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（内容の要旨） 
 
 本論文は，３次元半空間における非圧縮非粘性流体中の渦糸の運動を記述する非線形偏微分方程

式に対する初期値－境界値問題の可解性について論じたものである．本論文で扱う渦糸の運動のモ

デル方程式は局所誘導方程式(LIE)と軸方向の流れを考慮したLIEを一般化した方程式(一般化

LIE)である．LIEは流体の渦度から速度を計算するBiot-Savartの法則に局所誘導近似を適用して

得られる最も単純，かつ基本的な方程式である．一方，一般化LIEは接合漸近展開法を用いて渦糸

の軸方向流の影響を取り込んだ方程式である．  

 第１章は序論で，本論文において扱うモデル方程式の導出，初期値問題に対する既存の結果，お

よび本研究の目的を述べる．さらに関連論文の紹介をする．その後，今回新しく扱う初期値－境界

値問題を設定し，本論文内で使用する関数空間や記号の説明をする． 

 第２章では，LIEに対する初期値－境界値問題の時間大域解の存在と一意性を証明する．初期値

－境界値問題を扱う際には，解が存在するための必要条件として，初期値に両立条件を課す．この

条件は構成する解の滑らかさに応じて複雑になり，一般的には両立条件は帰納的に定義される．LIE
に対しては方程式の特殊な構造を利用することにより両立条件を明示的に表示することができた．

この表示により，初期値－境界値問題を初期値問題へ帰着させ，初期値問題の解を用いて望みの初

期値－境界値問題の解を構成することができた． 

 第３章では，一般化LIEに対する初期値－境界値問題に関連する線形問題を考察する．一般化

LIEは非線形３階分散型偏微分方程式であり，その研究には線形化方程式の解析が重要である．こ

の線形化方程式には，既存の線形偏微分方程式の理論が適用できず，初期値－境界値問題の解の存

在や一意性は知られていなかった．そこで本章では，この線形化問題の解析の準備として，３階分

散項を持つ２階放物型方程式系に対する初期値－境界値問題の解の存在と一意性を証明する．解を

構成するために新しい放物型正則化を考案した．特に，問題の適切性を保存したままの正則化，す

なわち境界条件の数を変えない形での正則化をすることにより，非線形問題へ応用できる形で解を

構成することに成功した． 

 第４章では，第３章の結果を応用して，一般化LIEに対する初期値－境界値問題の時間局所解の

存在と一意性を証明する．線形問題の解の存在定理と一般化LIEの持つ構造を利用することによっ

て非線形問題の解をソボレフ空間において構成することができた． 

 



SUMMARY OF Ph.D. DISSERTATION    
School 

Fundamental Science and 
Technology 

Student Identification Number 

81045130 

SURNAME, First name 

AIKI, Masashi 
 

Title 
 
Solvability of Initial-Boundary Value Problems for the Motion of a Vortex Filament 
 
 

Abstract 
 

This dissertation is concerned with the mathematical analysis on the motion of a 
vortex filament immersed in an incompressible and inviscid fluid in the three 
dimensional half space. A vortex filament is a space curve on which the vorticity of 
the fluid is concentrated. The existence and uniqueness of solutions to 
initial-boundary value problems describing the motion of a vortex filament in the 
three-dimensional half space is proved.  
   In Chapter 1, the background and the aim of the study are presented. Two model 
equations, the Localized Induction Equation (LIE) and the generalized LIE are 
introduced, and their related works are explained. 
   In Chapter 2, the initial-boundary value problem for the LIE is studied. The 
existence and uniqueness of the solution is proved. The proof is carried out first, by 
carefully analyzing the compatibility conditions for the initial-boundary value 
problem and second, by extending the initial datum to the whole space, and thus 
reducing the problem to an initial value problem. The solution to the initial value 
problem can then be used to construct the solution to the initial-boundary value 
problem. 
   In Chapter 3, we consider initial-boundary value problems for a second order 
parabolic system with a third order dispersive term. The system arises when we 
consider the linearized problem of the generalized LIE, and the existence and 
uniqueness of the solution for such linear system has not been studied. This 
motivated the author to consider a general linear parabolic-dispersive system and to 
prove the existence and uniqueness of the solution for the corresponding 
initial-boundary value problems. The crucial idea in the proof is to apply a new 
parabolic regularization, which made it possible to construct the solution in such a 
way that the existence theorem is applicable to the analysis of the generalized LIE.  
   In Chapter 4, we prove the solvability of initial-boundary value problems for the 
generalized LIE by utilizing the results of Chapter 3. Based on the existence 
theorems of the linear problems, we succeeded in constructing the solutions to the 
nonlinear problems in Sobolev spaces. 
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Chapter 1

Introduction

1.1 Background

The author is interested in the motion of a vortex filament. A vortex filament is a space

curve in an incompressible and inviscid fluid where the vorticity is concentrated. The

motion of a vortex filament has been studied for a long time, and the first model equation

describing the motion was proposed by Da Rios [7] in 1906. The equation proposed by

him is called the Localized Induction Equation or LIE for short. The LIE is the simplest

model equation describing the motion of a vortex filament and is given by

xt = xs × xss,(1.1.1)

where x(s, t) = (x1(s, t), x2(s, t), x3(s, t)) is the position vector of the vortex filament

parametrized by its arc length s at time t, the symbol × denotes the exterior product

in the three dimensional Euclidean space, and subscripts denote differentiation with the

respective variables. Later in this dissertation, we also use ∂s and ∂t to denote partial

differentiation. The LIE is often said to be “rediscovered” by Arms and Hama [3]. This

is because the original work by Da Rios was written in Italian and did not become well

known. There is also a work by Murakami et al. [31] in 1937 where they derived the LIE

independent of Da Rios’ work, but again, the work was written in Japanese and is not

well known. The work by Arms and Hama is the first work written in English that made

the LIE known.

The LIE is derived by approximating the Biot–Savart law, which is an integral formula

given by

v(x) =
1

4π

∫
R3

ω(y)× (x− y)
|x− y|3

dy,

where v is the velocity and ω is the vorticity of the fluid. This formula gives the velocity of

incompressible fluid from the vorticity distribution. In Arms and Hama [3], they rewrote
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the Biot–Savart law in the case of a vortex filament as

v(z) =
Γ

4π

∫ ∞

−∞

xs(s)× (z − x(s))
|z − x(s)|3

ds,

for which the integral is well-defined for z ∈ R3 except for points on the filament. Here,

Γ is a real constant describing the intensity of the vorticity. They apply the Localized In-

duction approximation to derive the LIE, which is an approximation of the above integral

when z is a point on the filament.

It is also well known that the LIE can be transformed into the nonlinear Schrödinger

equation via the Hasimoto transformation. This is a transformation introduced by Hasi-

moto in [14] given by

ψ = κ exp

(
i

∫ s

0

τds

)
,(1.1.2)

where κ is the curvature and τ is the torsion of the filament. The above transformation

of the unknown variable transforms (1.1.1) to

ψt = iψss +
i

2
|ψ|2 ψ.

The transformation (1.1.2) is valid as long as κ ̸= 0. Since the transformation is defined

in terms of the torsion, the above expression (1.1.2) is invalid if there is a point with

zero curvature. There is no way to determine a priori which points of the filament have

zero curvature. To overcome this, Koiso [24] constructed a transformation often called

the generalized Hasimoto transformation, which is defined regardless of the value of the

curvature. This rigorously justified the conversion between the LIE and the nonlinear

Schrödinger equation in the sense that the transformation is well-defined and can also

be reversed. This can be extended to a multi-dimensional analog, called the Schrödinger

map, as in Chang, Shatah, and Uhlenbeck [6] and Nahmod, Shatah, Vega, and Zeng [32].

A generalized model which takes into account the effect of axial flow of the vortex

filament was proposed in 1972 by Moore and Saffman [29] and later in 1991 by Fukumoto

and Miyazaki [10]. The equation proposed in these two works are the same, but the

method in which they derived it are different. The model equation is a generalization of

the LIE given by

xt = xs × xss + α

{
xsss +

3

2
xss × (xs × xss)

}
,(1.1.3)

where α ∈ R is a parameter describing the magnitude of the effect of axial flow. We

refer to this equation as the generalized LIE. The “axial flow” of a vortex filament does

not mean flow inside the filament. This model equation is derived by approximating the
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velocity field of a vortex tube. It is assumed that the velocity inside the tube is governed

by the Navier–Stokes equations and the velocity outside the tube is governed by the Euler

equations. Then, the velocity at the boundary of the tube is determined by using the so

called matching method. Finally, the limit of the thickness of the tube tending to zero is

taken to derive the model equation for the vortex filament. The details of the derivation

of the model equation was given in Fukumoto and Miyazaki [10]. Note that even though

(1.1.3) is a generalization of (1.1.1), the methods in which the two model equations were

derived are completely different.

Again, by applying the aforementioned generalized Hasimoto transformation to (1.1.3),

we obtain

ψt = iψss +
i

2
|ψ|2ψ + α

{
ψsss +

3

2
|ψ|2ψs

}
,(1.1.4)

which is called the Hirota equation.

Initial value problems for both (1.1.1) and (1.1.3) have been considered in many works.

In Nishiyama and Tani [33], they proved the existence of a unique time-global solution

for both (1.1.1) and (1.1.3) without applying the Hasimoto transformation. Their main

method for proving the existence of the solution is a parabolic regularization, and they

make use of conserved quantities to obtain a priori estimates. In 1997, Koiso [24] proved

the existence and uniqueness of a time-global solution to a geometrically generalized ver-

sion of (1.1.1) by applying the generalized Hasimoto transformation and using a known

existence theorem for the nonlinear Schrödinger equation. Later in [25, 26], he also proved

the unique solvability without using the generalized Hasimoto transformation and in a

different geometrical setting. In 2008, Onodera [34, 35] considered a geometrically gener-

alized version of (1.1.3) and proved the time-global unique solvability. He also considers

the validity of the generalized Hasimoto transformation in his geometrical setting. In

the geometrically generalized case, it is still unknown whether the transformation can be

reversed.

Nishiyama and Tani [33] also considered an initial-boundary value problem for (1.1.1)

in a finite interval. The boundary condition imposed there is the zero curvature condition

at both ends of the filament, which is expressed at s = 0 by xss(0, t) = 0. By direct

calculation, we see that the solution x of the problem satisfies xt(0, t) =
(
xs×xss

)
(0, t) =

0, which means that the ends of the vortex filament are fixed at their initial positions.

As will be explained in the next chapter, we consider an initial-boundary value problem

for (1.1.1) with a different boundary condition, which allows the endpoint of the filament

to move along the boundary.

The Hirota equation, and dispersive equations in general, have a vast history of studies,
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a part of which is mentioned below. Hirota [18] originally considered (1.1.4), with more

general constant coefficients on each term, to obtain N -envelope-soliton solutions. By

obtaining this type of solution, he discussed the relation between the N -envelope-solition

and the classical solitons of the KdV equation and the Schrödinger equation. In 1997,

Laurey [28] proved the unique solvability globally in time of the initial value problem

for a class of third order dispersive equations which includes (1.1.4). In 2008, Segata

[37] proved the time-global unique solvability of the initial value problem for (1.1.4) and

also showed the asymptotic behavior of the solution as time goes to infinity. They both

utilized the smoothing effect of dispersive equations in their analysis. Results related to

this approach can also be found in Sjöberg [39], Kenig, Ponce, and Vega [19], and the

references therein.

Besides the solvability of problems for the LIE, research have been done on many

other aspects of vortex filaments. In Gutiérrez, Rivas, and Vega [12], they constructed

a one-parameter family of self-similar solutions for the initial value problem that form a

single sharp corner. They constructed the solutions by starting with a filament with a

sharp corner and solving the problem reverse in time. Hasimoto [14] showed the existence

of solitons that propagate along a linear filament, and numerically studied the shape and

movement of the solitary wave. Fukumoto [9] gave an asymptotic formula for the velocity

of the fluid induced by a closed vortex filament, called a vortex ring, and numerically

studied the velocity distribution. Kida [21] constructed various exact solutions, which

move steadily in time, of the LIE. The solutions studied there include the helicoidal

filaments and solitary wave type filaments. Betchov [4] derived an equation, called the

intrinsic equation, which is the LIE expressed in terms of the curvature and the torsion of

the filament. He also studied solutions of the intrinsic equation in special settings. Klein

and Majda [22] derived a different model equation for the motion of a vortex filament

where the filament is assumed to be almost straight, but they take into account the effect

of vortex stretching, and the model equation allows the filament to stretch. Many related

results can also be found in [8, 11, 13, 17, 20, 27, 30], and the references therein.

1.2 Aim of the Present Study

The aim of this dissertation is to prove the unique solvability of initial-boundary value

problems on the half-line for (1.1.1) and (1.1.3). The specific problems we consider are as

follows. 
xt = xs × xss, s > 0, t > 0,
x(s, 0) = x0(s), s > 0,
xs(0, t) = e3, t > 0
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for the LIE,
xt = xs × xss + α

{
xsss +

3

2
xss × (xs × xss)

}
, s > 0, t > 0,

x(s, 0) = x0(s), s > 0,
xss(0, t) = 0, t > 0

(1.2.5)

for α < 0, and
xt = xs × xss + α

{
xsss +

3

2
xss × (xs × xss)

}
, s > 0, t > 0,

x(s, 0) = x0(s), s > 0,
xs(0, t) = e3, t > 0,
xss(0, t) = 0, t > 0

(1.2.6)

for α > 0. Here, e3 = (0, 0, 1). Note that the number of boundary conditions changes

depending on the sign of α, which will be addressed in more detail in Chapter 3 and 4.

R2s = 0

x(s, t) =
(
x1(s, t), x2(s, t), x3(s, t)

)

x3

Figure 1.1: Vortex Filament in the Half Space

These initial-boundary value problems describe the motion of a vortex filament moving

in the three dimensional half space, as shown in Figure 1.1.

For the initial-boundary value problem for the LIE, we prove the time-global solvability

in Chapter 2 by reducing the problem to an initial value problem by extending the initial

datum to the whole space. This is possible by carefully analyzing the compatibility

conditions and giving an explicit expression for the n-th order compatibility condition for

any natural number n. This allows us to prove that the extension of the initial datum
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by reflection with respect to the plain {x ∈ R3;x3 = 0} is smooth. The LIE itself is also

invariant under this reflection and thus, the solution to the initial value problem preserves

the symmetry with respect to the plain. Under these circumstances, the restriction of the

solution to the half space is the desired solution to the initial-boundary value problem.

The other two problems are approached in a more straight forward manner in which

we consider the linearized problems. We prove the time-local solvability via an iteration

argument based on the existence theorems for the linearized problems. Since the existence

theorems for the linearized problems themselves are non-trivial, we devote Chapter 3 to

this issue. Specifically, we consider general linear problems
ut = αuxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0

(1.2.7)

for α < 0, and 
ut = αuxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
u(0, t) = e, t > 0,
ux(0, t) = 0, t > 0

(1.2.8)

for α > 0. Here, u(x, t) = (u1(x, t), u2(x, t), . . . , um(x, t)) is the unknown vector valued

function, u0(x),w(x, t) = (w1(x, t), w2(x, t), . . . , wk(x, t)), and f(x, t) = (f 1(x, t), f 2(x, t),

. . . , fm(x, t)) are known vector valued functions, and e is an arbitrary constant vec-

tor. A(w, ∂x) is a second order differential operator of the form A(w, ∂x) = A0(w)∂2x +

A1(w)∂x + A2(w). A0, A1, A2 are smooth matrices and A(w, ∂x) is strongly elliptic in

the sense that for any bounded domain E in Rk, there is a positive constant δ such that

for any w ∈ E

A0(w) + A0(w)∗ ≥ δI,

where I is the unit matrix and ∗ denotes the adjoint of a matrix. These problems include a

regularized form of the linearized problem for the generalized LIE. The equation linearized

around w has the form

vt = w × vss + α
{
vsss + 3vss × (w ×ws)

}
+ f ,

where v is the variation of the tangent vector of the filament. The solution to the initial-

boundary value problem for the above system can be obtained by a parabolic regulariza-

tion, which will be considered in detail in Chapter 3, of the form

vt = α(−εvt + αvss)s +w × vss + 3αvss × (w ×ws) + f

9



with ε > 0. It seems hard to obtain the estimate of the solution uniform in ε, which is

needed to pass to the limit ε→ +0. To overcome this, we add the term δvss to the above

system to obtain

vt = α(−εvt + αvss)s + δvss +w × vss + 3αvss × (w ×ws) + f .

Then, by utilizing the dissipative property of the term δvss, we are able to obtain the

desired estimates uniform in ε. If we pass to the limit ε → +0, we have a parabolic-

dispersive system

vt = αvsss +
{
δvss +w × vss + 3αvss × (w ×ws)

}
+ f ,

which satisfies the assumptions for (1.2.7) and (1.2.8). This is the motivation for consid-

ering problems (1.2.7) and (1.2.8).

As an application of the existence theorems obtained in Chapter 3, we prove the

time-local solvability of
vt = v × vss + α

{
vsss + 3vss ×

(
v × vs

)
− 3

2
|vs|2vs

}
+δ
(
vss + |vs|2v

)
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
vs(0, t) = 0, t > 0

(1.2.9)

for α < 0, and

vt = v × vss + α

{
vsss + 3vss ×

(
v × vs

)
− 3

2
|vs|2vs

}
+δ
(
vss + |vs|2v

)
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,
vs(0, t) = 0, t > 0

(1.2.10)

for α > 0 through a standard iteration scheme in Chapter 4. These two problems are

regularized problems for (1.2.5) and (1.2.6), respectively, expressed in terms of the tangent

vector v. They are regularized as above so that we can apply the linear existence theorems

obtained in Chapter 3. In fact, the second order terms correspond to the operator A(v, ∂s)

and the lower order terms correspond to the forcing term f of the linear system. The

extra regularizing term δ|vs|2v may seem unnecessary, but it actually plays an important

role. If |v0| ≡ 1, a smooth solution v to (1.2.9) or (1.2.10) with δ = 0 also satisfies |v| ≡ 1.

This property is one of the crucial components to derive energy estimates of the solution

when δ = 0, and by adding the regularizing term δ|vs|2v, the same property holds for

δ > 0. Utilizing this property, we can obtain uniform estimates of the solution to (1.2.9)
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and (1.2.10) with respect to δ, allowing us to pass to the limit δ → +0. Finally, as in the

case of the LIE, we can construct the desired solution x from v through the formula

x(s, t) = x0(s) +

∫ t

0

{
v × vs + αvss ++

3

2
αvs × (v × vs)

}
(s, τ)dτ.

1.3 Function Spaces

We define some function spaces that will be used throughout this dissertation and nota-

tions associated with the spaces.

For an open interval Ω, a non-negative integer m, and 1 ≤ p ≤ ∞, Wm,p(Ω) is the

Sobolev space containing all real-valued functions that have derivatives in the sense of

distribution up to order m belonging to Lp(Ω) and Ẇm,p(Ω) is the homogeneous Sobolev

space. We set Hm(Ω) := Wm,2(Ω) as the Sobolev space equipped with the usual inner

product and Ḣm(Ω) := Ẇm,2(Ω). We will particularly use the cases Ω = R and Ω = R+,

where R+ = {x ∈ R; x > 0}. When Ω = R+, the norm in Hm(Ω) is denoted by ∥ · ∥m
and we simply write ∥ · ∥ for ∥ · ∥0. Otherwise, for a Banach space X, the norm in X is

written as ∥ · ∥X . The inner product in L2(R+) is denoted by (·, ·) and the inner product

in L2(R) is denoted by ⟨·, ·⟩.
For 0 < T < ∞ and a Banach space X, Cm([0, T ];X) denotes the space of functions

that are m times continuously differentiable in t with respect to the norm of X.

We define the Sobolev–Slobodetskĭı space. For 0 < T ≤ ∞, we denote QT := R+ ×
(0, T ), and for h > 0 and a positive integer l, we define the space H

l,l/2
h (QT ) as the space

of functions defined on QT with finite norm

|||u|||2
H

l,l/2
h (QT )

:= |||u|||2
Hl,0

h (QT )
+ |||u|||2

H
0,l/2
h (QT )

,

where

|||u|||2
Hl,0

h (QT )
:=

∫ T

0

e−2ht∥u(·, t)∥2
Ḣldt,

|||u|||2
H

0,l/2
h (QT )

:= hl
∫ T

0

e−2ht∥u(·, t)∥2dt

+

∫ T

0

e−2ht

∫ ∞

0

∥∥∥∥∂[l/2]u0(·, t− r)

∂t[l/2]
− ∂[l/2]u0(·, t)

∂t[l/2]

∥∥∥∥2 r−1−l+2[ l
2
]drdt,

[ l
2
] is the integer part of l

2
and u0 is the extension of u by zero into t < 0 if l

2
is not an

integer. When l
2
is an integer,

|||u|||2
H

0,l/2
h (QT )

:=

∫ T

0

e−2ht

(
hl∥u(·, t)∥2 +

∥∥∥∥∂l/2u∂tl/2
(·, t)

∥∥∥∥2
)
dt
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and we also impose that ∂ju
∂tj

(x, 0) = 0 for j = 0, 1, . . . , l
2
− 1. When T = ∞, the following

equivalent norm for the space H
l,l/2
h (Q∞) will be used.

∥u∥2
H

l,l/2
h (Q∞)

:=
l∑

j=0

∫ ∞

−∞

∥∥∥∥∂jũ∂xj (·, τ)
∥∥∥∥2 |τ |l−jdη,

where a tilde denotes the Laplace transform with respect to t defined by

ũ(x, τ) =

∫ ∞

0

e−τtu(x, t)dt,

where τ = h+ iη with h > 0. The equivalence was shown in Solonnikov [38].

Finally, we define some auxiliary function spaces, which will be used in Chapters 3

and 4. Let l be a non-negative integer and define the following.

X l
T :=

l∩
j=0

(
Cj
(
[0, T ];H2+3(l−j)(R+)

)
∩Hj

(
0, T ;H3+3(l−j)(R+)

))
,

Y l
T :=

{
f ; f ∈

l−1∩
j=0

Cj
(
[0, T ];H2+3(l−1−j)(R+)

)
,
∂lf

∂tl
∈ L2

(
0, T ;H1(R+)

)}
,

Z l
T :=

{
w; w ∈

l−1∩
j=0

Cj
(
[0, T ];H2+3(l−1−j)(R+)

)
,
∂lw

∂tl
∈ L∞(0, T ;H1(R+)

)}
.

For any function space described above, we say that a vector valued function belongs

to the function space if each of its components does.

The contents of this dissertation are as follows. In Chapter 2, we prove the time-

global solvability of the initial-boundary value problem for the LIE. In Chapter 3, we

consider initial-boundary value problems for a second order parabolic system with a third

order dispersive term and prove the solvability. From here on, we refer to this system as

a parabolic-dispersive system. This parabolic-dispersive system is considered to analyze

the generalized LIE, for which we prove the time-local solvability of initial-boundary value

problems in Chapter 4. Finally, in Appendix A, we address the initial-boundary value

problem for the LIE to demonstrate the generalized Hasimoto transformation. We do

this to communicate the idea of the generalized Hasimoto transformation while refraining

from using technical terms of differential geometry as much as possible.

12



Chapter 2

Localized Induction Equation in the
Half Space

2.1 Problem Setting

We consider the initial-boundary value problem for the motion of a vortex filament in the

half space in which the filament is allowed to move on the boundary:

(2.1.1)


xt = xs × xss, s > 0, t > 0,
x(s, 0) = x0(s), s > 0,
xs(0, t) = e3, t > 0,

where e3 = (0, 0, 1). We assume that

(2.1.2) |x0s(s)| = 1 for s ≥ 0, x30(0) = 0,

for the initial datum. The first condition states that the initial vortex filament is parametrized

by its arc length and the second condition states that the curve is parameterized starting

from the boundary. Here we observe that by taking the inner product of e3 with the

equation, taking the trace at s = 0, and noting the boundary condition we have

d

dt
(e3 · x) |s=0 = e3 · (xs × xss)|s=0

= xs · (xs × xss)|s=0

= 0,

where “ · ” denotes the inner product and |s=0 denotes the trace at s = 0. This implies

that if the end of the vortex filament is on the boundary initially, then it will stay on the

boundary, but is not necessarily fixed. This is the reason for the expression “allowed to

move on the boundary”.
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By introducing new variables v(s, t) := xs(s, t) and v0(s) := x0s(s), (2.1.1) and (2.1.2)

respectively become

(2.1.3)


vt = v × vss, s > 0, t > 0,
v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,

and

(2.1.4) |v0(s)| = 1, s ≥ 0.

Once we solve (2.1.3), the solution x of (2.1.1) and (2.1.2) can be constructed by

x(s, t) = x0(s) +

∫ t

0

v(s, τ)× vs(s, τ) dτ.

Thus from now on, we concentrate on the initial-boundary value problem (2.1.3) under

the condition (2.1.4). Note that if the initial datum satisfies (2.1.4), then any smooth

solution v of (2.1.3) satisfies

(2.1.5) |v(s, t)| = 1, s ≥ 0, t ≥ 0.

This can be confirmed by taking the inner product of the equation in (2.1.3) with v.

2.2 Compatibility Conditions

We derive necessary conditions for a smooth solution to exist for (2.1.3) with (2.1.4).

Suppose that v(s, t) is a smooth solution of (2.1.3) with (2.1.4) defined in R+ × [0, T ]

for some positive T . We have already seen that for all (s, t) ∈ R+ × [0, T ]

(2.2.1) |v(s, t)|2 = 1.

By differentiating the boundary condition with respect to t, we see that

(B)n ∂nt v|s=0 = 0 for n ∈ N, t > 0.

We next show

Lemma 2.2.1 For a smooth solution v(s, t) under consideration,

(C)n v × ∂2ns v
∣∣
s=0

= 0,

(D)n ∂jsv · ∂lsv
∣∣
s=0

= 0 for j + l = 2n+ 1

hold.
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Proof. We prove them by induction. From (B)1 and by taking the trace of the equation

we see that

0 = vt |s=0 = v × vss |s=0 ,

and thus, (C)1 holds. By taking the exterior product of vs and (C)1 we have

{(vs · vss)v − (vs · v)vss} |s=0 = 0.

On the other hand, by differentiating (2.2.1) with respect to s, we have v · vs ≡ 0.

Combining these two and the fact that v is a non-zero vector, we arrive at

vs · vss |s=0 = 0.

Finally, by differentiating (2.2.1) with respect to s three times and setting s = 0, we have

0 = 2 (v · vsss + 3vs · vss) |s=0 = 2v · vsss |s=0 ,

which implies that (D)1 holds. Suppose that the statements hold up to n − 1 for some

n ≥ 2. By differentiating (C)n−1 with respect to t we have

v ×
(
∂2(n−1)
s vt

)∣∣
s=0

= 0,

where we have used (B)1. We see that

∂2(n−1)
s vt = ∂2(n−1)

s (v × vss) =
2(n−1)∑
k=0

(
2(n− 1)

k

)(
∂ksv × ∂2(n−1)−k+2

s v
)
,

where

(
2(n− 1)

k

)
is the binomial coefficient. We have

2(n−1)∑
k=0

(
2(n− 1)

k

){
v ×

(
∂ksv × ∂2(n−1)−k+2

s v
)}∣∣∣∣

s=0

= 0.(2.2.2)

We examine each term in the summation. When 2 ≤ k ≤ 2(n − 1) is even, we see from

the assumptions of induction (C)k/2 and (C)(2(n−1)−k+2)/2 that both ∂
k
sv and ∂

2(n−1)−k+2
s v

are parallel to v, so that

∂ksv × ∂2(n−1)−k+2
s v

∣∣
s=0

= 0.

When 1 ≤ k ≤ 2(n− 1) is odd, we rewrite the exterior product in (2.2.2) as

v ×
(
∂ksv × ∂2(n−1)−k+2

s v
)
=
(
v · ∂2(n−1)−k+2

s v
)
∂ksv −

(
v · ∂ksv

)
∂2(n−1)−k+2
s v.

Since 2(n− 1)− k + 2 is also odd, by (D)(k−1)/2 and (D)(2(n−1)−k+1)/2 we have

v · ∂ksv
∣∣
s=0

= v · ∂2(n−1)−k+2
s v

∣∣
s=0

= 0.
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Thus, only the term with k = 0 remains and we get

v ×
(
v × ∂2ns v

)∣∣
s=0

= 0.

Here, we note that

v × (v × ∂2ns v) = (v · ∂2ns v)v − ∂2ns v,

where we used (2.2.1). Taking the exterior product of this with v we see that (C)n holds.

Taking the exterior product of ∂2n+1−2k
s v with (C)k and using (D)n−k for 1 ≤ k ≤ n yields(
∂2ks v · ∂2n+1−2k

s v
)
v
∣∣
s=0

= 0.

Since v is a non-zero vector, we have for 1 ≤ k ≤ n

∂2ks v · ∂2n+1−2k
s v

∣∣
s=0

= 0.(2.2.3)

Finally, by differentiating (2.2.1) with respect to s (2n+ 1) times, we have

2n+1∑
j=0

(
2n+ 1
j

)(
∂jsv · ∂2n+1−j

s v
)∣∣∣

s=0
= 0.

Since every term except when j = 0, 2n+ 1 is of the form (2.2.3), we see that

v · ∂2n+1
s v

∣∣
s=0

= 0,

which, together with (2.2.3), finishes the proof of (D)n. □

Worth noting are the following two properties which will be used in later parts of this

chapter. For a natural number n,

e3 × ∂2ns v
∣∣
s=0

= 0, e3 · ∂2n+1
s v

∣∣
s=0

= 0.

These are special cases of (C)n and (D)n with the boundary condition substituted in.

By passing to the limit t → 0 in (C)n, we derive a necessary condition for the initial

datum.

Definition 2.2.2 For n ∈ N ∪ {0}, we say that the initial datum v0 satisfies the com-

patibility condition (A)n if the following conditions are satisfied for 0 ≤ k ≤ n{
v0|s=0 = e3, k = 0,(
v0 × ∂2ks v0

)∣∣
s=0

= 0, k ̸= 0.

From the proof of Lemma 2.2.1, we see that if v0 satisfies (2.1.4) and the compatibility

condition (A)n, then v0 also satisfies (D)k for 0 ≤ k ≤ n with v replaced by v0 as long as

the trace exists.
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2.3 Extension of the Initial Data

For the initial datum v0 defined on the half-line, we extend it to the whole line by

(2.3.1) ṽ0(s) =

{
v0(s), s ≥ 0,

−v0(−s), s < 0,

where v = (v1, v2,−v3) for v = (v1, v2, v3) ∈ R3.

Proposition 2.3.1 For any integer m ≥ 2, if v0s ∈ Hm(R+) satisfies (2.1.4) and the

compatibility condition (A)[m
2
], then ṽ0s ∈ Hm(R). Here, [m

2
] indicates the largest integer

not exceeding m
2
.

Proof. Fix an arbitrary integer m ≥ 2. We will prove by induction on k that ∂k+1
s ṽ0 ∈

L2(R) for any 0 ≤ k ≤ m. Specifically we show that the derivatives of ṽ0 in the distribu-

tion sense on the whole line R up to order m+ 1 have the form

(2.3.2)
(
∂k+1
s ṽ0

)
(s) =

{ (
∂k+1
s v0

)
(s), s > 0,

−(−1)k+1
(
∂k+1
s v0

)
(−s), s < 0,

for 0 ≤ k ≤ m.

Since v0 ∈ L∞(R+) and v0s ∈ H2(R+), Sobolev’s embedding theorem states v0s ∈
L∞(R+) and thus v0 ∈ W 1,∞(R+), so that the trace v0(0) exists. By definition (2.3.1)

we have

ṽ0(−0) =
(
− v10(0),−v20(0), v3(0)

)
,

but from (A)0, v
1
0(0) = v20(0) = 0. These imply that ṽ0(+0) = ṽ0(−0), so that we obtain

∂sṽ0(s) =

{
(∂sv0) (s), s > 0,

−(−1)
(
∂sv0

)
(−s), s < 0,

and the case k = 0 is proved.

Suppose that (2.3.2) with k + 1 replaced by k holds for some k ∈ {1, 2, . . . ,m}. We

check that the derivative ∂ks ṽ0 does not have a jump discontinuity at s = 0. When k is

even, from the definition of ∂ksv0,(
∂ks ṽ0

)
(−0) =

(
−∂ks v10(0),−∂ks v20(0), ∂ks v30(0)

)
,

but from (A) k
2
we have

0 = v0 × ∂ksv0
∣∣
s=0

= e3 × ∂ksv0(0),
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which implies that ∂ksv0(0) is parallel to e3 and that the first and second components are

zero. When k is odd, (
∂ks ṽ0

)
(−0) =

(
∂ks v

1
0(0), ∂

k
s v

2
0(0),−∂ks v30(0)

)
,

but (A)[ k
2
] implies (D)[ k

2
] and particularly

0 = v0 · ∂ksv0
∣∣
s=0

= e3 · ∂ksv0(0) = (∂ks v
3
0)(0),

so the third component is zero. In both cases, we have
(
∂ks ṽ0

)
(+0) =

(
∂ks ṽ0

)
(−0), so that

we can verify (2.3.2). This finishes the proof of the proposition. □

2.4 Existence and Uniqueness of Solution

Using ṽ0, we consider the following initial value problem:

ut = u× uss, s ∈ R, t > 0,(2.4.1)

u(s, 0) = ṽ0(s), s ∈ R.(2.4.2)

By Proposition 2.3.1, the existence and uniqueness theorem (in Nishiyama and Tani [33])

of a strong solution u is applicable. Specifically we use the following theorem.

Theorem 2.4.1 (T. Nishiyama and A. Tani [33]) For a non-negative integer m, if ṽ0s ∈
H2+m(R) and |ṽ0| ≡ 1, then the initial value problem (2.4.1) and (2.4.2) has a unique

solution u such that

u− ṽ0 ∈ C
(
[0,∞);H3+m(R)

)
∩ C1

(
[0,∞);H1+m(R)

)
and |u| ≡ 1.

From Proposition 2.3.1, the assumptions of this theorem are satisfied if v0s ∈ H2+m(R+)

satisfies the compatibility condition (A)[ 2+m
2

] and (2.1.4).

Now we define the operator T by

(Tw)(s) = −w(−s),

for R3-valued function w defined on s ∈ R. It is easy to verify that Tṽ0 = ṽ0 and that

T (u× uss) = (Tu)× (Tu)ss . Taking these into account and applying the operator T to

(2.4.1) and (2.4.2), we have{
(Tu)t = (Tu)× (Tu)ss, s ∈ R, t > 0,

(Tu)(s, 0) = (Tṽ0)(s) = ṽ0(s), s ∈ R,
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in other words, Tu is also a solution of (2.4.1) and (2.4.2). Thus we have Tu = u by the

uniqueness of the solution. Therefore, for any t ∈ [0, T ]

u(0, t) = (Tu) (0, t) = −u(0, t),

which is equivalent to u1(0, t) = u2(0, t) = 0. Therefore, it holds that u3(0, t) = −1 or 1

because |u| ≡ 1, but in view of ṽ0(0) = v0(0) = e3, we obtain u(0, t) = e3 by the

continuity in t.

This shows that the restriction of u to R+ is a solution of our initial-boundary value

problem. Using this function v := u|R+ , we can construct the solution x to the original

equation as we stated in Section 2.2. Thus we have

Theorem 2.4.2 (M. Aiki and T. Iguchi [1]) For a non-negative integer m, if x0ss ∈
H2+m(R+) and x0s satisfies the compatibility condition (A)[ 2+m

2
] and (2.1.2), then there

exists a unique solution x of (2.1.1) such that

x− x0 ∈ C
(
[0,∞);H4+m(R+)

)
∩ C1

(
[0,∞);H2+m(R+)

)
,

and |xs| ≡ 1.

Proof. The uniqueness is left to be proved. Suppose that x1 and x2 are solutions as in

the theorem. Then, by extending xi (i = 1, 2) by

x̃i(s, t) =

{
xi(s, t) s ≥ 0, t > 0,
xi(−s, t) s < 0, t > 0,

we see that x̃i are solutions of the LIE in the whole space. Thus x1 = x2 follows from

the uniqueness of the solution to the initial value problem. □
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Chapter 3

Initial-Boundary Value Problems for
a Parabolic-Dispersive System

3.1 Problem Setting

In this chapter, we prove the unique solvability of the following initial-boundary value

problems: for α < 0,
ut = αuxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0;

(3.1.1)

for α > 0, 
ut = αuxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
u(0, t) = e, t > 0,
ux(0, t) = 0, t > 0.

(3.1.2)

Here, u(x, t) = (u1(x, t), u2(x, t), . . . , um(x, t)) is the unknown vector valued function,

u0(x), w(x, t) = (w1(x, t), w2(x, t), . . . , wk(x, t)), and f(x, t) = (f 1(x, t), f 2(x, t), . . . , fm(

x, t)) are known vector valued functions, e is an arbitrary constant vector, subscripts

denote derivatives with the respective variables, A(w, ∂x) is a second order differential

operator of the form A(w, ∂x) = A0(w)∂2x + A1(w)∂x + A2(w) with smooth matrices

A0, A1, and A2. Furthermore, A(w, ∂x) is assumed to be strongly elliptic in the sense

that for any bounded domain E in Rk, there is a positive constant δ such that for any

w ∈ E

A0(w) + A0(w)∗ ≥ δI,

where I is the unit matrix and ∗ denotes the adjoint of a matrix. Note here that the

number of boundary conditions imposed changes depending on the sign of α, much like
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the KdV equation. This is because the number of fundamental solutions of ut = αuxxx

that are bounded in x changes depending on the sign of α.

Problems (3.1.1) and (3.1.2) are considered to prove the unique solvability of the

following nonlinear problems: for α < 0,

vt = v × vss + α

{
vsss +

3

2
vss × (v × vs)

+
3

2
vs × (v × vss)

}
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
vs(0, t) = 0, t > 0;

(3.1.3)

for α > 0,

vt = v × vss + α

{
vsss +

3

2
vss × (v × vs)

+
3

2
vs × (v × vss)

}
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,
vs(0, t) = 0, t > 0,

(3.1.4)

where v = (v1(s, t), v2(s, t), v3(s, t)) is the tangent vector of the vortex filament parame-

terized by its arc length s at time t, e3 = (0, 0, 1), the symbol × is the exterior product in

the three dimensional Euclidean space, and α is a real constant describing the magnitude

of the effect of axial flow. These two problems are the problems for the generalized LIE

written in term of its tangent vector. We refer to the equation written in terms of v as

the vortex filament equation to differentiate it from the generalized LIE.

As far as the author knows, there are no results on initial-boundary value problems for

the above equation. As mentioned in Chapter 1, Segata [37] proved the unique solvability

and showed the asymptotic behavior in time of the solution to the Hirota equation, given

by

iqt = qxx +
1

2
|q|2q + iα

{
qxxx +

3

2
|q|2qx

}
,(3.1.5)

which can be obtained by applying the Hasimoto transformation to the vortex filament

equation. Since there are many results regarding the initial value problem for the Hirota

equation and other Schrödinger type equations, it may be more natural to see if the avail-

able theories from these results can be utilized to solve the initial-boundary value problem

for (3.1.5), instead of considering (3.1.3) and (3.1.4) directly. Admittedly, problem (3.1.3)

and (3.1.4) can be transformed into an initial-boundary value problem for the Hirota
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equation. But, in light of the possibility that a new boundary condition may be consid-

ered for the vortex filament equation in the future, it would be beneficial to develop the

analysis of the vortex filament equation itself because the Hasimoto transformation may

not be applicable under the new boundary condition. For example, (3.1.3) and (3.1.4)

model the motion of a vortex filament moving in the three dimensional half space, but if

we consider a boundary that is not flat, it is non-trivial as to if we can apply the Hasimoto

transformation or not, thus we consider the vortex filament equation directly.

We begin with the following linearized system with given w and f .

vt = w × vss + α
{
vsss + 3vss × (w ×ws)

}
+ f .

The solution to the initial-boundary value problem for the above system can be obtained

by a parabolic regularization, which will be considered in detail later in this chapter, of

the form

vt = α(−εvt + αvss)s +w × vss + 3αvss × (w ×ws) + f

with ε > 0. It seems hard to obtain the estimate of the solution uniform in ε, which is

needed to pass to the limit ε → +0. To overcome this, we added the term δvss to the

above system to obtain

vt = α(−εvt + αvss)s + δvss +w × vss + 3αvss × (w ×ws) + f .

Then, by utilizing the dissipative property of the term δvss, we are able to obtain the

desired estimates uniform in ε. If we pass to the limit ε → +0, we have a parabolic-

dispersive system

vt = αvsss +
{
δvss +w × vss + 3αvss × (w ×ws)

}
+ f ,(3.1.6)

which satisfies the assumptions for problems (3.1.1) and (3.1.2). The dissipative property

of the second order part allows us to construct the solution to the initial-boundary value

problems for

vt = v × vss + α

{
vsss +

3

2
vss × (v × vs) +

3

2
vs × (v × vss)

}
+ δ
(
vss + |vs|v

)
.

Then, we can pass to the limit δ → +0 by using the uniform estimates derived from the

property |v| = 1.

This is the motivation for considering (3.1.1) and (3.1.2). Note that the limit δ → +0

cannot be considered in general for (3.1.1) and (3.1.2).

At first glance, one may think that (3.1.6) can be treated by using the known results

of KdV and KdV–Burgers equations such as Hayashi and Kaikina [15], Hayashi, Kaikina,
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and Ruiz Paredes [16], or Bona and Zhang [5]. However, this seems hard to do because

the vortex filament equation in (3.1.3) and (3.1.4) has second order derivatives in the

nonlinear term and the linear estimates obtained in the KdV and KdV–Burgers theory is

insufficient to treat the nonlinear terms as a regular perturbation. Thus, a new technique

is needed.

Our key method to prove the solvability of (3.1.1) and (3.1.2) is a new parabolic

regularization. For (3.1.2), we can regularize the system with a fourth order dissipation

term, transforming it into a standard parabolic system. We cannot do this for (3.1.1)

because a fourth order parabolic system requires two boundary conditions to solve, but the

original problem imposes only one boundary condition. Thus, a standard regularization

cannot be applied to (3.1.1). To prove the unique solvability of (3.1.1), we introduce a

new type of regularization
ut = α (uxx − εut)x +A(w, ∂x)u+ g, x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0

(3.1.7)

with ε > 0. Here, g is a given data which we determine later so that the compatibility

conditions are satisfied. To construct the solution of the above system, we first consider

the following problem.
ut = α (uxx − εut)x + g, x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0.

(3.1.8)

Problem (3.1.7) is a parabolic regularization of (3.1.1) whose principal term is the

first term in the right-hand side of the equation in (3.1.8). In fact, for a vector C, if we

substitute u(x, t) = eτt+iξxC into ut = α (uxx − εut)x, we obtain the dispersion relation

τ = −α(ξ2 + ετ)iξ, so that for a non-trivial solution to exist, we need

ℜτ = − α2εξ4

1 + α2ε2ξ2
,

which indicates that the equation is parabolic in nature.

Since the proof for the case α > 0 is fairly standard, we concentrate on the case α < 0,

and give a remark on the case α > 0 at the end of this chapter.

Now, we state the main theorems. The compatibility conditions mentioned in the

theorems are defined in the next section.

Theorem 3.1.1 (M. Aiki and T. Iguchi [2]) For any T > 0 and an arbitrary non-negative

integer l, if u0 ∈ H2+3l(R+), f ∈ Y l
T , and w ∈ Z l

T satisfy the compatibility conditions
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up to order l, a unique solution u of (3.1.1) exists such that u ∈ X l
T . Furthermore, the

solution satisfies

∥u∥Xl
T
≤ C

(
∥u0∥2+3l + ∥f∥Y l

T

)
,

where the constant C depends on T , ∥w∥Zl
T
, and δ.

Theorem 3.1.2 (M. Aiki and T. Iguchi [2]) For any T > 0 and an arbitrary non-negative

integer l, if u0 ∈ H2+3l(R+), f ∈ Y l
T , and w ∈ Z l

T satisfy the compatibility conditions

up to order l, a unique solution u of (3.1.2) exists such that u ∈ X l
T . Furthermore, the

solution satisfies

∥u∥Xl
T
≤ C

(
∥u0∥2+3l + ∥f∥Y l

T

)
,

where the constant C depends on T , ∥w∥Zl
T
, and δ.

The function spaces X l
T , Y

l
T , and Z

l
T are defined in Chapter 1.

The contents of this chapter are as follows. In Section 3.2, we consider the compati-

bility conditions and the necessary corrections to the given data required for the regular-

ized problem. In Section 3.3, we construct and estimate the solution to the regularized

problem. Then in Section 3.4, we construct and estimate the solution of the parabolic-

dispersive system in appropriate function spaces and prove Theorem 3.1.1. Finally in

Section 3.5, we give a remark on the proof of Theorem 3.1.2.

3.2 Compatibility Conditions

We will construct the solution of (3.1.1) by taking the limit ε → +0 in the following

regularized problem.
ut = −αεutx + αuxxx +A(w, ∂x)u+ g, x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0.

(3.2.1)

Since the derivation of the compatibility conditions for the regularized problem is com-

plicated and the required corrections for the given data are not standard, we devote this

section to clarify these matters.

3.2.1 Compatibility Conditions for (3.1.1)

We first derive the compatibility conditions for the original problem (3.1.1). We denote

the right-hand side of the equation in (3.1.1) as

Q1(u,f ,w) = αuxxx +A(w, ∂x)u+ f ,(3.2.2)
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and we also use the notation Q1(x, t) := Q1(u,f ,w) and sometimes omit the (x, t) for

simplicity. We successively define

Qn := α∂3xQn−1 +
n−1∑
j=0

(
n− 1
j

)
BjQn−1−j + ∂n−1

t f ,(3.2.3)

where Bj =
(
∂jtA0(w)

)
∂2x +

(
∂jtA1(w)

)
∂x + ∂jtA2(w). The above definition (3.2.3) gives

the formula for the expression of ∂nt u which only contains x derivatives of u and mixed

derivatives of w and f . From the boundary condition in (3.1.1), we arrive at the following

definition for the compatibility conditions.

Definition 3.2.1 (Compatibility conditions for (3.1.1)). For n ∈ N ∪ {0}, we say that

u0, f , and w satisfy the n-th order compatibility condition for (3.1.1) if

u0x(0, 0) = 0

when n = 0, and (
∂xQn

)
(0, 0) = 0

when n ≥ 1. We also say that the data satisfy the compatibility conditions for (3.1.1) up

to order n if they satisfy the k-th order compatibility condition for all k with 0 ≤ k ≤ n.

Now that we have defined the compatibility conditions, we discuss an approximation

of the data via smooth functions which keep the compatibility conditions. Recall that

X l
T , Y

l
T , and Z

l
T are function spaces defined in Chapter 1 to which the solution and given

data belong. Data in these function spaces with index l are smooth enough for the l-th

order compatibility condition to have meaning in a point-wise sense, but the (l + 1)-th

order compatibility condition does not. Utilizing the method due to Rauch and Massey

[36], we can get the following.

Lemma 3.2.2 Fix non-negative integers l and N with N > l. For any u0 ∈ H2+3l(R+),

f ∈ Y l
T , and w ∈ Z l

T satisfying the compatibility conditions for (3.1.1) up to order l, there

exist sequences {u0n}n≥1 in H
2+3N(R+), {fn}n≥1 in Y

N
T , and {wn}n≥1 in Z

N
T such that

for any n ≥ 1, u0n, fn, and wn satisfy the compatibility conditions for (3.1.1) up to order

N and

u0n → u0 in H
2+3l(R+), fn → f in Y l

T , and wn → w in Z l
T as n→ ∞.

From Lemma 3.2.2, we can assume that the given data are arbitrarily smooth and satisfy

the necessary compatibility conditions in the proceeding arguments.
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3.2.2 Compatibility Conditions for (3.2.1)

In this subsection, we define the compatibility conditions for (3.2.1). We set

P 1(u, g,w) = αuxxx +A(w, ∂x)u+ g.(3.2.4)

We also write P 1(x, t) and P 1 as we did with Q1 in the previous subsection. Setting

ϕ1(x) := ut(x, 0) and taking the trace t = 0 of the equation, we have

αεϕ′
1 + ϕ1 = P 1(·, 0).(3.2.5)

A prime denotes the derivative with respect to x. Note that P 1(x, 0) is expressed by given

data only. Solving the above ordinary differential equation for ϕ1, we have

ϕ1(x) = e−
x
αε

{
ϕ1(0) +

1

αε

∫ x

0

e
y
αεP 1(y, 0)dy

}
.

Since we are looking for square integrable solutions, we impose that lim
x→∞

ϕ1(x) = 0. Thus

we have

ϕ1(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)P 1(y, 0)dy.

By direct calculation, we see that

ϕ′
1(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)P ′
1(y, 0)dy,

where we have used integration by parts. We also note here that ϕ1 is expressed with

given data only. From the boundary condition in (3.2.1), we see that the first order

compatibility condition is given by∫ ∞

0

e
y
αεP ′

1(y, 0)dy = 0.

In the same manner, we will derive the n-th order compatibility condition for n ≥ 2.

Taking the t derivative of the equation (3.2.4) (n− 1) times, taking the trace t = 0, and

setting ϕn(x) := ∂nt u(x, 0), we have

αεϕ′
n + ϕn = (∂n−1

t P 1)(·, 0).

We denote

P n := ∂n−1
t P 1.
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We will prove by induction that ϕn and P n(x, 0) are expressed by using given data only.

Since P n = ∂n−1
t P n−1 = ∂n−1

t (αuxxx +A(w)u+ g), it holds that

P n(·, 0) = αϕ′′′
n−1 +

n−1∑
j=0

(
n− 1
j

)
Bjϕn−1−j + ∂n−1

t g(·, 0).(3.2.6)

For n ≥ 2, assume that ϕk and P k(·, 0) are expressed with given data for 1 ≤ k ≤ n− 1.

Formula (3.2.6) implies that P n(·, 0) is expressed with given data. Solving for ϕn yields

ϕn(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)P n(y, 0)dy.

This proves that ϕn is also expressed by using given data only. Again by direct calculation,

we have

ϕ′
n(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)P ′
n(y, 0)dy,

and arrive at the n-th order compatibility condition∫ ∞

0

e
y
αεP ′

n(y, 0)dy = 0.

Now we can define the following.

Definition 3.2.3 (Compatibility conditions for (3.2.1)). For n ∈ N ∪ {0}, we say that

u0, g, and w satisfy the n-th order compatibility condition for (3.2.1) if

u0x(0) = 0

when n = 0, and ∫ ∞

0

e
y
αεP ′

n(y, 0)dy = 0

when n ≥ 1. We also say that the data satisfy the compatibility conditions for (3.2.1) up to

order n if the data satisfy the k-th order compatibility condition for all k with 0 ≤ k ≤ n.

For the definition of P n, see (3.2.4) and (3.2.6).

We note that for u0 ∈ H2+3l(R+), f ∈ Y l
T , and w ∈ Z l

T , the compatibility conditions up

to order l have pointwise meaning, but the (l + 1)-th order compatibility condition does

not.
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3.2.3 Corrections to the Data

Since we regularized the problem, we must make corrections to the data to assure that

the compatibility conditions hold. Fix a large positive integer N and suppose that

u0 ∈ H2+3N(R+), f ∈ Y N
T , and w ∈ ZN

T satisfy the compatibility conditions for (3.1.1)

up to order N . We will make corrections to the forcing term so that the data satisfy

the compatibility conditions for (3.2.1) up to order N . More specifically, we prove the

following.

Proposition 3.2.4 Fix a positive integer N . For u0 ∈ H2+3N(R+), f ∈ Y N
T , and w ∈

ZN
T satisfying the compatibility conditions for (3.1.1) up to order N , we can define g ∈ Y N

T

in the form g = f + hε such that u0, g, and w satisfy the compatibility conditions for

(3.2.1) up to order N and hε → 0 in Y N
T as ε→ +0.

Proof. We write the equation in (3.2.1) as

ut = −αεutx + P(x, t, ∂x)u+ g,

i.e. P(x, t, ∂x)u = αuxxx + A(w, ∂x)u. Setting ϕ1(x) := ut(x, 0) and taking the trace

t = 0 of the equation, we have

αεϕ′
1 + ϕ1 = P(·, 0, ∂x)u0 + f(·, 0) + hε(·, 0) = Q1(·, 0) + hε(·, 0)(3.2.7)

by using the notation in (3.2.2). As before, solving the above ordinary differential equation

for ϕ1 under the constraint lim
x→∞

ϕ1(x) = 0 we have

ϕ1(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
Q1(y, 0) + hε(y, 0)

}
dy.

We give an ansatz for the form of hε, namely

hε(x, t) =

(
N∑
j=0

Cj,ε
tj

j!

)
e−x,

where Cj,ε, j = 0, 1, ..., N , are constant vectors depending on ε to be determined later.

From Definition 3.2.3, the first order compatibility condition is∫ ∞

0

e
y
αε

{
Q′

1(y, 0) + h
′
ε(y, 0)

}
dy = 0.

Substituting the ansatz for hε(x, t), we have

C0,ε

(
1− 1

αε

)−1

=

∫ ∞

0

e
y
αεQ′

1(y, 0)dy.
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Since Q′
1(0, 0) = 0 from the compatibility condition for (3.1.1), we have by integration by

parts

C0,ε = (αε− 1)

∫ ∞

0

e
y
αεQ′′

1(y, 0)dy.

If we limit ourselves to 0 < ε < min{1, 1/|α|}, then from

e
y
αε |Q′′

1(y, 0)| ≤ e−y|Q′′
1(y, 0)|,

and for y > 0

e
y
αε |Q′′

1(y, 0)| → 0 as ε→ +0,

we see thatC0,ε → 0 as ε→ +0. We will show by induction thatCj,ε can be chosen so that

Cj,ε → 0 for 1 ≤ j ≤ N and g = f + hε, u0, and w satisfy the compatibility conditions

for (3.2.1) up to order N . Suppose that the above statement holds for 0 ≤ j ≤ n− 2 for

some n with 2 ≤ n ≤ N .

We define P n(x, 0) and ϕn(x) as in Subsection 3.3.2 and we have

ϕn(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)P n(y, 0)dy,(3.2.8)

and the n-th order compatibility condition for (3.2.1) is∫ ∞

0

e
y
αεP ′

n(y, 0)dy = 0.

We rewrite this condition as

−P ′
n(0, 0) +

∫ ∞

0

e
y
αεP ′′

n(y, 0)dy = 0(3.2.9)

by integration by parts. We recall that P n(x, 0) was successively defined by

P n(·, 0) = αϕ′′′
n−1 +

n−1∑
j=0

(
n− 1
j

)
Bjϕn−1−j + ∂n−1

t g(·, 0)

with P 1(x, 0) = αu0xxx(x) + A(w(x, 0), ∂x)u0(x) + g(x, 0). Substituting (3.2.8) with n

replaced by j for ϕj and using integration by parts, we have

P n(·, 0) = αP ′′′
n−1(·, 0) +

n−1∑
j=0

(
n− 1
j

)
BjP n−1−j(·, 0) + ∂n−1

t g(·, 0)

− αε

{
αϕ′′′′

n−1 +
n−1∑
j=0

(
n− 1
j

)
Bjϕ

′
n−1−j

}
(·, 0).
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Also recall that

Qn = α∂3xQn−1 +
n−1∑
j=0

(
n− 1
j

)
BjQn−1−j + ∂n−1

t f ,

with Q1(x, 0) = αu0xxx(x)+A(w(x, 0), ∂x)u0(x)+f(x, 0). Thus, setting Rn := P n−Qn,

we have

Rn(·, 0) = αR′′′
n−1(·, 0) +

n−1∑
j=0

(
n− 1
j

)
BjRn−1−j(·, 0) + ∂n−1

t hε(·, 0)

− αε

{
αϕ′′′′

n−1 +
n−1∑
j=0

(
n− 1
j

)
Bjϕ

′
n−1−j

}
,

withR1(x, 0) = hε(x, 0). We prove by induction thatRn(x, 0) = ∂n−1
t hε(x, 0)+o(1) (ε→

+0). The case n = 1 is obvious from the definition of R1(x, 0). Suppose that it holds for

Rk(x, 0) for 1 ≤ k ≤ n − 1. From the above expression for Rn(x, 0), the assumption of

induction on Rn, and the assumption of induction that Cj,ε → 0 for 0 ≤ j ≤ n − 2, we

see that

Rn(·, 0) = ∂n−1
t hε + o(1)− αε

{
αϕ′′′′

n−1 +
n−1∑
j=0

(
n− 1
j

)
Bjϕ

′
n−1−j

}
.

Again, from (3.2.8) and Lebesgue’s dominated convergence theorem, we see that the

last two terms are o(1), which proves Rn(x, 0) = P n(x, 0) −Qn(x, 0) = ∂n−1
t hε(x, 0) +

o(1) (ε → +0). Here, we have used the fact that P k(x, 0) for 1 ≤ k ≤ n − 1 are

uniformly bounded with respect to ε. We note that from the expressions of Rn(x, 0) and

hε, the terms in o(1) are composed of terms such that their x derivatives are also o(1).

Substituting for P n(x, 0) and the ansatz for hε in (3.2.9) yield,

Cn−1,ε = Q
′
n(0, 0) +

∫ ∞

0

e
y
αεQ′′

n(y, 0)dy + o(1)

=

∫ ∞

0

e
y
αεQ′′

n(y, 0)dy + o(1) (ε→ +0),

where we have used the assumption of induction that u0, f , and w satisfy the n-th order

compatibility condition for (3.1.1), i.e. Q′
n(0, 0) = 0. By using the above expression

to define Cn−1,ε, we see that Cn−1,ε → 0 as ε → +0 and u0, g, and w satisfy the

compatibility conditions for (3.2.1) up to order n. Furthermore, from the explicit form

we see that hε → 0 in Y N
T . This finishes the proof of the proposition. □

The corrections to the data associated with (3.1.8) can be treated in the same way.
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3.3 Construction and Estimate of Solution for the

Regularized System

We construct the solution u to problem (3.1.8) as u = u1 + u2, where u1 is defined as

the solution to the initial value problem{
u1t = α (u1xx − εu1t)x +G, x ∈ R, t > 0,
u1(x, 0) = U 0, x ∈ R,

(3.3.1)

and u2 is defined as the solution to the initial-boundary value problem
u2t = α (u2xx − εu2t)x , x > 0, t > 0,
u2(x, 0) = 0, x > 0,
u2x(0, t) = −u1x(0, t) =: Φ(t), t > 0.

(3.3.2)

Here, G and U 0 are extensions of g and u0 to x < 0, respectively.

3.3.1 Construction and Estimate of u1

First we solve (3.3.1). By applying the Fourier transform with respect to x, we obtain

the ordinary differential equation û1t =
1

1 + iαεξ

(
− iαξ3û1 + Ĝ

)
,

û1(ξ, 0) = Û 0,
(3.3.3)

where û1 is the Fourier transform defined by

û1(ξ, t) =
1√
2π

∫ ∞

−∞
e−ixξu1(x, t)dx.

Problem (3.3.3) can be explicitly solved as

û1(ξ, t) = ec(ξ)tÛ 0 +

∫ t

0

ec(ξ)(t−τ) 1

1 + iαεξ
Ĝ(ξ, τ)dτ,

where c(ξ) is given by

c(ξ) =
−α2εξ4 − iαξ3

1 + α2ε2ξ2
.

Now we derive an estimate for u1. The estimate derived here will be of parabolic nature,

and will not be uniform in ε.

1

2

d

dt

{
∥u1∥2L2(R) + α2ε2∥u1x∥2L2(R)

}
= ⟨u1,u1t⟩+ α2ε2⟨u1x,u1xt⟩

≤ 1

2

(
∥u1∥2L2(R) + α2ε2∥u1x∥2L2(R)

)
− α2ε∥u1xx∥2L2(R) + ∥G∥2L2(R).
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Similarly, for an integer l we have

1

2

d

dt

{
∥∂lxu1∥2L2(R) + α2ε2∥∂l+1

x u1∥2L2(R)

}
≤ 1

2

(
∥∂lxu1∥2L2(R) + α2ε2∥∂l+1

x u1∥2L2(R)

)
− α2ε∥∂l+2

x u1∥2L2(R) + ∥∂lxG∥2L2(R).

We also obtain estimates for the mixed x and t derivatives of u1, which will come in use

later, in the same way as above

1

2

d

dt

{
∥∂lx∂mt u1∥2L2(R) + α2ε2∥∂l+1

x ∂mt u1∥2L2(R)

}
≤ 1

2

(
∥∂lx∂mt u1∥2L2(R) + α2ε2∥∂l+1

x ∂mt u1∥2L2(R)

)
− α2ε∥∂l+2

x ∂mt u∥2L2(R) + ∥∂lx∂mt G∥2L2(R).

To finish the estimate, we must estimate the t derivatives of u1 at t = 0 in terms of U 0

and G. Set ϕ1n(x) := ∂nt u1(x, 0). As before, by taking the trace t = 0 of the equation

and solving for ϕ11 under the constraint lim
x→∞

ϕ11(x) = 0 yield

ϕ11(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
αU ′′′

0 (y) +G(y, 0)
}
dy.

Through direct calculation, we see that

∂kxϕ11(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
α∂k+3

y U 0(y) + ∂kyG(y, 0)
}
dy.

Also from direct calculation, we obtain

∥∂kxϕ11∥L2(R) ≤ C∥∂k+2
x U 0∥L2(R) + ∥∂kxG(·, 0)∥L2(R).(3.3.4)

Here, we have used

− 1

ε

∫ ∞

x

e−
1
αε

(x−y)∂k+3
y U 0(y)dy

= −1

ε

[
e−

1
αε

(x−y)∂k+2
y U 0(y)

]∞
y=x

+
1

αε2

∫ ∞

x

e−
1
αε

(x−y)∂k+2
y U 0(y)dy

=
1

ε
∂k+2
x U 0(x) +

1

αε2

∫ ∞

x

e−
1
αε

(x−y)∂k+2
y U 0(y)dy.

As shown from the above calculation, the constant C in (3.3.4) is not uniform in ε.

Taking the t derivative of the equation n− 1 times, we obtain

ϕ′
1n =

1

αε

{
− ϕ1n + αϕ′′′

1(n−1) + ∂n−1
t G(·, 0)

}
.

As before, we obtain an expression

∂kxϕ1n(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
α∂k+3

y ϕ1(n−1)(y) + ∂n−1
t ∂kyG(y, 0)

}
dy,
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and an estimate

∥∂kxϕ1n∥L2(R) ≤ C

(
∥U 0∥Hk+2n(R) +

n−1∑
j=0

∥∂n−1−j
t G(·, 0)∥Hk+2j(R)

)
,

where C is a positive constant depending on ε. Combining these estimates yields

sup
0≤t≤T

{
∥∂mt ∂lxu1(·, t)∥2L2(R) + ∥∂mt ∂l+1

x u1(·, t)∥2L2(R)

}
+

∫ T

0

∥∂mt ∂l+2
x u1(·, t)∥2L2(R)dt

≤ CeT
(
∥U 0∥2Hl+2m(R) +

n−1∑
j=0

∥∂n−1−j
t G(·, 0)∥2Hl+2j(R)

)

+ C

∫ T

0

eT−t∥∂mt ∂lxG(·, t)∥2L2(R)dt.

From the boundedness of the extension, we have the following estimate on the half-line.

sup
0≤t≤T

{
∥∂mt ∂lxu1(·, t)∥2 + ∥∂mt ∂l+1

x u1(·, t)∥2
}
+

∫ T

0

∥∂mt ∂l+2
x u1(·, t)∥2dt

≤ CeT
(
∥u0∥2l+2m +

n−1∑
j=0

∥∂n−1−j
t g(·, 0)∥2l+2j

)
+ C

∫ T

0

eT−t∥∂mt ∂lxg(·, t)∥2dt.

3.3.2 Construction and Estimate of u2

In this subsection, we solve (3.3.2). First we derive the compatibility conditions for (3.3.2)

and check that they are satisfied. Suppose that the initial datum and the forcing term

satisfy the compatibility conditions for (3.1.8) up to some finite order. The 0-th order

compatibility condition for (3.3.2) is u1x(0, 0) = 0. From the definition of u1 and the

compatibility condition for (3.1.8), we have

−u1x(0, 0) = −u0x(0, 0) = 0,

so that the 0-th order compatibility condition for (3.3.2) is satisfied. Now we check the

first order compatibility condition. Taking the t derivative of the boundary condition, we

have u2tx(0, 0) = −u1tx(0, 0). Taking the trace t = 0 of the equation in (3.3.2) and setting

ϕ21(x) := u2t(x, 0) yield

ϕ′
21 = − 1

αε
ϕ21.

Solving for ϕ21, we have

ϕ21(x) = ϕ21(0)e
− 1

αε
x.
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For ϕ21 to be integrable, ϕ21(0) must be a zero vector. Thus, ϕ21(x) = 0 for any x >

0, from which we can deduce that the first order compatibility condition for (3.3.2) is

u1tx(0, 0) = 0. Taking the trace t = 0 of the equation in (3.3.1) and setting ϕ11(x) :=

u1t(x, 0), we have

ϕ′
11 = − 1

αε
ϕ11 +

1

αε

{
αU ′′′

0 +G(·, 0)
}
.

As before, solving for ϕ11 and using the integrability of ϕ11 gives

ϕ11(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
αU ′′′

0 (y) +G(y, 0)
}
dy.

If x is restricted to x > 0, U 0 and G can be replaced with u0 and g, respectively, because

they are extensions of the respective functions. Taking the trace t = 0 of the equation in

(3.1.8), setting ϕ1(x) := ut(x, 0), and solving for ϕ1 we have

ϕ1(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
αu′′′

0 (y) + g(y, 0)
}
dy = ϕ11(x).(3.3.5)

Taking the t derivative of the boundary condition in (3.1.8) and taking the trace x = 0

and t = 0, we see that ϕ′
1(0) = utx(0, 0) = 0, which gives

u1tx(0, 0) = ϕ
′
11(0) = ϕ

′
1(0) = 0,

where we have used (3.3.5). This shows that the first order compatibility condition for

(3.3.2) is satisfied.

In the same manner, we set ϕ1n(x) := ∂nt u1(x, 0), ϕ2n(x) := ∂nt u2(x, 0), and ϕn(x) :=

∂nt u(x, 0), where ϕ2n and ϕn can be expressed by using given data only as in Subsection

3.2.2. We will show that the n-th order compatibility condition for (3.3.2) is satisfied by

proving that ϕ1n = ϕn and ϕ2n = 0. We prove this by induction. Suppose that ϕ1k = ϕk

and ϕ2k = 0 for k = 1, 2, . . . , n − 1. We note that from the compatibility conditions for

(3.1.8), ϕ′
k(0) = 0 for 0 ≤ k ≤ n. By taking the derivative of the respective equations

(n− 1) times with respect to t and taking the trace t = 0, these functions satisfy

ϕ1n = αϕ′′′
1(n−1) − αεϕ′

1n + ∂n−1
t G(·, 0),

ϕ2n = αϕ′′′
2(n−1) − αεϕ′

2n,

ϕn = αϕ′′′
n−1 − αεϕ′

n + ∂n−1
t g(·, 0).

First, we see from ϕ2(n−1) = 0 that

ϕ′
2n = − 1

αε
ϕ2n.
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As before, from this equation and the necessity of ϕ2n to be integrable, we see that

ϕ2n = 0. This implies that, through the boundary condition, the n-th order compatibility

condition for (3.3.2) is ∂nt u1x(0, 0) = 0. Solving the above equations for ϕ1n and ϕn, we

have

ϕ1n(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
αϕ′′′

1(n−1)(y) + ∂n−1
t G(y, 0)

}
dy,

ϕn(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)
{
αϕ′′′

n−1(y) + ∂n−1
t g(y, 0)

}
dy.

Again, from the assumption of induction and the fact that U 0 and G are extensions of

u0 and g, respectively, we see that ϕ1n(x) = ϕn(x). We have

∂nt u1x(0, 0) = ϕ
′
1n(0) = ϕ

′
n(0) = 0,

which shows that the n-th order compatibility condition for (3.3.2) is satisfied.

Now we construct u2. We saw that dkΦ
dtk

(0) = ∂kt u1x(0, 0) = 0 for 0 ≤ k ≤ n, thus, we

construct and estimate u2 in Sobolev–Slobodetskĭı spaces. Taking the Laplace transform

with respect to t of the equation yields{
τ ũ2 = αũ2xxx − αετ ũ2x, x > 0,

ũ2x(0, τ) = −ũ1x(0, τ) = Φ̃(τ),

where τ = h + iη with h > 0 and η ∈ R. We show the following properties about the

characteristic roots of the above ordinary differential equation.

Lemma 3.3.1 For h > 0 and ε > 0, the characteristic equation, λ3 − ετλ − τ
α
= 0, has

exactly one root λ satisfying ℜλ < 0. We denote this root as µ. Furthermore, there are

positive constants η0 and C such that for |η| ≥ η0 the following holds.∣∣∣∣µ+

√
ε

2
(1 + i) |η|1/2

∣∣∣∣ ≤ C.

Proof. First, we look at the asymptotic behavior of the roots as η → +∞. Dividing the

characteristic equation by η3/2 and setting λ̃ := λ
η1/2

, we have

λ̃3 − εh

η
λ̃− iελ̃− h

αη3/2
− i

1

αη1/2
= 0.(3.3.6)

Passing to the limit η → +∞, we have

λ̃3 − iελ̃ = 0.
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The roots are λ̃ = 0, ±
√

ε
2
(1 + i). The root −

√
ε
2
(1 + i) corresponds to the desired root

of the original characteristic equation. We must consider the root 0 in more detail. By

setting λ̃ = 0 + c1η
−1/2 + O(η−1) and substituting it into (3.3.6), the coefficients of the

terms O(η−1/2) yield,

−iεc1 − i
1

α
= 0.

This gives c1 = − 1
αε

> 0, and hence only one root with a negative real part exists for

sufficiently large η. The case η → −∞ can be treated in the same way. Now we show

that for any h > 0 and η ∈ R, there are no pure imaginary roots, which, combined with

the continuity of the roots with respect to the coefficient of the characteristic equation,

proves that the number of roots with a negative real part does not change.

We separate the characteristic equation into its real and imaginary parts. Setting

λ = a+ ib we have

a3 − 3ab2 − εha+ εηb− h

α
= 0,

−b3 + 3a2b− εhb− εηa− η

α
= 0.

Suppose that a pure imaginary root exists, which corresponds to a root with a = 0, we

then have

εηb =
h

α
, −b3 − εhb− η

α
= 0.

From the first equation we have ηb = h
αε
. Substituting this into the second equation yields

−b4 − εhb2 − h

α2ε
= 0.(3.3.7)

Since we are considering h > 0 and ε > 0, (3.3.7) is a contradiction. Thus, no such root

exists. □

From Lemma 3.3.1, we see that the Laplace transform of a square integrable solution

to (3.3.2) can be expressed as

ũ2(x, τ) =
1

µ
Φ̃(τ)eµx,

where µ is the root of the characteristic equation mentioned in Lemma 3.3.1. We denote

the dependence of µ on τ as µ(τ). We estimate u2 in Sobolev–Slobodetskĭı spaces. To

estimate u2 in H
l,l/2
h (Q∞), we use the following norm.

l∑
j=0

∫ ∞

−∞

∥∥∥∥∂jũ2

∂xj
(·, τ)

∥∥∥∥2|τ |l−jdη.
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Since

∂jũ2

∂xj
= µ(τ)j−1Φ̃(τ)eµx,

we have ∥∥∥∥∂jũ2

∂xj
(·, τ)

∥∥∥∥2 = ∫ ∞

0

|µ|2(j−1)|Φ̃|2|eµx|2dx

= |µ|2(j−1)|Φ̃|2
(
− 1

2ℜµ

)
.

Thus we have∫ ∞

−∞

∥∥∥∥∂jũ2

∂xj
(·, τ)

∥∥∥∥2|τ |l−jdη =

∫ ∞

−∞
|Φ̃(τ)|2|µ(τ)|2(j−1)

(
1

2|ℜµ(τ)|

)
|τ |l−jdη.

We divide the above integral domain into two parts, namely the part with |η| ≥ η0 and

|η| ≤ η0, where η0 is a constant appearing in Lemma 3.3.1. From Lemma 3.3.1, in the

domain |η| ≥ η0, we have ∣∣∣∣µ+

√
ε

2
(1 + i) |η|1/2

∣∣∣∣ ≤ C,

which implies, by taking η0 larger if necessary, | τ
|µ|2 | ≤ C. We then obtain∫

|η|≥η0

|Φ̃(τ)|2|µ(τ)|2(j−1)

(
1

2|ℜµ(τ)|

)
|τ |l−jdη ≤ C

∫
|η|≥η0

|Φ̃(τ)|2|τ |l−3/2dη,

∫
|η|≤η0

|Φ̃(τ)|2|µ(τ)|2(j−1)

(
1

2|ℜµ(τ)|

)
|τ |l−jdη ≤ C

∫ ∞

−∞
|Φ̃(τ)|2dη.

Combining these estimates, we have

|||u2|||2Hl,l/2
h (Q∞)

≤ C∥u1x(0, ·)∥2
H

l
2− 3

4 (0,∞)

≤ C|||u1x|||2Hl−1,l/2−1/2
h (Q∞)

≤ C|||u1|||2Hl,l/2
h (Q∞)

.

Here, we have used a trace theorem proved in [38] for functions belonging to the Sobolev–

Slobodetskĭı space. Choosing l = 2k for an integer k and from Sobolev’s embedding

theorem, we see that

u2 ∈ H2k,k
h (QT ) ↪→ C

(
[0, T ];H2k−2(R+)

)
,

∂mu2

∂tm
∈ H

2(k−m),k−m
h (QT ) ↪→ C

(
[0, T ];H2(k−m)−2(R+)

)
,

(3.3.8)
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for m ≤ k. We mentioned in Subsection 3.2.1 that the given data can be taken as

being smooth while satisfying the necessary compatibility conditions, so from the above

arguments, for an arbitrary integer l, we have constructed a solution of (3.1.8) such that

u ∈
l∩

j=0

Cj
(
[0, T ];H2(l−j)(R+)

)
.

To prove the uniqueness, we derive an energy estimate for the solution of (3.1.8). Direct

calculations yield

1

2

d

dt

{
∥u∥2 + α2ε2∥ux∥2

}
= (u,ut) + α2ε2(ux,utx)

≤ −αu(0, t) · uxx(0, t)−
|α|ε
2

d

dt
|u(0, t)|2 − α2ε∥uxx∥2

+
1

2

(
∥u∥2 + α2ε2∥ux∥2

)
+ ∥g∥2,

1

2

d

dt

{
∥ux∥2 + α2ε2∥uxx∥2

}
= (ux,uxt) + α2ε2(uxx,uxxt)

= −|α|
2
|uxx(0, t)|2 − α2ε∥uxxx∥2 − (uxx, g)− αε(uxxx, g)

− α2εuxx(0, t) · uxxx(0, t)− αεuxx(0, t) · g(0, t)

= −|α|
2
|uxx(0, t)|2 − α2ε∥uxxx∥2 − (uxx, g)− αε(uxxx, g)

− αεuxx(0, t) · ut(0, t).

On the other hand, we have from the equation,

∥ut + αεutx∥2 = ∥αuxxx + g∥2.

Expanding the left-hand side gives

∥ut + αεutx∥2 = ∥ut∥2 + 2αε(ut,utx) + α2ε2∥utx∥2

= ∥ut∥2 + |α|ε|ut(0, t)|2 + α2ε2∥utx∥2.

Thus we have

|α|ε|ut(0, t)|2 ≤ ∥αuxxx + g∥2.

Utilizing the above estimate, we have for any positive γ

|α|ε|uxx(0, t) · ut(0, t)| ≤ |α|γ|uxx(0, t)|2 +
5α2ε

18γ
∥uxxx∥2 + C∥g∥2.
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By choosing 5
18
< γ < 1

2
, both |uxx(0, t)|2 and ∥uxxx∥2 can be dealt with in the estimates.

Combining all the above estimates, we arrive at

∥u(t)∥22 +
∫ t

0

∥uxx(r)∥21dr ≤ C∥u0∥22 + C

∫ t

0

∥g(r)∥2dr.(3.3.9)

By taking the t derivative of the equation, applying the same estimate as above, and

estimating ∥∂kt u(·, 0)∥ as we did in the estimate of u1, we have

∥∂kt u(t)∥22 +
∫ t

0

∥∂kt uxx(r)∥21dr

≤ C

(
∥u0∥22+2k +

k−1∑
j=0

∥∂jt g(t)∥22+2(k−1−j) +

∫ t

0

∥∂kt g(r)∥2dr
)

for k ≥ 1. By using the equation to convert the time regularity into regularity in x, we

have for any k satisfying 0 ≤ k ≤ l

sup
0≤t≤T

∥∂kt u(t)∥22+2(l−k) +

∫ T

0

∥∂kt uxx(t)∥21+2(l−k)dt

≤ C

(
∥u0∥22+2l +

l−1∑
j=0

sup
0≤t≤T

∥∂jt g(t)∥22+2(l−1−j) +

∫ T

0

∥∂ltg(t)∥2dt
)
.

Up to this point, we have assumed that the given data are smooth. Through an approxi-

mation argument, we can relax the assumption on the data and prove the following.

Lemma 3.3.2 For an arbitrary natural number l, if u0 ∈ H2+2l(R+), g ∈
l−1∩
j=0

Cj
(
[0, T ];

H2+2(l−1−j)(R+)
)
, and ∂ltg ∈ L2(QT ) satisfy the compatibility conditions up to order l,

there exists a unique solution u to (3.1.8) satisfying

l∑
k=0

(
sup

0≤t≤T
∥∂kt u(t)∥22+2(l−k) +

∫ T

0

∥∂kt uxx(t)∥21+2(l−k)dt

)

≤ C

(
∥u0∥22+2l +

l−1∑
j=0

sup
0≤t≤T

∥∂jt g(t)∥22+2(l−1−j) +

∫ T

0

∥∂ltg(t)∥2dt
)
.

3.4 Solving the Parabolic-Dispersive System

In this section, we construct the solution u of (3.2.1) such that for a natural number l

u ∈
l∩

j=0

{
Cj
(
[0, T ];H2+2(l−j)(R+)

)
∩Hj

(
0, T ;H3+2(l−j)(R+)

)}
,(3.4.1)
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by iteration. For n ≥ 1, we define u(n) as the solution of the following problem.
u

(n)
t = αu

(n)
xxx + αεu

(n)
tx +A(w, ∂x)u

(n−1) + g, x > 0, t > 0,
u(n)(x, 0) = u0(x), x > 0,

u
(n)
x (0, t) = 0, t > 0.

u(0) must be defined in a specific way so that the compatibility conditions for each succes-

sive iteration are satisfied. First, again by the approximation argument, we will assume

that u0 and g satisfy the compatibility conditions for (3.2.1) up to some fixed order N

and are smooth. We introduce the following notation.

Q(v) := αvxxx +A(w, ∂x)v + g.

We define u(0) as

u(0)(x, t) := u0(x) +
N∑
j=1

tj

j!

(
∂j

∂tj
Q(v)

)
(x, 0),

where v(x, 0) := u0(x) and ψk(x) := ∂kt v(x, 0) for k ≥ 1 are defined as the solution of the

following linear ordinary differential equation, under the constraint that ψk is integrable

over R+.

ψ′
k = − 1

αε
ψk +

1

αε

(
αψ′′′

k−1 +
k−1∑
j=0

(
k − 1
j

)(
∂jtA(w(·, 0), ∂x)

)
ψk−1−j + ∂k−1

t g(·, 0)
)
.

N is chosen to accommodate the necessary order of compatibility conditions and regu-

larity. By defining u(0) as such, the compatibility conditions for each successive iteration

are automatically satisfied. Then, Lemma 3.3.2 guarantees that {u(n)}∞n=0 is well-defined.

Now, we prove the convergence of {u(n)}∞n=0 in the desired function space. From the way

that we constructed u(0) we have

l∑
k=0

sup
0≤t≤T

∥∂kt u(0)(t)∥22+2(l−k) ≤ C0

(
∥u0∥22+2l+3N +

l−1∑
j=0

sup
0≤t≤T

∥∂jt g(t)∥22+2(l−1−j)+3N

)
.

Setting z(n) := u(n) − u(n−1) for n = 1, 2, 3, . . ., we have
z
(n)
t = αz

(n)
xxx − αεz

(n)
tx +A(w, ∂x)z

(n−1), x > 0, t > 0,
z(n)(x, 0) = 0, x > 0,

z
(n)
x (0, t) = 0, t > 0.

In the same way that we derived (3.3.9), we have

sup
0≤t≤T

∥z(n)(t)∥22 +
∫ T

0

∥z(n)xx (t)∥21dt ≤ C

∫ T

0

∥z(n−1)
xx (t)∥2dt

≤ (CT )n−1

(n− 1)!
.
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The above estimate proves that u(n) converges in C
(
[0, T ];H2(R+)

)
∩L2

(
0, T ;H3(R+)

)
.

Since ∂kt z
(n)(x, 0) = 0, we can prove in the same way as above that ∂kt u

(n) converges in

C
(
[0, T ];H2(R+)

)
∩L2

(
0, T ;H3(R+)

)
. Using the equation we can prove that for 0 ≤ k ≤

l, ∂kt u
(n) converges in C

(
[0, T ];H2+2(l−k)(R+)

)
∩ L2

(
0, T ;H3+2(l−k)(R+)

)
. Thus, for an

arbitrary l, we have constructed a solution of (3.2.1) satisfying (3.4.1).

Now we consider the limit ε→ +0 for problem (3.2.1). For this, we derive an estimate

of the solution that is uniform in ε. The energy form we use is the same as the estimate

we obtained before, but we use the elliptic term to make the estimate uniform in ε. We

are still assuming that the given data are smooth as necessary. We estimate as follows.

1

2

d

dt

{
∥u∥2 + α2ε2∥ux∥2

}
≤ −αu(0, t) · uxx(0, t)−

|α|ε
2

d

dt
|u(0, t)|2 − δ

2
∥ux∥2 − α2ε∥uxx∥2

+ C∥u∥21 + ε2∥A(w, ∂x)u∥2 + ∥g∥2.

Here, we have used the estimate (A(w, ∂x)u,u) ≤ − δ
2
∥ux∥2 +C∥u∥2, which follows from

the strong ellipticity of A(w, ∂x). We choose ε1 > 0 such that ε1∥A0(w)∥2L∞(0,T ;L∞(R+)) ≤
α2

2
. Then, for 0 < ε ≤ ε1 we have

1

2

d

dt

{
∥u∥2 + α2ε2∥ux∥2

}
≤ −αu(0, t) · uxx(0, t)−

|α|ε
2

d

dt
|u(0, t)|2 − δ

2
∥ux∥2 −

α2ε

2
∥uxx∥2

+ C∥u∥21 + ∥g∥2.
Next, we have

1

2

d

dt

{
∥ux∥2 + α2ε2∥uxx∥2

}
≤ −|α|

6
|uxx(0, t)|2 −

δ

2
∥uxx∥2 −

α2ε

12
∥uxxx∥2

+ εC0∥A0(w)∥2L∞(0,T ;L∞(R+))∥ux∥∥uxxx∥

− αε(uxxx,A(w, ∂x)u) + C
(
∥u∥21 + ∥g∥2

)
,

where we have used the interpolation inequality ∥uxx∥2 ≤ C∥ux∥∥uxxx∥. Now we choose

ε2 > 0 so that ε2C0∥A0(w)∥2L∞(0,T ;L∞(R+)) ≤ |α|
48

and 48ε2∥A0(w)∥2L∞(0,T ;L∞(R+)) ≤ δ
4
.

Then, for 0 ≤ ε ≤ ε2 we have

1

2

d

dt

{
∥ux∥2 + α2ε2∥uxx∥2

}
≤ −|α|

6
|uxx(0, t)|2 −

δ

4
∥uxx∥2 −

α2ε

24
∥uxxx∥2 + C

(
∥u∥21 + ∥g∥2

)
.

Finally we estimate

1

2

d

dt
∥uxx∥2 ≤ −|α|

2
|uxxx(0, t)|2 −

ε

2
∥utx∥2 −

δ

4
∥uxxx∥2 + C∥u∥22 + ∥gx∥2.

In each estimate, the constant C is independent of ε ∈ (0, ε0], where ε0 := min{ε1, ε2}.
Combining all the estimates yields for 0 ≤ ε ≤ ε0,

sup
0≤t≤T

∥u(t)∥22 +
∫ T

0

(
δ∥uxxx(t)∥2 + ε∥utx(t)∥2 + |uxx(0, t)|2 + |uxxx(0, t)|2

)
dt

≤ C

(
∥u0∥22 +

∫ T

0

∥g(t)∥21dt
)
.
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Now we take the derivative of the equation m times (1 ≤ m ≤ l) with respect to t and

set vm := ∂mt u. Then, vm satisfies
vmt = αvmxxx − αεvmxt +A(w, ∂x)vm + ∂mt g + Fm, x > 0, t > 0,
vm(x, 0) = ϕm(x), x > 0,
vmx(0, t) = 0, t > 0,

where Fm =
m−1∑
j=0

(
m− 1
j

)(
∂m−1−j
t A(w, ∂x)

)
vj. We derive the uniform estimate by

induction on m. The case m = 0 was just derived. Suppose that for 0 ≤ j ≤ m− 1

sup
0≤t≤T

∥vj(t)∥22 + δ

∫ T

0

∥vjxxx(t)∥2dt

≤ C

{
∥u0∥22+3j + sup

0≤t≤T

(
∥∂j−1

t g(·, t)∥22 +

j−2∑
k=0

∥∂kt g(·, t)∥22+3(m−2−k)

)
+

∫ T

0

∥∂jt g(t)∥21dt
}

holds with C independent of ε. Estimating in the same way as before, we have

sup
0≤t≤T

∥vm(t)∥22 + δ

∫ T

0

∥vmxxx(t)∥2dt ≤ C

(
∥ϕm∥22 +

∫ T

0

(
∥∂mt g(t)∥21 + ∥Fm(t)∥21

)
dt

)
.

Now we estimate each term on the right-hand side.

∥Fm(t)∥21 ≤ C

m−1∑
j=0

∥vj(t)∥23,

where C depends on the norm of w in
m−1∩
j=0

W j,∞(0, T ;H1(R+)
)
. The expression for ϕm

and its derivatives are

∂kxϕm(x) = − 1

αε

∫ ∞

x

e−
1
αε

(x−y)∂ky
{
αϕ′′′

m−1(y) + Fm−1(y, 0) + ∂m−1
t g(y, 0)

}
dy.

Through direct calculation, we see that∥∥∥∥− 1

αε

∫ ∞

·
e−

1
αε

(·−y)Φ(y)dy

∥∥∥∥ ≤ ∥Φ∥.

Thus, we can prove that

∥ϕm∥2 ≤ C

(
∥u0∥2+3m + ∥∂m−1

t g(·, 0)∥2 +
m−2∑
j=0

∥∂jt g(·, 0)∥2+3(m−2−j)

)
.

Here, C depends on the norm of w in
m−1∩
j=0

Cj
(
[0, T ];H2+3(m−1−j)(R+)

)
and the norm of

∂mt w in L∞(0, T ;H1(R+)
)
, but is independent of ε. Combining these estimates and using
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the equation yield

l∑
j=0

{
sup

0≤t≤T
∥∂jtu(t)∥22+3(l−j) + δ

∫ T

0

∥∂jtu(t)∥23+3(l−j)dt

}
(3.4.2)

≤ C

{
∥u0∥22+3l +

l−1∑
j=0

(
sup

0≤t≤T
∥∂jt g(t)∥22+3(l−1−j) +

∫ T

0

∥∂jt g(t)∥23+3(l−1−j)dt

)

+

∫ T

0

∥∂ltg(t)∥21dt
}
.

Again, we emphasize that C is independent of ε. Now we denote the solution of (3.2.1) as

uε to emphasize that the solution depends on ε. We also recall that g was a correction of

f which depends on ε, so we denote it as gε. We assume that u0 ∈ H2+3N(R+), g
ε ∈ Y N

T ,

w ∈ ZN
T for N > l + 1, and gε → f in Y l+1

T . Thus, we know the existence of a unique

solution uε ∈ X l+1
T of (3.2.1) with a uniform bound in X l+1

T . For 0 < ε < ε′ ≤ ε0, we set

z := uε′ − uε. Then, z satisfies zt = αzxxx − αε′ztx +A(w, ∂x)z − α(ε′ − ε)uε
tx + g

ε′ − gε, x > 0, t > 0,
z(x, 0) = 0, x > 0,
zx(0, t) = 0, t > 0.

From (3.4.2), we have

∥z∥2Xl
T
≤ C(ε′ + ε)2

{ l−1∑
j=0

(
sup

0≤t≤T
∥∂j+1

t uε
x(t)∥22+3(l−1−j) +

∫ T

0

∥∂j+1
t uε

x(t)∥23+3(l−1−j)dt

)

+

∫ T

0

∥∂l+1
t uε

x(t)∥21dt
}
+ ∥(gε′ − gε)(t)∥2

Y l+1
T

≤ C(ε′ + ε)2 + ∥(gε′ − gε)(t)∥2
Y l+1
T

.

Thus we see that there exists a u such that uε → u in X l
T , and u is a solution of (3.1.1).

We derive an energy estimate for u to prove the uniqueness of the solution. Through a

standard energy estimate, we obtain the following.

1

2

d

dt
∥u∥2 ≤ −αu(0, t) · uxx(0, t)−

δ

2
∥uxx∥2 + C

(
∥u∥2 + ∥f∥2

)
,

1

2

d

dt
∥ux∥2 ≤ −|α|

2
|uxx(0, t)|2 −

δ

2
∥uxx∥2 + C

(
∥u∥21 + ∥f∥2

)
,

1

2

d

dt
∥uxx∥2 ≤ −|α|

2
|uxxx(0, t)|2 −

δ

2
∥uxxx∥2 + C

(
∥u∥22 + ∥fx∥2

)
.

Combining these estimates, we have

sup
0≤t≤T

∥u(t)∥22 +
∫ T

0

∥ux(t)∥22dt ≤ C

(
∥u0∥22 +

∫ T

0

∥f(t)∥21dt
)
.
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As before, taking the derivative with respect to t of the equation, applying the above

estimate, and converting the regularity in t into x via the equation, we have

∥u∥Xl
T
≤ C

(
∥u0∥2+3l + ∥f∥Y l

T

)
.(3.4.3)

Here, C depends on ∥w∥Zl
T
, T , and δ.

As in Lemma 3.3.2, we can relax the condition on the given data by taking approxi-

mating sequences {u0n}∞n=0 in H
2+3N , {fn}∞n=0 in Y

N
T , and {wn}∞n=0 in Z

N
T with u0n → u0

in H2+3l(R+), fn → f in Y l
T , and wn → w in Z l

T . Applying (3.4.3), and passing to the

limit, we arrive at the first main theorem. The proof of Theorem 3.1.1 is complete.

3.5 Remark on the Case α > 0

The case α > 0 can be treated by a standard argument. We start by considering the

following regularized problem.
ut = −εuxxxx + g, x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
u(0, t) = e, t > 0,
ux(0, t) = 0, t > 0.

(3.5.1)

As before, we explicitly construct the solution of (3.5.1) in the form u = u1 + u2, where

u1 is defined as the solution of{
u1

t = −εu1
xxxx +G, x ∈ R, t > 0,

u1(x, 0) = U 0(x), x ∈ R,

and u2 is defined as the solution of
u2

t = −εu2
xxxx, x > 0, t > 0,

u2(x, 0) = 0, x > 0,
u2(0, t) = e− u1(0, t), t > 0,
u2

x(0, t) = −u1
x(0, t), t > 0.

The solutions can be constructed by using Fourier transform and Laplace transform as

in the case α < 0. We note that in estimating u2, we slightly modify the Sobolev–

Slobodetskĭı space for the fourth order parabolic system. For an integer m, we define the

space H
m,m/4
h (QT ) analogous to H

m,m/2
h (QT ), and we use the case m = 4l and the norm

∥u∥2
H4l,l

h (QT )
=

l∑
j=0

∫ ∞

−∞

∥∥∥∥∂4jũ∂x4j
(·, τ)

∥∥∥∥2 |τ |l−jdη.
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Then we construct the solution u ∈
l∩

j=0

Cj
(
[0, T ];H2+4(l−j)(R+)

)
∩Hj

(
0, T ;H3+4(l−j)(R+

)
)
of 

ut = αuxxx − εuxxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
u(0, t) = e, t > 0,
ux(0, t) = 0, t > 0

through iteration. Now we need an estimate uniform in ε. Via energy method, we obtain

1

2

d

dt
∥u∥2 ≤ −αu(0, t) · uxx(0, t) + C∥u∥22 + εu(0, t) · uxxx(0, t)− δ∥uxx∥2 + ∥f∥2,

1

2

d

dt
∥ux∥2 ≤

α

2
|uxx(0, t)|2 − ε∥uxxx∥2 − δ∥uxx∥2 + εuxx(0, t) · uxxx(0, t) + C∥uxx∥2 + ∥f∥2,

1

2

d

dt
∥uxx∥2 ≤

α

2
|uxxx(0, t)|2 − ε∥∂4xu∥2 − δ∥uxxx∥2 − εuxxx(0, t) · ∂4xu(0, t)

−
(
uxxx, (∂xA0(w))uxx

)
−
(
uxxx,fx

)
+ C∥u∥22.

Using the equation, we can also obtain

−εuxxx(0, t) · ∂4xu(0, t) = −α|uxxx(0, t)|2 − uxxx(0, t) ·
(
A(w, ∂x)u

)
(0, t)− uxxx(0, t) · f(0, t).

From the above estimate, we obtain

1

2

d

dt
∥uxx∥2 ≤ −α

4
|uxxx(0, t)|2 − ε∥∂4xu∥2 −

δ

4
∥uxxx∥2 + C

(
∥u∥22 + ∥f∥21

)
,

which combined with the other two estimates yields

sup
0≤t≤T

∥u(t)∥22 +
∫ T

0

(
ε∥uxx(t)∥22 + δ∥ux(t)∥22

)
dt ≤ C

{
∥u0∥22 +

∫ T

0

∥f(t)∥21dt
}
,

where C is independent of ε. Taking the t derivatives of the equation and estimating in

the same way as above, we have for 0 ≤ m ≤ l,

sup
0≤t≤T

∥∂mt u(t)∥22+3(l−m) +

∫ T

0

∥∂mt ux(t)∥22+3(l−m)dt

≤ C

{
∥u0∥22+4l +

l−1∑
j=0

∥∂jtf(·, 0)∥22+4(l−1−j) +
l∑

j=0

∫ T

0

∥∂jtf(t)∥21dt

}
.

After passing to the limit ε→ +0, we obtain the solution of the limit problem. Similarly

to the above, we see that the solution satisfies for 0 ≤ m ≤ l,

sup
0≤t≤T

∥∂mt u(t)∥22+3(l−m) +

∫ T

0

∥∂mt ux(t)∥22+3(l−m)dt

≤ C

{
∥u0∥22+3l +

l−1∑
j=0

∥∂jtf(·, 0)∥22+3(l−1−j) +
l∑

j=0

∫ T

0

∥∂jtf(t)∥21dt

}
.

Thus, we have proven Theorem 3.1.2.
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Chapter 4

Motion of a Vortex Filament with
Axial Flow in the Half Space

4.1 Problem Setting

In this chapter, we prove the unique solvability locally in time of the following initial-

boundary value problems. For α < 0,
xt = xs × xss + α

{
xsss +

3

2
xss ×

(
xs × xss

)}
, s > 0, t > 0,

x(s, 0) = x0(s), s > 0,
xss(0, t) = 0, t > 0.

(4.1.1)

For α > 0,
xt = xs × xss + α

{
xsss +

3

2
xss ×

(
xs × xss

)}
, s > 0, t > 0,

x(s, 0) = x0(s), s > 0,
xs(0, t) = e3, t > 0,
xss(0, t) = 0, t > 0.

(4.1.2)

Here, x(s, t) = (x1(s, t), x2(s, t), x3(s, t)) is the position vector of the vortex filament

parameterized by its arc length s at time t, the symbol × is the exterior product in the

three dimensional Euclidean space, α is a non-zero constant that describes the magnitude

of the effect of axial flow, e3 = (0, 0, 1), and subscripts denote derivatives with their

respective variables. Later in this chapter, we will also use ∂s and ∂t to denote partial

derivatives as well. We will refer to the equation in (4.1.1) and (4.1.2) as the vortex

filament equation. We recall that the number of boundary conditions depends on the

sign of α as is the case for the KdV and KdV–Burgers equation. We prove the unique

solvability of the problems locally in time of (4.1.1) and (4.1.2) based on the existence

theorems we obtained in the previous chapter.
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For convenience, we introduce a new variable v(s, t) := xs(s, t) and rewrite the prob-

lems in terms of v. Setting v0(s) := x0s(s), we have for α < 0,

vt = v × vss + α

{
vsss +

3

2
vss ×

(
v × vs

)
+
3

2
vs ×

(
v × vss

)}
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
vs(0, t) = 0, t > 0.

(4.1.3)

For α > 0,

vt = v × vss + α

{
vsss +

3

2
vss ×

(
v × vs

)
+
3

2
vs ×

(
v × vss

)}
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,
vs(0, t) = 0, t > 0.

(4.1.4)

Once we obtain a solution for (4.1.3) and (4.1.4), we can construct x(s, t) from the formula

x(s, t) = x0(s) +

∫ t

0

{
v × vs + αvss +

3

2
αvs ×

(
v × vs

)}
(s, τ)dτ,

and x(s, t) will satisfy (4.1.1) and (4.1.2) respectively, in other words, (4.1.1) is equivalent

to (4.1.3) and (4.1.2) is equivalent to (4.1.4). Hence, we will concentrate on the solvability

of (4.1.3) and (4.1.4). Our approach for solving (4.1.3) and (4.1.4) is to rewrite the

nonlinear problem utilizing the property |v| = 1 and linearizing the equation. We rewrite

the nonlinear problem first because if we directly linearize the equation around a function

w we have

vt = w × vss + α

{
vsss +

3

2
vss ×

(
w ×ws

)
+

3

2
ws ×

(
w × vss

)}
.

Directly considering the initial-boundary value problem for the above equation seems hard.

When we try to estimate the solution in Sobolev spaces, the term ws ×
(
w× vss

)
causes

a loss of regularity because of the form of the coefficient. We were able to overcome this

by using the fact that if the initial datum is parameterized by its arc length, i.e. |v0| ≡ 1,

a sufficiently smooth solution of (4.1.3) or (4.1.4) satisfies |v| ≡ 1. The same property

was proved in Nishiyama and Tani [33] for the initial value problem. This allows us to

use the identity

vs ×
(
v × vss

)
= vss ×

(
v × vs

)
− |vs|2vs.
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Linearizing the equation in (4.1.3) and (4.1.4) after using the above identity yields

vt = w × vss + α
{
vsss + 3vss ×

(
w ×ws

)}
+ f .(4.1.5)

The term causing the loss of regularity is gone, but still, the existence of a solution to the

initial-boundary value problem of the above third order dispersive equation is not trivial.

We can overcome this point by utilizing the results of the previous chapter.

Finally, we state the main existence theorems here.

Theorem 4.1.1 (M. Aiki and T. Iguchi [2]) For α < 0 and a natural number k, if

x0ss ∈ H1+3k(R+), |x0s| ≡ 1, and x0s satisfies the compatibility conditions for (4.2.3) up

to order k, then there exists T > 0 such that (4.1.1) has a unique solution x satisfying

xss ∈
k∩

j=0

W j,∞(0, T ;H1+3j(R+)
)

and |xs| ≡ 1. Here, T depends on ∥x0ss∥3.

Theorem 4.1.2 (M. Aiki and T. Iguchi [2]) For α > 0 and a natural number k, if

x0ss ∈ H2+3k(R+), |x0s| ≡ 1, and x0s satisfies the compatibility conditions for (4.2.2) up

to order k, then there exists T > 0 such that (4.1.2) has a unique solution x satisfying

xss ∈
k∩

j=0

W j,∞(0, T ;H2+3j(R+)
)

and |xs| ≡ 1. Here, T depends on ∥x0ss∥2.

The contents of this chapter are as follows. In Section 4.2, we consider the compati-

bility conditions for regularized nonlinear problems and the necessary corrections of the

initial datum. In Section 4.3, we review the existence theorems obtained in Chapter 3,

which will be applied to the nonlinear problems. In Section 4.4, we prove an existence

theorem for the case α < 0, and in Section 4.5, we prove an existence theorem for the

case α > 0.

4.2 Regularized Nonlinear Problem and its Compat-

ibility Conditions

We consider the following problems: for α < 0,
vt = v × vss + α

{
vsss + 3vss ×

(
v × vs

)
− 3

2
|vs|2vs

}
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
vs(0, t) = 0, t > 0;

(4.2.1)
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for α > 0,


vt = v × vss + α

{
vsss + 3vss ×

(
v × vs

)
− 3

2
|vs|2vs

}
, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,
vs(0, t) = 0, t > 0,

(4.2.2)

which are equivalent to (4.1.1) and (4.1.2) with |v| ≡ 1 respectively, and construct the

solutions by passing to the limit δ → +0 in the following regularized problems: for α < 0,



vδt = v
δ × vδss + α

{
vδsss + 3vδss ×

(
vδ × vδs

)
−3

2
|vδs|2vδs

}
+ δ
(
vδss + |vδs|2vδ

)
, s > 0, t > 0,

vδ(s, 0) = vδ0(s), s > 0,
vδs(0, t) = 0, t > 0,

(4.2.3)

for α > 0,



vδt = v
δ × vδss + α

{
vδsss + 3vδss ×

(
vδ × vδs

)
−3

2
|vδs|2vδs

}
+ δ
(
vδss + |vδs|2vδ

)
, s > 0, t > 0,

vδ(s, 0) = vδ0(s), s > 0,
vδ(0, t) = e3, t > 0,
vδs(0, t) = 0, t > 0.

(4.2.4)

For the proceeding analysis, we assume that |vδ0| ≡ 1 holds, i.e. the initial datum is

parameterized by its arc length. Since we modified the problem, we must make corrections

to the initial datum to ensure that the compatibility conditions hold for each problem.

4.2.1 Compatibility Conditions for (4.2.1) and (4.2.2)

First, we derive the compatibility conditions for (4.2.1) and (4.2.2). We set Q(0)(v) = v

and

Q(1)(v) = v × vss + α

{
vsss + 3vss ×

(
v × vs

)
− 3

2
|vs|2vs

}
.
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We will also use the notations Q(1)(s, t) and Q(1) instead of Q(1)(v) for convenience. For

n ≥ 2, we successively define Q(n) as

Q(n) =
n−1∑
j=0

(
n− 1
j

)
Q(j) ×Q(n−1−j)ss + αQ(n−1)sss

+ 3α

{ n−1∑
j=0

n−1−j∑
k=0

(
n− 1
j

)(
n− 1− j

k

)
Q(j)ss ×

(
Q(k) ×Q(n−1−j−k)s

)}

− 3

2
α

{
n−1∑
j=0

n−1−j∑
k=0

(
n− 1
j

)(
n− 1− j

k

)(
Q(j)s ·Q(k)s

)
Q(n−1−j−k)s

}
.

The above definition of Q(n)(v) gives an expression for ∂nt v in terms of v and its s

derivatives only. It is obvious that the term with the highest order derivative in Q(n) is

αn∂3ns v. From the boundary conditions of (4.2.1) and (4.2.2), we arrive at the following

compatibility conditions.

Definition 4.2.1 (Compatibility conditions for (4.2.1)) For n ∈ N∪{0}, we say that v0

satisfies the n-th order compatibility condition for (4.2.1) if v0s ∈ H1+3n(R+) and(
∂sQ(n)(v0)

)
(0) = 0.

We also say that v0 satisfies the compatibility conditions for (4.2.1) up to order n if it

satisfies the k-th order compatibility condition for all k with 0 ≤ k ≤ n.

Definition 4.2.2 (Compatibility conditions for (4.2.2)) For n ∈ N∪{0}, we say that v0

satisfies the n-th order compatibility condition for (4.2.2) if v0s ∈ H2+3n(R+) and

v0(0) = e3, v0s(0) = 0,

when n = 0, and (
Q(n)(v0)

)
(0) = 0,

(
∂sQ(n)(v0)

)
(0) = 0,

when n ≥ 1. We also say that v0 satisfies the compatibility conditions for (4.2.2) up to

order n if it satisfies the k-th order compatibility condition for all k with 0 ≤ k ≤ n.

Note that the regularity imposed on v0s in Definition 4.2.2 is not the minimal regularity

required for the trace at s = 0 to have meaning, but we defined it as above so that it

coincides with the regularity assumption in the existence theorem that we obtain later.

Also note that the regularity assumption is made on v0s instead of v0 because |v0| = 1

and thus, v0 is not square integrable.
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4.2.2 Compatibility Conditions for (4.2.3) and (4.2.4)

We derive the compatibility conditions for (4.2.3) and (4.2.4) in the same way as those

for (4.2.1) and (4.2.2). Set P (0)(v) = v and define P (1)(v) by

P (1)(v) = v × vss + α

{
vsss + 3vss ×

(
v × vs

)
− 3

2
|vs|2vs

}
+ δ
(
vss + |vs|2v

)
.

We successively define P (n) for n ≥ 2 by

P (n) =
n−1∑
j=0

(
n− 1
j

)
P (j) × P (n−1−j)ss + αP (n−1)sss

+ 3α

{ n−1∑
j=0

n−1−j∑
k=0

(
n− 1
j

)(
n− 1− j

k

)
P (j)ss ×

(
P (k) × P (n−1−j−k)s

)}

− 3

2
α

{
n−1∑
j=0

n−1−j∑
k=0

(
n− 1
j

)(
n− 1− j

k

)(
P (j)s · P (k)s

)
P (n−1−j−k)s

}

+ δ

{
P (n−1)ss +

n−1∑
j=0

n−1−j∑
k=0

(
n− 1
j

)(
n− 1− j

k

)(
P (j)s · P (k)s

)
P (n−1−j−k)

}
.

We arrive at the following compatibility conditions.

Definition 4.2.3 (Compatibility conditions for (4.2.3)) For n ∈ N∪{0}, we say that vδ0

satisfies the n-th order compatibility condition for (4.2.3) if vδ0s ∈ H1+3n(R+) and(
∂sP (n)(v

δ
0)
)
(0) = 0.

We also say that vδ0 satisfies the compatibility conditions for (4.2.3) up to order n if it

satisfies the k-th order compatibility condition for all k with 0 ≤ k ≤ n.

Definition 4.2.4 (Compatibility conditions for (4.2.4)) For n ∈ N∪{0}, we say that vδ0

satisfies the n-th order compatibility condition for (4.2.4) if vδ0s ∈ H2+3n(R+) and

vδ0(0) = e3, v
δ
0s(0) = 0,

when n = 0, and (
P (n)(v

δ
0)
)
(0) = 0,

(
∂sP (n)(v

δ
0)
)
(0) = 0,

when n ≥ 1. We also say that vδ0 satisfies the compatibility conditions for (4.2.4) up to

order n if it satisfies the k-th order compatibility condition for all k with 0 ≤ k ≤ n.
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4.2.3 Corrections to the Initial Data

We construct a corrected initial datum vδ0 such that given an initial datum v0 satisfying

the compatibility conditions for (4.2.1) or (4.2.2), vδ0 satisfies the compatibility conditions

for (4.2.3) or (4.2.4), and vδ0 → v0 (δ → +0) in the appropriate function space. As it

will be shown later, a sufficiently smooth solution of (4.2.3) or (4.2.4) with δ ≥ 0 satisfies

|vδ| = 1 if |vδ0| = 1. Thus, the correction of the initial datum must be done in a way that

this property is preserved. Since the same method for the construction of vδ0 holds for the

cases α > 0 and α < 0, we show the details for the case α < 0 only.

Suppose that an initial datum v0 such that v0s ∈ H1+3m(R+) satisfies the compati-

bility conditions for (4.2.1) up to order m. We will construct vδ0 in the form

vδ0 =
v0 + hδ

|v0 + hδ|
(4.2.5)

with hδ → 0 as δ → +0. The method to construct hδ is standard, i.e. we substitute (4.2.5)

into the compatibility conditions for (4.2.3) to determine the differential coefficients of hδ

at s = 0 and then extend them to s > 0 so that hδ belongs to the appropriate Sobolev

space and its differential coefficients have the desired values.

We introduce some notations. We set

gδ0(V ) := V ,

gδ1(V ) := V × V ss + α

{
V sss + 3V ss × (V × V s)−

3

2
|V s|2V s

}
+ δ(V ss + |V s|2V ),

gδm+1(V ) := Dgδm(V )[gδ1(V )],

where m ≥ 1 and D is the derivative with respect to V , i.e. Dgδm(V )[W ] = d
dε
gδm(V +

εW )
∣∣
ε=0

. Note that under these notations, the m-th order compatibility condition for

(4.2.3) can be expressed as ∂sg
δ
m(v

δ
0)(0) = 0, because P (m)(V ) = gδm(V ). We gave

another notation because it is more convenient for the following calculations.

First we prove that if |V | ≡ 1, then for any m ≥ 1

m∑
k=0

(
m
k

)
gδk(V ) · gδm−k(V ) ≡ 0(4.2.6)

by induction. From direct calculation, we can prove that

gδ1(V ) · V =
α

2
(|V |2)sss − 3α(V · V ss)(|V |2)s −

3

2
|V s|2(|V |2)s +

δ

2
(|V |2)ss = 0,

which proves (4.2.6) with m = 1. Suppose that (4.2.6) holds up to some m with m ≥ 1,

i.e.,

m∑
k=0

(
m
k

)
gδk

(
V + tW

|V + tW |

)
· gδm−k

(
V + tW

|V + tW |

)
≡ 0 for any vector W and t ∈ R.
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Differentiating this with respect to t and setting t = 0 yield

m∑
k=0

(
m
k

){
Dgδk(V )[W − (V ·W )V ] · gδm−k(V )

+ gδk(V ) ·Dgδm−k(V )[W − (V ·W )V ]
}
≡ 0.

By choosing W = gδ1(V ) we have

0 ≡
m∑
k=0

(
m
k

){
gδk+1(V ) · gδm−k(V ) + gδk(V ) · gδm−k+1(V )

}
=

m+1∑
k=0

(
m+ 1
k

)
gδk(V ) · gδm+1−k(V ),

which proves (4.2.6) for the case m+ 1. Therefore (4.2.6) holds for any m = 1, 2, 3, . . ..

Next we introduce the following notations:

f 0(V ) := V ,

f 1(V ) := V × V ss + α

{
V sss + 3V ss × (V × V s)−

3

2
|V s|2V s

}
,

fm+1(V ) := Dfm(V )[f 1(V )].

These correspond to gδm(V ) with δ = 0, so that
∑m

k=0

(
m
k

)
fk(V ) · fm−k(V ) ≡ 0

if |V | ≡ 1, and the m-th order compatibility condition for (4.2.1) can be expressed as

∂sfm(v0)(0) = 0 because Q(m)(v0) = fm(v0).

Next, we show that

gδm(V ) = fm(V ) + δrδm(V ),(4.2.7)

where rδ1(V ) := V ss + |V s|2V and rδm(V ) := Drδm−1(V )[gδ1(V )] +Dfm−1(V )[rδ1(V )] for

m ≥ 2. Clearly, rδm(V ) contains derivatives up to order 3m− 1.

It is obvious that (4.2.7) holds for m = 1 from the definition of gδ1 and f 1. Suppose

that it holds up to m− 1 for some m ≥ 2. Then for any vector W and t ∈ R,

gδm−1(V + tW ) = fm−1(V + tW ) + δrδm−1(V + tW ).

Differentiating the above equation with respect to t and setting t = 0 yield

Dgδm−1(V )[W ] = Dfm−1(V )[W ] + δDrδm−1(V )[W ].

Finally, choosing W = gδ1(V ) leads to

gδm(V ) = Dfm−1(V )[gδ1(V )] + δDrδm−1(V )[gδ1(V )]

= Dfm−1(V )[f 1(V )] + δDfm−1(V )[rδ1(V )] + δDrδm−1(V )[gδ1(V )]

= fm(V ) + δrδm(V ),
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which shows that (4.2.7) holds.

Next we prove that if hδ(0) = 0 and |v0| = 1,

fm(v
δ
0)
∣∣
s=0

=
{
fm(v0) + αm∂3ms hδ − αm(v0 · ∂3ms hδ)v0 + Fm(v0,hδ)

}∣∣
s=0

,(4.2.8)

where Fm(v0,hδ) satisfies

|Fm(v0,hδ)| ≤ C(|hδs|+ |hδss|+ · · ·+ |∂3m−1
s hδ|)

with a constant C depending on M and v0 if |hδs| + |hδss| + · · · + |∂3m−1
s hδ| ≤ M . We

see from the explicit form (4.2.5) of vδ0 that for a natural number n, ∂ns v
δ
0 has the form

∂ns v
δ
0

∣∣
s=0

=
{
∂ns v0 + ∂nshδ − (v0 · ∂nshδ)v0 + qn(v0,hδ)

}∣∣
s=0

,(4.2.9)

where qn(v0,hδ) contains the derivatives of v0 and hδ up to order n− 1, and satisfies

|qn(v0,hδ)| ≤ C(|hδs|+ |hδss|+ · · ·+ |∂n−1
s hδ|),

if hδ(0) = 0 and |hδs| + |hδss| + · · · + |∂n−1
s hδ| ≤ M , for a constant C depending on M

and v0. From the definition of fm(v
δ
0), we see that the term with the highest order of

derivative is αm∂3ms vδ0, so combining this with (4.2.9) yields (4.2.8).

Finally, we prove by induction that the differential coefficients of hδ can be chosen so

that vδ0 satisfies the compatibility conditions for (4.2.3), and all the coefficients are O(δ).

First, let hδ(0) = ∂shδ(0) = 0. This insures that vδ0 satisfies the 0-th order compatibility

condition. Suppose that the differential coefficients of hδ up to order 1 + 3(m − 1) are

chosen so that they are O(δ) and the compatibility conditions for (4.2.3) up to order m−1

are satisfied, i.e. gδk(v
δ
0)s(0) = 0 for all 0 ≤ k ≤ m − 1. By choosing V = vδ0, (4.2.6)

becomes

m∑
k=0

(
m
k

)
gδk(v

δ
0) · gδm−k(v

δ
0) ≡ 0.

Taking the s derivative of the above and using the assumption of induction yield

vδ0(0) · ∂sgδm(vδ0)(0) = v0(0) · ∂sgδm(vδ0)(0) = 0.(4.2.10)

Now, from (4.2.7) at s = 0 and (4.2.8) lead to

∂sg
δ
m(v

δ
0) = ∂sfm(v

δ
0) + δ∂sr

δ
m(v

δ
0)

= ∂sfm(v0) + αm∂3m+1
s hδ − αm(v0 · ∂3m+1

s hδ)v0 + ∂sFm(v0,hδ) + δ∂sr
δ
m(v

δ
0)

= αm∂3m+1
s hδ − αm(v0 · ∂3m+1

s hδ)v0 + ∂sFm(v0,hδ) + δrδm(v
δ
0)s.
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From this and (4.2.10), it follows that(
∂sFm(v0,hδ) + δ∂sr

δ
m(v

δ
0)
)
· v0
∣∣
s=0

= 0.

The assumption of induction implies

∂sFm(v0,hδ) + δ∂sr
δ
m(v

δ
0)
∣∣
s=0

= O(δ).

Thus by defining ∂3m−1
s hδ(0) = ∂3ms hδ(0) = 0 and ∂3m+1

s hδ(0) = − 1
αm

(
Fm(v0,hδ)s +

δrδm(v
δ
0)s
)∣∣

s=0
, they are all O(δ) and ∂sg

δ(vδ0)(0) = 0, i.e. the m-th order compatibility

condition is satisfied. The differential coefficients are then used to define hδ(s) as

hδ(s) = ϕ(s)

(
m∑
j=0

∂3j+1
s hδ(0)

(3j + 1)!
s3j+1

)
,

where ϕ(s) is a smooth cut-off function that is 1 near s = 0. We summarize the arguments

so far in the following statement.

Lemma 4.2.5 For an initial datum v0 with |v0| = 1, v0s ∈ H1+3m(R+), and satisfy-

ing the compatibility conditions for (4.2.1) up to order m, we can construct a corrected

initial datum vδ0 such that |vδ0| = 1, vδ0s ∈ H1+3m(R+), and it satisfies the compatibility

conditions of (4.2.3) up to order m, and

vδ0 → v0 in L∞(R+), v
δ
0s → v0s in H1+3m(R+)

as δ → +0.

Similar arguments can be used to construct an approximating sequence of v0 by a smoother

function while satisfying the necessary compatibility conditions by following the method

due to Rauch and Massey [36].

4.3 Existence Theorems for Associated Linear Prob-

lems

We consider the following linear problems associated to the regularized nonlinear problem.

For α < 0,
vt = αvsss + δvss +w × vss + 3αvss × (w ×ws) + f , s > 0, t > 0,
v(s, 0) = v0(s), s > 0,
vs(0, t) = 0, t > 0,

(4.3.1)

55



and for α > 0,
vt = αvsss + δvss +w × vss + 3αvss × (w ×ws) + f , s > 0, t > 0,
v(s, 0) = v0(s), s > 0,
v(0, t) = e3, t > 0,
vs(0, t) = 0, t > 0.

(4.3.2)

The existence and uniqueness of solutions to (4.3.1) and (4.3.2) can be shown as an

application of existence theorems for more general equations obtained in the previous

chapter. There, we obtained existence theorems for a linear second order parabolic system

with a third order dispersive term. The problems considered there are as follows. For

α < 0, 
ut = αuxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0.

(4.3.3)

For α > 0, 
ut = αuxxx +A(w, ∂x)u+ f , x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
u(0, t) = e, t > 0,
ux(0, t) = 0, t > 0.

(4.3.4)

Here, u(x, t) = (u1(x, t), u2(x, t), . . . , um(x, t)) is the unknown vector valued function,

u0(x), w(x, t) = (w1(x, t), w2(x, t), . . . , wk(x, t)), and f(x, t) = (f 1(x, t), f 2(x, t), . . . , fm(

x, t)) are known vector valued functions, e is an arbitrary constant vector, subscripts

denote derivatives with the respective variables, and A(w, ∂x) is a second order differential

operator of the form A(w, ∂x) = A0(w)∂2x+A1(w)∂x+A2(w). We assume that A0, A1, A2

are smooth matrices and A(w, ∂x) is strongly elliptic in the sense that for any bounded

domain E in Rk, there is a positive constant δ such that for any w ∈ E

A0(w) + A0(w)∗ ≥ δI,

where I is the unit matrix and ∗ denotes the adjoint of a matrix. For the above problems

we obtained the following theorems in the previous chapter.

Theorem 4.3.1 (Aiki and Iguchi [2]) Let α < 0. For any T > 0 and an arbitrary

non-negative integer l, if u0 ∈ H2+3l(R+), f ∈ Y l
T , and w ∈ Z l

T satisfy the compati-

bility conditions up to order l, a unique solution u of (4.3.3) exists such that u ∈ X l
T .

Furthermore, u satisfies

∥u∥Xl
T
≤ C

(
∥u0∥2+3l + ∥f∥Y l

T

)
,

where C depends on α, T , and ∥w∥Zl
T
.
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Theorem 4.3.2 (Aiki and Iguchi [2]) Let α > 0. For any T > 0 and an arbitrary

non-negative integer l, if u0 ∈ H2+3l(R+), f ∈ Y l
T , and w ∈ Z l

T satisfy the compati-

bility conditions up to order l, a unique solution u of (4.3.4) exists such that u ∈ X l
T .

Furthermore, u satisfies

∥u∥Xl
T
≤ C

(
∥u0∥2+3l + ∥f∥Y l

T

)
,

where C depends on α, T , and ∥w∥Zl
T
.

We apply these theorems with

A(w, ∂x)v = δvxx +w × vxx + 3αvxx × (w ×wx),(4.3.5)

which obviously satisfies the assumptions on the elliptic operator. Thus we have existence

and uniqueness of the solutions to (4.3.1) and (4.3.2). Based on these linear existence

theorems, we construct the solution to (4.2.3) and (4.2.4).

4.4 Construction of Solution in the Case α < 0

4.4.1 Existence of Solution

We construct the solution by the following iteration scheme. For n ≥ 2 and R ≥ 1, we

define v(n),R as the solution of
v
(n),R
t = αv

(n),R
sss +A(v(n−1),R, ∂s)v

(n),R − 3

2
α|v(n−1),R

s |2v(n−1),R
s

+δ|v(n−1),R
s |2v(n−1),R, s > 0, t > 0,

v(n),R(s, 0) = vδ,R0 (s), s > 0,

v
(n),R
s (0, t) = 0, t > 0,

where A(v(n−1),R, ∂s) is the operator (4.3.5) in the previous section and vδ,R0 (s) = ϕ( s
R
)vδ0(s).

Here, vδ0 is the modified initial datum constructed in Subsection 4.2.3 and ϕ(s) is a smooth

cut-off function satisfying 0 ≤ ϕ ≤ 1, ϕ(s) = 1 for 0 ≤ s ≤ 1, and ϕ(s) = 0 for s > 2.

Now, v(1),R is appropriately chosen so as to satisfy the necessary compatibility conditions

at each iteration step. For this we choose

v(1),R(s, t) = vδ,R0 (s) +
m∑
j=1

tj

j!
P (j)(v

δ,R
0 (s)),(4.4.1)

wherem is a fixed natural number and P (j) is defined in Section 4.2. Note that multiplying

the initial datum by ϕ has no influence on the compatibility conditions for (4.2.3). Recall

that vδ0 is assumed to be smooth, to satisfy the compatibility conditions up to an arbitrary
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fixed order, and vδ0 → v0 in an appropriate function space. More specifically, we assume

that vδ0 is smooth enough so that v(1),R ∈ XN
T for a large N(> m) to be determined

later. For each R ≥ 1 and natural number n, v(n),R is well-defined by Theorem 4.3.1 and

v(n),R ∈ Xm
T . We introduce the function space X̃m

T as

X̃m
T :=

{
v;vs ∈ C

(
[0, T ];H1+3m(R+)

)}
∩
{ m∩

j=1

Cj
(
[0, T ];H2+3j(R+)

)}
∩ C

(
[0, T ];L∞(R+)

)
.

We seek a solution to the nonlinear problem in this function space. It is easy to see that

from (4.4.1), we have

∥v(1),R∥X̃m
T
≤ 1 + C∥vδ,R0s ∥2+6m(1 + ∥vδ,R0s ∥2+6m)

1+2m =:M0

with a positive constant C depending on α and T , but not on vδ,R0 , vδ,R0 → vδ0 in X̃m
T as

R → +∞, and there is a positive constant C independent of R ≥ 1 such that

∥vδ,R0s ∥1+3m ≤ C∥vδ0s∥1+3m.(4.4.2)

Note that the uniform estimate (4.4.2) does not hold for ∥vδ,R0 ∥ because vδ0 does not belong
to L2(R+). We show the uniform boundedness of {v(n),R}∞n=0 with respect to n and R

on some time interval [0, T0] by induction. Suppose that ∥v(j),R∥X̃m
T
≤ M for any j with

1 ≤ j ≤ n− 1. Then, by a standard energy estimate, we have

1

2

d

dt
∥v(n),Rs ∥2 ≤ −|α|

2
|v(n),Rss (0, t)|2 + C∥v(n),Rss ∥2 − δ∥v(n),Rss ∥2 + CM3,

1

2

d

dt
∥v(n),Rss ∥2 ≤ −|α|

2
|v(n),Rsss (0, t)|2 − δ

4
∥v(n),Rsss ∥2 + CM2∥v(n),Rss ∥2 + CM3,

where C is independent ofM and n. Combining these estimates yields for any 0 ≤ t ≤ T ,

∥v(n),Rs (t)∥21 +
∫ t

0

∥v(n),Rs (τ)∥22dτ ≤ CeM
2T
(
∥vδ,R0s ∥21 +M3T

)
,
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where C is independent of T , M , and n. For a natural number k with 1 ≤ k ≤ m, we set

v(n),k := ∂kt v
(n),R. Then, v(n),k satisfies

v
(n),k
t = αv(n),ksss +

k∑
j=0

(
k
j

)
(v(n−1),j × v(n),k−j

ss )

+ 3α

{
k∑

j=0

j∑
i=0

(
k
j

)(
j
i

)
v(n),k−j
ss × (v(n−1),i × v(n−1),j−i

s )

}

− 3

2
α

{
k∑

j=0

j∑
i=0

(
k
j

)(
j
i

)
(v(n−1),i

s · v(n−1),j−i
s )v(n−1),k−j

s

}

+ δv(n),kss + δ

{
k∑

j=0

j∑
i=0

(
k
j

)(
j
i

)
(v(n−1),i

s · v(n−1),j−i
s )v(n−1),k−j

}
=: αv(n),ksss + v(n−1),R × v(n),kss + 3αv(n),kss × (v(n−1),R × v(n−1)

s ) + δv(n),kss + F k.

By a similar energy estimate, we have

1

2

d

dt
∥v(n),k∥22 ≤ CM2(1 +M2)

{
∥v(n),k∥22 + (1 +M2)5 + ∥F k∥21

}
≤ CM2(1 +M2)

{
∥v(n),k∥22 + (1 +M2)5

}
,

where we have used ∥v(j)∥X̃m
T
≤M for 1 ≤ j ≤ n− 1 to estimate F k. Thus we have

∥v(n),k∥22 ≤ CeCM2(1+M2)T
{
∥v(n),k(·, 0)∥22 + (1 +M2)5T

}
.

From the equation, we obtain

∥v(n),k(·, 0)∥22 ≤ C∥vδ,R0s ∥21+3k(1 + ∥vδ,R0s ∥1+3k)
2+4m,

and hence

∥v(n),k∥22 ≤ CeCM2(1+M2)T
{
∥vδ,R0s ∥21+3k(1 + ∥vδ,R0s ∥1+3k)

2+4m + (1 +M2)5T
}
.

Finally, from the equation and the above estimates, we can convert the regularity in t

into the regularity in s and obtain for 1 ≤ j ≤ m,

∥v(n),j∥21+3(m−j) ≤ CeCM2(1+M2)T
{
∥vδ,R0s ∥21+3m(1 + ∥vδ,R0s ∥1+3m)

2+4m + (1 +M2)5T
}
.

Thus, by choosing M := C0M0, with a sufficiently large C0 > 0 independent of n and R,

there is a T0 > 0 such that

∥v(n),Rs (t)∥21+3m +
m∑
j=1

∥∂jtv(n),R(t)∥22+3(m−j) ≤
C0M0

2
.
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Next, we estimate the solution in C
(
[0, T ];L∞(R+)

)
. To do this, we introduce a new

variable W (n),R := v(n),R − vδ,R0 . Then, W (n),R satisfies

W
(n),R
t = αW (n),R

sss + v(n−1),R ×W (n),R
ss + 3αW (n),R

ss × (v(n−1),R × v(n−1),R
s ) + δW (n),R

ss

−3

2
α|v(n−1),R

s |2v(n−1),R
s + δ|v(n−1),R

s |2v(n−1),R + αvδ,R0sss + v
(n−1),R × vδ,R0ss

+3αvδ,R0ss × (v(n−1),R × v(n−1),R
s ) + δvδ,R0ss, s > 0, t > 0,

W (n),R(s, 0) = 0, s > 0,

W (n),R
s (0, t) = 0, t > 0.

We have by a direct calculation,

1

2

d

dt
∥W (n),R∥2 ≤ −δ

2
∥W (n),R

s ∥2 + C
(
∥W (n),R∥2 + (1 +M)3

)
.

Thus we have

∥v(n),R∥L∞(R+) ≤ ∥W (n),R∥L∞(R+) + ∥vδ,R0 ∥L∞(R+)

≤ C
{
∥W (n),R∥1 + 1

}
≤ C

{
(1 +M2)5T + 1

}
.

Thus, by choosing T0 smaller if necessary, we have a uniform estimate of the form

∥v(n),R∥2
X̃m

T0

≤ C0M
2
0 .

Now, we show that {v(n),R}∞n=1 converges. Set V (n),R := v(n),R − v(n−1),R for n ≥ 2.

Then, V (n),R satisfies
V

(n),R
t = αV (n),R

sss + v(n−1),R × V (n),R
ss + 3αV (n),R

ss × (v(n−1),R × v(n−1),R
s )

+δV (n),R
ss +GR

n , s > 0, t > 0,

V (n),R(s, 0) = 0, s > 0,

V (n),R
s (0, t) = 0, t > 0,

where GR
n are terms depending linearly on V (n−1),R. In the same way as for v(n),R, we

have

∥V (n),R(t)∥22 +
∫ t

0

∥V (n),R
s (τ)∥22dτ ≤ C

∫ t

0

∥V (n−1),R(τ)∥22dτ

≤ (CT0)
n−1

(n− 1)!
M0,

which implies that v(n),R converges to some vR in X̃0
T0
. Combining this convergence,

uniform estimate, and the interpolation inequality, we see that v(n),R converges to vR

in X̃m−1
T0

. Since the initial datum has been approximated as smooth as we desire, the

above argument implies that for any natural number m, we can construct a solution vR

to (4.2.3) in X̃m
T0

with the initial datum vδ,R0 .
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Finally, we pass to the limit R → +∞. First, from the estimate uniform in R, we have∑2
j=0

∑2(2−j)
k=0 sup0≤t≤T0

∥∂jt ∂ksvR(t)∥L∞(R+) ≤ C with C > 0 independent of R. Therefore,

by a standard compactness argument, we see that there is a subsequence {vRj}∞j=0 and v

such that for l = 0, 1 and 0 ≤ k ≤ 2(1 − l), ∂lt∂
k
sv

Rj → ∂lt∂
k
sv uniformly in any compact

subset of [0, T0]×R+.

On the other hand, the uniform estimate implies that there is a subsequence of

{vRj}∞j=0, which we also denote by {vRj}∞j=0, such that vRj converges to v weakly∗ in
˜̃Xm
T0

:=
{
v;vs ∈ L∞([0, T0];H1+3m(R+)

)}
∩
{∩m

j=1W
j,∞([0, T0];H2+3j(R+)

)}
∩L∞([0, T0]×

R+

)
. From the above two convergence, we have a solution v of (4.2.3) with v ∈ ˜̃Xm

T0
. Let

N be chosen large enough for a solution v to belong to ˜̃X l
T0

with any fixed l. By taking

l > m+ 1, v ∈ X̃m
T0
, according to Sobolev’s embedding with respect to t.

We summarize the conclusion of this subsection.

Proposition 4.4.1 For a natural number m and δ > 0, there exists a T0 > 0 such that a

unique solution vδ ∈ X̃m
T0

to (4.2.3) exists with a smooth initial datum vδ0.

4.4.2 Uniform Estimate of Solution with respect to δ

In this subsection, we derive uniform estimates of the solution to pass to the limit δ → +0.

We first show a property of the solution to (4.2.3) that is very important in the proceeding

analysis. In the following, we omit the superscript δ on the solution for brevity.

Lemma 4.4.2 If v is a solution of (4.2.3) with vs ∈ C
(
[0, T ], H2(R+)

)
, v ∈ C

(
[0, T ];L∞(

R+)
)
, and |vδ0| = 1, then |v| = 1 in R+ × [0, T ].

Proof. Following Nishiyama and Tani [33], we set h(s, t) = |v(s, t)|2 − 1. From direct

calculation and from the fact that v is a solution of (4.2.3), we have

ht = 2v · vt

= 2

{
αv · vsss + 3αv · (vss × (v × vs))−

3

2
α|vs|2(v · vs) + δ(v · vss) + δ|vs|2|v|2

}
= αhsss + δhss +

(
2δ|vs|2 + 3α(vs · vss)

)
h.

Thus, h satisfies ht = αhsss + δhss +
(
2δ|vs|2 + 3α(vs · vss)

)
h, s > 0, t > 0,

h(s, 0) = 0, s > 0,
hs(0, t) = 0, t > 0.
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By a standard energy method, we have

1

2

d

dt
∥h∥2 ≤ −αh(0) · hss(0)− δ∥hs∥2 + C∥h∥21,

1

2

d

dt
∥hs∥2 = −(hss, ht)

≤ −|α|
2
|hss(0)|2 −

δ

2
∥hss∥2 + C∥h∥21,

where C depends on sup0≤t≤T ∥vs(t)∥2. Combining the two estimates and applying Gron-

wall’s inequality, we obtain h ≡ 0. □

Now that we have established that |v| = 1, we rewrite the nonlinear terms in (4.2.3)

into its original form.

vt = v × vss + α

{
vsss +

3

2
vss ×

(
v × vs

)
+
3

2
vs × (v × vss)

}
+ δ
(
vss + |vs|2v

)
, s > 0, t > 0,

v(s, 0) = vδ0(s), s > 0,
vs(0, t) = 0, t > 0.

(4.4.3)

We will refer to this form of the problem when estimating the solution.

The following two equalities were derived from the property |v| = 1 in Nishiyama and

Tani [33] which will be used to derive the uniform estimate.

v · ∂ns v = −1

2

n−1∑
j=1

(
n
j

)
∂jsv · ∂n−j

s v.(4.4.4)

vs × ∂ns v = −[v · ∂ns v](v × vs) + [(v × vs) · ∂ns v]v for n ≥ 2.(4.4.5)

(4.4.4) is derived by differentiating the equality |v|2 = 1 with respect to s. We show

(4.4.5) in a little more detail for the convenience of the reader. Suppose vs ̸= 0. Then,

since |v| = 1 and v · vs = 0, the triplet
{
v, vs

|vs| ,
v×vs

|vs|

}
forms an orthonormal frame of R3.

Thus for n ≥ 2, we have

∂ns v = [v · ∂ns v]v +

[
vs
|vs|

· ∂ns v
]
vs
|vs|

+

[
(v × vs)

|vs|
· ∂ns v

]
v × vs
|vs|

.

Taking the exterior product with vs from the left yields

vs × ∂ns v = −[v · ∂ns v](v × vs) +
[
(v × vs)

|vs|
· ∂ns v

]
[vs × (v × vs)]

|vs|
= −[v · ∂ns v](v × vs) + [(v × vs) · ∂ns v]v.

When vs = 0, each term in (4.4.5) is zero, so that (4.4.5) holds in either case.

Now we estimate the solution. We first derive the basic estimate.
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Proposition 4.4.3 Let M,T > 0. Suppose that v is a solution of (4.4.3) with vδ0s ∈
H4(R+), |vδ0| = 1, and ∥vδ0s∥1 ≤M satisfying vs ∈ C

(
[0, T ];H4(R+)

)
and v ∈ C

(
[0, T ];

L∞(R+)
)
. Then, there exist δ∗ > 0 and C∗ > 0 such that for δ ∈ (0, δ∗], the following

estimate holds.

sup
0≤t≤T

∥vs(t)∥1 ≤ C∗.

We emphasize that C∗ depends on M and T , but not on δ ∈ (0, δ∗].

Proof. From Lemma 4.4.2, we have |v| = 1. We make use of quantities which are conserved

for the initial value problem in R with δ = 0. First we estimate

d

dt
∥vs∥2 = −(vt,vss)

= −α
{
(vsss,vss) +

3

2
(vs × (v × vss),vss)

}
− δ
{
∥vss∥2 + (|vs|2v,vss)

}
= −|α|

2
|vss(0)|2 − δ∥vss∥2 + δ∥vs∥4L4(R+)

≤ −|α|
2
|vss(0)|2 −

δ

2
∥vss∥2 + Cδ∥vs∥6.

Here, C is independent of δ and is determined from the interpolation inequality ∥vs∥L4(R+)

≤ C∥vs∥3/4∥vss∥1/4. Thus, we have d
dt
∥vs∥2 ≤ Cδ∥vs∥6. On the other hand, the ordinary

differential equation {
rt = Cδr3, t > 0,
r(0) = ∥vδ0s∥2

has the explicit solution r(t) =
(
∥vδ0s∥−4 − 2Cδt

)−1/2
as long as ∥vδ0s∥−4 > Cδt. Thus, if

we choose δ∗ > 0 such that M−4 > Cδ∗T holds, r(t) is well-defined on [0, T ] and from the

comparison principle,

∥vs(t)∥ ≤ r(t)1/2 =
(
∥vδ0s∥−4 − Cδt

)−1/4

≤
(
M−4 − Cδ∗T

)−1/4
=: C1,

which is a uniform estimate for ∥vs∥. Next we derive a uniform estimate for ∥vss∥. For the
initial value problem with δ = 0, this was achieved by fully utilizing the conserved quantity

∥vss∥2− 5
4
∥|vs|∥2. We also use this quantity for the initial-boundary value problem, while

taking care of boundary terms.

d

dt

{
∥vss∥2 −

5

4
∥|vs|2∥2

}
= 2(vss,vsst)− 5(|vs|2vs,vst)

= −2(vsss,vst)− 5(|vs|2vs,vst)

=: I1 + αI2 + δI3.
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We estimate each term separately.

I1 = −2(vsss,vs × vss)− 5(|vs|2vs,v × vsss)

= −2

∫
R+

(vs · vss)
[
vs · (v × vss)

]
ds+ 4

∫
R+

(v · vss)
[
vsss · (v × vs)

]
ds

− 5

∫
R+

|vs|2vs · (v × vsss)ds

= −2

∫
R+

(vs · vss)
[
vs · (v × vss)

]
ds−

∫
R+

|vs|2
[
vs · (v × vsss)

]
ds

= −
∫
R+

{
|vs|2vs · (v × vss)

}
s
ds = 0.

Here, we have used (4.4.4), (4.4.5), and integration by parts. From here on, integration

with respect to s is assumed to be taken over R+. Next we have

I2 = −2

∫
vsss · vssssds− 6

∫
vsss ·

[
vss × (v × vss)

]
ds− 3

∫
vsss ·

[
vs × (vs × vss)

]
ds

− 3

∫
vsss ·

[
vs × (v × vsss)

]
ds− 5

∫
|vs|2vs · vssssds

− 15

2

∫
|vs|2vs ·

[
vsss × (v × vs)

]
ds− 15

∫
|vs|2vs ·

[
vss × (v × vss)

]
ds

= |vsss(0)|2 + 9

∫
(|vs|2)s|vss|2ds− 3

∫
|vs|2(|vss|2)sds−

3

2

∫
(vs · vsss)(|vs|2)sds

+
3

2

∫
|vs|2(|vss|2)sds−

9

2

∫
(|vs|2)s|vss|2ds− 5

∫
|vs|2vs · vssssds

− 45

4

∫
|vs|4(|vs|2)sds−

15

2

∫
|vs|4(|vs|2)sds

= |vsss(0)|2 +
9

2

∫
(|vs|2)s|vss|2ds−

3

2

∫
|vs|2(|vss|2)sds−

25

4

∫ (
|vs|6

)
s
ds

− 3

2

∫
(vs · vsss)(|vs|2)sds− 5

∫
|vs|2vs · vssssds

= |vsss(0)|2 +
∫ {

|vs|2|vss|2
}
s
ds+

7

2

∫
(|vs|2)s|vss|2ds+

7

2

∫
(vs · vsss)(|vs|2)sds

= |vsss(0)|2.

Again, we have used (4.4.4), (4.4.5), and integration by parts. Finally, we calculate

I3 = −∥vsss∥2 − 2(vsss, |vs|2vs)− 4(vsss, (vs · vss)v)− 5(|vs|2vs,vsss)

− 5(|vs|2vs, |vs|2vs)− 10(|vs|2vs, (vs · vss)v)

≤ −1

2
∥vsss∥2 + C

(
∥vs∥6L6(R+) + ∥vs · vss∥2

)
≤ −1

4
∥vsss∥2 + C2.
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Here, C2 is a constant depending on C1. We also used the interpolation inequalities

∥vs∥L6(R+) ≤ C∥vs∥2/3∥vss∥1/3, ∥vs∥L∞(R+) ≤ C∥vs∥1/2∥vss∥1/2, and ∥vss∥ ≤ C∥vs∥1/2∥
vsss∥1/2. Combining these three estimates, we arrive at

d

dt

{
∥vss∥2 −

5

4
∥|vs|2∥2

}
≤ −|α||vsss(0, t)|2 −

δ

4
∥vsss∥2 + C2.

Integrating over [0, t] yields

∥vss(t)∥2 +
∫ t

0

(
|α||vsss(0, τ)|2 +

δ

4
∥vsss(τ)∥2

)
dτ

≤ ∥vδ0ss∥2 +
5

4
∥|vs(t)|2∥2 + C2t

≤ C∥vδ0s∥21 +
1

2
∥vss(t)∥2 + C∥vs(t)∥6 + C2t,

where we have used ∥vs∥L4(R+) ≤ C∥vs∥3/4∥vss∥1/4 again. Thus we have

sup
0≤t≤T

∥vss(t)∥2 +
∫ T

0

(
|α||vsss(0, t)|2 + δ∥vsss(t)∥2

)
dt ≤ C∥vδ0s∥21 + C3 + C2T,

where C3 is a constant depending on C1. Thus if we choose C
2
∗ := CM2+C2

1 +C3+C2T ,

we see that the proposition holds. □

Based on the estimate derived in Proposition 4.4.3, we derive the higher order estimate.

Proposition 4.4.4 For a natural number k andM > 0, let v be a solution of (4.4.3) with

|vδ0| = 1, vδ0s ∈ H1+3k(R+), and ∥vδ0s∥H1+3k(R+) ≤M satisfying vs ∈ C
(
[0, T ];H1+3k(R+)

)
and v ∈ C

(
[0, T ];L∞(R+)

)
. Then, there is a positive constant C∗∗ and T1 ∈ (0, T ] such

that for δ ∈ (0, δ∗), v satisfies

sup
0≤t≤T1

∥vs(t)∥1+3k ≤ C∗∗.

Here, T1 depends on ∥v0s∥3 and C∗∗ depends on C∗ and δ∗, but not on δ ∈ (0, δ∗]. C∗ and

δ∗ are constants appearing in Proposition 4.4.3.

Proof. From Proposition 4.4.3, we have a C∗ > 0 and δ∗ > 0 such that

sup
0≤t≤T

∥vs(t)∥1 ≤ C∗

holds for δ ∈ (0, δ∗]. We also know from Lemma 4.4.2 that |v| = 1.
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Now, for an integer m with 4 ≤ m ≤ 1 + 3k, differentiating equation (4.4.3) m times

with respect to s yields

∂ms vt = v × ∂m+2
s v +mvs × ∂m+1

s v + α

{
∂m+3
s v +

3

2

(
∂m+2
s v

)
× (v × vs)

+
3

2
(m+ 1)

(
∂m+1
s v

)
× (v × vss) +

3

2
(m+ 1)vss × (v × ∂m+1

s v)

+
3

2
vs × (v × ∂m+2

s v) +
3m

2
vs × (vs × ∂m+1

s v)

}
+ δ

{
∂m+2
s v + 2(vs · ∂m+1

s v)v + zm

}
+wm,

where zm and wm are terms that contain derivatives of v up to order m and are inde-

pendent of δ. We estimate the solution in the following way.

1

2

d

dt
∥∂m+1

s v∥2 = −
(
∂ms vt · ∂m+1

s v
)
(0, t)− (∂ms vt, ∂

m+2
s v)

= −
(
∂ms vt · ∂m+1

s v
)
(0, t)−m(vs × ∂m+1

s v, ∂m+2
s v)− α

{
(∂m+3

s v, ∂m+2
s v)

+
3

2
(m+ 1)(∂m+1

s v × (v × vss), ∂m+2
s v) +

3

2
(m+ 1)(vss × (v × ∂m+1

s v), ∂m+2
s v)

+
3

2
(vs × (v × ∂m+2

s v), ∂m+2
s v) +

3m

2
(vs × (vs × ∂m+1

s v), ∂m+2
s v)

}
− δ

{
(∂m+2

s v, ∂m+2
s v) + 2((vs · ∂m+1

s v)v, ∂m+2
s v) + (zm, ∂

m+2
s v)

}
− (wm, ∂

m+2
s v).

Each term is estimated by using the fact that |v| = 1, (4.4.4), and (4.4.5). The usage of

these properties is sometimes hard to notice and somewhat complicated, hence we give

a detailed calculation for such term even though the calculus itself is elementary. Set

m∗ := max{3,m− 3}. First we have

−m(vs × ∂m+1
s v, ∂m+2

s v) = m(vs × ∂m+2
s v, ∂m+1

s v)

= −m((v · ∂m+2
s v)v × vs, ∂m+1

s v) +m([(v × vs) · ∂m+2
s v]v, ∂m+1

s v)

=
1

2
m

m+1∑
j=1

(
m+ 2
j

)
((∂jsv · ∂m+2−j

s v)v × vs, ∂m+1
s v)

−m([(v × vss) · ∂m+1
s v]v, ∂m+1

s v)−m([(v × vs) · ∂m+1
s v]vs, ∂

m+1
s v)

+
m

2

m+1∑
j=1

(
m+ 2
j

)
([(v × vs) · ∂m+1

s v]∂jsv, ∂
m+2−j
s v)

≤ C∥vs∥2m,
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where C depends on ∥vs∥m∗ . Next we have

3

2
(m+ 1)(∂m+1

s v × (v × vss), ∂m+2
s v)

=
3

2
(m+ 1)

{
((vss · ∂m+1

s v)v, ∂m+2
s v)− ((v · ∂m+1

s v)vss, ∂
m+2
s v)

}
=

3

2
(m+ 1)

{
− 1

2

m+1∑
j=1

(
m+ 2
j

)
((vss · ∂m+1

s v)∂jsv, ∂
m+2−j
s v)

+ ((vs · ∂m+1
s v)vss, ∂

m+1
s v) + ((v · ∂m+2

s v)vss, ∂
m+1
s v)

+ ((v · ∂m+1
s v)vsss, ∂

m+1
s v) +

(
(v · ∂m+1

s v)vss · ∂m+1
s v

)
(0, t)

}
≤ C

(
∥vs∥2m + |∂m+1

s v(0, t)|2
)
,

where C depends on ∥vs∥m∗ . We continue with

3

2
(m+ 1)(vss × (v × ∂m+1

s ), ∂m+2
s v)

=
3

2
(m+ 1)

{
((vss · ∂m+1

s v)v, ∂m+2
s v)− ((v · vss)∂m+1

s v, ∂m+2
s v)

}
=

3

2
(m+ 1)

{
− 1

2

m+1∑
j=1

(
m+ 2
j

)
((vss · ∂m+1

s v)∂jsv, ∂
m+2−j
s v)

+ ((v · vss)s∂m+1
s v, ∂m+1

s v)−
(
(v · vss)|∂m+1

s v|2
)
(0, t)

}
≤ C∥vs∥2m,

where, again, C depends on ∥vs∥m∗ . From here on, it is assumed that generic constants

C depend on ∥vs∥m∗ unless explicitly mentioned otherwise. We calculate furthermore

3

2
(vs × (v × ∂m+2

s v), ∂m+2
s v) =

3

2
((vs · ∂m+2

s v)v, ∂m+2
s v)

=
3

2

{
− 1

2
((vs · ∂m+2

s v)vs, ∂
m+1
s v)− 1

2

m∑
j=2

(
m+ 2
j

)
((vs · ∂m+2

s v)∂jsv, ∂
m+2−j
s v)

}

=
3

4

{
((vss · ∂m+1

s v)vs, ∂
m+1
s v) +

m∑
j=2

(
m+ 2
j

)[
((vss · ∂m+1

s v)∂jsv, ∂
m+2−j
s v)

+ ((vs · ∂m+1
s v)∂j+1

s v, ∂m+2−j
s v) + ((vs · ∂m+1

s v)∂jsv, ∂
m+3−j
s v)

]}
≤ C∥vs∥2m,
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3m

2
(vs × (vs × ∂m+1

s v), ∂m+2
s v)

=
3m

2

{
((vs · ∂m+1

s v)vs, ∂
m+2
s v)− ((vs · vs)∂m+1

s v, ∂m+2
s v)

}
=

3m

2

{
− ((vss · ∂m+1

s v)vs, ∂
m+1
s v) +

1

2
((vs · vs)s∂m+1

s v, ∂m+1
s v)

}
≤ C∥vs∥2m.

Next, we estimate the boundary terms.

∂ms vt · ∂m+1
s v = (v × ∂m+2

s v) · ∂m+1
s v + α

{
∂m+3
s v · ∂m+1

s v +
3

2
[∂m+2

s v × (v × vs)] · ∂m+1
s v

+
3

2
(m+ 1)[vss × (v × ∂m+1

s v)] · ∂m+1
s v +

3

2
[vs × (v × ∂m+2

s v)] · ∂m+1
s v

+
3m

2
[vs × (vs × ∂m+1

s v)] · ∂m+1
s v

}
+ δ

{
∂m+2
s v · ∂m+1

s v

+ 2(vs · ∂m+1
s v)(v · ∂m+1

s v) + zm · ∂m+1
s v

}
+wm · ∂m+1

s v,

thus we have(
∂ms vt · ∂m+1

s v
)
(0, t) = [(v × ∂m+2

s v) · ∂m+1
s v](0, t)

+ α

{
∂m+3
s v · ∂m+1

s v +
3

2
(m+ 1)[vss × (v × ∂m+1

s v)] · ∂m+1
s v

}
(0, t)

+ δ

{
∂m+2
s v · ∂m+1

s v + zm · ∂m+1
s v

}
(0, t) + (wm · ∂m+1

s v)(0, t).

Again, we estimate each term separately. For example,{
[vss × (v × ∂m+1

s v)] · ∂m+1
s v

}
(0, t) =

{
(vss · ∂m+1

s v)v − (v · vss)∂m+1
s v

}
· ∂m+1

s v

∣∣∣∣
s=0

= −1

2

m∑
j=1

(
m+ 1
j

)
(vss · ∂m+1

s v)(∂jsv · ∂m+1−j
s v)

∣∣∣∣
s=0

≤ C
(
∥vs∥2m + |∂m+1

s v(0, t)|2
)

holds. Combining the estimates yields

1

2

d

dt
∥∂m+1

s v∥2 + 1

2
|α||∂m+2

s v(0, t)|2

≤ C
(
∥vs∥2m + |∂m+1

s v(0, t)|2
)
+ (v × ∂m+2

s v) · ∂m+1
s v

∣∣∣∣
s=0

+ α∂m+3
s v · ∂m+1

s v

∣∣∣∣
s=0

+ δ(∂m+2
s v · ∂m+1

s v)

∣∣∣∣
s=0

.

On the other hand, from the boundary condition we see that the solution satisfies ∂jtvs(0, t)

= 0 for any j with 0 ≤ j ≤ k. Rewriting this by virtue of (4.4.3) yields αj(∂3j+1
s v)(0, t) =
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F (v,vs, . . . , ∂
3j
s v)(0, t), i.e. boundary terms with (3j + 1)-th order derivative can be

expressed in terms of boundary terms with derivatives up to order 3j. For m = 3j + 1,

we have

1

2

d

dt
∥∂3j+2

s v∥2 + |α|
2
|∂3j+3

s v(0, t)|2

≤ C
(
∥vs∥21+3j + |∂3j+2

s v(0, t)|2
)
+ (v × ∂3j+3

s v) · ∂3j+2
s v

∣∣∣∣
s=0

+ α∂3(j+1)+1
s v · ∂3j+2

s v

∣∣∣∣
s=0

+ δ(∂3j+3
s v · ∂3j+2

s v)

∣∣∣∣
s=0

≤ C
(
∥vs∥21+3j + |∂3j+2

s v(0, t)|2
)
+ (v × ∂3j+3

s v) · ∂3j+2
s v

∣∣∣∣
s=0

+ C
∣∣∂3j+3

s v
∣∣∣∣∂3j+2

s v
∣∣∣∣∣∣

s=0

+ δ
∣∣∂3j+3

s v
∣∣∣∣∂3j+2

s v
∣∣∣∣∣∣

s=0

.

(4.4.6)

By a similar estimate, we can show that

1

2

d

dt
∥∂j+1

s v∥2 + |α|
2
|∂j+2

s v(0, t)|2

≤ C
(
∥vs∥33 + |∂j+1

s v(0, t)|2
)
+ (v × ∂j+2

s v) · ∂j+1
s v

∣∣∣∣
s=0

+ |α|
∣∣∂j+3

s v
∣∣∣∣∂j+1

s v
∣∣∣∣∣∣

s=0

+ δ
∣∣∂j+1

s v
∣∣∣∣∂j+2

s v
∣∣∣∣∣∣

s=0

holds for j = 0, 1, 2, 3. Thus, for η > 0 we have

1

2

d

dt
∥∂j+1

s v∥2 + |α|
4

∣∣∂j+2
s v(0, t)

∣∣2 ≤ C
(
∥vs∥33 +

∣∣∂j+1
s v(0, t)

∣∣2)+ η
∣∣∂j+3

s v(0, t)
∣∣2

for j = 1, 2, and

1

2

d

dt
∥∂4sv∥2 +

|α|
4

∣∣∂5sv(0, t)∣∣2 ≤ C∥vs∥33 + C
∣∣∂4sv(0, t)∣∣2,

1

2

d

dt
∥vs∥2 +

|α|
4

∣∣∂2sv(0, t)∣∣2 ≤ C∥vs∥33.

Here, C depends on η and C∗. Combining these estimates, we arrive at

1

2

d

dt
∥vs∥23 ≤ C∥vs∥33,

where C depends on C∗ and δ∗ but not on δ ∈ (0, δ∗]. As before, the above estimate

gives a time-local uniform estimate in C
(
[0, T1];H

3(R+)
)
for some T1 ∈ (0, T ]. From the

H3-estimate and (4.4.6), we can derive the uniform estimate in C
(
[0, T1];H

1+3k(R+)
)
in

the same manner. Here, T1 is determined from the H3-estimate and only depends on

∥v0s∥3. □
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4.4.3 Passing to the limit δ → +0

Now, in virtue of passing to the limit δ → +0, we prove the existence theorem for the

case α < 0.

Proof of Theorem 4.1.1. Since vδ0s → v0s in H1+3k(R+) and v
δ
0 → v0 in L∞(R+) as

δ → +0, by taking δ∗ > 0 smaller if necessary, we have ∥vδ0s∥1+3k ≤ 2∥v0s∥1+3k for any

δ ∈ (0, δ∗]. For such δ, the solution vδ constructed in Subsection 4.4.1 with initial datum

vδ0 satisfies the assumptions of Lemma 4.4.2 and Proposition 4.4.3 with M = 2∥v0s∥1+3k,

i.e.
∣∣vδ∣∣ = 1 and a uniform estimate in C

(
[0, T ];H1+3k(R+)

)
for some T > 0 hold. For

any δ, δ′ ∈ (0, δ∗], V := vδ
′ − vδ − (vδ

′
0 − vδ0) satisfies

V t = αV sss + v
δ′ × V ss + 3αV ss × (vδ

′ × vδ′s ) + δ′(vδ
′

ss + |vδ′s |2vδ
′
),

−δ(vδss + |vδs|2vδ) + F , s > 0, t > 0,
V (s, 0) = 0, s > 0,
V s(0, t) = 0, t > 0,

where F is the sum of lower order terms of V and depends linearly on V 0 := vδ
′

0 − vδ0.
By a standard energy method, we have

1

2

d

dt
∥V ∥2 ≤ αV (0, t) · V ss(0, t) + C∥V ∥21 + C

[
(δ + δ′) + ∥V 0∥2L∞(R+) + ∥V 0s∥22

]
,

1

2

d

dt
∥V s∥2 ≤ −|α|

2
|V ss(0, t)|2 + C∥V ∥21 + C

[
(δ + δ′) + ∥V 0∥2L∞(R+) + ∥V 0s∥23

]
,

where C is independent of δ and δ′. Here, we have used vδ
′ · (vδ′ − vδ)ss = −vδ′s · (vδ′ −

vδ)s − (vδ
′ − vδ)s · vδs − (vδ

′ − vδ) · vδss, which follows from the fact that |vδ| = |vδ′| = 1.

The above estimate implies

∥V ∥21 ≤ CT
[
(δ + δ′) + ∥V 0∥2L∞(R+) + ∥V 0s∥23

]
,

where C is independent of δ and δ′. Thus, there is a v such that vδ → v in C
(
[0, T ];L∞(R+

)
)
and vδs → vs in C

(
[0, T ];L2(R+)

)
as δ → +0. Combining these convergence with the

uniform estimate, we have a solution v to (4.2.1) such that vs ∈
∩k

j=0W
j,∞(0, T ;H1+3j(R+

)
)
and |v| = 1. Again, since the initial datum can be approximated by a smooth func-

tion, we have a solution v ∈ X̃k
T , i.e. the continuity with respect to t can be recovered.

The uniform estimate obtained in the previous subsection is essentially the energy esti-

mate for v, from which the uniqueness of the solution follows. Based on this estimate

of the solution and a sequence of smooth initial datum {vn0}∞n=1 such that vn0 → v0

in L∞(R+) and vn0s → v0s in H1+3k(R+) as n → +∞, we have a solution v satis-

fying vs ∈
∩k

j=0W
j,∞(0, T ;H1+3j(R+)

)
and |v| = 1 with initial datum v0 satisfying

v0s ∈ H1+3k(R+) and |v0| = 1 in the same manner as we did with δ → +0.
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Since a compactness argument is used, the continuity in t is lost and we are unable

to recover the continuity in t. One of the standard method to recover it is to prove the

strong continuity of v at t = 0 via solving the problem reverse in time. Unfortunately,

our problem is not reversible in time and we do not have any new ideas to recover the

continuity.

Finally, as we mentioned in the introduction, we can construct x from v. □

4.5 Construction of Solution in the Case α > 0

4.5.1 Existence of Solution

We construct the solution in a similar manner as in the case α < 0. For n ≥ 2, we define

v(n) by
v
(n)
t = αv

(n)
sss +A(v(n−1), ∂s)v

(n) − 3

2
α|v(n−1)

s |2v(n−1)
s + δ|v(n−1)

s |2v(n−1), s > 0, t > 0,

v(n)(s, 0) = vδ,R0 (s), s > 0,
v(n)(0, t) = e3, t > 0,

v
(n)
s (0, t) = 0, t > 0,

where e3 = (0, 0, 1), vδ,R0 is the same initial datum that is defined in Subsection 4.4.1, and

the operator A(v(n−1), ∂s) is the same as in the case α < 0. The dependence of v on R is

suppressed for brevity. Again, we define v(1) by

v(1)(s, t) = vδ,R0 (s) +
m∑
j=1

tj

j!
Q(j)(v

δ,R
0 (s))

so that the compatibility conditions are satisfied at each iteration step. By Theorem 4.3.2,

each v(n) is well-defined.

Since the arguments for the uniform estimate and the convergence with respect to n

and R are the same as in the case α < 0, we omit most of the details and just show the

basic energy estimates used to derive the uniform estimates. For any η > 0 we have

1

2

d

dt
∥v(n)s ∥2 = −(v(n)ss ,v

(n)
t )

≤ α

2
|v(n)ss (0, t)|2 −

δ

2
∥v(n)ss ∥2 + C∥v(n−1)

s ∥21

≤ η∥v(n)sss∥2 + Cη∥v(n)ss ∥2 −
δ

2
∥v(n)ss ∥2 + C∥v(n−1)

s ∥21,

1

2

d

dt
∥v(n)ss ∥2 = −(v(n)sss,v

(n)
st )

≤ α

2
|v(n)sss(0, t)|2 − δ∥v(n)sss∥2 + η∥v(n)sss∥2 + Cη(∥v(n)ss ∥2 + ∥v(n−1)

s ∥21).
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The equation and Sobolev’s embedding theorem imply

|v(n)sss(0, t)|2 ≤ η∥v(n)sss∥2 + Cη∥v(n)ss ∥2 + C(1 + ∥v(n−1)
s ∥1)2.

Combining all the estimates yields

sup
0≤t≤T

∥v(n)s (t)∥21 +
∫ T

0

∥v(n)s (t)∥22dt ≤ C

∫ T

0

∥v(n−1)
s (t)∥21dt+ CT,

where C depends on ∥v(n−1)(t)∥L∞([0,T ];L∞(R+)). From this, estimates uniform in n and R

can be obtained by induction with respect to n.

4.5.2 Uniform Estimate of Solution with respect to δ

As before, we derive a uniform estimate. First we prove the following.

Lemma 4.5.1 If v is a solution of (4.2.4) with vs ∈ C
(
[0, T ], H2(R+)

)
, v ∈ C

(
[0, T ];L∞

(R+)
)
, and |vδ0| = 1, then |v| = 1 in R+ × [0, T ].

Proof. As in the proof of Lemma 4.4.2, if we set h(s, t) := |v(s, t)|2 − 1, h satisfies
ht = αhsss + δhss + (2δ|vs|2 + 3α(vs · vss))h, s > 0, t > 0,
h(s, 0) = 0, s > 0,
h(0, t) = 0, t > 0,
hs(0, t) = 0, t > 0.

It is easy to see that for any η > 0,

1

2

d

dt
∥h∥2 ≤ Cη∥h∥2 − δ∥hs∥2 + η∥hs∥2

holds. Thus, after choosing η > 0 sufficiently small, h ≡ 0 follows. □

As before, we rewrite the nonlinear terms in (4.2.4) into its original form.

vt = v × vss + α

{
vsss +

3

2
vss × (v × vs)

+
3

2
vs × (v × vss)

}
+ δ
(
vss + |vs|2v

)
, s > 0, t > 0,

v(s, 0) = vδ0(s), s > 0,
v(0, t) = e3, t > 0,
vs(0, t) = 0, t > 0.

(4.5.1)

Now, we derive a basic uniform estimate with respect to δ. The main method and prop-

erties used for it are the same as in the case α < 0, namely, utilizing |v| = 1, (4.4.4), and
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(4.4.5), but the energy is slightly modified and is different from the higher order conserved

quantity. First we have

1

2

d

dt
∥vs∥2 =

α

2
|vss(0, t)|2 − δ∥vss∥2,

1

2

d

dt
∥vss∥2 ≤ C∥vs∥22(1 + ∥vs∥2) +

α

2
|vsss(0, t)|2 − δ∥vsss∥2

≤ C∥vs∥22(1 + ∥vs∥2)− δ∥vsss∥2,

where we have used |vsss(0, t)|2 ≤ C∥vs∥22(1 + ∥vs∥2), which follows from the boundary

condition and the equation. To close the estimate, we will derive estimates for vsss.

However, like the estimates above, the boundary terms have a bad sign unlike in the case

α < 0. Thus, we must modify the energy to obtain the desired estimate. Specifically, to

obtain an estimate for vsss, we use the following.

1

2

d

dt

{
∥vsss∥2 +

2

α
(v × vss,vsss) +

2δ

α
(vss,vsss)

}
≤ C∥vs∥22(1 + ∥vs∥22).

In each estimate, C is independent of δ. Combining the three estimates, we obtain a

uniform estimate for ∥vs∥2 for sufficiently small δ. We denote this threshold as δ∗.

The reason we modified the energy from the Sobolev norm is to take care of the

boundary term. If we directly estimate ∥vsss∥2, boundary term of the form vsss(0) ·∂5sv(0)
comes out and the order of derivative is too high to estimate. We can cancel out this

term by adding a lower order modification term in the energy. This kind of modification

is needed to close the estimate for ∥vs∥2+3k with k ∈ N. We use the above energy that

we just derived an estimate for as an example to demonstrate the idea behind finding the

correct modifying term. Taking the trace s = 0 in the equation yields

αvsss(0, t) + (v × vss)(0, t) + δvss(0, t) = 0

for any t > 0. Thus, replacing ∥vsss∥2 with ∥vsss∥2+ 2
α
(v×vss,vsss)+ 2δ

α
(vss,vsss) changes

the boundary term from vsss(0, t) · ∂5sv(0, t) to
(
vsss(0, t) +

1
α
v × vss(0, t) + δvss(0, t)

)
·

∂5sv(0, t), which is zero.

We continue the estimate in this pattern. Suppose that we have a uniform estimate

sup0≤t≤T ∥vs(t)∥2+3(i−1) ≤M for some i ≥ 1. For j = 1, 2, we have

1

2

d

dt
∥∂3i+j

s v∥2 ≤ C(1 + ∥vs∥22+3i),

where we have used |∂3(i+1)
s v(0)|2 ≤ C∥vs∥22+3i. Here, C depends on M and δ∗, but not

on δ. Set W (m)(v) := P (m)(v) − αm∂3ms v, which is P (m)(v) without the highest order

derivative term. Then, the final estimate is

1

2

d

dt

{
∥∂3(i+1)

s v∥2 + 2

αi+1
(W (i+1)(v), ∂

3(i+1)
s v)

}
≤ C∥vs∥22+3i + C,
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where, again, C depends on M , but not on δ. Thus, we have proven the following time-

local uniform estimate by induction.

Proposition 4.5.2 For a natural number k and M > 0, let v be a solution of (4.5.1) with

|vδ0| = 1, vδ0s ∈ H2+3k(R+), and ∥vδ0s∥H2+3k(R+) ≤M satisfying vs ∈ C
(
[0, T ];H2+3k(R+)

)
and v ∈ C

(
[0, T ];L∞(R+)

)
. Then, there is a C∗∗ > 0 and T1 ∈ (0, T ] such that for

0 ≤ δ ≤ δ∗, v satisfies

sup
0≤t≤T1

∥vs(t)∥2+3k ≤ C∗∗.

Here, T1 depends on ∥v0s∥2 and C∗∗ is independent of δ ∈ (0, δ∗].

4.5.3 Passing to the limit δ → +0

Now we pass to the limit δ → +0. For δ′, δ ∈ (0, δ∗], we set the difference of the corre-

sponding solutions as V := vδ
′ − vδ − (vδ

′
0 − vδ0). Then, V satisfies

V t = v
δ′ × V ss + α

{
V sss + 3V ss × (vδ

′ × vδ′)
}
+ δ′V ss +G, s > 0, t > 0,

V (s, 0) = 0, s > 0,
V (0, t) = 0, t > 0,
V s(0, t) = 0, t > 0,

where G is the collection of terms that are lower order in V and depends linearly on

V 0 := v
δ′
0 − vδ0. By a standard energy method, we have

1

2

d

dt
∥V ∥23 ≤ C∥V ∥23 + C

[
(δ′ + δ) + ∥V 0∥2L∞(R+) + ∥V 0s∥23

]
,

where C depends on C∗∗ defined in Proposition 4.5.2. Here, we have used identities such

as

vδ
′

s × ∂4s (v
δ′ − vδ) = vδ′s × ∂4sv

δ′ − vδs × ∂4sv
δ − (vδ

′ − vδ)s × ∂4sv
δ,

to obtain the estimate. From this estimate, we see that vδ → v in C
(
[0, T ];L∞(R+)

)
and

vδs → vs in C
(
[0, T ];H2(R+)

)
as δ → +0, and v is the solution to (4.2.2). Combining this

with the uniform estimate, we see that vs ∈
∩k

j=0W
j,∞(0, T ;H2+3(k−j)(R+)

)
. As before,

the uniform estimate is essentially the energy estimate of the solution to the limit problem,

and after an approximation argument on the initial datum, the regularity assumption on

the initial datum can be relaxed. Thus we have proven Theorem 4.1.2.
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Appendix A

Generalized Hasimoto
Transformation

A.1 Remark on the generalized Hasimoto Transfor-

mation

In this appendix, we use our initial-boundary value problem for the LIE to demonstrate

the generalized Hasimoto transformation. As mentioned in Chapter 1, this transformation

was first constructed by Koiso [24] in a more geometrically generalized setting than our

problem. More specifically, the unknown variable v takes values in a general manifold.

Recall that in our analysis, |v| = 1, i.e. v takes values in the unit sphere S2.

We restate the problems for convenience.


vt = v × vss, s > 0, t > 0,

v(s, 0) = v0(s), s > 0,

v(0, t) = e3, t > 0,

(A.1.1)


iqt = qss +

1

2
|q|2q, s > 0, t > 0,

q(s, 0) = q0(s), s > 0,

qs(0, t) = 0, t > 0.

(A.1.2)

Here, i =
√
−1 and we assume that |v0| ≡ 1 and the compatibility conditions mentioned

in Chapter 2 are satisfied. We first derive compatibility conditions for (A.1.2).

Lemma A.1.1 The compatibility conditions for (A.1.2) are that for n ∈ N,

∂2n+1
s q0(0) = 0.
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Proof. We prove that a smooth solution q of (A.1.2) satisfies ∂2n+1
s q(0, t) = 0 for n ∈ N

and t > 0 by induction. It is obvious for n = 1. Assume that it holds up to n − 1 for

some n ≥ 2. Differentiating the equation (2n− 1) times with respect to s, we have

i∂2n−1
s qt = ∂2n+1

s q +
1

2
∂2n−1
s

{
|q|2q

}
.

Since the last term always contains derivatives with order less then or equal to 2n− 1, we

get for any t > 0

∂2n+1
s q(0, t) = 0,

and the trace at t = 0 yields the desired assertion. □

A.2 LIE to the nonlinear Schrödinger equation

Given a q0 satisfying the compatibility conditions, we first transform (A.1.1) to (A.1.2).

Assume that we have a smooth solution of (A.1.1) with an appropriate initial datum

which will be specified later. The solution will necessarily satisfy |v(s, t)| ≡ 1. The idea is

to construct a basis of the tangent space of the unit sphere S2 that is parallel to the curve

v on S2. First we construct a vector e(s, t) orthogonal to v with unit length satisfying

∇se = 0,

where ∇s is the covariant derivative along v. Suppose that such a vector e exists. Since

we know that v is the unit normal of S2, we have

∇se = es − (es · v)v = es + (e · vs)v = 0,

where we have used e · v ≡ 0. The above relation is a necessary condition that e should

satisfy. Conversely, for any t ≥ 0, let e(s, t) be the solution of the following linear ordinary

differential equation in s {
es + (e · vs)v = 0, s > 0,

e(0, t) = e1,
(A.2.1)

where {e1, e2, e3} denotes the standard orthonormal basis of R3. We see that

(e · v)s = es · v + e · vs = 0,

and e · v ≡ 0. This and

(e · e)s = 2(es · e) = −2(e · vs)v · e = 0,
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yield |e| ≡ 1, and ∇se = 0. Thus, the solution to (A.2.1) is the desired vector. From

this, we see that {v, e,v × e} is an orthonormal basis in R3 for every s ≥ 0 and t ≥ 0.

Since v · vs ≡ 0 and v · vt ≡ 0 from |v| ≡ 1, we can decompose vs and vt as

vs = q1e+ q2(v × e), vt = p1e+ p2(v × e).(A.2.2)

The qi and pi (i = 1, 2) are functions of s and t. From (A.2.1) and (A.2.2) it follows that

es = −(e · vs)v = −q1v.

From e · v ≡ 0 and (A.2.2) we deduce et · v = −e · vt = −p1, so that with the help of

|e| ≡ 1, we get

et = −p1v + α(v × e),

where α is an unknown function. From the equality vst = vts and comparing the compo-

nents, we see that

q1t = p1s + αq2, q2t = p2s − αq1.

On the other hand, from vt = v × vss we get

p1 = −q2s, p2 = q1s.

Finally from ets = est we have

αs = p1q2 − q1p2 = −1

2

{
(q1)

2
s + (q2)

2
s

}
,

so that α = −1
2
{(q1)2 + (q2)

2} + α(0, t). Since e(0, t) = e1, we see that et(0, t) ≡ 0, and

hence α(0, t) = 0. Then, q := q1 − iq2 satisfies

iqt = qss +
1

2
|q|2q.

Since v(0, t) = e3, differentiating this with respect to t yields vt(0, t) = 0, so that the

boundary condition for q becomes qs(0, t) = 0. We are left to determine v0 from a given

initial datum q0 = q01 − iq02 of (A.1.2). From the arguement above, we naturally arrive

at defining v0 as the solution of
v0s = q01e

1 + q02e
2, s > 0,

e1s = −q01v0, s > 0,

e2s = −q02v0, s > 0,

(v0, e
1, e2)(0) = (e3, e1, e2).

(A.2.3)
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We have to check that v0 satisfies the compatibility conditions for (A.1.1), which is

(v0 × ∂2ns v0) (0) = 0 for n ∈ N. Defining the matrix A as A= (v0, e
1, e2), (A.2.3)

can be written as

As = A


0 q2s −q1s

−q2s 0
1

2
|q|2

q1s −1

2
|q|2 0

 =: AP.

Since P is anti-symmetric,(
AAT

)
s
= APAT +A(AP)T = A(P + PT )A = O,

where AT is the transpose matrix of A. Thus we have AAT (s) = AAT (0) = I3, where I3 is

the 3× 3 unit matrix. This shows that {v0, e1, e2}s≥0 is an orthonormal basis of R3. e2

is actually v0 × e1, but we use e2 for simplicity. Differentiating the equation for v0 and

using the other two equations, we get

v0ss = q01se
1 − (q01)

2v0 + q02se
2 − (q02)

2v0.

Taking the exterior product with v0 and setting s = 0, we see that (v0 × v0ss)(0) = 0.

Thus the condition is true for n = 1. Suppose that it holds up to n − 1. Differentiating

the equation 2n− 1 times yields

∂2ns v0 =
2n−1∑
k1=0

(
2n− 1
k1

)
(∂k1s q01)(∂

2n−1−k1
s e1) +

2n−1∑
k1=0

(
2n− 1
k1

)
(∂k1s q02)(∂

2n−1−k1
s e2).

At s = 0, the terms where k1 is odd are zero from the compatibility condition for q.

When k1 is even, 2n − 1 − k1 is an odd number greater than or equal to one. Setting

m1 := 2n− 1− k1, we have for i = 1, 2

∂m1
s ei = −

m1−1∑
k2=0

(
m1 − 1
k2

)
(∂k2s q0i)(∂

m1−1−k2
s v0).

Again only terms where k2 is even remain. Then, m1−1−k2 is an even number less than

or equal to 2(n− 1) so that setting k1 = 2j1 and k2 = 2j2, we have

∂2ns v0(0) =
n−1∑
j1=0

(
2n− 1
2j1

)
(∂2j1s q01)

−
1
2
(m1−1)∑
j2=0

(
m1 − 1
2j2

)
(∂2j2s q01)(∂

m1−1−2j2
s v0)


∣∣∣∣∣∣
s=0

+
n−1∑
j1=0

(
2n− 1
2j1

)
(∂2j1s q02)

−
1
2
(m1−1)∑
j2=0

(
m1 − 1
2j2

)
(∂2j2s q02)(∂

m1−1−2j2
s v0)


∣∣∣∣∣∣
s=0

.
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Since the derivative of v0 is of even order less than or equal to 2(n− 1) on the right-hand

side, taking the exterior product with v0 yields (v0 × ∂2ns v0)(0) = 0 according to the

assumption of induction. Therefore, the v0 constructed here satisfies the compatibility

conditions for (A.1.1).

A.3 Nonlinear Schrödinger equation to the LIE

In this section, given an initial datum v0, we construct the solution of (A.1.1) from the

solution of (A.1.2) with an appropriate initial datum. First we define ẽ1(s) as the solution

of {
ẽ1s + (ẽ1 · v0s)v0 = 0, s > 0,
ẽ1(0) = e1.

In the same way as before, we see that ẽ1 ·v0 ≡ 0 and |ẽ1| ≡ 1. Thus, v0s can be expressed

as v0s = q01ẽ
1 + q02(v0 × ẽ1). We use q0 := q01 − iq02 as the initial datum. We first check

that q0 satisfies the compatibility conditions for (A.1.2). As before, set ẽ2 := v0 × ẽ1.
Then, v0, ẽ

1, ẽ2 satisfies (A.2.3). Differentiating the equation with respect to s, we have

v0ss = q01sẽ
1 − (q01)

2v0 + q02sẽ
2 − (q02)

2v0.

From a compatibility condition for v0 we get

0 = (v0 × v0ss)(0) =
{
q01s(v0 × ẽ1) + q02s(v0 × ẽ2)

}∣∣
s=0

=
{
q01ẽ

2 − q02sẽ
1
}∣∣

s=0
.

Since ẽ1 and ẽ2 are orthogonal, q01s(0) = q02s(0) = 0. Suppose that the compatibility con-

ditions up to order n−1 hold. As we did previously, taking into account the compatibility

conditions that v0 satisfy and the assumption of induction, we arrive at

∂2ns v0(0) = (∂2n−1
s q01)ẽ

1 + (∂2n−1
s q02)ẽ

2
∣∣
s=0

+
2n−2∑
j1=0

(
2n− 1
2j1

)
(∂2j1s q01)

−
1
2
(m1−1)∑
j2=0

(
m1 − 1
2j2

)
(∂2j2s q01)(∂

m1−1−2j2
s v0)


∣∣∣∣∣∣
s=0

+
2n−2∑
j1=0

(
2n− 1
2j1

)
(∂2j1s q02)

−
1
2
(m1−1)∑
j2=0

(
m1 − 1
2j2

)
(∂2j2s q02)(∂

m1−1−2j2
s v0)


∣∣∣∣∣∣
s=0

,

where m1 = 2n − 1− 2j1. Since m1 − 1− 2j2 is even, (v0 × ∂m1−1−2j2
s v0)(0) = 0. Thus,

we have

0 = (v0 × ∂2ns v0)(0) = (∂2n−1
s q01)ẽ

2 − (∂2n−1
s q02)ẽ

1,
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from which ∂2n−1
s q0(0) = 0 follows. This implies that q0 satisfies the compatibility condi-

tions for (A.1.2).

Suppose that we have a smooth solution q(s, t) of (A.1.2) with the initial datum just

obtained. Set q(s, t) = q1(s, t)− iq2(s, t). For any s ≥ 0, we extend the vectors v0, ẽ, and

v0 × ẽ in the t direction as the solution of

vt = −q2se1 + q1se
2, t > 0,

e1t = q2sv − 1

2
|q|2e2, t > 0,

e2t = −q1sv +
1

2
|q|2e1, t > 0,

(v, e1, e2)(s, 0) = (v0(s), ẽ(s), (v0 × ẽ)(s)).

We express v, e1, e2 as column vectors. Then we have

(v, e1, e2)t =

(
− q2se

1 + q1se
2, q2sv − 1

2
|q|2e2,−q1sv +

1

2
|q|2e1

)

= (v, e1, e2)


0 q2s −q1s

−q2s 0
1

2
|q|2

q1s −1

2
|q|2 0

 .

As before, since the coefficient matrix is anti-symmetric, {v, e1, e2} forms an orthonormal

basis and e2 = v × e1. From here we denote e1 as simply e. Since 0 = (1
2
|v|2)s = v · vs,

vs can be expressed as

vs = q̃1e+ q̃2(v × e).

From |e| ≡ 1 and e · v ≡ 0, we see that

es = −q̃1v + α(v × e), (v × e)s = −q̃2v − αe,

where q̃i and α are unknown functions. From the way we constructed ẽ, we see that at

t = 0

q̃1 = q01, q̃2 = q02, α = 0.

As before, from vst = vts and est = ets we have

q̃1t = −q2ss −
1

2
|q|2q̃2 − αq1s, t > 0,

q̃2t = q1ss +
1

2
|q|2q̃1 − αq2s, t > 0,

αt = q̃1q1s + q̃2q2s −
(1
2
|q|2
)
s
, t > 0,

(q̃1, q̃2, α)(s, 0) = (q01(s), q02(s), 0).
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Setting W1 := q̃1 − q1 and W2 := q̃2 − q2, we have
W1t = −1

2
|q|2W2 − αq1s, t > 0,

W2t =
1

2
|q|2W1 − αq2s, t > 0,

αt = q1sW1 + q2sW2, t > 0,

(W1,W2, α)(s, 0) = (0, 0, 0).

This is represented in terms of W := (W1,W2, α)
T as

W t =


0 −1

2
|q|2 −q1s

1

2
|q|2 0 −q2s
q1s q2s 0

W .

Since the coefficient matrix is anti-symmetric, we have |W (s, t)| ≡ |W (s, 0)| = 0, which

is equivalent to q̃i = qi for i = 1, 2 and α ≡ 0. From direct calculation we have

v × vss = (v × vs)s = {q1(v × e)− q2e}s = q1s(v × e)− q2se = vt.

From the boundary condition imposed on q, we see that

vt(0, t) = −q2s(0, t)e+ q1s(0, t)(v × e) = 0.

Integrating this in t yields

v(0, t) = v0(0) = e3.

Hence this function v is a solution of (A.1.1). We summarize the above results.

Theorem A.3.1 Given an initial datum v0, the solution to (A.1.1) can be constructed

from the solution to (A.1.2) with an appropriate initial datum.

Conversely, given an initial datum q0, the solution to (A.1.2) can be constructed from

the solution to (A.1.1) with an appropriate initial datum.
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