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Abstract

This dissertation is concerned with the mathematical analysis on the motion of a
vortex filament immersed in an incompressible and inviscid fluid in the three
dimensional half space. A vortex filament is a space curve on which the vorticity of
the fluid 1s concentrated. The existence and uniqueness of solutions to
initial-boundary value problems describing the motion of a vortex filament in the
three-dimensional half space is proved.

In Chapter 1, the background and the aim of the study are presented. Two model
equations, the Localized Induction Equation (LIE) and the generalized LIE are
introduced, and their related works are explained.

In Chapter 2, the initial-boundary value problem for the LIE is studied. The
existence and uniqueness of the solution is proved. The proof is carried out first, by
carefully analyzing the compatibility conditions for the initial-boundary value
problem and second, by extending the initial datum to the whole space, and thus
reducing the problem to an initial value problem. The solution to the initial value
problem can then be used to construct the solution to the initial-boundary value
problem.

In Chapter 3, we consider initial-boundary value problems for a second order
parabolic system with a third order dispersive term. The system arises when we
consider the linearized problem of the generalized LIE, and the existence and
uniqueness of the solution for such linear system has not been studied. This
motivated the author to consider a general linear parabolic-dispersive system and to
prove the existence and uniqueness of the solution for the corresponding
initial-boundary value problems. The crucial idea in the proof is to apply a new
parabolic regularization, which made it possible to construct the solution in such a
way that the existence theorem is applicable to the analysis of the generalized LIE.

In Chapter 4, we prove the solvability of initial-boundary value problems for the
generalized LIE by utilizing the results of Chapter 3. Based on the existence
theorems of the linear problems, we succeeded in constructing the solutions to the

nonlinear problems in Sobolev spaces.
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Chapter 1

Introduction

1.1 Background

The author is interested in the motion of a vortex filament. A vortex filament is a space
curve in an incompressible and inviscid fluid where the vorticity is concentrated. The
motion of a vortex filament has been studied for a long time, and the first model equation
describing the motion was proposed by Da Rios [7] in 1906. The equation proposed by
him is called the Localized Induction Equation or LIE for short. The LIE is the simplest

model equation describing the motion of a vortex filament and is given by
(1.1.1) T, = T, X T,

where x(s,t) = (z'(s,t),2%(s,t),23(s,t)) is the position vector of the vortex filament
parametrized by its arc length s at time ¢, the symbol x denotes the exterior product
in the three dimensional Euclidean space, and subscripts denote differentiation with the
respective variables. Later in this dissertation, we also use ds and J; to denote partial
differentiation. The LIE is often said to be “rediscovered” by Arms and Hama [3]. This
is because the original work by Da Rios was written in Italian and did not become well
known. There is also a work by Murakami et al. [31] in 1937 where they derived the LIE
independent of Da Rios’ work, but again, the work was written in Japanese and is not
well known. The work by Arms and Hama is the first work written in English that made
the LIE known.

The LIE is derived by approximating the Biot—Savart law, which is an integral formula

given by

v(z)

1 / wly) x(z—y)
Y,

T dr @ —yP?
where v is the velocity and w is the vorticity of the fluid. This formula gives the velocity of

incompressible fluid from the vorticity distribution. In Arms and Hama [3], they rewrote
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the Biot—Savart law in the case of a vortex filament as

v(z) = I /OO xs(s) X (z —x(s)) ds,

T 4r 1z — x(s)]?

—0o0

for which the integral is well-defined for z € R? except for points on the filament. Here,
I' is a real constant describing the intensity of the vorticity. They apply the Localized In-
duction approximation to derive the LIE, which is an approximation of the above integral
when z is a point on the filament.

It is also well known that the LIE can be transformed into the nonlinear Schrédinger
equation via the Hasimoto transformation. This is a transformation introduced by Hasi-

moto in [14] given by

(1.1.2) = Kexp (i /03 TdS) )

where k is the curvature and 7 is the torsion of the filament. The above transformation

of the unknown variable transforms (1.1.1) to

¢t = iwss + % W|2?/1

The transformation (1.1.2) is valid as long as  # 0. Since the transformation is defined
in terms of the torsion, the above expression (1.1.2) is invalid if there is a point with
zero curvature. There is no way to determine a priori which points of the filament have
zero curvature. To overcome this, Koiso [24] constructed a transformation often called
the generalized Hasimoto transformation, which is defined regardless of the value of the
curvature. This rigorously justified the conversion between the LIE and the nonlinear
Schrodinger equation in the sense that the transformation is well-defined and can also
be reversed. This can be extended to a multi-dimensional analog, called the Schrodinger
map, as in Chang, Shatah, and Uhlenbeck [6] and Nahmod, Shatah, Vega, and Zeng [32].

A generalized model which takes into account the effect of axial flow of the vortex
filament was proposed in 1972 by Moore and Saffman [29] and later in 1991 by Fukumoto
and Miyazaki [10]. The equation proposed in these two works are the same, but the
method in which they derived it are different. The model equation is a generalization of
the LIE given by

3
(1.1.3) T, =T, X Tys + a{wsss + §wss X (s X a:ss)},

where o € R is a parameter describing the magnitude of the effect of axial low. We
refer to this equation as the generalized LIE. The “axial flow” of a vortex filament does

not mean flow inside the filament. This model equation is derived by approximating the



velocity field of a vortex tube. It is assumed that the velocity inside the tube is governed
by the Navier—Stokes equations and the velocity outside the tube is governed by the Euler
equations. Then, the velocity at the boundary of the tube is determined by using the so
called matching method. Finally, the limit of the thickness of the tube tending to zero is
taken to derive the model equation for the vortex filament. The details of the derivation
of the model equation was given in Fukumoto and Miyazaki [10]. Note that even though
(1.1.3) is a generalization of (1.1.1), the methods in which the two model equations were
derived are completely different.

Again, by applying the aforementioned generalized Hasimoto transformation to (1.1.3),

we obtain
i 3
(1.1.4) =t 5100 + 0+ S0P

which is called the Hirota equation.

Initial value problems for both (1.1.1) and (1.1.3) have been considered in many works.
In Nishiyama and Tani [33], they proved the existence of a unique time-global solution
for both (1.1.1) and (1.1.3) without applying the Hasimoto transformation. Their main
method for proving the existence of the solution is a parabolic regularization, and they
make use of conserved quantities to obtain a priori estimates. In 1997, Koiso [24] proved
the existence and uniqueness of a time-global solution to a geometrically generalized ver-
sion of (1.1.1) by applying the generalized Hasimoto transformation and using a known
existence theorem for the nonlinear Schrédinger equation. Later in [25, 26], he also proved
the unique solvability without using the generalized Hasimoto transformation and in a
different geometrical setting. In 2008, Onodera [34, 35] considered a geometrically gener-
alized version of (1.1.3) and proved the time-global unique solvability. He also considers
the validity of the generalized Hasimoto transformation in his geometrical setting. In
the geometrically generalized case, it is still unknown whether the transformation can be
reversed.

Nishiyama and Tani [33] also considered an initial-boundary value problem for (1.1.1)
in a finite interval. The boundary condition imposed there is the zero curvature condition
at both ends of the filament, which is expressed at s = 0 by x.(0,¢) = 0. By direct
calculation, we see that the solution « of the problem satisfies (0, t) = (:1:8 X :css) (0,t) =
0, which means that the ends of the vortex filament are fixed at their initial positions.
As will be explained in the next chapter, we consider an initial-boundary value problem
for (1.1.1) with a different boundary condition, which allows the endpoint of the filament
to move along the boundary.

The Hirota equation, and dispersive equations in general, have a vast history of studies,



a part of which is mentioned below. Hirota [18] originally considered (1.1.4), with more
general constant coefficients on each term, to obtain N-envelope-soliton solutions. By
obtaining this type of solution, he discussed the relation between the N-envelope-solition
and the classical solitons of the KdV equation and the Schrodinger equation. In 1997,
Laurey [28] proved the unique solvability globally in time of the initial value problem
for a class of third order dispersive equations which includes (1.1.4). In 2008, Segata
[37] proved the time-global unique solvability of the initial value problem for (1.1.4) and
also showed the asymptotic behavior of the solution as time goes to infinity. They both
utilized the smoothing effect of dispersive equations in their analysis. Results related to
this approach can also be found in Sjéberg [39], Kenig, Ponce, and Vega [19], and the
references therein.

Besides the solvability of problems for the LIE, research have been done on many
other aspects of vortex filaments. In Gutiérrez, Rivas, and Vega [12], they constructed
a one-parameter family of self-similar solutions for the initial value problem that form a
single sharp corner. They constructed the solutions by starting with a filament with a
sharp corner and solving the problem reverse in time. Hasimoto [14] showed the existence
of solitons that propagate along a linear filament, and numerically studied the shape and
movement of the solitary wave. Fukumoto [9] gave an asymptotic formula for the velocity
of the fluid induced by a closed vortex filament, called a vortex ring, and numerically
studied the velocity distribution. Kida [21] constructed various exact solutions, which
move steadily in time, of the LIE. The solutions studied there include the helicoidal
filaments and solitary wave type filaments. Betchov [4] derived an equation, called the
intrinsic equation, which is the LIE expressed in terms of the curvature and the torsion of
the filament. He also studied solutions of the intrinsic equation in special settings. Klein
and Majda [22] derived a different model equation for the motion of a vortex filament
where the filament is assumed to be almost straight, but they take into account the effect
of vortex stretching, and the model equation allows the filament to stretch. Many related
results can also be found in [8, 11, 13, 17, 20, 27, 30], and the references therein.

1.2 Aim of the Present Study

The aim of this dissertation is to prove the unique solvability of initial-boundary value
problems on the half-line for (1.1.1) and (1.1.3). The specific problems we consider are as
follows.

Ty =T, X g, S>0,1>0,

x(s,0) = xo(s), s> 0,
xs(0,t) =e3, t>0



for the LIE,

3
T, =T X Tys + m858+§m55 X (xg X azss)}, s>0,t>0,

(1.2:5) x(s,0) = xo(s), s >0,

wss<07 t) = 07 t>0

for a < 0, and

3
T, =T X Tys + m858+§m55 X (xg X azss)}, s>0,t>0,

(1.2.6) x(s,0) = xo(s), s >0,
xs(0,t) = es, t>0,
x5(0,t) = 0, t>0

for « > 0. Here, e3 = (0,0,1). Note that the number of boundary conditions changes

depending on the sign of a;, which will be addressed in more detail in Chapter 3 and 4.

€3
A

Figure 1.1: Vortex Filament in the Half Space

These initial-boundary value problems describe the motion of a vortex filament moving
in the three dimensional half space, as shown in Figure 1.1.

For the initial-boundary value problem for the LIE, we prove the time-global solvability
in Chapter 2 by reducing the problem to an initial value problem by extending the initial
datum to the whole space. This is possible by carefully analyzing the compatibility
conditions and giving an explicit expression for the n-th order compatibility condition for

any natural number n. This allows us to prove that the extension of the initial datum
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by reflection with respect to the plain {x € R3;z3 = 0} is smooth. The LIE itself is also
invariant under this reflection and thus, the solution to the initial value problem preserves
the symmetry with respect to the plain. Under these circumstances, the restriction of the
solution to the half space is the desired solution to the initial-boundary value problem.
The other two problems are approached in a more straight forward manner in which
we consider the linearized problems. We prove the time-local solvability via an iteration
argument based on the existence theorems for the linearized problems. Since the existence
theorems for the linearized problems themselves are non-trivial, we devote Chapter 3 to

this issue. Specifically, we consider general linear problems

Uy = AUy + A(w, 0)u+ f, >0,t>0,
(1.2.7) u(z,0) = uo(z), x>0,
u.(0,t) =0, t>0

for a < 0, and

U = QUgyy + A(w, 0)u+ f, x>0,t>0,

U(.T,O) :u0($), x >O7
(128) 'LL(O,t) =e, t>0,
u,(0,t) =0, t>0
for a > 0. Here, u(z,t) = (u'(x,t),u?(x,t),...,u™(z,t)) is the unknown vector valued

function, ug(z), w(z,t) = (w'(x,t),w(z,t),...,w*(x,t)), and f(x,t) = (f1(x,t), f*(x,1),
ooy f™(x,t)) are known vector valued functions, and e is an arbitrary constant vec-
tor. A(w,d,) is a second order differential operator of the form A(w,d,) = Ag(w)d? +
Ay (w)0, + Ag(w). Ay, Ay, Ay are smooth matrices and A(w, d,) is strongly elliptic in
the sense that for any bounded domain F in RF, there is a positive constant § such that

for any w € £
Ap(w) + Ag(w)* > 41,

where I is the unit matrix and * denotes the adjoint of a matrix. These problems include a
regularized form of the linearized problem for the generalized LIE. The equation linearized

around w has the form
vy =W X Vs + {5 + 3055 X (w X W)} + f,

where v is the variation of the tangent vector of the filament. The solution to the initial-
boundary value problem for the above system can be obtained by a parabolic regulariza-

tion, which will be considered in detail in Chapter 3, of the form
vy = =0y + aVss)s + W X Vg5 + 3avss X (W X wy) + f

9



with € > 0. It seems hard to obtain the estimate of the solution uniform in e, which is
needed to pass to the limit € — +0. To overcome this, we add the term dwv,, to the above

system to obtain
vy = (—ev; + QVg4)s + Vg5 + W X Vg5 + 300 X (W X wy) + f.

Then, by utilizing the dissipative property of the term dv,s, we are able to obtain the
desired estimates uniform in . If we pass to the limit ¢ — +0, we have a parabolic-

dispersive system
V= Vg5 + {6’053 + W X Vg + 3avgs X (W X ws)} + f,

which satisfies the assumptions for (1.2.7) and (1.2.8). This is the motivation for consid-
ering problems (1.2.7) and (1.2.8).
As an application of the existence theorems obtained in Chapter 3, we prove the

time-local solvability of

3
Vy =V X Vgs + a{vsss + 3v,, X ('v X vs) — §]US|2US

(1.2.9) +0(vss + |vs|?v), s> 0,t>0,
’U(S,O) = vO(S)’ § > 07
vs(0,t) = 0, t>0

for a < 0, and

p
3
Vi =V X Vg5 + a{vsss + 3vgs X (v X vs) — §]US|2'US

+0 (Vs + |vs[*v), s >0, >0,

(1.2.10) v(s,0) = vo(s), s> 0,
v(0,t) = es, t >0,
\ ’US( 7t) = 07 t > 0

for a > 0 through a standard iteration scheme in Chapter 4. These two problems are
regularized problems for (1.2.5) and (1.2.6), respectively, expressed in terms of the tangent
vector v. They are regularized as above so that we can apply the linear existence theorems
obtained in Chapter 3. In fact, the second order terms correspond to the operator A(wv, d;)
and the lower order terms correspond to the forcing term f of the linear system. The
extra regularizing term §|v,|?v may seem unnecessary, but it actually plays an important
role. If |vg| = 1, a smooth solution v to (1.2.9) or (1.2.10) with § = 0 also satisfies |v| = 1.
This property is one of the crucial components to derive energy estimates of the solution
2

when § = 0, and by adding the regularizing term d|v|*v, the same property holds for

9 > 0. Utilizing this property, we can obtain uniform estimates of the solution to (1.2.9)
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and (1.2.10) with respect to §, allowing us to pass to the limit § — +0. Finally, as in the
case of the LIE, we can construct the desired solution « from v through the formula

t
x(s,t) = zo(s) +/ {v X Vs + Qg + +;avs x (v x m)}(sm)dr
0

1.3 Function Spaces

We define some function spaces that will be used throughout this dissertation and nota-
tions associated with the spaces.

For an open interval €, a non-negative integer m, and 1 < p < oo, W™P(Q) is the
Sobolev space containing all real-valued functions that have derivatives in the sense of
distribution up to order m belonging to LP(€2) and W™ () is the homogeneous Sobolev
space. We set H™(Q) := W™2(Q) as the Sobolev space equipped with the usual inner
product and H™(Q) := W™2(Q2). We will particularly use the cases @ = R and Q = R,
where Ry = {z € R;z > 0}. When 2 = R, the norm in H™(Q2) is denoted by || - ||
and we simply write || - || for || - ||o. Otherwise, for a Banach space X, the norm in X is
written as || - || x. The inner product in L?(R.,) is denoted by (-, ) and the inner product
in L?(R) is denoted by (-, -).

For 0 < T < oo and a Banach space X, C™([0,T]; X) denotes the space of functions
that are m times continuously differentiable in ¢ with respect to the norm of X.

We define the Sobolev—Slobodetskii space. For 0 < T' < oo, we denote Q7 := R, X
(0,7), and for h > 0 and a positive integer [, we define the space H}ZL’W(QT) as the space

of functions defined on Q)7 with finite norm

[elllpser2 el + el

(Qr) = (Qr)’

where

T
ellgo gy i= [ et D).
0

T
Ml oy = B [ et )P
0

T oht o0 8[1/2]u0(.’t — 7’) 8[l/2}u0(.’ t)
LA o o

[£] is the integer part of L and uo is the extension of u by zero into t < 0 if  is not an

2
2
)&

2

integer. When % is an integer,

T 1/2
_ oMy
rwmowQ)—AeQMQWwﬁW+Hwﬂ@w
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and we also impose that ?917(37 0)=0forj=0,1,...,%

equivalent norm for the space H, ,lll/ *(Qso) will be used.

Jull2gm g Z / |55

where a tilde denotes the Laplace transform with respect to ¢ defined by

— 1. When T = oo, the following

oY u

LS ITIZ 7d,

ﬂ(x,T):/ e Tu(x,t)dt,
0

where 7 = h 4 inp with A > 0. The equivalence was shown in Solonnikov [38].
Finally, we define some auxiliary function spaces, which will be used in Chapters 3
and 4. Let [ be a non-negative integer and define the following.
!

Xp = (C’j([O,T]; PR N Hj(O,T;H3+3("j)(R+))),

J=0

-1
Y= {f; fe ﬂOj([O,T];H2+3("1‘j)(R+)), 8lt]: € L*(0,T; Hl(R+))}
j=0

-1

; e dw ~

Zkh = {w; w e () C([0,T]; H*H1)(R,)), i €L (0,T; Hl(R+))}
j=0

For any function space described above, we say that a vector valued function belongs

to the function space if each of its components does.

The contents of this dissertation are as follows. In Chapter 2, we prove the time-
global solvability of the initial-boundary value problem for the LIE. In Chapter 3, we
consider initial-boundary value problems for a second order parabolic system with a third
order dispersive term and prove the solvability. From here on, we refer to this system as
a parabolic-dispersive system. This parabolic-dispersive system is considered to analyze
the generalized LIE, for which we prove the time-local solvability of initial-boundary value
problems in Chapter 4. Finally, in Appendix A, we address the initial-boundary value
problem for the LIE to demonstrate the generalized Hasimoto transformation. We do
this to communicate the idea of the generalized Hasimoto transformation while refraining

from using technical terms of differential geometry as much as possible.

12



Chapter 2

Localized Induction Equation in the
Half Space

2.1 Problem Setting

We consider the initial-boundary value problem for the motion of a vortex filament in the

half space in which the filament is allowed to move on the boundary:

Ty = Ty X Ty, s>0,t>0,
(2.1.1) x(s,0) =xo(s), s>0,
x4(0,1) = es, t >0,

where e3 = (0,0, 1). We assume that
(2.1.2) |os(s)| =1 for s>0, 75(0) =0,

for the initial datum. The first condition states that the initial vortex filament is parametrized
by its arc length and the second condition states that the curve is parameterized starting
from the boundary. Here we observe that by taking the inner product of e3 with the

equation, taking the trace at s = 0, and noting the boundary condition we have

d
& (€3 @) |s=0 = €3 (Ts X Tss)| 4y
t
= X (Ts X Ts5)| g
= [)’
where “-” denotes the inner product and |,—¢ denotes the trace at s = 0. This implies

that if the end of the vortex filament is on the boundary initially, then it will stay on the
boundary, but is not necessarily fixed. This is the reason for the expression “allowed to

move on the boundary”.
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By introducing new variables v (s, t) := x4(s,t) and vo(s) := xps(s), (2.1.1) and (2.1.2)

respectively become

Vi = U X Vg, s>0, t>0,
(2.1.3) v(s,0) =vo(s), s>0,
v(0,t) = es, t >0,
and
(2.1.4) lvo(s)| =1, s>0.

Once we solve (2.1.3), the solution @ of (2.1.1) and (2.1.2) can be constructed by

x(s,t) = xo(s) —i—/o v(s, T) X vs(s, ) dT.

Thus from now on, we concentrate on the initial-boundary value problem (2.1.3) under
the condition (2.1.4). Note that if the initial datum satisfies (2.1.4), then any smooth

solution v of (2.1.3) satisfies
(2.1.5) lv(s,t)|=1, s>0,t>0.

This can be confirmed by taking the inner product of the equation in (2.1.3) with v.

2.2 Compatibility Conditions

We derive necessary conditions for a smooth solution to exist for (2.1.3) with (2.1.4).
Suppose that v(s,t) is a smooth solution of (2.1.3) with (2.1.4) defined in Ry x [0, 7]
for some positive 7. We have already seen that for all (s,¢) € Ry x [0,7]

(2.2.1) lv(s,t)|* = 1.

By differentiating the boundary condition with respect to ¢, we see that
(B),, ofv|,_,=0 for neN, t>0.

We next show

Lemma 2.2.1 For a smooth solution v(s,t) under consideration,

(C)y v X 83"1)}5:0 =0,
(D)n dv-dw| =0 for j+l=2n+1
hold.
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Proof. We prove them by induction. From (B); and by taking the trace of the equation
we see that

0=wv; |s:0 =V X Vg |s:07
and thus, (C); holds. By taking the exterior product of vy and (C'); we have
{(vs - v5s) v — (Vs - V) Vs } |s:0 = 0.

On the other hand, by differentiating (2.2.1) with respect to s, we have v - vy = 0.

Combining these two and the fact that v is a non-zero vector, we arrive at
Vs Vs |4g = 0.
Finally, by differentiating (2.2.1) with respect to s three times and setting s = 0, we have
0=2 (v V55 + 305 Vss) | g = 2V - Vs | g »

which implies that (D); holds. Suppose that the statements hold up to n — 1 for some
n > 2. By differentiating (C'),,—; with respect to ¢ we have

x (2 V)| L, =0,

where we have used (B);. We see that

2(n—1)

92Dy, = 921 (v x wy,) Z ( ) (0w x 92D 7ht2y)

k=0
where ( 2(n k_ 1) ) is the binomial coefficient. We have

2(n—1)

(2.2.2) ( 2n—1) ) [0 x (9 x GEn-DF+2))

I = 0.
k=0

s=0

We examine each term in the summation. When 2 < k < 2(n — 1) is even, we see from

the assumptions of induction (C)y/2 and (C)(2(n—1)—k+2)/2 that both kv and PRl —k+2,,

are parallel to v, so that
v x 852(”_1)_k+2v|510 = 0.

When 1 <k <2(n —1) is odd, we rewrite the exterior product in (2.2.2) as
X (85’0 X 65(”_1)_“2'0) = (v- 852(”_1)_k+2v) oFv — (v- 8?17)852(”_1)_“21).
Since 2(n — 1) — k + 2 is also odd, by (D)—1y2 and (D)@(m-1)—k+1)/2 We have
v - 8§v|s:0 =v- 83("_1)_“21)‘5:0 = 0.
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Thus, only the term with k£ = 0 remains and we get

v x (v x 882”1;”5:0 =0.

Here, we note that

v x (v x 07") = (v - 0*"v)v — 0*"v,

where we used (2.2.1). Taking the exterior product of this with v we see that (C), holds.
Taking the exterior product of 92""1=%*¢ with (C); and using (D),,_ for 1 < k < n yields

2k on+1-2k
(00 - o2 'U)'U‘s:o = 0.
Since v is a non-zero vector, we have for 1 <k <n
2%k 2n+1-2k _
(2.2.3) O%v - 0 v| _,=0.

Finally, by differentiating (2.2.1) with respect to s (2n + 1) times, we have

2n+1

Z 2n+1 (0w - 92+1=iy)
j S S

J=0

s=0
Since every term except when j =0, 2n + 1 is of the form (2.2.3), we see that
2n-+1 .
v -0, ’U‘S:O =0,
which, together with (2.2.3), finishes the proof of (D). O

Worth noting are the following two properties which will be used in later parts of this

chapter. For a natural number n,
2n _ 2n+1 _
e; X 0, U‘SZU*O’ es - 0, 'v|S:0f0.

These are special cases of (C),, and (D),, with the boundary condition substituted in.
By passing to the limit ¢ — 0 in (C'),, we derive a necessary condition for the initial

datum.

Definition 2.2.2 For n € N U {0}, we say that the initial datum vq satisfies the com-
patibility condition (A),, if the following conditions are satisfied for 0 < k <mn

’Uo|s:0 = €3, k=0,
(’UO X 882'“'00)| = 0, k # 0.

s=0

From the proof of Lemma 2.2.1, we see that if v, satisfies (2.1.4) and the compatibility
condition (A),, then vy also satisfies (D) for 0 < k < n with v replaced by vy as long as

the trace exists.
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2.3 Extension of the Initial Data

For the initial datum vy defined on the half-line, we extend it to the whole line by

vo($), s> 0,
—60(—8), s <0,

(2.3.1) Bo(s) = {

where v = (vl v2, —0v3) for v = (v, 02 0?) € R3.

Proposition 2.3.1 For any integer m > 2, if vo, € H™(R,) satisfies (2.1.4) and the

compatibility condition (A)m), then vos € H™(R). Here, [}] indicates the largest integer

not exceeding .

Proof. Fix an arbitrary integer m > 2. We will prove by induction on k that 0¥, €
L*(R) for any 0 < k < m. Specifically we show that the derivatives of ¥y in the distribu-

tion sense on the whole line R up to order m + 1 have the form

{ (98 1y) (s), s> 0,

2.3.2 Ot 194)(s) = T
( ) ( s )( ) _(—1)’““(85“1)0)(—3)7 s <0,

for 0 <k <m.
Since vy € L*(Ry) and vy, € H*(R,), Sobolev’s embedding theorem states vo, €
L>(R,) and thus vy € Wh*(R,), so that the trace v,(0) exists. By definition (2.3.1)

we have
50(_0) = ( - Ué(0)7 _Ug(0)7 U3(0))>
but from (A)g, v5(0) = v3(0) = 0. These imply that v(+0) = vo(—0), so that we obtain

_ B (0sv9) (8), s> 0,
Oro(s) = { —(=1)(Dsv0)(—s), s<0,

and the case k = 0 is proved.
Suppose that (2.3.2) with k + 1 replaced by k holds for some k € {1,2,...,m}. We
check that the derivative 9*vy does not have a jump discontinuity at s = 0. When £ is

even, from the definition of %,
(0500) (—0) = (—9%v5(0), —%vg(0), k5 (0)),
but from (A)% we have
0= vy X 851)0‘8:0 = e3 X 65'00(0),
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which implies that 9%v(0) is parallel to e3 and that the first and second components are
zero. When £k is odd,

(9500 (—0) = (9u(0), 875 (0), =05 v5(0)),
but (A)[g] implies (D)[%] and particularly
0= wvyg- 851)0’8:0 = e3 - vy (0) = (0% v3)(0),
so the third component is zero. In both cases, we have (0¥0,)(+0) = (9%0,)(—0), so that

we can verify (2.3.2). This finishes the proof of the proposition. 0

2.4 Existence and Uniqueness of Solution
Using vg, we consider the following initial value problem:

(2.4.1) U = U X Ugg, seR, t>0,
(2.4.2) u(s,0) =vo(s), seR.

By Proposition 2.3.1, the existence and uniqueness theorem (in Nishiyama and Tani [33])

of a strong solution w is applicable. Specifically we use the following theorem.

Theorem 2.4.1 (T. Nishiyama and A. Tani [33]) For a non-negative integer m, if vos €
H**™(R) and |vg| = 1, then the initial value problem (2.4.1) and (2.4.2) has a unique

solution uw such that
u — vy € C([0,00); H**™(R)) N C'([0,00); H™(R))
and |u| = 1.

From Proposition 2.3.1, the assumptions of this theorem are satisfied if vy, € H*T™(R.,)
satisfies the compatibility condition (A)[HTm] and (2.1.4).
Now we define the operator T by

(Tw)(s) = —w(=s),

for R3-valued function w defined on s € R. It is easy to verify that Tv, = v, and that
T (u x us) = (Tu) x (Tu),, . Taking these into account and applying the operator T to
(2.4.1) and (2.4.2), we have

{ (Tu); = (Tu) x (Tu)ss, seR, t>0,
(Tu)(s,0) = (Tog)(s) =vo(s), s€ER,
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in other words, Tu is also a solution of (2.4.1) and (2.4.2). Thus we have Tu = u by the

uniqueness of the solution. Therefore, for any ¢ € [0, T
u(0,t) = (Tu) (0,t) = —u(0, 1),

which is equivalent to u!(0,¢) = u?(0,t) = 0. Therefore, it holds that v*(0,¢) = —1 or 1
because |u| = 1, but in view of v(0) = vo(0) = e3, we obtain u(0,¢) = e3 by the
continuity in ¢.

This shows that the restriction of u to R, is a solution of our initial-boundary value
problem. Using this function v := u|r,, we can construct the solution « to the original

equation as we stated in Section 2.2. Thus we have

Theorem 2.4.2 (M. Aiki and T. Iguchi [1]) For a non-negative integer m, if Toss €
H?>™(R,) and xos satisfies the compatibility condition (A)[%Tm] and (2.1.2), then there

exists a unique solution x of (2.1.1) such that
x —x € C([0,00); H™(R1)) N C*([0,00); H™(R)),
and |x| = 1.

Proof. The uniqueness is left to be proved. Suppose that x; and x5 are solutions as in

the theorem. Then, by extending x; (i = 1,2) by

- f xi(s,1) s>0,t>0,
zi(s,1) = { z(—s,t) s<0,t>0,

we see that x; are solutions of the LIE in the whole space. Thus x; = @, follows from

the uniqueness of the solution to the initial value problem. 0
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Chapter 3

Initial-Boundary Value Problems for
a Parabolic-Dispersive System

3.1 Problem Setting

In this chapter, we prove the unique solvability of the following initial-boundary value

problems: for a < 0,

U = QUgey + A(w, 0)u+ f, x>0,t>0,
(3.1.1) u(z,0) = uo(z), x>0,
u.(0,t) =0, t > 0;

for a > 0,

Uy = QUgyy + A(w, 0)u+ f, ©>0,t>0,

u(z,0) = uo(z), x>0,
(3.12) u(0,t) = e, t>0,
uy(0,) =0, t>0.
Here, u(x,t) = (ul(x,t),u*(z,t),...,u™(x,t)) is the unknown vector valued function,

ug(z), w(z,t) = (wi(x, t), w(z,t),...,wk(x,t)), and f(z,t) = (f(x,t), (2, t),..., f™(
x,t)) are known vector valued functions, e is an arbitrary constant vector, subscripts
denote derivatives with the respective variables, A(w,d,) is a second order differential
operator of the form A(w,d,) = Ag(w)d? + Ay(w)d, + As(w) with smooth matrices
Ay, Aj,and A,. Furthermore, A(w, d,) is assumed to be strongly elliptic in the sense
that for any bounded domain F in R, there is a positive constant § such that for any
weFE

Ag(w) + Ag(w)* > 41,

where I is the unit matrix and % denotes the adjoint of a matrix. Note here that the

number of boundary conditions imposed changes depending on the sign of «, much like
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the KdV equation. This is because the number of fundamental solutions of u; = .,
that are bounded in x changes depending on the sign of «.
Problems (3.1.1) and (3.1.2) are considered to prove the unique solvability of the

following nonlinear problems: for a < 0,

i

3
V=V X Vs + a{'vsss + évss X (v X vy)
3
(3.1.3) +§vs X (v x vss)}, s>0,t>0,
o(5,0) = v(s), 550,
| v(0,t) =0, t>0;
for a > 0,
( 3
V=V X Vgg + a{’usss + évss X (v X vy)
3
(3.14) ¢ +§vs><('v><'vss)}, s>0,t>0,
,U(S?O) = UO(S)v s >0,
v(0,t) = e3, t>0,
| v(0,t) =0, t>0,

where v = (v!(s, t),v%(s,t),v3(s,t)) is the tangent vector of the vortex filament parame-
terized by its arc length s at time ¢, e3 = (0,0, 1), the symbol X is the exterior product in
the three dimensional Euclidean space, and « is a real constant describing the magnitude
of the effect of axial flow. These two problems are the problems for the generalized LIE
written in term of its tangent vector. We refer to the equation written in terms of v as
the vortex filament equation to differentiate it from the generalized LIE.

As far as the author knows, there are no results on initial-boundary value problems for
the above equation. As mentioned in Chapter 1, Segata [37] proved the unique solvability
and showed the asymptotic behavior in time of the solution to the Hirota equation, given

by

) 1 . 3

which can be obtained by applying the Hasimoto transformation to the vortex filament
equation. Since there are many results regarding the initial value problem for the Hirota
equation and other Schrodinger type equations, it may be more natural to see if the avail-
able theories from these results can be utilized to solve the initial-boundary value problem
for (3.1.5), instead of considering (3.1.3) and (3.1.4) directly. Admittedly, problem (3.1.3)

and (3.1.4) can be transformed into an initial-boundary value problem for the Hirota
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equation. But, in light of the possibility that a new boundary condition may be consid-
ered for the vortex filament equation in the future, it would be beneficial to develop the
analysis of the vortex filament equation itself because the Hasimoto transformation may
not be applicable under the new boundary condition. For example, (3.1.3) and (3.1.4)
model the motion of a vortex filament moving in the three dimensional half space, but if
we consider a boundary that is not flat, it is non-trivial as to if we can apply the Hasimoto
transformation or not, thus we consider the vortex filament equation directly.

We begin with the following linearized system with given w and f.
V=W X Vg +a{vsss + 3vgs X (w X ws)} +f.

The solution to the initial-boundary value problem for the above system can be obtained
by a parabolic regularization, which will be considered in detail later in this chapter, of

the form
vy = a(—ev; + AVg)s + W X Vs + 3ass X (W X wy) + f

with € > 0. It seems hard to obtain the estimate of the solution uniform in e, which is
needed to pass to the limit ¢ — 40. To overcome this, we added the term dv,, to the

above system to obtain
vy = (—eV; + QVss)s + IVss + W X Vg5 + 3005 X (W X wy) + f.

Then, by utilizing the dissipative property of the term dv,s, we are able to obtain the
desired estimates uniform in . If we pass to the limit ¢ — +0, we have a parabolic-

dispersive system
(3.1.6) V= Vg5 + {(51;35 + W X Vg5 + 3avgs X (W X ws)} + f.

which satisfies the assumptions for problems (3.1.1) and (3.1.2). The dissipative property
of the second order part allows us to construct the solution to the initial-boundary value
problems for

3 3
V= U X Vg + v {vsss + 5 Uss X (v x v,) + U X (v x vss)} + 0 (vss + |vs|v).

Then, we can pass to the limit 6 — +0 by using the uniform estimates derived from the
property |v| = 1.

This is the motivation for considering (3.1.1) and (3.1.2). Note that the limit 6 — +0
cannot be considered in general for (3.1.1) and (3.1.2).

At first glance, one may think that (3.1.6) can be treated by using the known results
of KAV and KdV-Burgers equations such as Hayashi and Kaikina [15], Hayashi, Kaikina,
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and Ruiz Paredes [16], or Bona and Zhang [5]. However, this seems hard to do because
the vortex filament equation in (3.1.3) and (3.1.4) has second order derivatives in the
nonlinear term and the linear estimates obtained in the KdV and KdV-Burgers theory is
insufficient to treat the nonlinear terms as a regular perturbation. Thus, a new technique
is needed.

Our key method to prove the solvability of (3.1.1) and (3.1.2) is a new parabolic
regularization. For (3.1.2), we can regularize the system with a fourth order dissipation
term, transforming it into a standard parabolic system. We cannot do this for (3.1.1)
because a fourth order parabolic system requires two boundary conditions to solve, but the
original problem imposes only one boundary condition. Thus, a standard regularization
cannot be applied to (3.1.1). To prove the unique solvability of (3.1.1), we introduce a

new type of regularization

Uy = o (Uyy —ewy), + A(w,0,)u+g, =>0,t>0,
(3.1.7) u(z,0) = uo( ), x>0,
u,(0,1) = t>0

with € > 0. Here, g is a given data which we determine later so that the compatibility
conditions are satisfied. To construct the solution of the above system, we first consider

the following problem.

U= (Uyy —€U), +9g, ©>0,0>0
(3.1.8) u(z,0) = up(z), x>0,
u,(0,t) =0, t>0.

Problem (3.1.7) is a parabolic regularization of (3.1.1) whose principal term is the
first term in the right-hand side of the equation in (3.1.8). In fact, for a vector C, if we

substitute u(z,t) = €™ C into u; = o (uz, — £uy),, we obtain the dispersion relation

7= —a(&? + e7)i&, so that for a non-trivial solution to exist, we need
2 ¢4
a’e
R = __aee ,
1+ o228

which indicates that the equation is parabolic in nature.

Since the proof for the case a > 0 is fairly standard, we concentrate on the case a < 0,
and give a remark on the case o > 0 at the end of this chapter.

Now, we state the main theorems. The compatibility conditions mentioned in the

theorems are defined in the next section.

Theorem 3.1.1 (M. Aiki and T. Iguchi [2]) For any T > 0 and an arbitrary non-negative
integer 1, if ug € H*3(Ry), f € Y}, and w € Z. satisfy the compatibility conditions
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up to order I, a unique solution w of (3.1.1) exists such that w € XL. Furthermore, the

solution satisfies

lullx;, < C(lwolla + [1£Ily)

where the constant C' depends on T', ||w| 2 , and é.

Theorem 3.1.2 (M. Aiki and T. Iguchi [2]) For any T > 0 and an arbitrary non-negative
integer 1, if ug € H*™3(Ry), f € V), and w € ZL satisfy the compatibility conditions
up to order I, a unique solution w of (3.1.2) exists such that w € XL. Furthermore, the

solution satisfies

lullx;, < C(lwoll+a + 1 FIly)

where the constant C' depends on T', ||w| 2 , and é.

The function spaces XL, Y, and Z. are defined in Chapter 1.

The contents of this chapter are as follows. In Section 3.2, we consider the compati-
bility conditions and the necessary corrections to the given data required for the regular-
ized problem. In Section 3.3, we construct and estimate the solution to the regularized
problem. Then in Section 3.4, we construct and estimate the solution of the parabolic-
dispersive system in appropriate function spaces and prove Theorem 3.1.1. Finally in

Section 3.5, we give a remark on the proof of Theorem 3.1.2.

3.2 Compatibility Conditions

We will construct the solution of (3.1.1) by taking the limit ¢ — 40 in the following

regularized problem.

Uy = —QEU + QU + A(w,0)u+g, x>0t >0,
(3.2.1) u(x,0) = up(x), x>0,
u,(0,t) =0, t>0.

Since the derivation of the compatibility conditions for the regularized problem is com-
plicated and the required corrections for the given data are not standard, we devote this

section to clarify these matters.

3.2.1 Compatibility Conditions for (3.1.1)

We first derive the compatibility conditions for the original problem (3.1.1). We denote
the right-hand side of the equation in (3.1.1) as

(3.2.2) Q,(u, f,w) = atyy, + Alw, d,)u + f,
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and we also use the notation Q,(z,t) := Q;(u, f, w) and sometimes omit the (x,t) for

simplicity. We successively define
n—1
< n — ]. 77—
(323) Qn = aaanfl + Z ( ] ) Banflfj + at‘ lf7
=0

where B; = (8§A0(w))8§ + (8,{A1('w))5)$ + &/ Ay(w). The above definition (3.2.3) gives
the formula for the expression of J;u which only contains = derivatives of w and mixed
derivatives of w and f. From the boundary condition in (3.1.1), we arrive at the following

definition for the compatibility conditions.

Definition 3.2.1 (Compatibility conditions for (3.1.1)). For n € N U {0}, we say that
wo, f, and w satisfy the n-th order compatibility condition for (3.1.1) if

’U,OI(O, O) =0
when n =0, and

(0.Q,)(0,0)=0

when n > 1. We also say that the data satisfy the compatibility conditions for (3.1.1) up
to order n if they satisfy the k-th order compatibility condition for all k with 0 < k < n.

Now that we have defined the compatibility conditions, we discuss an approximation
of the data via smooth functions which keep the compatibility conditions. Recall that
XL Y] and ZL are function spaces defined in Chapter 1 to which the solution and given
data belong. Data in these function spaces with index [ are smooth enough for the [-th
order compatibility condition to have meaning in a point-wise sense, but the (I + 1)-th
order compatibility condition does not. Utilizing the method due to Rauch and Massey
[36], we can get the following.

Lemma 3.2.2 Fiz non-negative integers | and N with N > 1. For any uy € H**3(R),
f €Yl and w € ZL satisfying the compatibility conditions for (3.1.1) up to order 1, there
exist sequences {ug, }n>1 in H*T3N(RL), {f, o1 in Y, and {w, }n>1 in ZX such that
for anyn > 1, wg,, f,, and w, satisfy the compatibility conditions for (3.1.1) up to order
N and

o, — ug in H*(RL), f, — Fin Yi and w, — w in Zk as n — oo.

From Lemma 3.2.2, we can assume that the given data are arbitrarily smooth and satisfy

the necessary compatibility conditions in the proceeding arguments.
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3.2.2 Compatibility Conditions for (3.2.1)

In this subsection, we define the compatibility conditions for (3.2.1). We set
(3.2.4) Pi(u,g,w) = QUyy, + A(w, 0,)u + g.

We also write Py(x,t) and P; as we did with @, in the previous subsection. Setting
¢, (z) := ui(x,0) and taking the trace ¢t = 0 of the equation, we have

(3.2.5) acd| + ¢, = Py(-,0).

A prime denotes the derivative with respect to x. Note that Py (z,0) is expressed by given

data only. Solving the above ordinary differential equation for ¢,, we have

R CXURTY s SR

Since we are looking for square integrable solutions, we impose that lim ¢,(x) = 0. Thus
T—r00

we have

1 [~
$(x) =—— [ e ="VP(y,0)dy.

ag J,
By direct calculation, we see that

| N
Pi(z)=—— [ e oz (@) P! (y, 0)dy,

where we have used integration by parts. We also note here that ¢, is expressed with
given data only. From the boundary condition in (3.2.1), we see that the first order

compatibility condition is given by

/ eas P (y,0)dy = 0.
0

In the same manner, we will derive the n-th order compatibility condition for n > 2.
Taking the ¢ derivative of the equation (3.2.4) (n — 1) times, taking the trace ¢t = 0, and
setting ¢, (x) := 0ju(x,0), we have

ag, + ¢, = (07 P1)(-,0).
We denote
P, :=0"'P,.
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We will prove by induction that ¢,, and P, (z,0) are expressed by using given data only.
Since P, = 07 'P,_1 = 0" ' (qtyyy + A(w)u + g), it holds that

n—1
" —1 n—
(3.2.6) P.(0)=agl  +> ( " ; ) B, 1_;+ 07 'g(-,0).
=0

For n > 2, assume that ¢, and Pg(-,0) are expressed with given data for 1 <k <n — 1.
Formula (3.2.6) implies that P, (+,0) is expressed with given data. Solving for ¢, yields

1 )
d)n(‘r) - T e_é(m_y)Pnan O>dy

ag J,

This proves that ¢,, is also expressed by using given data only. Again by direct calculation,

we have

1 [
P (x)=—— [ e 2" WP (y,0)dy,
ag J,

and arrive at the n-th order compatibility condition

/ eiP;(y, 0)dy = 0.
0

Now we can define the following.

Definition 3.2.3 (Compatibility conditions for (3.2.1)). For n € N U {0}, we say that
wo, g, and w satisfy the n-th order compatibility condition for (3.2.1) if

when n =0, and

/ ea: P, (y,0)dy = 0
0

whenn > 1. We also say that the data satisfy the compatibility conditions for (3.2.1) up to
order n if the data satisfy the k-th order compatibility condition for all k with 0 < k <mn.
For the definition of P, see (3.2.4) and (3.2.6).

We note that for uy € H*3(R,), f € Y}, and w € Z.., the compatibility conditions up
to order [ have pointwise meaning, but the (I 4+ 1)-th order compatibility condition does

not.
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3.2.3 Corrections to the Data

Since we regularized the problem, we must make corrections to the data to assure that
the compatibility conditions hold. Fix a large positive integer N and suppose that
ug € H*BN(R,), f € Y, and w € Z¥ satisfy the compatibility conditions for (3.1.1)
up to order N. We will make corrections to the forcing term so that the data satisfy
the compatibility conditions for (3.2.1) up to order N. More specifically, we prove the

following.

Proposition 3.2.4 Fix a positive integer N. For ug € H*™Y(R,), f € Y, and w €
ZN satisfying the compatibility conditions for (3.1.1) up to order N, we can define g € Y
in the form g = f + h. such that ug, g, and w satisfy the compatibility conditions for
(3.2.1) up to order N and h. — 0 in Y as e — +0.

Proof. We write the equation in (3.2.1) as
u; = —acuy, + P(z,t,0,)u+ g,

ie. Pz, t,0,)u = attyy, + A(w, 0;)u. Setting ¢, (x) := uy(x,0) and taking the trace

t = 0 of the equation, we have
(327) 055(1)/1 + ¢1 = P(a Oa 395)“0 + f(a O) + ha('> 0) = Ql('? 0) + ha('a O)

by using the notation in (3.2.2). As before, solving the above ordinary differential equation

for ¢, under the constraint lim ¢,(z) = 0 we have
T—r00

$r(r) = —— [ e =EDIQ (5,0 + haly, 0)}dy.

ae J,

We give an ansatz for the form of h., namely

N 4
h5<l’, t) = Z Cj,ej e—z’
R

where C,., j = 0,1,..., N, are constant vectors depending on ¢ to be determined later.

From Definition 3.2.3, the first order compatibility condition is

/ e {Q)(y,0) + h.(,0) }dy = 0.

0

Substituting the ansatz for h.(z,t), we have

1\ L,
Co. (1——) - [ Qim0
Qe 0
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Since Q7(0,0) = 0 from the compatibility condition for (3.1.1), we have by integration by
parts

Coe=(as=1) [~ Qi 0y
If we limit ourselves to 0 < ¢ < min{1, 1/|a|}, then from
e Q1 (y,0)| < e¥|Q1(y,0)],
and for y > 0

Y
e ae

Q' (y,0)] — 0 as e — +0,

we see that Cy . — 0 ase — +0. We will show by induction that C'; . can be chosen so that
Ci. >0for1 <j<Nandg=f+ h., up, and w satisfy the compatibility conditions
for (3.2.1) up to order N. Suppose that the above statement holds for 0 < j < n — 2 for
some n with 2 <n < N.

We define P, (z,0) and ¢, () as in Subsection 3.3.2 and we have

1 o0
(3.2.8) ¢, (v) = —— e_i(x_y)Pn(y, 0)dy,

ag J,

and the n-th order compatibility condition for (3.2.1) is
/<¢me®=0
0
We rewrite this condition as
(3.2.9) —P.(0,0) + / ea P”(y,0)dy = 0
0
by integration by parts. We recall that P, (x,0) was successively defined by
n—1 n—1
Pn('7 O) = O‘¢';/L/—1 + Z ( ] ) Bjd)n—l—j + afilg('a O)
=0

with Py(x,0) = atgpe(z) + A(w(z,0),0;)ue(z) + g(x,0). Substituting (3.2.8) with n

replaced by j for ¢; and using integration by parts, we have

n—1
-1
P,(-,0)=aP) (-,0)+ ( " ) B;P,_1_(-,0) + 9/ 'g(-,0)
0

J
n—1
- 045{0497-”;;”1 + Z ( ! j_ ! ) Bj¢/nlj}('70)'
=0
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Also recall that
3 n—1 n—1
Qn - aa:in—l + E ] ]Qn 1—] a f

with Q, (2, 0) = (thgue(2) + A(w(x, 0), 0,)uo(x) + f(z,0). Thus, setting R, = P,,—Q,,

we have

—

n—

/11 —1 n—
Rn(', O) = OéRn_l(‘, O) + ( " ] ) BjRn—l—j<'> 0) + (9t 1h5(', 0)

o (7 Yoo}

with Ry (z,0) = h.(z,0). We prove by induction that R,,(x,0) = 0} *h.(x,0)+o(1) (¢ —
+0). The case n = 1 is obvious from the definition of R;(z,0). Suppose that it holds for
Ry (z,0) for 1 < k <n — 1. From the above expression for R,(z,0), the assumption of

I
o

induction on R, and the assumption of induction that C;. — 0 for 0 < j < n — 2, we
see that

R,(-,0)=3" h. 4+ o(1) — as{aqb”” Z ( ) B¢, ]}

Again, from (3.2.8) and Lebesgue’s dominated convergence theorem, we see that the
last two terms are o(1), which proves R, (7,0) = P,(z,0) — Q, (x,0) = 9;" *h.(x,0) +
o(1) (¢ — +0). Here, we have used the fact that Py(z,0) for 1 < k < n — 1 are
uniformly bounded with respect to €. We note that from the expressions of R,,(x,0) and
h., the terms in o(1) are composed of terms such that their x derivatives are also o(1).
Substituting for P,(x,0) and the ansatz for h. in (3.2.9) yield,

Core = QL(0,0) + / T eE QU (y, 0)dy + o(1)
- [ et Quu oy +ot) o)
0

where we have used the assumption of induction that ug, f, and w satisfy the n-th order
compatibility condition for (3.1.1), i.e. @Q!(0,0) = 0. By using the above expression
to define C,,_;., we see that C,,_1. — 0 as ¢ — +0 and ug, g, and w satisfy the
compatibility conditions for (3.2.1) up to order n. Furthermore, from the explicit form
we see that h. — 0 in Y¥. This finishes the proof of the proposition. O

The corrections to the data associated with (3.1.8) can be treated in the same way.
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3.3 Construction and Estimate of Solution for the
Regularized System

We construct the solution w to problem (3.1.8) as u = u; + us, where wuy is defined as

the solution to the initial value problem

(3.3.1) { Uy = (Ui — cuy), + G, T E€R,T>0,

ui(z,0) = Uy, r € R,
and wus is defined as the solution to the initial-boundary value problem

Ugy = & (Uggy — EWt), x>0,t>0,
(3.3.2) us(x,0) =0, x>0,
U2,(0,1) = —u1,(0,¢) =: ®(t), t>0.

Here, G and U, are extensions of g and ug to x < 0, respectively.

3.3.1 Construction and Estimate of u;

First we solve (3.3.1). By applying the Fourier transform with respect to z, we obtain

the ordinary differential equation

1

Gy = ——(— a3 + Q),
(33.3) =T 1(}55( g uy )
a1(§7 0) = U07
where u; is the Fourier transform defined by
1) —wﬁu (z,t)dz.

Problem (3.3.3) can be explicitly solved as

t
iy (6.1) = O, + / (O (t=7)
0

where ¢(€) is given by

1

mG(g, T)dT

—a?eét — i

&) = 1+ a2e2¢?

Now we derive an estimate for w;. The estimate derived here will be of parabolic nature,

and will not be uniform in €.

1d

3 Tl + 0% o gy = G ) + 0% )

1
< 5 (Il + @2€wsal gy ) = @elran e + G sy
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Similarly, for an integer [ we have

1d
5 108 + 2108 |

1
< 5 (1l + 0208wl ) = el g + 102G

We also obtain estimates for the mixed x and ¢ derivatives of u;, which will come in use
later, in the same way as above

1d

L4 { 0 ey + 0?2100 5 e |

(nal O s 2y + 0 s2||a;+la:”u1uiz<m) 2020w R + 0101

To finish the estimate, we must estimate the ¢ derivatives of u; at ¢ = 0 in terms of U,
and G. Set ¢y, () := 9'u;i(x,0). As before, by taking the trace t = 0 of the equation

and solving for ¢,; under the constraint lim ¢,;(x) = 0 yield
Tr—00

| N
¢u(r) = —— [ =l (y) + Gy, 0) hdy.

Through direct calculation, we see that

1 4
afd’ll(x) = G_E(m_y){@anggUo(y) + 65G(ya O)}dy.

(0%39

Also from direct calculation, we obtain
(3.3.4) 10511l 2my < CNOT Ul 2wy + 195G (-, 0) || 2wy

Here, we have used

—1/ o az T (y)dy

€Jz

1 1 0 1 o0
— e aszw gkt } L (a—y ak+2U d
e L ) Uoly) =z +a52 € (y)dy

1 1 & 1
= gﬁi””Uo(m) + 04_/ e as(T7Y) 8§+2U0(y)dy.

2

As shown from the above calculation, the constant C' in (3.3.4) is not uniform in .

Taking the ¢ derivative of the equation n — 1 times, we obtain

¢/1n = _{ ¢1n + CMp/llln 1) + an_lG('7 O)}

As before, we obtain an expression

1 0
aﬁd)ln(x) - T e o (= y){aak+3¢l ( ) + an lakG ya }dya

ag J,
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and an estimate
Ha];¢1n”L2(R) < O(’|U0||Hk+2n + Z l|or~ 1— JG )”Hk+21 )’

where C' is a positive constant depending on €. Combining these estimates yields

T
sup {Ilainaiul(ut)lliz(m + H@?@iﬂul(ﬁ)lliam} +/0 1070 2 (-, 1) |72yt

0<t<T

T (HUOszum(R) +3 oGt o>||zz+2j(R))
=0

T
LC /0 LG (-, )| 22 gyl

From the boundedness of the extension, we have the following estimate on the half-line.

T
sup {ll0retan (017 + orelr w0l ) + [ lorettu .ofia
0

0<t<

n—1 T
< OeT(||uo||?+2m 'y ||af—1—fg<-,o>||%+2j) o [ oottt
j=0 0

3.3.2 Construction and Estimate of us

In this subsection, we solve (3.3.2). First we derive the compatibility conditions for (3.3.2)
and check that they are satisfied. Suppose that the initial datum and the forcing term
satisfy the compatibility conditions for (3.1.8) up to some finite order. The 0-th order
compatibility condition for (3.3.2) is u1,(0,0) = 0. From the definition of u; and the

compatibility condition for (3.1.8), we have
—ulx(O, 0) = —qu(O, 0) = O,

so that the 0-th order compatibility condition for (3.3.2) is satisfied. Now we check the
first order compatibility condition. Taking the ¢ derivative of the boundary condition, we
have w9, (0,0) = —w14,(0,0). Taking the trace t = 0 of the equation in (3.3.2) and setting

@91 () 1= ug(x,0) yield
1
/ = —_——

Solving for ¢,,, we have

D21 (1) = gy (0)e <"
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For ¢,, to be integrable, ¢,,(0) must be a zero vector. Thus, ¢, (z) = 0 for any = >

—e

0, from which we can deduce that the first order compatibility condition for (3.3.2)
u14,:(0,0) = 0. Taking the trace ¢ = 0 of the equation in (3.3.1) and setting ¢, (x) :=

(2, 0), we have

S

1 1
h=—— — Uy + G(-,0)}.
b1 as¢11+a5{a o +G(, )}
As before, solving for ¢,; and using the integrability of ¢,; gives

| N
¢ (7) = —— e as y){aUg'( ) +G(y,0 }dy

ag

If z is restricted to x > 0, Uy and G can be replaced with ug and g, respectively, because
they are extensions of the respective functions. Taking the trace t = 0 of the equation in
(3.1.8), setting ¢, (x) := uy(x,0), and solving for ¢, we have

1 [o.¢]
(3.3.5) ¢i(2) = —— | e = aug(y) + 9y, 0)}dy = puu(x).

Taking the t derivative of the boundary condition in (3.1.8) and taking the trace x = 0
and t = 0, we see that ¢7(0) = u,(0,0) = 0, which gives

Ultx(0> 0) = ¢/11(0) = ¢/1(0) =

where we have used (3.3.5). This shows that the first order compatibility condition for
(3.3.2) is satisfied.

In the same manner, we set ¢y, () := 9fui(x,0), ¢, (x) := O uz(x,0), and ¢, (z) :=
Oyu(z,0), where ¢, and ¢, can be expressed by using given data only as in Subsection
3.2.2. We will show that the n-th order compatibility condition for (3.3.2) is satisfied by
proving that ¢,,, = ¢,, and ¢@,,, = 0. We prove this by induction. Suppose that ¢, = ¢,
and ¢, = 0 for k =1,2,...,n — 1. We note that from the compatibility conditions for
(3.1.8), ¢,.(0) = 0 for 0 < k < n. By taking the derivative of the respective equations

(n — 1) times with respect to ¢ and taking the trace ¢t = 0, these functions satisfy

¢1n = Oé(blll/nfl - Oég(b/ln + az:LilG('a 0)7
¢2n = a¢g/n 1) Oégd)/2n7

b, = g —acg), +0; ' g(-,0).
First, we see from ¢,,_;) = 0 that

1
¢/2n - __¢2n'

ag
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As before, from this equation and the necessity of ¢,, to be integrable, we see that
¢,,, = 0. This implies that, through the boundary condition, the n-th order compatibility
condition for (3.3.2) is 0f'u1,(0,0) = 0. Solving the above equations for ¢,,, and ¢,,, we

have
1 [ ., -
d)ln(x) = _04_8 € aE v { ¢/1//n 1) ) + a 1G y7 }dy7
1 OO ——=(z— n—
d)n(x) = _E € as v) {a¢1// + at lg(yao)}dy

Again, from the assumption of induction and the fact that Uy and G are extensions of

u and g, respectively, we see that ¢, (z) = ¢, (x). We have

07 u12(0,0) = ¢1,,(0) = ¢/,(0) = 0,

which shows that the n-th order compatibility condition for (3.3.2) is satisfied.
Now we construct u,. We saw that 4 dtk 2(0) = 0Fu1,(0,0) = 0 for 0 < k < n, thus, we
construct and estimate us in Sobolev—Slobodetskii spaces. Taking the Laplace transform

with respect to ¢ of the equation yields

U2, (0,7) = —U1,(0,7) = Ci)(T),

{ Ty = QUogyy — QET Uy, x>0,
where 7 = h + in with A > 0 and n € R. We show the following properties about the
characteristic roots of the above ordinary differential equation.

Lemma 3.3.1 For h > 0 and € > 0, the characteristic equation, \> — eT\ — T =0, has
exactly one root A\ satisfying RA < 0. We denote this root as p. Furthermore, there are
positive constants ny and C' such that for |n| > ny the following holds.

£ .
ey JFas o

Proof. First, we look at the asymptotic behavior of the roots as n — 4o00. Dividing the

<C.

characteristic equation by 13?2 and setting A= p /2, we have
~ ch < h 1

(3.3.6) N = —A—ied = —n — i = 0.
n an am

Passing to the limit n — 400, we have
AP —igd = 0.
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The roots are A = 0, +,/5(1+1). The root —,/5(1+1i) corresponds to the desired root
of the original characteristic equation. We must consider the root 0 in more detail. By
setting A = 0 + ¢;77/2 + O(n~!) and substituting it into (3.3.6), the coefficients of the
terms O(n~1/2) yield,

. 1
—iec; —i— = 0.
«

This gives ¢; = —é > (0, and hence only one root with a negative real part exists for

sufficiently large 1. The case n — —oo can be treated in the same way. Now we show
that for any h > 0 and n € R, there are no pure imaginary roots, which, combined with
the continuity of the roots with respect to the coefficient of the characteristic equation,
proves that the number of roots with a negative real part does not change.

We separate the characteristic equation into its real and imaginary parts. Setting

A = a+ib we have

h
a® — 3ab® — cha +enb — — =0,
a
3+ 3a%b — ehb—ena— L =0,
o
Suppose that a pure imaginary root exists, which corresponds to a root with a = 0, we
then have

hoo
enb = =, —bd—shb—gzo.

From the first equation we have nb = a% Substituting this into the second equation yields

h
3.3.7 —b* —echb® — — = 0.
(3.3.7) 2 2z
Since we are considering h > 0 and € > 0, (3.3.7) is a contradiction. Thus, no such root

exists. ]

From Lemma 3.3.1, we see that the Laplace transform of a square integrable solution

to (3.3.2) can be expressed as

Us(z, 7) = i)(T)e“x,

=~

where p is the root of the characteristic equation mentioned in Lemma 3.3.1. We denote
the dependence of 1 on 7 as u(7). We estimate us in Sobolev—Slobodetskii spaces. To

estimate uy in H }ZL’Z/ 2(Qoo), we use the following norm.

>/

O L
Oxd (’77—) |T| dTl

36



Since

ity e
5 — M) P (),
we have
8jﬁ’2 ? ~ 2(3-1) 1 12| a1 |2
|G| = [ P

, ~ 1
_ 2(5—1) P 2( ]
P (- g

Thus we have

L.

We divide the above integral domain into two parts, namely the part with |n| > 7 and

g

oxJ (>7)

o o A | |
T l—Jd — / P(r 2 . 2(5-1) < ) - l_]d '
i = | 1SEPROP { g)

o0

In| < mo, where 7y is a constant appearing in Lemma 3.3.1. From Lemma 3.3.1, in the

£ .
ey [Fas o

which implies, by taking 7o larger if necessary, |ﬁ| < C. We then obtain

domain |n| > no, we have

<C,

- | 1 | ) |
@(7‘ 2 w(r 2(3-1) (_) T l—]d77 S C/ d(r 2 . l_3/2d7’],
/;;|2770’ JFlu(r) 2R pu(7)] 7 wzml (M) 7]

D(r) | |pu(r)[ PV _ 7|l OO~7—2 .
[ @R (g s [ e

Combining these estimates, we have

2 2
aalln ) < Clluna(0.9I2 5

< O|||u1x‘||l2gibfl,l/271/2(Qoo)

< CllfulByrsg, .,

Here, we have used a trace theorem proved in [38] for functions belonging to the Sobolev—
Slobodetskii space. Choosing | = 2k for an integer k£ and from Sobolev’s embedding

theorem, we see that

uy € HM(Qr) — C([0,T); H**(Ry)),

(3.3.8) oMu ) ke
g € HTMQr) — O([0.7) BT (R,)),
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for m < k. We mentioned in Subsection 3.2.1 that the given data can be taken as
being smooth while satisfying the necessary compatibility conditions, so from the above

arguments, for an arbitrary integer [, we have constructed a solution of (3.1.8) such that

ue ()0, T); B (Ry)).

7=0

To prove the uniqueness, we derive an energy estimate for the solution of (3.1.8). Direct

calculations yield

5l + 02 P} = (o) 0% e )

lale d
< —aw(0,1) - (0,1) = 5= (0, )" — ae|ug, |

1
+ 5 (lull” + o*e*lud|?) + llg]*

2 dt{||u90||2 + a252||um||2} = (Ug, Ugt) + a252(um> Ugat)

|a
=t (0.0 — 0 (1) — (0110 0)

—« 5um(0, ) Ugpe(0,1) — e, (0,¢) - g(0,t)

0.0 — 2 — (1100.9) — (. 0)
— ey, (0,1) - u(0,1).

On the other hand, we have from the equation,
[ + s |* = [|awe. + gl1*.

Expanding the left-hand side gives

| + aew||® = [Ju|* + 20e (wg, we) + a?e?||ug, ||?

= [lue® + [erle|ue (0, )" + ae?||ugs||*.

Thus we have
|ole|wi (0, 8)]% < [|attpes + gl

Utilizing the above estimate, we have for any positive =y

Sale

|afe]1422(0, 1) - (0, 8)] < oy |2za (0, 1) + +Cllgl*.
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By choosing % < v < 3, both |1z, (0,¢)[* and [[te,]|* can be dealt with in the estimates.

Combining all the above estimates, we arrive at

t t
(3.3.9) lu(I2 + / [t () [Br < Clluol + C / lg(r)|dr.

By taking the t derivative of the equation, applying the same estimate as above, and

estimating ||0%u(-,0)| as we did in the estimate of u;, we have

t
loFu(t)3 + / 102y () |2

k—1 t
< C(Huouzﬂk £ 10000 Baage sy + / Hafgmwdr)

=0
for £ > 1. By using the equation to convert the time regularity into regularity in z, we

have for any k satisfying 0 < k <

T
sup [10Fu(t) |220_e) + / 10t (8) 25t
0<t<T 0
-1

T
=< C(\!Uo!l§+zz+z sup !Iaig(t)!!§+z(l_1_j)+/ Hé’ig(t)Hth)-
‘D0 0SI<T 0

Up to this point, we have assumed that the given data are smooth. Through an approxi-
mation argument, we can relax the assumption on the data and prove the following.

-1
Lemma 3.3.2 For an arbitrary natural number 1, if ug € H*%(R,), g € m C’j([O,T];
=0
H2+2(l_1_j)(R+)), and Olg € L*(Qr) satisfy the compatibility conditions up to order I,

there exists a unique solution w to (3.1.8) satisfying

l T
Z( s, 0Fu(0) By + [ ||afum<t>||%+2<l_k)dt)
0

—0 0<t<T

-1 T
< (lunln + X s 100900y + [ Iokglolc).
g ose<T 0

3.4 Solving the Parabolic-Dispersive System

In this section, we construct the solution w of (3.2.1) such that for a natural number [

l
(34.1)  we [ {C7([0,T); H**=)(Ry)) N HI (0, T; H)(Ry)) }

J=0
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by iteration. For n > 1, we define u(™ as the solution of the following problem.

w” = aufly + acufy + A(w, ,)u"D + g, x> 0,t>0,

u™(2,0) = up(x), x>0,
ul™(0,t) = 0, t>0.

u® must be defined in a specific way so that the compatibility conditions for each succes-
sive iteration are satisfied. First, again by the approximation argument, we will assume
that up and g satisfy the compatibility conditions for (3.2.1) up to some fixed order N

and are smooth. We introduce the following notation.
Q(v) = AUy + A(w, 0,)v + g.

We define u© as

. NN
W) = wle) + 3 (750@) 0.
where v(z,0) := ug(z) and ¥, (z) := OFv(x,0) for k > 1 are defined as the solution of the
following linear ordinary differential equation, under the constraint that 1, is integrable

over Ry.

V= e+ o awl Z( V) @act0. 00w+ 3 900).

N is chosen to accommodate the necessary order of compatibility conditions and regu-
larity. By defining u(®) as such, the compatibility conditions for each successive iteration
are automatically satisfied. Then, Lemma 3.3.2 guarantees that {u(™}> is well-defined.
Now, we prove the convergence of {u(™}>°  in the desired function space. From the way

that we constructed 4(® we have

! -1
Z sup (|07 u® (1[5 1901 < Co <HUOH§+2l+3N + ZoiltlfTHagg(t)\|g+2(1—1—j)+3zv> :
j=0 0=t=

1o 0<t<T

Setting z™ := u™ — uY for n = 1,2,3, ..., we have
2 =zl — aez™ + A(w,0,)2Y, 2 >0,t>0,
2™ (z,0) = 0, x>0,

20M(0,t) =0, t>0.

In the same way that we derived (3.3.9), we have

T T
sup |27 (0)]2 + / |20 @)t < C / |20 8 2t

0<t<T
(CT>n—1

= (n—1)1"
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The above estimate proves that u(™ converges in C'([0,T]; H*(R4)) N L*(0,T; H*(Ry)).
Since 9Fz™(z,0) = 0, we can prove in the same way as above that Fu(™ converges in
C([0,T); H*(R)) NL*(0,T; H*(Ry)). Using the equation we can prove that for 0 < k <
I, OFu™ converges in C ([0, T); H*""F(Ry)) N L2(0,T; H**2(=M(R,)). Thus, for an
arbitrary [, we have constructed a solution of (3.2.1) satisfying (3.4.1).

Now we consider the limit ¢ — +0 for problem (3.2.1). For this, we derive an estimate
of the solution that is uniform in . The energy form we use is the same as the estimate
we obtained before, but we use the elliptic term to make the estimate uniform in e. We

are still assuming that the given data are smooth as necessary. We estimate as follows.

d )
1 a0, — o2~ e P

+ Cllullt + %[ A(w, dx)ul” + [lg]*.

th{Hu“2 + a252||u$”2} < —au(0,1) - uepe(0,1) —

Here, we have used the estimate (A(w, d;)u, u) < —2{|lu,||> + C||u|/?, which follows from

the strong ellipticity of A(w, d,). We choose £; > 0 such that 81HA0<w>H%OO(0,T;LOO(R+)) <

0‘7 Then, for 0 < € < g; we have
1d lale d ) a’e
Ll + e 7} < —0n(0,0) - e (0.1) 2 a0, )2 a2~
2dt 2 dt
+Clul? + g]”
Next, we have
« O! 9
O A L

+6OoHAo< )IILoo(o,T;Loo(RmI!uxllHumH
— e (Ugg, A(w, 9,)u) + C (||l + ||g]%).

where we have used the interpolation inequality ||uz.||* < Cl|ty|||%ssz]]. Now we choose

€2 > 0 so that 5200]|A0(w)]|%M(O7T;LW(R+)) < % and 4852‘|A0(w)H%OO(O,T;LOO(R+)) < s

Then, for 0 < e < gy we have

L aall? + 02 ea?} < ~ e 0,6 = el = L et + C el + g ).
2dt - 6 4 24
Finally we estimate

1d | | € )

5&”“%8”2 | rm"(o t)‘ - iHutrHQ - Z||u:vm||2 + CH“”% + ||gx||2

In each estimate, the constant C' is independent of € € (0,¢p], where gy := min{ey, es}.

Combining all the estimates yields for 0 < e < g,

T
sup u(t I +/O (012t ()% + €llttea ()1 + [t (0, 8) [ + 24000 (0, 2)[*) dt

0<t<
T
SC@W%+AHMW@Q-
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Now we take the derivative of the equation m times (1 < m < [) with respect to ¢ and

set v, 1= 0;"u. Then, v,, satisfies

Vit = OUgzz — WEVpmay + A(w, 0p) vy, + 0"g + Fpyy, > 0,6 > 0,

Vn(z,0) = ¢,,(x), x>0,
Umx(07t) - 07 t > O,
m—1 _1 '
where F,, = Z ( mj ) (8?1_1_]A(w,8x)) v;. We derive the uniform estimate by
=0

induction on m. The case m = 0 was just derived. Suppose that for 0 < j <m —1

T
sup 0,3+ [ [0s0ma(t) P
0<t<T 0

T
< {luwlfs, + s (1077l H2+Z||afg Oss) + [ 10lg0lEar]

holds with C' independent of €. Estimating in the same way as before, we have

T T
sup [[om(®)Z + 6 / ||vmm<t>||2dtso(||¢m||§+ / (||arg<t>||%+||Fm<t>r|%)dt).

0<t<T

Now we estimate each term on the right-hand side.

m—1
IFL 07 <C Y w013,
7=0

m—1

where C' depends on the norm of w in ﬂ Wi (O, T H 1(R+)). The expression for ¢,,
=0
and its derivatives are
1 e}
Orp(z) = —— [ e 2D {agl 1 (y) + Fuuoa(y,0) + 07" 'g(y.0) }dy.

Through direct calculation, we see that

1 [ _.,_
H——/ e y><1><y>dyH < |2l

Thus, we can prove that

bl < c(|ruoug+3m g, 0)lla + Z 1049(-,0) 450> J))
m—1
Here, C' depends on the norm of w in ﬂ Ci([0,T); H*3m=1=)(R.)) and the norm of
=0

0"w in L™ (O, T Hl(R+)), but is independent of e. Combining these estimates and using
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the equation yield

l T
(3.4.2) §j{amna >M%Wﬂ+§A|Wu@%%mﬂw}

‘o LosisT

T
O{Wmm%f+§j(smpnﬁg maahhﬂ+/fuwguméapkﬂw)
0

T
+[:ndmwmm}.

Again, we emphasize that C' is independent of e. Now we denote the solution of (3.2.1) as
u® to emphasize that the solution depends on €. We also recall that g was a correction of
f which depends on €, so we denote it as g°. We assume that ug € H*™Y(R,), g° € YV,
w € ZY for N > 1+ 1, and g° — f in Y. Thus, we know the existence of a unique
solution u® € Xk of (3.2.1) with a uniform bound in X4 For 0 < ¢ < & < &y, we set
z = u® — u°. Then, z satisfies

Zt = QZgppp — Q€' 24 + A(w, 0,)z — a(e — e)uf, + g —g°, ©>0,t>0,

z(z,0) =0, z >0,
z.(0,t) =0, t>0.

From (3.4.2), we have

-1

T
21 < 0+ 2 (s 10 OB+ [ 107 Ot

7=0
T
+ [ leranlia + e - )01,
<O(E +e)° + (g” — )O3

Thus we see that there exists a w such that u® — u in X%, and w is a solution of (3.1.1).
We derive an energy estimate for w to prove the uniqueness of the solution. Through a

standard energy estimate, we obtain the following.

1d o

Sl < —aw(0,1) 1 0,8) = S|P+ Ol + | £17),
2dt 2

1d o] 5

sl < = et 0, = Sl + ([l + 1£17).
1d o

| o
5l ? < —g\um(O,t)F = Sllttsaal* + C(lulls + [ £.1%)-

Combining these estimates, we have

T T
pr®M+AH%@@MSC@w%+AHﬂMWQ-

0<t<T
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As before, taking the derivative with respect to t of the equation, applying the above

estimate, and converting the regularity in ¢ into = via the equation, we have

(3.4.3) [y < C(|luoll2rs + HfHY%)-

Here, C' depends on [|w][ , T', and 4.

As in Lemma 3.3.2, we can relax the condition on the given data by taking approxi-
mating sequences {ug, }o2, in H23N {f 1> in V¥, and {w,} ~, in Z with ug, — ug
in H2*34(Ry), f,, — fin Y}, and w, — w in ZL. Applying (3.4.3), and passing to the

limit, we arrive at the first main theorem. The proof of Theorem 3.1.1 is complete.

3.5 Remark on the Case oo > 0

The case o > 0 can be treated by a standard argument. We start by considering the

following regularized problem.

Up = —EWUgppze + g, T >0,1>0,

u(z,0) = 'u,g( ), x>0,
(3.5.1) w(0.1) — 20
u,(0,t) = 0 t > 0.

As before, we explicitly construct the solution of (3.5.1) in the form u = u' + u?, where

u! is defined as the solution of

u; = —¢eu,,.. + G, r€R,t>0,
’U;l(,ﬁE,O) UO( )7 .ﬁEER,

and u? is defined as the solution of

u? = —cu?, x> 0,t>0,
u?(z,0) =0, x>0,
u2(0,t) :e—ul(O,t), t>0,
u?(0,t) ul(0,t), t>0.

The solutions can be constructed by using Fourier transform and Laplace transform as
in the case @ < 0. We note that in estimating u?, we slightly modify the Sobolev—
Slobodetskii space for the fourth order parabolic system. For an integer m, we define the

space H™™*(Qr) analogous to H"™*(Qr), and we use the case m = 41 and the norm

84Ju
||U” 411 Z/ H8$4]
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I
Then we construct the solution u € ﬂ Ci([0,T); H*H=D(RL)) N HI (0, T; H¥HUD)(R .

) of -

Up = OUgyy — EUgzee + A(w, 0)u + f, x> 0,t> 0,

u(z,0) = up(z), x>0,
u(0,t) = e, t >0,
u,(0,t) =0, t>0

through iteration. Now we need an estimate uniform in €. Via energy method, we obtain

1d
L 12 < —au(0,1) - w4 (0, 1) + Cllulls + ew(0,1) - Uar (0, 1) — 0|ae|* + | £,
1d Qo
EE”%HQ < §|um(07t)!2 — )| Upaal® = Ol taal” + EUae(0,1) - Uaga (0, 1) + Clluags||* + || £I%,
1d

%|umz(07t)‘2 - 5Ha§u”2 - 5||umr||2 — U (0, 1) - 3§u(07t)

Using the equation, we can also obtain

— Uy (0,1) - 02(0,1) = — U (0, 1)|* — U (0, 1) - (A(w, 8m)u) (0,1) — Ugere(0,2) - £(0,1).
From the above estimate, we obtain

Sl < —%\umx(o>t>\2 —elldpul* - ZHUWHQ +C(lullz + 1£I7).

which combined with the other two estimates yields

T T
sup \IU(t)\\§+/O (é‘Hum(t)Hg+5Hux(t)H§)dtSC{I\Uo\!§+/o Hf(t)Hfdt},

0<t<T
where C' is independent of €. Taking the ¢ derivatives of the equation and estimating in

the same way as above, we have for 0 < m </,

T
sup 100 B+ [ 10701 0l
0<t<T 0

-1 l T
<C {HUO\BHZ + 2 N0 F 03 a1y + Z/O Haif(t)l\fdt} :
j=0 j=0

After passing to the limit ¢ — +0, we obtain the solution of the limit problem. Similarly

to the above, we see that the solution satisfies for 0 < m <,

T
sup 107wt B+ [ 10O 0l
0<t<T 0

-1 l T
<C {HU’OH%—H’)Z + 2 NOF (034501 + Z/O Haif(t)l\fdt} :
j=0 j=0

Thus, we have proven Theorem 3.1.2.
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Chapter 4

Motion of a Vortex Filament with
Axial Flow in the Half Space

4.1 Problem Setting

In this chapter, we prove the unique solvability locally in time of the following initial-

boundary value problems. For o < 0,

3
Ty =g X Ty + :I:SSS~|——:1:SS><(:I:S><9:SS) , s>0,t>0,

2
(LD 0 2(5,0) = @o(s), s> 0,
xs5(0,t) =0, t>0.
For a > 0,
3
Ty =Ts X Tys + wsss+§mssx(a:sxmss)}, s> 0,t>0,
(4.1.2) x(s,0) = xo(s), s >0,
x(0,t) = e, t>0,
mss([)?t) = 07 t > 0.
Here, x(s,t) = (z'(s,t),2%(s,t),23(s,t)) is the position vector of the vortex filament

parameterized by its arc length s at time ¢, the symbol X is the exterior product in the
three dimensional Euclidean space, « is a non-zero constant that describes the magnitude
of the effect of axial flow, e3 = (0,0,1), and subscripts denote derivatives with their
respective variables. Later in this chapter, we will also use d, and 0; to denote partial
derivatives as well. We will refer to the equation in (4.1.1) and (4.1.2) as the vortex
filament equation. We recall that the number of boundary conditions depends on the
sign of « as is the case for the KAV and KdV-Burgers equation. We prove the unique
solvability of the problems locally in time of (4.1.1) and (4.1.2) based on the existence

theorems we obtained in the previous chapter.

46



For convenience, we introduce a new variable v(s,t) := x4(s,t) and rewrite the prob-

lems in terms of v. Setting vo(s) := xos(s), we have for o < 0,

p

3
Vy =V X Vg + vsss+§vssx ('vxvs)
3
(4.1.3) +§vs X ('v X 'vss)}, s>0,t>0,
v(s,0) = vy(s), s> 0,
| vs(0,t) =0, t>0.

Vi =V X Vg5 + a{vsss + 5'055 X (v X vs)

+;vs X (v xvss)}, s>0,t >0,

(4.1.4)
v(s,0) = vo(s), s >0,
v(0,t) = es, t>0,
| vs(0,t) =0, t>0.

Once we obtain a solution for (4.1.3) and (4.1.4), we can construct (s, t) from the formula

t 3
x(s,t) = 2o(s) ~|—/ {v X Vs + Vg5 + Vs X (v x vy) }(S,T)dT,
0

and x(s, t) will satisfy (4.1.1) and (4.1.2) respectively, in other words, (4.1.1) is equivalent
to (4.1.3) and (4.1.2) is equivalent to (4.1.4). Hence, we will concentrate on the solvability
of (4.1.3) and (4.1.4). Our approach for solving (4.1.3) and (4.1.4) is to rewrite the
nonlinear problem utilizing the property |v| = 1 and linearizing the equation. We rewrite
the nonlinear problem first because if we directly linearize the equation around a function

w we have

3 3
Vi = W X Vg4 —i—a{vsss -+ 5'033 X (w X ws) + iws X ('w X vss)}.

Directly considering the initial-boundary value problem for the above equation seems hard.
When we try to estimate the solution in Sobolev spaces, the term w, x ('w X ’USS) causes
a loss of regularity because of the form of the coefficient. We were able to overcome this
by using the fact that if the initial datum is parameterized by its arc length, i.e. |vo| = 1,
a sufficiently smooth solution of (4.1.3) or (4.1.4) satisfies |v| = 1. The same property
was proved in Nishiyama and Tani [33] for the initial value problem. This allows us to

use the identity
Vs X (’U X vss) = Vg X (’U X ’US) - |v8|2v5‘
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Linearizing the equation in (4.1.3) and (4.1.4) after using the above identity yields
(4.1.5) V=W X Vg + a{'vsss + 3, X (w X ws)} + f.

The term causing the loss of regularity is gone, but still, the existence of a solution to the
initial-boundary value problem of the above third order dispersive equation is not trivial.
We can overcome this point by utilizing the results of the previous chapter.

Finally, we state the main existence theorems here.

Theorem 4.1.1 (M. Aiki and T. Iguchi [2]) For o < 0 and a natural number k, if
Toss € HT3F(R.y), |Tos| = 1, and xo, satisfies the compatibility conditions for (4.2.3) up
to order k, then there exists T > 0 such that (4.1.1) has a unique solution x satisfying

k
z., € [\ WH(0,T; H¥(R,))

=0

and |xs| = 1. Here, T depends on ||@gss]|s-

Theorem 4.1.2 (M. Aiki and T. Iguchi [2]) For o > 0 and a natural number k, if
Toss € H*3F(R.y), |Tos| = 1, and xo, satisfies the compatibility conditions for (4.2.2) up
to order k, then there exists T > 0 such that (4.1.2) has a unique solution x satisfying

k
x., € [\ WH(0,T; " (R,))

=0

and |xs| = 1. Here, T depends on ||@gss||o-

The contents of this chapter are as follows. In Section 4.2, we consider the compati-
bility conditions for regularized nonlinear problems and the necessary corrections of the
initial datum. In Section 4.3, we review the existence theorems obtained in Chapter 3,
which will be applied to the nonlinear problems. In Section 4.4, we prove an existence
theorem for the case a < 0, and in Section 4.5, we prove an existence theorem for the

case o > 0.

4.2 Regularized Nonlinear Problem and its Compat-
ibility Conditions

We consider the following problems: for a < 0,

3
V=V X Vgs + vsss+3vss><(vxvs)—§|vs|2vs}, s>0,t>0,

v(s,0) = vy(s), s >0,
vs(0,t) =0, t>0;

(4.2.1)
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for a > 0,

3
V= UV X Vg +oz{’vsss + 3v,, X (v X 'vs) — §]vs|2'us}, s>0,t>0,

(4.2.2) ¢ v(s,0) = vo(s),
v(0,t) = e3,
vs(0,t) = 0,

s >0,
t >0,
t >0,

which are equivalent to (4.1.1) and (4.1.2) with |v| = 1 respectively, and construct the

solutions by passing to the limit 6 — 40 in the following regularized problems: for a < 0,

888 + S’Ugs X (v(s X Ug)

v =v’ x v°, + oz{’u‘s

3
(4.2.3) —§\vg|2v§} +6(vd, + [vl*v?), s>0,t>0,
0(s,0) = v)(s), s >0,
| v2(0,¢) =0, t>0,
for a > 0,
4
v) = v’ x Vo, + a{v‘;ss + 309, x (v’ x v?)
31 512,06 5 (2900
(4.2.4) —§|v8| v5}+5(vss+|vs| v), s>0,t>0,
0(s,0) = v)(s), s >0,
v2(0,t) = es, t>0,
| v2(0,¢) =0, t> 0.
For the proceeding analysis, we assume that |vj] = 1 holds, i.e. the initial datum is

parameterized by its arc length. Since we modified the problem, we must make corrections

to the initial datum to ensure that the compatibility conditions hold for each problem.

4.2.1 Compatibility Conditions for (4.2.1) and (4.2.2)

First, we derive the compatibility conditions for (4.2.1) and (4.2.2). We set Q) (v) = v

and

3
Q(l)('v) =V X Vg + a{vsss + 3v,s X (v X vs) — §]v8|2vs}.
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We will also use the notations Q(s,?) and Qy) instead of Q;)(v) for convenience. For

n > 2, we successively define Q,, as

n—1

n—1

Q(n) = ( ] ) Q(]) X Q(nflfj)ss + O[Q(nfl)sss
0

<

= (n=1\ [ n—1—j
a{ ( . ) < I ) Qj)ss X (Q(k) X Q(nljk)s)}
=0 k=0 J

]=

3 n—1n—-1-—j 1 11—
k=0

J=0

+
w

The above definition of Q, (v) gives an expression for Jyv in terms of v and its s
derivatives only. It is obvious that the term with the highest order derivative in Q, is
a"9%"v. From the boundary conditions of (4.2.1) and (4.2.2), we arrive at the following

compatibility conditions.

Definition 4.2.1 (Compatibility conditions for (4.2.1)) Forn € NU{0}, we say that v,
satisfies the n-th order compatibility condition for (4.2.1) if vos € H'™"(R,) and

(9:Q ) (v0))(0) = 0.

We also say that vy satisfies the compatibility conditions for (4.2.1) up to order n if it
satisfies the k-th order compatibility condition for all k with 0 < k < n.

Definition 4.2.2 (Compatibility conditions for (4.2.2)) Forn € NU{0}, we say that v
satisfies the n-th order compatibility condition for (4.2.2) if vy, € H*™"(Ry) and

’Uo(O) = €3, ’UOS(O) = 0,
when n =0, and

(Q)(10))(0) = 0, (9:Q (o)) (0) =0,

when n > 1. We also say that vy satisfies the compatibility conditions for (4.2.2) up to
order n if it satisfies the k-th order compatibility condition for all k with 0 < k < n.

Note that the regularity imposed on vgs in Definition 4.2.2 is not the minimal regularity
required for the trace at s = 0 to have meaning, but we defined it as above so that it
coincides with the regularity assumption in the existence theorem that we obtain later.
Also note that the regularity assumption is made on vy, instead of vy because |vg| = 1

and thus, vg is not square integrable.
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4.2.2 Compatibility Conditions for (4.2.3) and (4.2.4)

We derive the compatibility conditions for (4.2.3) and (4.2.4) in the same way as those
for (4.2.1) and (4.2.2). Set Py (v) = v and define P)(v) by

3
Py(v) =v X ve + a{vsss + 3vgs X ('v X 'vs) — §|’Us\2’vs} + 5('083 + |’Us\2'U)'

We successively define P, for n > 2 by

n—

P(n)ZZ

1
=0

n—1
( ,] ) P(]) X P(n—l—j)ss + aP(n—l)sss

<

n—1n—1—j .
n—1 n—1—7
a{»oég( 7)) o (P x P

1=

R (n=1) [ n—1—j
e ; I (Pii)s - Pys) Pin1-j—k)s
=0 k=0 J

J

n—1n—1—j i
-1 —1—
+9 {P<n—1>ss +2 ) < nj ) ( ' k ! ) (P)s - Pus) P(n—l—j—m}-

j=0 k=0

+
w

DN W

We arrive at the following compatibility conditions.

Definition 4.2.3 (Compatibility conditions for (4.2.3)) For n € NU{0}, we say that v
satisfies the n-th order compatibility condition for (4.2.3) if v5, € HW*"(R,) and

(0.P o) (1)) (0) = 0.

We also say that v} satisfies the compatibility conditions for (4.2.3) up to order n if it
satisfies the k-th order compatibility condition for all k with 0 < k < n.

Definition 4.2.4 (Compatibility conditions for (4.2.4)) For n € NU{0}, we say that v
satisfies the n-th order compatibility condition for (4.2.4) if v5, € H***(R,) and

’Ug(O) = €3, vgs(o) =0,
when n =0, and

when n > 1. We also say that v} satisfies the compatibility conditions for (4.2.4) up to
order n if it satisfies the k-th order compatibility condition for all k with 0 < k < n.
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4.2.3 Corrections to the Initial Data

We construct a corrected initial datum v such that given an initial datum v satisfying
the compatibility conditions for (4.2.1) or (4.2.2), v satisfies the compatibility conditions
for (4.2.3) or (4.2.4), and v — vo (6 — +0) in the appropriate function space. As it
will be shown later, a sufficiently smooth solution of (4.2.3) or (4.2.4) with ¢ > 0 satisfies
[v°| = 1if |v§| = 1. Thus, the correction of the initial datum must be done in a way that
this property is preserved. Since the same method for the construction of vj holds for the
cases a > 0 and a < 0, we show the details for the case a < 0 only.

Suppose that an initial datum wvg such that vy, € H*™(R, ) satisfies the compati-

bility conditions for (4.2.1) up to order m. We will construct v in the form

5 v + hs

(4.2.5) vy = oo & o]

with hs — 0 as 6 — +0. The method to construct h; is standard, i.e. we substitute (4.2.5)
into the compatibility conditions for (4.2.3) to determine the differential coefficients of ks
at s = 0 and then extend them to s > 0 so that hs belongs to the appropriate Sobolev
space and its differential coefficients have the desired values.

We introduce some notations. We set

(V) =V,
V)=V xV,+ oz{Vsss +3Ve x (VXV,)— ;|Vs|2vs} +6(Vy + |V, PV,

Im1(V) :=Dgp, (V)[gi (V)]

where m > 1 and D is the derivative with respect to V, i.e. Dg,(V)[W] = Lg% (V +
5W)|8:0. Note that under these notations, the m-th order compatibility condition for
(4.2.3) can be expressed as 9;¢2,(v))(0) = 0, because P(,y(V) = ¢2,(V). We gave
another notation because it is more convenient for the following calculations.

First we prove that if |[V| = 1, then for any m > 1

(4.2.6) Zm: ( " ) 9:(V) g5, (V) =0

k=0

by induction. From direct calculation, we can prove that
a 3 0
g?(V) V= §(|V|2)sss - BO‘(V ’ VSS)(|V|2)S - §|VS|2(|V|2)S + §(|V|2)ss =0,

which proves (4.2.6) with m = 1. Suppose that (4.2.6) holds up to some m with m > 1,

ie.,

(N (VAW (VW
kz:;( k )gk(]V—l—tW\ 9m—k V W] =0 for any vector W and t € R.
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Differentiating this with respect to t and setting t = 0 yield

m

> ( TZ ) {Dg) (V)W —(V-W)V]-g° (V)

k=0

+g1(V) - Dg,, (V)W — (V- W)V]} =0.

By choosing W = g(V') we have

0

5 (1) ot V)59 4 6£09) 5 V)

T
oo

= ( m; : )gi(V) g1 (V),

which proves (4.2.6) for the case m + 1. Therefore (4.2.6) holds for any m = 1,2,3, .. ..

Next we introduce the following notations:
fo(V)=V,
F1(V) =V XV, + a{vsss +3Vex (VX V,)— ;|V5|2Vs},
Frin(V) :=Df,(V)[F1 (V)]

ol

m

These correspond to g2 (V) with § = 0, so that Z?:o( 1 )fk(V) Fmx(V) =0

if |V| = 1, and the m-th order compatibility condition for (4.2.1) can be expressed as
s f1n(v0)(0) = 0 because Q) (vo) = f,,(vo).
Next, we show that

(4.2.7) gn(V) = (V) +0r,(V),

where 7$(V) := V, +|V,|?V and 7° (V) := Dr’,_(V)[g} (V)] +DF,,_1(V)[r3(V)] for
m > 2. Clearly, r° (V') contains derivatives up to order 3m — 1.

It is obvious that (4.2.7) holds for m = 1 from the definition of g¢ and f,. Suppose
that it holds up to m — 1 for some m > 2. Then for any vector W and t € R,

@, (VW) =f,. (VW) +r8,_(V +tW).
Differentiating the above equation with respect to ¢ and setting ¢t = 0 yield

Dg;,_1(V)[W] =Df,,_,(V)[W] +Dry,_,(V)[W].

Finally, choosing W = g3(V) leads to
gm(V) =Df,, 1(V)Ig1(V)] +6Dry, 1 (V)[gi(V)]
=Df 1 (V)IFL(V)] + 6D f,, 1 (V)[ri(V)] + 6Dry, 1 (V)[g1(V)]
= (V) +0r,(V),
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which shows that (4.2.7) holds.
Next we prove that if hs(0) = 0 and |vy| = 1,

(4.2.8) f,(v0)|._y = {Fm(vo) + ™02 hs — ™ (vy - 03" hs)vg + Fr(vo, hs) }|

5=0"

where F',,(vo, hs) satisfies
|F (0, hs)| < C|hss| + [Bass| + -+ + |07 hg))

with a constant C' depending on M and vy if |hss| + |Rsss| + -+ + |02 Ths| < M. We

see from the explicit form (4.2.5) of v that for a natural number n, 9"v has the form

(429) agvg =0 {8?’00 + 8§h5 — (’Uo . agh(;)’vo + qn(vo, h5)}’

s=0"

where q,,(vo, hs) contains the derivatives of vy and hs up to order n — 1, and satisfies
16, (vo, hs)| < O[] + |Rss| + -+ + 107 hgl),

if hs(0) = 0 and |hss| + |hsss| + -+ + |02 Ths| < M, for a constant C' depending on M
and vg. From the definition of f,, (v)), we see that the term with the highest order of
derivative is a™d3™wv], so combining this with (4.2.9) yields (4.2.8).

Finally, we prove by induction that the differential coefficients of hs can be chosen so
that v] satisfies the compatibility conditions for (4.2.3), and all the coefficients are O(9).
First, let hs(0) = d,hs(0) = 0. This insures that v} satisfies the O-th order compatibility
condition. Suppose that the differential coefficients of hs up to order 1+ 3(m — 1) are
chosen so that they are O(¢) and the compatibility conditions for (4.2.3) up to order m—1
are satisfied, i.e. g3(v$)s(0) = 0 for all 0 < k < m — 1. By choosing V = v), (4.2.6)

becomes

~(m

S (1) atteh) - gheh) =o.

k=0

Taking the s derivative of the above and using the assumption of induction yield
(4.2.10) v(0) - D595, (v5)(0) = vo(0) - g5, (v5)(0) = 0.

Now, from (4.2.7) at s = 0 and (4.2.8) lead to

889?71('08) = 3Sfm(vg) + 5837"%(’03)
= 0y f (Vo) +a™OP"  hs — a™(vg - 0¥ hs)vg + 0o F (Vo hs) + 60,10 (V)
= """ hs — o™ (vg - P hs)vg + OuF 1 (Vo, his) + 010 (V).
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From this and (4.2.10), it follows that
(05Fm(v0, hs) + (505rfn(vg)) . ’UQ‘S:O =0.
The assumption of induction implies
OsF (v, hs) + (585rfn(vg)|szo = 0(9).

Thus by defining 92" 'hs(0) = 0°™hs(0) = 0 and 02" hs(0) = — = (Fon(vo, hs)s +
ord,(v))s) ‘5:0’ they are all O(d) and 9,g°(v3)(0) = 0, i.e. the m-th order compatibility

condition is satisfied. The differential coefficients are then used to define hs(s) as

hs(s) = o(s) (ZO %S?v‘ﬂ) 7

where ¢(s) is a smooth cut-off function that is 1 near s = 0. We summarize the arguments

so far in the following statement.

Lemma 4.2.5 For an initial datum vy with |vg| = 1, vos € H'™(R,), and satisfy-
ing the compatibility conditions for (4.2.1) up to order m, we can construct a corrected
initial datum v} such that |v3| = 1, v5, € H'™(R,), and it satisfies the compatibility

conditions of (4.2.3) up to order m, and
v) — vg in L®(R,), v, — vo, in H'P™(R,)
as 6 — +0.

Similar arguments can be used to construct an approximating sequence of vq by a smoother
function while satisfying the necessary compatibility conditions by following the method
due to Rauch and Massey [36].

4.3 Existence Theorems for Associated Linear Prob-
lems

We consider the following linear problems associated to the regularized nonlinear problem.
For a < 0,

Vi = QUgs5 + 0V + W X Vg + 304 X (W X W) + f, s> 0, >0,
(4.3.1) ¢ v(s,0) = vo(s), s >0,

vs(0,t) =0, t>0,
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and for a > 0,

Vyp = Qg5 + Vg5 + W X Vg5 + 3avss X (W X wy) + f, s> 0,t >0,

’U(S,O) :v0(8>7 8>07
(4.3.2) v(0,t) = es, t>0,
vs(0,t) =0, t>0.

The existence and uniqueness of solutions to (4.3.1) and (4.3.2) can be shown as an
application of existence theorems for more general equations obtained in the previous
chapter. There, we obtained existence theorems for a linear second order parabolic system
with a third order dispersive term. The problems considered there are as follows. For
a <0,

Uy = QUgyy + A(w, 0)u+ f, ©>0,t>0,

(4.3.3) u(z,0) = uo(z), x>0,
u,(0,t) =0, t>0.

For a > 0,

Uy = QUgyy + A(w, 0)u+ f, ©>0,t>0,

u(z,0) = up(z), x>0,
(4.3.4) u(0,t) = e, t>0,
u,(0,t) =0, t>0.
Here, u(x,t) = (u'(x,t),v*(z,t),...,u™(z,t)) is the unknown vector valued function,

ug(z), w(z,t) = (wi(x,t),w(z,t),...,wk(x,t)), and f(x,t) = (fH(x,t), F2(x,t),..., f™(
x,t)) are known vector valued functions, e is an arbitrary constant vector, subscripts
denote derivatives with the respective variables, and A (w, 0,) is a second order differential
operator of the form A(w, d,) = Ag(w)d?+A; (w)d,+ Az (w). We assume that Ag, Ay, As
are smooth matrices and A(w, d,) is strongly elliptic in the sense that for any bounded

domain E in R¥, there is a positive constant § such that for any w € E
Ag(w) + Ag(w)™ > 4L,

where I is the unit matrix and % denotes the adjoint of a matrix. For the above problems

we obtained the following theorems in the previous chapter.

Theorem 4.3.1 (Aiki and Iguchi [2]) Let o < 0. For any T > 0 and an arbitrary
non-negative integer l, if ug € H*™(R,), f € Y}, and w € Z. satisfy the compati-
bility conditions up to order I, a unique solution w of (4.3.3) ewists such that u € Xk.

Furthermore, u satisfies

lullx;, < C(lwoll+a + [1£1ly)

where C' depends on o, T', and ||[w|| 4 .
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Theorem 4.3.2 (Aiki and Iguchi [2]) Let o > 0. For any T > 0 and an arbitrary
non-negative integer 1, if ug € H*3 (R,), f € Y}, and w € ZL satisfy the compati-
bility conditions up to order I, a unique solution w of (4.3.4) exists such that u € Xk.

Furthermore, uw satisfies

lullx;, < C(lwolla + 1 £Ily)

where C' depends on o, T', and ||[w|[ 4 -
We apply these theorems with
(4.3.5) A(w, 0,)v = 0V + W X gy + 3004, X (W X W),

which obviously satisfies the assumptions on the elliptic operator. Thus we have existence
and uniqueness of the solutions to (4.3.1) and (4.3.2). Based on these linear existence

theorems, we construct the solution to (4.2.3) and (4.2.4).

4.4 Construction of Solution in the Case a < 0

4.4.1 Existence of Solution

We construct the solution by the following iteration scheme. For n > 2 and R > 1, we

define v™-f as the solution of

n n 3 n— n—
v,ﬁ LR _ Owgsg,R 4 A(,v(n—l),R, as)v(n),R . 50402 1),R|2,Ug 1),R
8o ERy-DR 50 ¢ > 0,
vME(s 0) = v (s), s> 0,

v (0,) = 0, t>0,

where A(v"~D-R, 9,) is the operator (4.3.5) in the previous section and vy ™ (s) = ¢(5)v(s).
Here, v§ is the modified initial datum constructed in Subsection 4.2.3 and ¢(s) is a smooth
cut-off function satisfying 0 < ¢ < 1, ¢(s) =1 for 0 < s < 1, and ¢(s) = 0 for s > 2.

R

Now, v()-F is appropriately chosen so as to satisfy the necessary compatibility conditions

at each iteration step. For this we choose
(4.4.1) v (s, 1) = 0" (s) + Y =Py (vp"(s)),

where m is a fixed natural number and P ;) is defined in Section 4.2. Note that multiplying
the initial datum by ¢ has no influence on the compatibility conditions for (4.2.3). Recall

that v) is assumed to be smooth, to satisfy the compatibility conditions up to an arbitrary
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fixed order, and v$ — vy in an appropriate function space. More specifically, we assume
that v$ is smooth enough so that vW'% € XN for a large N(> m) to be determined
later. For each R > 1 and natural number n, v ig well-defined by Theorem 4.3.1 and

v e Xm We introduce the function space X as

X7 = {v;v, € C([0, T]; H™(R1)) } N { (¢ ([0, T; H2+3J(R+))}

Jj=1

NC([0,T]; L¥(Ry)).

We seek a solution to the nonlinear problem in this function space. It is easy to see that
from (4.4.1), we have

o™ | g < 14 Cllog lavem (1 + |05 ylHem s gy

with a positive constant C' depending on « and T', but not on 'ng, ’UO — v) in Xm as

R — 400, and there is a positive constant C' independent of R > 1 such that

(4.4.2) 052 143m < CllVdsll13m-

Note that the uniform estimate (4.4.2) does not hold for ||v3"|| because v3 does not belong
to L2(Ry). We show the uniform boundedness of {v(™%®}>  with respect to n and R
on some time interval [0, Ty] by induction. Suppose that ||t RH < M for any j with

1 <7 <n—1. Then, by a standard energy estimate, we have

1d
§&|Iv(")’Rll2<—M|v( 80,0 + Cllol | = 8wl |1* + OM?,

)
R ) i S R ap Y L T

where C' is independent of M and n. Combining these estimates yields for any 0 <t < T,

™R + /ww (M)I3dr < CeMT ([WSH2 + MPT),
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where C' is independent of T', M, and n. For a natural number k with 1 < k < m, we set

vk = gFp()R Then, v satisfies

k
o = a1 3 () w0 o)
§=0

ko J .
(n),k J (n=1),i  ,,(n—1),j—i\,,(n—1),k—j
+ v, +6{ZZ(j)(i)(vs v, Jv }
B vk 4 3apMk s (9D =Dy 4 gpmk ok,
By a similar energy estimate, we have

II'v PR3 < OMP(L+ M{ o™ *)3 + (1 + M?)° + |[F*|3}
< OMP(1+ M) {|[o™* )3 + (1 + M?)°},

2dt

where we have used Hv(j)H;{%n < M for 1 < j <n—1 to estimate F*. Thus we have
[0 (13 < e AEMITL 4 MR 0)]3 + (1 + M2)°T}.
From the equation, we obtain
n 0, é, m
[0, 015 < Cllugs 1Ty ae (L + [0 ll1436) >,
and hence

™5 < CeM I wg 1T g (14 [vg han)* ™ + (L + M?)°T}.

Finally, from the equation and the above estimates, we can convert the regularity in ¢

into the regularity in s and obtain for 1 < 7 < m,
2 2) §,R m
[0 13 50mgy < CeM ML B2 o (14 00 l1gam) > + (14 M?)°T}.

Thus, by choosing M := CyM,, with a sufficiently large Cy > 0 independent of n and R,
there is a Ty > 0 such that

CoM,

||'Ug ||1+3m+2||aj ||2+3m = 5
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Next, we estimate the solution in C'([0, T]' L°°(R+)) To do this, we introduce a new

variable W .— ¢(n).R 5R . Then, W R gatisfies
(W = aW ()R 4y DR xvvm + 3aW I s (p(n=DoR 5 DRy g (mfE
_ia’vgnfl)ﬁ‘z,v( +5’ (n—=1), ‘Q,U(n I)R_|_av +U(n 1),R véR
+3000F % (p(=DR T st R s>0,t>0,
wm-E(s 0) =0, s> 0,
| WE(0,1) = 0, t>0.

We have by a direct calculation,

n 6 n n
Q&HWA)RW =S IWEHEPE + CIW 2 + (1 + M)?).

Thus we have
n n), 6,R
™ ey < Wy + 06 e

< C{Iw ™| 4+ 1}

<C{(1+ M?°T +1}.
Thus, by choosing T smaller if necessary, we have a uniform estimate of the form
H,v(n R||2 < O()M2

Now, we show that {v(%}%  converges. Set VW .= p(:F _ (=1 for p > 2

Then, VR gatisfies

Vg")’ = VR L - D.R o R 30y (B o (=11 vgnfl)’R)
VIR L GE s> 0,1 >0,

VML (s 0) =0, s> 0,
VMR, 1) =0, t>0,
where G are terms depending linearly on V=D In the same way as for v™F, we
have
R+ [ v <c [ HV "OA () [Bdr
CT,
( 0) MOa

~ (n—1)!

which implies that v™# converges to some v* in X%). Combining this convergence,

uniform estimate, and the interpolation inequality, we see that v™® converges to v%

in X':’F’Z’l. Since the initial datum has been approximated as smooth as we desire, the
above argument implies that for any natural number m, we can construct a solution v’

0 (4.2.3) in X’E with the initial datum ™.
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Finally, we pass to the limit R — +o00. First, from the estimate uniform in R, we have
Z?:o Zi(jo_j) SUPg<i<T, |0] 0k (1) || Lo () < C with C' > 0 independent of R. Therefore,
by a standard compactness argument, we see that there is a subsequence {v’% 2o and v
such that for [ = 0,1 and 0 < k < 2(1 — 1), 9loFv® — 9lo*v uniformly in any compact
subset of [0,75] x Ry.

On the other hand, the uniform estimate implies that there is a subsequence of
{vfi}22, which we also denote by {v%}5°, such that v converges to v weakly* in
):(g; = {v;v, € L=([0, To); H*™(Ry)) fn{ (7 WP ([0, To]; H**¥(Ry.)) L= ([0, To]
R.). From the above two convergence, we have a solution v of (4.2.3) with v € ):(}ré Let
N be chosen large enough for a solution v to belong to ):(ZTO with any fixed [. By taking
[>m+1,ve Xy, according to Sobolev’s embedding with respect to ¢.

We summarize the conclusion of this subsection.

Proposition 4.4.1 For a natural number m and 6 > 0, there exists a Ty > 0 such that a

unique solution v° € XJ’TS to (4.2.3) exists with a smooth initial datum v}.

4.4.2 Uniform Estimate of Solution with respect to ¢

In this subsection, we derive uniform estimates of the solution to pass to the limit 6 — 0.
We first show a property of the solution to (4.2.3) that is very important in the proceeding

analysis. In the following, we omit the superscript ¢ on the solution for brevity.

Lemma 4.4.2 Ifv is a solution of (4.2.3) withv, € C([0,T], H*(R,)), v € C([0, T]; L>(
R,)), and [v)| =1, then |v| =1 in Ry x [0,T].

Proof. Following Nishiyama and Tani [33], we set h(s,t) = |v(s,t)|* — 1. From direct

calculation and from the fact that v is a solution of (4.2.3), we have

ht = 2'0 - Ut
= 2{av Vs + 300 - (Vg X (V X V) — ga|fvs|2(v cvg) +0(v - vg) F 5|'v8|2|'v|2}
= hges + Ohss + (26]v4]* + (v, - v4s)) he

Thus, h satisfies
he = athgss + 6hys + (26|0,|* + 3a(vs - vg)) b, s> 0,8 >0,
h(s,0) =0, s >0,
hs(07t> = O, t > 0.
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By a standard energy method, we have
2 <« _ -h _ 2 h 2
ngmu ah(0) - hes(0) = 81| + CIlAI1

2
Il = =, )

o )
< o) = el + i,

where C' depends on supy;<r ||vs(t)||2. Combining the two estimates and applying Gron-

wall’s inequality, we obtain h = 0. O

Now that we have established that |v| = 1, we rewrite the nonlinear terms in (4.2.3)

into its original form.

( 3
Vi =V X Vg5 + & vs$5+§vssx (vxvs)
3
(4.4.3) +§v3 X (v x vss)} + (5(1)55 + \v8|2v), s>0,t>0,
v(s,0) = vy(s), s >0,
| v,(0,t) =0, t>0.

We will refer to this form of the problem when estimating the solution.
The following two equalities were derived from the property |v| = 1 in Nishiyama and

Tani [33] which will be used to derive the uniform estimate.

(4.4.4) v- v = ——Z ( )aﬂv .

(4.4.5)  wvgx 0lv = —[v-0lv|(v X vg) + [(v X vy) - OLv]|v for n > 2.

(4.4.4) is derived by differentiating the equality |v|*> = 1 with respect to s. We show

(4.4.5) in a little more detail for the convenience of the reader. Suppose v # 0. Then,

Vs v><vb
> Tos|?

since |[v| = 1 and v - v, = 0, the triplet {v

} forms an orthonormal frame of R3.

Thus for n > 2, we have

O'v = [v - Mvv + [ Us ~8§v} ”Us + [(v X 0,) -8”1)} v X Ys

v, sl

Taking the exterior product with v from the left yields

vy X O'v = —[v - OMv](v X v) + {M _ a’;v] [vs X (v X vy)]

v
—[v - OTv](v X vy) + [(v X vy) - 0L v]v.

When vy = 0, each term in (4.4.5) is zero, so that (4.4.5) holds in either case.

Now we estimate the solution. We first derive the basic estimate.
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Proposition 4.4.3 Let M,T > 0. Suppose that v is a solution of (4.4.3) with v, €
H*Ry), v} =1, and ||v,||; < M satisfying vs € C([0,T]; H(Ry)) and v € C([0,T];
L*(Ry)). Then, there exist 6, > 0 and C, > 0 such that for § € (0,6,], the following
estimate holds.

sup [lvs ()] < Ci.

0<t<T

We emphasize that C, depends on M and T, but not on § € (0,4,].

Proof. From Lemma 4.4.2, we have |v| = 1. We make use of quantities which are conserved

for the initial value problem in R with 6 = 0. First we estimate

d
EHUSHQ = —(v1, Vss)
3
= _a{<vsssvvss> + 5(’03 X (’U X vss)vvss)} - 5{HUSSH2 + (|’US‘2’U,’U55)}
o]
= =5 v (O = dfloss|” + dllvs 14w
0
< o F - 2ol + Colo e

Here, C'is independent of ¢ and is determined from the interpolation inequality ||vs|| 4w, )
< Ollvs|**||Jvss||V/4. Thus, we have d|jv,]|* < Cd||v,|®. On the other hand, the ordinary
differential equation
{ ry = Cor3, t>0,
r(0) = [lvg,|I?

has the explicit solution r(t) = (||v}, [~ — 2C’(5t)_1/2 as long as ||vd,||~* > Cdt. Thus, if
we choose 0, > 0 such that M~* > C4,T holds, r(t) is well-defined on [0, 7] and from the
comparison principle,

o (®)]] < ()2 = (ol |~ = cot) ™

< (Mt —cor) =,

which is a uniform estimate for ||vs||. Next we derive a uniform estimate for ||vg||. For the

initial value problem with § = 0, this was achieved by fully utilizing the conserved quantity

[vss]|2 = 2||Jvs|||*>. We also use this quantity for the initial-boundary value problem, while

taking care of boundary terms.

d )
7 {10l = S0P | = 20010 01) = 50, P,
= _2(USSS7USt> - 5<|’US‘2’US, Ust)

= ]1 + Oé[g + 5]3
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We estimate each term separately.

Il - _2(U5387Us X vss) - 5(|Us|2U57v X vsss)

= -2 /R (Vs - V) [’Us (v x vss)]ds +4 (V- V) [vsss (v % vs)]ds

R

— 5/ |02V - (U X Vys5)ds
Ry
= —2/ (Vs - V) ['vs (v X vss)]ds — / |'vs|2['uS (v x vsss)}ds
R, R,
—/ {|v5|2v5 (v x vss)}sds =0.
R+

Here, we have used (4.4.4), (4.4.5), and integration by parts. From here on, integration

with respect to s is assumed to be taken over R,. Next we have

I, = —2/17585 CVggesds — 6/’0855 s X (v X vg)|ds — 3/0585 s X (Vs X vg)]ds
— 3/’0355 s X (v X V)] ds — 5/ [V,|?Vs - Vgsssds
) 0,205+ (Vs X (0 X 0,)]ds — 15 [ |v,[*v, - [vgs X (v X V)] ds
3
— o0 +9 [0 loulds =3 [ o (ahds = 5 [ @ va)(o)ds

/\vs ]vss )sds — = /(]vs\ )s|vss] ds—5/!vs\2vs Vggssds
= e rds = 3 [t o.)ds

25
= |'USSS(0)|2 /(|’US| ) |'USS| ds — - /lvs |v85 sds — Z (|v$|6>sd8
3
- 5 /(Us . vsss)(|vs‘ )st - 5/ |U8‘2U8 : vssssds
2 2 2 7 2 2 7 2
= |’v885<0)‘ + {|'U5‘ |,U88’ }st + 5 (|'Us| )S‘USS| dS + 5 (vs : vsss)(’”s| )st

= |v855(0)|2.

Again, we have used (4.4.4), (4.4.5), and integration by parts. Finally, we calculate

I*

I3 = _Hvsss - 2(”5387 ’vs|2vs> - 4<USSS7 (vs : Uss)v) - 5('”3’21)87”533)

= 5(|vs [P, [vs[v,) = 10(|v,[Pvs, (v - vs,)v)

1
< _§||'USSS||2 + CY(||"’8||6L6(R+) + ||’U$ ) 'USSHQ)

1
—ZH'UssSH2 + CQ.
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Here, C5 is a constant depending on ;. We also used the interpolation inequalities
||US||L6(R+) < O||”S||2/3||v88||1/3a ||US||L°°(R+) < CHUSH1/2HUSSH1/27 and [[vg| < CHUSH1/2H

V4|2, Combining these three estimates, we arrive at

d

5 0
_ 2 _ < 2120~ 2 Y 2 '
” {||Uss|| sl }_ |l [V555(0, )7 = llvsss ™ + Co

Integrating over [0, t] yields

t )
(a1 + [ (Il + Hloal I )
5)
< el + o+ Cat
1
< O+ Slwal®? + Cllo 0 + Cat

|3/4 1/4

where we have used ||v,|/zam,) < C|lvs again. Thus we have

|vss]|

T
sup 0wl + [ (Jallou (0.0 + Sowslt) ) < Cllod [} + Gy + CaT.
0

0<t<T
where C3 is a constant depending on Cy. Thus if we choose C? := CM? + C? + C3+ C,T,
we see that the proposition holds. O

Based on the estimate derived in Proposition 4.4.3, we derive the higher order estimate.

Proposition 4.4.4 For a natural number k and M > 0, let v be a solution of (4.4.3) with
lvy| =1, v, € H'*(R.), and ||vd,|| grssew,) < M satisfying v, € C([0,T]; HT*(R..))
and v € C([0,T); L*(Ry)). Then, there is a positive constant Cy, and Ty € (0,T) such
that for 0 € (0,0.), v satisfies

sup |[vs(t)[|1136 < Cua.
0<t<Ty

Here, Ty depends on ||vos|ls and Cy depends on C and 0, but not on § € (0,0,]. C, and

0. are constants appearing in Proposition 4.4.3.
Proof. From Proposition 4.4.3, we have a C, > 0 and 4, > 0 such that

sup [lvg(t)[ < C.
0<t<T

holds for § € (0,0,]. We also know from Lemma 4.4.2 that |v| = 1.
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Now, for an integer m with 4 < m < 1 + 3k, differentiating equation (4.4.3) m times
with respect to s yields

3
Oy = v x I v + mug x O + a{@f‘”v + 5(82””1;) x (v X vy)

DO | o

+ ;(m + 1) (07 ) x (v x vy) +

3 3
+ 50, X (v x O"v) + vas X (vg X @f“v)}

(m + v, x (v x ™)

+ 6{8;”*2'0 + 2(v, - O w)v + zm} + Wy,

where z,, and w,, are terms that contain derivatives of v up to order m and are inde-

pendent of 4. We estimate the solution in the following way:.

1d
SO w2 = = (0, 97 1) (0,0) — (D2, O 0)

= — (07, - 07 0) (0,1) — m(v, x O v, 00 Pw) — a{(&é"*sfu, oMt 2y)

+ ;(m +1)(0m M x (v X vy,), 0" P) + g(m + 1) (vgs x (v x "), 0 2)

- ;(vs x (v x 0" v), 07 Pv) + 3Tm(vs X (vg X 8:”111),8;"”1))}

— 5{(8;”+2v, 8;n+21,) + 2(('05 . 8;”+1,v),v, a;n+2,v) + (zm’ am+2,v)} _ (,wm’ am+2,v).

s

Each term is estimated by using the fact that |v| = 1, (4.4.4), and (4.4.5). The usage of
these properties is sometimes hard to notice and somewhat complicated, hence we give
a detailed calculation for such term even though the calculus itself is elementary. Set

m. = max{3, m — 3}. First we have

—m(vs x O, 97 20) = m(v, x I, 9 o)

= —m((v- 90" ?v)v x v, ") + m([(v x v,) - I v, 0" )

1R 2
= —mz ( me ) (v - 0o x v, 07 )

2 , J
7=1
—m([(v X vg) - 0" ], 07 ) — m([(v x v,) - O vlv,, O )
m—+1
+ — ( m + 2 ) ([(v x v,) - 0" W] w, 072 )
j=1 J
< OH’USHTZn’
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where C' depends on ||vs]|;m,. Next we have

S m A+ D@ 0 % (0 % 0., 0 )

= ;(m + 1){((035 O ), 0 20) — (v - O™ )vy, am—i—?v)}

s

3 1 il m -+ 2 . .
=30 =52 (777) (e o

+ ((vs - 0" )vg,, 07 0) + (v - 07 20)vg,, O 0)

J=1

+ (v 07 ), 0] 0) + ((v - O ) - 07 ) (0, t)}

< C(llvsll + 105 0 (0,0)%),

where C' depends on ||vg||;,,. We continue with

g(m 4+ 1)(vgs x (v x O™, 07 20)

= 30m+ D{ (@ 0 010,07 20) — (v v v 00 0) |

3 1R m+2 . 4
= 5(m+ 1){ -5 > ( ; ) (Vg - O 0) v, 972 )
j=1

+ (V- 05) 00, 07 ) — ((v - vy) ][00 0[?) (0, t)}

< Cllvsl,

where, again, C' depends on ||vg||sm,. From here on, it is assumed that generic constants

C' depend on ||vsl|,, unless explicitly mentioned otherwise. We calculate furthermore

M

(vs x (v x 9" 20), 07 2w) = 5((115 I\, 9 )
S R A U RS S (R [T R R

I
=] w
—N
<

&

3

*
=

&

@

3

*
=

_I_
]z
N NI

S

72 ) (- ooz, )

S

+((vs - 07 0) 01, 97 w) + (v, - 7 0)0lw, 07 v)] }
< Ol
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3
—m(vs x (vy x 0" w), 07 2)

2
- 37m{<<”s O o)., 07 ) — (v, vs)(?;"“vﬁl”””)}
3m m+1 m+1 1 m+1 m+1
- 7 - ((vss ) 88 )’05, (9 ) + 5((”5 : vs)sas v, as ’U)
< Cllv]l.

Next, we estimate the boundary terms.

§[8§”+2fv x (v x vy)] - O™

+ 3(m + D[vgs x (v x ™)) - 07w + 2[ v, X (v x 0" 20)] - 0" o

2
3m m--1 m—+1 m+2 m~+1
+7[vs>< (vs x OV )| -0 v p + 0400 V- 07w
+2(vs - O ) (v - 0T ) + 2, - 8;”“1)} + w,, - 0",

thus we have

(90, - 97 0) (0,) = [(0 x O 20) - 97 w] (0, 1)

3
+ a{@f“rgfv SO 4 2(m + 1)[ves x (v x O™ )] - 6;”“'0}(0, t)
+ 5{8;"*% SO Y+ 2, 8;"“@}(0, t) + (W, - 07 1)(0,1).
Again, we estimate each term separately. For example,

{[vss X (v x 0T 0)] - 07w }(0,t) = {(vss L0 v)y — (v vss)asmﬂv} o)

=3 Z (") a0y o)

< C(Ilvsllfn +10 1 0(0, 1))

s=0

s=0

holds. Combining the estimates yields

1d

5 100l + Slallor (0,0

< C(llvlly, + 107 0(0,0)]7) + (v x 0 ) - 07 o) +ad v - 07 o

s=0

+ 0(0" 2y - 9 )

s=0

On the other hand, from the boundary condition we see that the solution satisfies &? v5(0,1)
= 0 for any j with 0 < j < k. Rewriting this by virtue of (4.4.3) yields o/ (9% "1v)(0,t) =
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F(v,v,,...,0%0)(0,t), i.e. boundary terms with (3j + 1)-th order derivative can be

expressed in terms of boundary terms with derivatives up to order 35. For m = 35 + 1,

we have
Ld s 2y ‘ | 14353 2

(146) 09 0P + S (0, )

C(H’USH%-&-i&j +107720(0,8)]7) + (v x 97 w) - 07

s=0
b adPUtD Ly L gty 50y . 9 )
s=0 s=0
< C(lvslltsy + 10720(0,0)]%) + (v x 07 v) - 9w
s=0
+ C’3§j+3v”8§j+2v’ + 5‘3§j+3vHa?j+20’
= s=0
By a similar estimate, we can show that
o + g, py
< C(llvsllz + 1077 (0, 8)°) + (v x 87"*v) - 01w
s=0
+ |al|o ][00 ]|+ [0 w||0) |
s=0 s=0
holds for 7 =0, 1,2, 3. Thus, for n > 0 we have
1 d ]+1 2 | j+2 ]+1 J+3
5o vl + \a 0,0)]" < C(J[vsll3 + [0 (0, 6)[7) + 5|7 +3v(0,1)|
for j = 1,2, and
Zdtua‘* v||? + '}a% 0,)" < Cllwll} + C|otv(0,1)[",
laf
ol + L o20(0,1)” < o

Here, C' depends on n and C,. Combining these estimates, we arrive at

1d

S=llvl < Cllw, I,

where C' depends on C, and 0, but not on § € (0,6,]. As before, the above estimate
gives a time-local uniform estimate in C'([0, 71]; H*(R4)) for some Tj € (0,T]. From the
H3-estimate and (4.4.6), we can derive the uniform estimate in C'([0, 71]; H****(R,)) in
the same manner. Here, T} is determined from the H3-estimate and only depends on
[vos|ls- u
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4.4.3 Passing to the limit § — +0

Now, in virtue of passing to the limit § — +0, we prove the existence theorem for the

case o < 0.

Proof of Theorem 4.1.1. Since v, — vo, in H*3*(R,) and v{ — vy in L®(R,) as
§ — 40, by taking J, > 0 smaller if necessary, we have |[vd,||113x < 2||vos|l143x for any
§ € (0,4,]. For such §, the solution v° constructed in Subsection 4.4.1 with initial datum
v} satisfies the assumptions of Lemma 4.4.2 and Proposition 4.4.3 with M = 2||vg,||1+3%,
i.e. |[v°| =1 and a uniform estimate in C'([0,7]; H*"*(R.)) for some T' > 0 hold. For
any 6,6 € (0,0,], V :=v? —v® — (v) — v)) satisfies

Vi=aV,+v" x Vi +3aV x (v xv?) + (v, + [v))2vY),

—6(v, + [V)*v0) + F, s>0,t>0,
V(s,0) =0, s> 0,
V,(0,t) =0, t >0,

where F' is the sum of lower order terms of V' and depends linearly on V := v} — v).

By a standard energy method, we have
1d
2dt

1d
——||V,I? <
SqllVelP <

IVI? <aV(0,t) - V(0,8) + C[VIT+ Cl(6 + )+ [Volliem,) + Vosll3]

|

—T\VSS(OJ)P +OIVIE+Cl0+0) + Vol Zeom,y + IV osll3],

- Ué)ss = —'Ug, ' (,Ué’ -

— %) - v®,, which follows from the fact that |v°| = [v¥| = 1.
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where C' is independent of § and ¢’. Here, we have used v® - (v

0 &

'05)5 - (’Ué/ - ’06)5 "V — (’U

The above estimate implies
IVIT < CT[(0+ ) + [Volier,) + Vs3],

where C'is independent of § and ¢’. Thus, there is a v such that v — v in C’([O, T|; L (R
)) and v} — v, in C([0,T]; L*(Ry)) as 6 — +0. Combining these convergence with the
uniform estimate, we have a solution v to (4.2.1) such that v, € ﬂ?:o Wi (0, T; H3(Ry
)) and |v| = 1. Again, since the initial datum can be approximated by a smooth func-
tion, we have a solution v € Xéﬁ, i.e. the continuity with respect to ¢ can be recovered.
The uniform estimate obtained in the previous subsection is essentially the energy esti-
mate for v, from which the uniqueness of the solution follows. Based on this estimate
of the solution and a sequence of smooth initial datum {wv{}2, such that vy — wvg
in L>°(R,) and v%, — wvo, in H™*(R,) as n — 400, we have a solution v satis-
fying v, € ﬂ?zo Wi (0, T; H**3(Ry)) and |v| = 1 with initial datum v, satisfying

vos € H'™*(R,y) and |vg| = 1 in the same manner as we did with § — +0.
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Since a compactness argument is used, the continuity in ¢ is lost and we are unable
to recover the continuity in ¢. One of the standard method to recover it is to prove the
strong continuity of v at ¢ = 0 via solving the problem reverse in time. Unfortunately,
our problem is not reversible in time and we do not have any new ideas to recover the
continuity.

Finally, as we mentioned in the introduction, we can construct  from wv. 0

4.5 Construction of Solution in the Case a > 0

4.5.1 Existence of Solution

We construct the solution in a similar manner as in the case o < 0. For n > 2, we define

n 3 n— n— n— —
o™ = 0o + A(v™, 9,) 0™ — §a|v§ V1290 4 §lol 2o 5> 0,6 > 0,
v (s,0) = v(s), s >0,
v™(0,t) = es, t>0,
v{(0,1) = 0, t>0,
where e3 = (0,0,1), v3" is the same initial datum that is defined in Subsection 4.4.1, and

the operator A(v n- 1), J) is the same as in the case v < 0. The dependence of v on R is

suppressed for brevity. Again, we define v() by

m

t
1 5,R 5,R
vV (s,t) = vg"(s) + Z ﬁQ( 5 (v (s))
j=1

so that the compatibility conditions are satisfied at each iteration step. By Theorem 4.3.2,
each v is well-defined.

Since the arguments for the uniform estimate and the convergence with respect to n
and R are the same as in the case a < 0, we omit most of the details and just show the

basic energy estimates used to derive the uniform estimates. For any n > 0 we have

1d
o™[2 = — (™ ™
2dt“8H (ss’t)
6 n n—
< \v (0, 6)* = —Hvﬁs)H“rCHvﬁ 1
0 n—
< nlloS2* + Cyllof2 | - 2H W+l V3,

1d, ., 2 (n
5 oI = — (i o)

| /\

\vsss(o t)* = llolI* + nllvl2* + Cy (ol 17 + [l V).
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The equation and Sobolev’s embedding theorem imply

[0, < nllwllll? + Cyllold|P + O+ [[ol" V).

888 888

Combining all the estimates yields

T T
wpw@wM+/‘m@@masc/‘w9”@MM+cﬂ
0 0

0<t<T
where C' depends on [|[v™ =V (¢)|| (o, 73;15¢(r.))- From this, estimates uniform in n and R
can be obtained by induction with respect to n.
4.5.2 Uniform Estimate of Solution with respect to ¢

As before, we derive a uniform estimate. First we prove the following.

Lemma 4.5.1 Ifv is a solution of (4.2.4) withv, € C([0,T], H*(R+)), v € C([0,T]; L*
(Ry)), and [v)| =1, then |[v| =1 in Ry x [0,T].

Proof. As in the proof of Lemma 4.4.2, if we set h(s,t) := |v(s,t)|? — 1, h satisfies

hi = ahges + Ohss + (20|vs]? + 3a(v, - v4))h, s> 0,t >0,

h(s,0) =0, s >0,
h(0,t) = 0, t>0,
hs(0,t) = 0, t>0.

It is easy to see that for any n > 0,

1d
——|n|* < h||* = 6| hsl|? Rl
LA < Cllal? = SR + il
holds. Thus, after choosing n > 0 sufficiently small, A = 0 follows. U

As before, we rewrite the nonlinear terms in (4.2.4) into its original form.

)
V=V X Vg + a{vsss -+ 51)53 X (v X vg)

3
+§vs X (v X vss)} + 5(’055 + |Us|217), s>0,t>0,

(4.5.1)
v(s,0) = v)(s), s> 0,
v(0,t) = e3, t >0,
| v(0,1) =0, t>0.

Now, we derive a basic uniform estimate with respect to 6. The main method and prop-

erties used for it are the same as in the case a < 0, namely, utilizing |v| = 1, (4.4.4), and
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(4.4.5), but the energy is slightly modified and is different from the higher order conserved
quantity. First we have

_a 2 2

1d
thH'USSH2 < CH'USH (1 + [Jvsl2) + |v888(07t)|2 - 5”'”885”2
< Cllsll3(1 + [Jvsll2) — 5I|vsssll2,

where we have used |v4(0,1)|> < C|lvs||3(1 + ||vs]|2), which follows from the boundary
condition and the equation. To close the estimate, we will derive estimates for vg,.
However, like the estimates above, the boundary terms have a bad sign unlike in the case
a < 0. Thus, we must modify the energy to obtain the desired estimate. Specifically, to
obtain an estimate for v,,s, we use the following.

gl + 200 % 000 + 20000 | < Clou B+ 0u1B)
In each estimate, C is independent of §. Combining the three estimates, we obtain a
uniform estimate for ||v4||z for sufficiently small 6. We denote this threshold as 0.

The reason we modified the energy from the Sobolev norm is to take care of the
boundary term. If we directly estimate ||v,||?, boundary term of the form v, (0)-92v(0)
comes out and the order of derivative is too high to estimate. We can cancel out this
term by adding a lower order modification term in the energy. This kind of modification
is needed to close the estimate for ||vg|lo4sx with & € N. We use the above energy that
we just derived an estimate for as an example to demonstrate the idea behind finding the

correct modifying term. Taking the trace s = 0 in the equation yields

0455(0,1) + (v X 0,5)(0, 1) + 60,5(0,1) = 0

for any ¢ > 0. Thus, replacing ||vss||* with [|v.s||?+2 (v X v, vsss)—i—%‘s(vss, Vsss) changes
the boundary term from v,(0,%) - 920(0,1) to (v4s5(0,) + v x v4,(0,¢) + dv,,(0,1)) -
9°v(0,t), which is zero.
We continue the estimate in this pattern. Suppose that we have a uniform estimate
supg<i<t ||Vs(t)||2436-1) < M for some i > 1. For j = 1,2, we have
1d
2dt
where we have used |9: ™ (0)2 < C||vs|3,5;. Here, C' depends on M and d,, but not
on 0. Set W, (v) := Py (v) — a™02™v, which is P, (v) without the highest order
derivative term. Then, the final estimate is

1d 1 2 i
a1 4 e (Wi (0,790 | < ClolBs + €,

07 v|* < C1+ [Jsll345),
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where, again, C' depends on M, but not on 6. Thus, we have proven the following time-

local uniform estimate by induction.

Proposition 4.5.2 For a natural number k and M > 0, let v be a solution of (4.5.1) with
lvy| =1, v), € H****(R.), and ||v},|| g2+sem,) < M satisfying v, € C([0,T]; H**(R..))
and v € C([0,T]; L>*(Ry)). Then, there is a C, > 0 and Ty € (0,T] such that for
0 < 4§ <0, v satisfies

sup ||vs(t)||2+3k < Crs.
0<t<Ty

Here, T\ depends on ||vos|la and C., is independent of § € (0, d.].

4.5.3 Passing to the limit § — 40

Now we pass to the limit 6 — +0. For ¢',6 € (0,4,], we set the difference of the corre-

sponding solutions as V := v® — v’ — (v — v)). Then, V satisfies

Vi=v" X Vi+a{Vu+3Vx (v xv")} + 8V, + G, s>0,t>0,

V(s,0) =0, s> 0,
V(0,t) = 0, t>0,
V,(0,t) =0, t>0,

where G is the collection of terms that are lower order in V and depends linearly on

Vo :=v) —v). By astandard energy method, we have

1d
slIVIE < CIVIE+CL& +6) + [Vollzemy) + Vs3],

where C' depends on C, defined in Proposition 4.5.2. Here, we have used identities such

as

!

! ! ! !
00 x (v —v0) = v% x 9%’ — v x 9 — (0¥ — V), x M,

to obtain the estimate. From this estimate, we see that v* — v in C'([0,7]; L*(R+)) and
v — v, in C([0,T]; H*(R4+)) as § — +0, and v is the solution to (4.2.2). Combining this
with the uniform estimate, we see that v, € ﬂ?zo Wi (0,T; H*H3*=)(R,)). As before,
the uniform estimate is essentially the energy estimate of the solution to the limit problem,
and after an approximation argument on the initial datum, the regularity assumption on

the initial datum can be relaxed. Thus we have proven Theorem 4.1.2.
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Appendix A

Generalized Hasimoto
Transformation

A.1 Remark on the generalized Hasimoto Transfor-
mation

In this appendix, we use our initial-boundary value problem for the LIE to demonstrate
the generalized Hasimoto transformation. As mentioned in Chapter 1, this transformation
was first constructed by Koiso [24] in a more geometrically generalized setting than our
problem. More specifically, the unknown variable v takes values in a general manifold.
Recall that in our analysis, |v| = 1, i.e. v takes values in the unit sphere S2.

We restate the problems for convenience.

UV = UV X Vg, s>0,t>0,
(A.1.1) v(s,0) = vo(s), s >0,
v(0,t) = es, t >0,

1
6 = gos + 5lal’q, 5> 0,6>0,
(A.1.2) q(s,0) = qo(s), s> 0,
4.(0,1) = 0, t>0.

Here, i = y/—1 and we assume that |vg| = 1 and the compatibility conditions mentioned

in Chapter 2 are satisfied. We first derive compatibility conditions for (A.1.2).
Lemma A.1.1 The compatibility conditions for (A.1.2) are that for n € N,
92" 1qo(0) = 0.
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Proof. We prove that a smooth solution g of (A.1.2) satisfies 9*"™1¢(0,¢) = 0 for n € N
and t > 0 by induction. It is obvious for n = 1. Assume that it holds up to n — 1 for

some n > 2. Differentiating the equation (2n — 1) times with respect to s, we have
2 n 1 o
10" gy = 03" g+ S0 {lala}

Since the last term always contains derivatives with order less then or equal to 2n — 1, we

get for any ¢t > 0
92" q(0,t) = 0,

and the trace at t = 0 yields the desired assertion. 0

A.2 LIE to the nonlinear Schrodinger equation

Given a qp satisfying the compatibility conditions, we first transform (A.1.1) to (A.1.2).
Assume that we have a smooth solution of (A.1.1) with an appropriate initial datum
which will be specified later. The solution will necessarily satisfy |v(s,¢)] = 1. The idea is
to construct a basis of the tangent space of the unit sphere S? that is parallel to the curve

v on S?. First we construct a vector e(s,t) orthogonal to v with unit length satisfying

V.,e =0,

where V, is the covariant derivative along v. Suppose that such a vector e exists. Since

we know that v is the unit normal of S?, we have
Ve=es—(es-v)v=-e5+ (e -v;)v =0,

where we have used e - v = 0. The above relation is a necessary condition that e should
satisfy. Conversely, for any ¢t > 0, let e(s,t) be the solution of the following linear ordinary

differential equation in s

(A.2.1) e(0,1) = e,

{es—l—(e-vs)v:07 s >0,
where {e;, s, €3} denotes the standard orthonormal basis of R3. We see that

(e-v)s=e;-v+e- v, =0,

and e - v = 0. This and



yield |e| = 1, and Ve = 0. Thus, the solution to (A.2.1) is the desired vector. From
this, we see that {v,e,v x e} is an orthonormal basis in R? for every s > 0 and t > 0.

Since v - vy =0 and v - v, = 0 from |v| = 1, we can decompose v, and v; as

(A.2.2) v, =qre+ (v xe), v=pe+p(vxe).

The ¢; and p; (i = 1,2) are functions of s and ¢. From (A.2.1) and (A.2.2) it follows that
e; = —(e-v5)v = —qu.

From e - v = 0 and (A.2.2) we deduce e; - v = —e - v, = —py, so that with the help of

le|] =1, we get
e;=—pv+alv Xe),

where « is an unknown function. From the equality v, = v and comparing the compo-

nents, we see that

Qit = P1s + Qq2, Qo = P2s — Qqy.

On the other hand, from v; = v X vy, we get

P1 = —Qqas, P2 = (1s-

Finally from e;s = e,; we have

1
As =P1g2a = P2 = —5 {(91)3 + (%)3} )

so that @ = —3 {(q1)? + (¢2)*} + (0, t). Since e(0,t) = ey, we see that e,(0,t) = 0, and
hence «(0,t) = 0. Then, q := ¢ — igy satisfies

. 1,
ig; = qss + §|C]| q.

Since v(0,t) = e, differentiating this with respect to ¢ yields v;(0,t) = 0, so that the
boundary condition for ¢ becomes ¢4(0,¢) = 0. We are left to determine v, from a given
initial datum qgo = go1 — igo2 of (A.1.2). From the arguement above, we naturally arrive

at defining v, as the solution of

Vos = qo1€’ + qoz€?, s >0,

1
e = —qu’UO, S > 07

(A.2.3) ;
€, = —{o2o, s >0,

(UO7 elv 62)(0) = (e?n €1, 62)-
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We have to check that v, satisfies the compatibility conditions for (A.1.1), which is
(vg X 0?"vy) (0) = 0 for n € N. Defining the matrix A as A= (vg, e',e?), (A.2.3)
can be written as

0 q2s —(q1s

Lo
A, =A| s 0 §|Q| —: AP.
1

4is —§|Q|2 0

Since P is anti-symmetric,

(AAT) = APA" + A(AP)" = A(P+P")A =0,

where AT is the transpose matrix of A. Thus we have AAT(s) = AAT(0) = I3, where I3 is
the 3 x 3 unit matrix. This shows that {v, €', e?},>¢ is an orthonormal basis of R3. e?
is actually v x e!, but we use e? for simplicity. Differentiating the equation for vy and

using the other two equations, we get

Voss = Qors€’ — (CI01)2’UO + qozs€® — (CI02)2’UO

Taking the exterior product with vy and setting s = 0, we see that (vy X vgss)(0) = 0.
Thus the condition is true for n = 1. Suppose that it holds up to n — 1. Differentiating

the equation 2n — 1 times yields

2n—1 2n—1
852”'00 _ Z ( 2nk— 1 ) (a]:l )(8271 1— k1e + Z ( ) akl )(agn—l—kle2).
1

k1=0 k1=0

At s = 0, the terms where k; is odd are zero from the compatibility condition for q.
When k; is even, 2n — 1 — ky is an odd number greater than or equal to one. Setting

my :=2n — 1 — ky, we have for 1 =1, 2

mi—1
mi i -1 2 m1—1—ko
e == 3" ( " ) (0520) (9" *wy).

ko=0

Again only terms where ks is even remain. Then, m; — 1 — ko is an even number less than

or equal to 2(n — 1) so that setting k; = 2j; and ky = 2j5, we have

5 (m1—1)

n—1
—1 : —1 , o
o =30 (Tt )@ g = 35 (M) @)

Jj1=0 J2=0 s=0
</ 2m—1 Ay
- 2 B 1 2j i —1-2j
T Z ( % > (95 qo2) Z ( 2, ) (072 402) (05" *vg)
71=0 Jj2=0 <=0
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Since the derivative of vy is of even order less than or equal to 2(n — 1) on the right-hand
side, taking the exterior product with v yields (vy x 8?"v()(0) = 0 according to the
assumption of induction. Therefore, the vy constructed here satisfies the compatibility
conditions for (A.1.1).

A.3 Nonlinear Schrodinger equation to the LIE

In this section, given an initial datum vy, we construct the solution of (A.1.1) from the

solution of (A.1.2) with an appropriate initial datum. First we define &'(s) as the solution

of
e
e

In the same way as before, we see that &'-vo = 0 and |€'| = 1. Thus, v, can be expressed

+ (é1 - Vgs)vg = 0, s> 0,
(O) = €.

[y

as vos = qo1€' + qoa(vo x €1). We use qo := qo1 — igo2 as the initial datum. We first check
that g satisfies the compatibility conditions for (A.1.2). As before, set &* := vy x &'.
Then, vy, &', & satisfies (A.2.3). Differentiating the equation with respect to s, we have
Voss = qo1s€" — (qo1)*vo + go2s€” — (qo2)’vo.
From a compatibility condition for vy we get
0 = (vo X v0ss)(0) = {qors(vo X €") + gozs(vo X éz)}‘szo
= {qé® - QO23é1}|s:0-

Since &' and &* are orthogonal, go15(0) = go2s(0) = 0. Suppose that the compatibility con-
ditions up to order n—1 hold. As we did previously, taking into account the compatibility

conditions that v satisfy and the assumption of induction, we arrive at

2" vo(0) = (92" qor1)e" + (02" ' qoe) €7

5=0
~(2n—1 e
- 2j B 1= 2j mi—1-2j
DM G [C TR D D (R [
J1= J2=

2(m1—1)

2n—2 2
2n —1 21 - myp — 1 272 mi—1—2j>
P (M )@ - S (M) @R

Jj2=0

s=0

where m; = 2n — 1 — 2j;. Since m; — 1 — 27, is even, (vg x 9™~ 17229()(0) = 0. Thus,

we have
0 = (v X 07"v)(0) = (92" 'qo1)&* — (92" "quz)€",
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from which 92" ~1¢y(0) = 0 follows. This implies that g satisfies the compatibility condi-
tions for (A.1.2).

Suppose that we have a smooth solution ¢(s,t) of (A.1.2) with the initial datum just
obtained. Set ¢(s,t) = qi(s,t) —iga(s,t). For any s > 0, we extend the vectors vy, €, and
vy X e in the t direction as the solution of

( V¢ = _q2361 + Q13627 t> 07
1
el = @ — 5’(]’262, t>0,
1
el = —qv+ 5’(]’261, t >0,
\ (v, e, e?)(s,0) = (vo(s), &(s), (vy x €)(s)).

We express v, el, €? as column vectors. Then we have

1 1
(v,e', e”); = ( — @se' + e’ a0 — Sla’e’, —quv + §|q\261)
0 G2s —{1s
L
= (v,e',e?) | 0 §‘Q|
1
d1s —§|CI|2 0
As before, since the coefficient matrix is anti-symmetric, {v, e!, €} forms an orthonormal
basis and e? = v x e'. From here we denote e' as simply e. Since 0 = (1[v[?), = v - v,,
v, can be expressed as
vs = Gie + go(v X e).
From |e| =1 and e - v = 0, we see that

e;=—qu+alvxe), (vxe)s=—Ggv—.ae,

where ¢; and a are unknown functions. From the way we constructed e, we see that at
t=0

1 = o1, ¢2 = qo2, o = 0.

As before, from v, = vy and ey = €5 we have

( I

qit = —qass — 5\(1’ G2 — aqis, t >0,
N 1 N

¢ Q2t = Q1ss + §|Q|2Q1 — Q@Gas, t> OJ

. i 1
& = Giqis + Gogos — (§\ql2)s, t>0,

\ (th Q~27 a)(sv O) = <QO1(S)7 QO2(S>’ 0)
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Setting Wy := ¢; — q1 and Wy := ¢ — ¢o, we have

( 1
Wi = —§|Q|2W2 — Qq1s, t>0,

1
Wy = §|Q|2W1 — (s, t >0,
Qp = QISWI + Q25W2; t> Oa
L (W1, Wa, a)(s,0) = (0,0,0).

This is represented in terms of W := (W, Wy, )T as

1
0 ——qI* —qus
2|C]| q1

w,=| 1 w.
! §|q|2 0 —{q2s
qis q2s 0
Since the coefficient matrix is anti-symmetric, we have |W (s, t)| = |W (s,0)| = 0, which

is equivalent to ¢; = ¢; for : = 1,2 and o = 0. From direct calculation we have
U X Vs = (U X 05)s = {q1(v X €) — e}, = qis(v X e) — qoe = v,.
From the boundary condition imposed on ¢, we see that
v:(0,1) = —q25(0,t)e + q15(0,1) (v x e) = 0.
Integrating this in ¢ yields
v(0,t) = vo(0) = es.
Hence this function v is a solution of (A.1.1). We summarize the above results.

Theorem A.3.1 Given an initial datum vy, the solution to (A.1.1) can be constructed
from the solution to (A.1.2) with an appropriate initial datum.
Conversely, given an initial datum qo, the solution to (A.1.2) can be constructed from

the solution to (A.1.1) with an appropriate initial datum.
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