Ohlebusch, E. and S. Kurtz (2008). “Space efficient computation of rare max-
imal exact matches between multiple sequences”. In: Journal of Compu-
tational Biology 15, pp. 357–377.

Osana, Yasunori, Kris Popendorf, and Yasubumi Sakakibara (In prepara-
tion). GMV: Interactive Rendering of Multiple Alignments. url: http:
//murasaki.dna.bio.keio.ac.jp.

Pagani, I. et al. (2012). “The Genomes OnLine Database (GOLD) v. 4: status
of genomic and metagenomic projects and their associated metadata”. In:
Nucleic Acids Research 40.D1, pp. D571–D579.

Park, P.J. (2009). “ChIP–seq: advantages and challenges of a maturing tech-
nology”. In: Nature Reviews Genetics 10.10, pp. 669–680.

Pearson and Lipman (1988). “Improved Tools for Biological Sequence Com-
parison”. In: Proceedings of the National Academy of Sciences. Vol. 85,
pp. 24444–24448.

Pepke, S., B. Wold, and A. Mortazavi (2009). “Computation for ChIP-seq
and RNA-seq studies”. In: Nature Methods 6, pp. 22–32.

Pevzner, P.A. and H. Tang (2001). “Fragment assembly with double-barreled
data”. In: Bioinformatics 17.suppl 1, S225–S233.

Pevzner, Pavel and Glenn Tesler (2003). “Genome Rearrangements in Mam-
malian Evolution: Lessons From Human and Mouse Genomes”. In:Genome
Research 13.1, pp. 37–45. doi: 10.1101/gr.757503. eprint: http://www.
genome.org/cgi/reprint/13/1/37.pdf. url: http://www.genome.
org/cgi/content/abstract/13/1/37.

Pollard, K.S. et al. (2006). “An RNA gene expressed during cortical devel-
opment evolved rapidly in humans”. In: Nature 443.7108, pp. 167–172.

Preparata, F. P., L. Zhang, and K. W. Choi (Nov. 2005). “Quick, practical
selection of effective seeds for homology search.” In: Journal of Compu-
tational Biology 12.9, pp. 1137–1152.

Quinlan, S. and S. Dorward (2002). “Venti: a new approach to archival stor-
age”. In: Proceedings of the FAST 2002 Conference on File and Storage
Technologies. Vol. 4.

Rivest, R.L. (1992). The MD5 message-digest algorithm. url: http : / /
tools.ietf.org/html/rfc1321.

Robinson, J. T. et al. (2011). “Integrative genomics viewer”. In: Nature Biotech-
nology 29, pp. 24–26.

Rogers, Y.H. and J.C. Venter (2005). “Genomics: massively parallel sequenc-
ing”. In: Nature 437.7057, pp. 326–327.

Rumble, Stephen M. et al. (May 2009). “SHRiMP: Accurate Mapping of
Short Color-space Reads”. In: PLoS Computational Biology 5.5, e1000386.
doi: 10.1371/journal.pcbi.1000386. url: http://dx.doi.org/10.
1371%2Fjournal.pcbi.1000386.

http://murasaki.dna.bio.keio.ac.jp
http://murasaki.dna.bio.keio.ac.jp
http://dx.doi.org/10.1101/gr.757503
http://www.genome.org/cgi/reprint/13/1/37.pdf
http://www.genome.org/cgi/reprint/13/1/37.pdf
http://www.genome.org/cgi/content/abstract/13/1/37
http://www.genome.org/cgi/content/abstract/13/1/37
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000386
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000386

94 BIBLIOGRAPHY

Russ, John C. (2007). The Image Processing Handbook. Fifth. Boca Raton :
CRC/Taylor and Francis. isbn: 0849372542.

Sanger, F., A.R. Coulson, et al. (1975). “A rapid method for determining se-
quences in DNA by primed synthesis with DNA polymerase”. In: Journal
of Molecular Biology 94.3, pp. 441–448.

Schatz, M.C., J. Witkowski, andW.R. McCombie (2012). “Current challenges
in de novo plant genome sequencing and assembly”. In: Genome Biology
13.4, pp. 1–7.

Schwartz, Scott et al. (2003). “Human-Mouse Alignments with BLASTZ”. In:
Genome Research 13.1, pp. 103–107. doi: 10.1101/gr.809403. eprint:
http://www.genome.org/cgi/reprint/13/1/103.pdf. url: http:
//www.genome.org/cgi/content/abstract/13/1/103.

Shang, W. H. et al. (2010). “Chickens possess centromeres with both extended
tandem repeats and short non-tandem-repetitive sequences”. In: Genome
Research 20, pp. 1219–1228.

Simpson, Jared T. et al. (2009). “ABySS: A parallel assembler for short read
sequence data”. In: Genome Research 19.6, pp. 1117–1123. doi: 10.1101/
gr.089532.108. eprint: http://genome.cshlp.org/content/19/6/
1117.full.pdf+html. url: http://genome.cshlp.org/content/19/
6/1117.abstract.

Smit, AFA, Hubley R, and P. Green (1996-2004). RepeatMasker Open-3.0.
url: http://www.repeatmasker.org.

Smith, Temple F. and Michael S. Waterman (1981). “Identification of Com-
monMolecular Subsequences”. In: Journal of Molecular Biology 147, pp. 195–
197.

Tabus, I. and G. Korodi (2008). “Genome compression using normalized max-
imum likelihood models for constrained Markov sources”. In: Information
Theory Workshop, 2008. ITW ’08. IEEE, pp. 261–265. doi: 10.1109/
ITW.2008.4578663.

Teer, J.K. et al. (2010). “Systematic comparison of three genomic enrichment
methods for massively parallel DNA sequencing”. In: Genome Research
20.10, pp. 1420–1431.

Thompson, Julie D., Desmond G. Higgins, and Toby J. Gibson (1994). “CLUSTAL
W: improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice”. In: Nucleic Acids Research 22.22, pp. 4673–4680. doi:
10.1093/nar/22.22.4673. eprint: http://nar.oxfordjournals.org/
cgi/reprint/22/22/4673.pdf. url: http://nar.oxfordjournals.
org/cgi/content/abstract/22/22/4673.

Tuzun, E. et al. (2005). “Fine-scale structural variation of the human genome”.
In: Nature Genetics 37.7, pp. 727–732.

http://dx.doi.org/10.1101/gr.809403
http://www.genome.org/cgi/reprint/13/1/103.pdf
http://www.genome.org/cgi/content/abstract/13/1/103
http://www.genome.org/cgi/content/abstract/13/1/103
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1101/gr.089532.108
http://genome.cshlp.org/content/19/6/1117.full.pdf+html
http://genome.cshlp.org/content/19/6/1117.full.pdf+html
http://genome.cshlp.org/content/19/6/1117.abstract
http://genome.cshlp.org/content/19/6/1117.abstract
http://www.repeatmasker.org
http://dx.doi.org/10.1109/ITW.2008.4578663
http://dx.doi.org/10.1109/ITW.2008.4578663
http://dx.doi.org/10.1093/nar/22.22.4673
http://nar.oxfordjournals.org/cgi/reprint/22/22/4673.pdf
http://nar.oxfordjournals.org/cgi/reprint/22/22/4673.pdf
http://nar.oxfordjournals.org/cgi/content/abstract/22/22/4673
http://nar.oxfordjournals.org/cgi/content/abstract/22/22/4673

BIBLIOGRAPHY 95

Vallender, E. J. et al. (2006). “SPEED: a molecular-evolution-based database
of mammalian orthologous groups”. In: Bioinformatics 22, pp. 2835–2837.

Waterston, R. H. et al. (2002). “Initial sequencing and comparative analysis
of the mouse genome”. In: Nature 420, pp. 520–562.

Williams, L. (Feb. 1983). “Pyramidal Parametrics”. In: Computer Graphics,
pp. 1–11.

Zerbino, D.R. and E. Birney (2008). “Velvet: algorithms for de novo short
read assembly using de Bruijn graphs”. In:Genome Research 18.5, pp. 821–
829.

Zhu, Z. et al. (2012). “MGAviewer: A desktop visualization tool for analysis
of metagenomics alignment data”. In: Bioinformatics.

96 BIBLIOGRAPHY

List of Figures

2.1 Anchor coalescing. 18
2.2 Hash table inversion and anchoring. 20
2.3 Parallel Algorithm Overview. 23
2.4 Hash calculation. 25
2.5 Ortholog Consistency in Multiple Genome Comparison. 29
2.6 Orthologous segment agreement across multiple X chromosomes. 31
2.7 Orthologous Segment Ortholog Consistency Across Multiple

X Chromosomes. 32
2.8 Computation Time for Multiple Mammalian X Chromosomes. 35
2.9 Hash and extraction times using Adaptive and MD5 hash al-

gorithms with very long patterns. 37
2.10 Computational wall time and speedup for parallel comparison

of complete human and mouse genomes. 39
2.11 Parallel computation efficiency of complete human and mouse

genomes comparisons. 40
2.12 Computational time required to anchor multiple mammalian

whole genomes. 41
2.13 Anchors between 8 mammalian whole genomes. 42

3.1 Samscope Chicken Centromere ChIP-Seq Screenshot 50
3.2 Samscope Natto RNA-Seq Screenshot 52
3.3 Samscope Read Detail Rendering Screenshot 54

B.1 Hash keys used in comparison by SHA-1/MD5 hash algorithms
in comparison to adaptive hashing at different hashbit values. 72

B.2 Extract time required by each hash algorithm compared to the
adaptive hash algorithm. 73

B.3 Time required to hash human and mouse X chromosomes us-
ing different hash functions at various hashbits settings com-
pared to Adaptive. 74

97

98 LIST OF FIGURES

B.4 Comparing Keyspace Usage of Adaptive and MD5 Hash Func-
tions For Very Long Patterns. 75

B.5 Computational time required to anchor multiple mammalian
whole genomes. 80

B.6 Computation Time for Multiple Mammalian X Chromosomes. 81

LIST OF FIGURES 99

	Introduction
	Overview
	Comparing Genomes
	Comparative Genomes
	Homology search
	Murasaki and Past Work

	Short read visualization
	Massively parallel sequencers
	Short Read Mapping
	DNA-Seq
	RNA-Seq
	ChIP-Seq

	Murasaki: Parallel Anchoring
	Introduction
	Anchoring
	Previous Work
	Motivation
	Parallelization

	Implementation
	Algorithm Outline
	Parallelization
	Hash function generation

	Results
	Experiment Design
	Comparison to existing methods
	Adaptive hash algorithm performance
	Scalability in cluster-computing environments
	Performance on large inputs

	Discussion
	Choice of comparison algorithm
	Bottlenecks in parallelization
	Parallel overhead

	Conclusions

	Samscope: interactive SAM viewing
	Introduction
	Methods and Implementation
	Displaying individual reads
	Memory requirements
	Time requirements

	Results
	BIP generation benchmarks

	Discussion

	Conclusions and Future Work
	Multiple genome comparison
	Future work for multiple genome comparison

	Visualization of large genomic data sets
	Future work for visualization of large genomic data sets

	Acknowledgements
	Abbreviations
	Murasaki: Supplemental details
	Implementation
	Hash Functions
	Implementation Details
	Data structures
	Hash function fitness

	Results
	Pattern selection
	Murasaki Runtime Parameters
	Pairwise Multiz with Roast

	Appendix: Samscope
	BIP File format
	Description
	Specification

	References
	List of Figures

