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ABSTRACT: 
 

A technique of structural damage detection was proposed which considers the effects 
of both measurement noise and modeling errors in the baseline finite element model. 
Damage that accompanies changes in structural parameters can be estimated for a 
damaged structure from the change between measured vibration responses and ones 
calculated from the analytical model of the intact structure. In practice, modeling errors 
exist in the analytical model due to material and geometric uncertainties and a reduction 
in the degrees of freedom as well as measurement errors, making identification difficult. 
To surmount these problems, bootstrap hypothesis testing, which enables statistical 
judgment without information about these errors, was introduced. The technique was 
validated by real vibration data for a three-story steel frame structure. 
 
INTRODUCTION 
 

Vibration-based damage identification methods are based on the fact that structural 
damage usually causes a reduction in structural stiffness which are accompanied by 
changes in vibration characteristics. In most methods, damages is estimated by 
comparing changes in vibration responses in the damaged state with analytical baseline 
findings for the finite element model in the intact state. The baseline model has to express 
the intact structure accurately, which it is impossible even though the initial model is 
updated to match the measured responses as closely as possible. Modeling as well as 
measurement errors always must be coped with.  

The effects of both measurement and modeling errors therefore must be considered to 
obtain identification results. The research dealing with these effects is scant. Xia [1] 
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studied the influence of these uncertainties and estimated the probability of damage 
existence. Stiffness parameter statistics were derived by the perturbation method, and the 
probabilistic distribution was determined from Monte Carlo simulation results. Yeo [2] 
also used the data perturbation method and obtained a statistical distribution of system 
parameters. They both assessed damage by a hypothesis test. The perturbation method 
assumes a normal distribution, but measurement distributions and modeling errors do not 
always fit a normal distribution. Moreover, the method to determine covariance matrices 
is not self-evident. In a real situation, we can not determine the distribution functions or 
the covariance matrices of measurement and modeling errors.  

A method of structural damage identification is presented here that considers the 
effects of both measurement errors and modeling errors. Application of the bootstrap 
method [3], an approach for data resampling, which requires no assumption of 
distribution functions or covariance matrices, is introduced. Hypothesis testing by that 
method was conducted to deal with these uncertainties using only measurement data. 
When damage is detected, bootstrap hypothesis testing enables one to judge whether that 
damage is due to real damage or to measurement and modeling errors. The method was 
validated by the use of real vibration data for a three-story steel frame structure. 
 
 
MODEL UPDATING TECHNIQUE USING FRF DATA CHANGES 
 

The forced vibration response of an um-damped system generated by harmonic 
excitation is obtained by solving the equation of motion; 

)()()( tftKxtxM =+&&                              (1) 
where M and K respectively are the mass and stiffness matrices of the baseline model, 

)(tx  the displacement response vector, and )(tf  the vector of the external harmonic 
excitation force.  
The forced vibration response in the frequency domain is; 

)()()( ωωω FHX =     12 ][)( −+−= KMH ωω                      (2) 
where )(ωX  and )(ωF  respectively are the Fourier transforms of )(tx  and )(tf , )(ωH  is 
the transfer function of the baseline model, and ω is the excitation circular frequency. 

 
When stiffness is changed by δK from the baseline model, the equation of motion 

becomes 
( ) ( )( ) )()()()()( tftxtxKKtxtxM =+−++ δδδ &&&&                  (3) 

where )(txδ  is the increase in the displacement response.  Then δke denotes the 
proportional changes in the stiffness of the e-th element. 
Variations in the total stiffness matrices therefore are expressed as sums of changes in 
element stiffness matrices; 
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When parameters are updated to approximate the intact structure, they are denoted by 
i
ekδ . Likewise, when parameters of the damaged structure are updated, they are denoted 

by d
ekδ . 

The Fourier amplitude )(' ωX  of the displacement response of the real structure is 
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where )(ωeS  is 
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The frequency response function (FRF), obtained by dividing the Fourier amplitude of 
the acceleration response by the Fourier amplitude of the harmonic excitation force, is 
used. On the assumption that the excitation force is applied at point j and acceleration is 
measured at point i, the FRF ),,( ωjia is 
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Transposing the unknown terms to the left side and the known ones to the right side,  
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In Eq.(8), the measurement point i, excitation point j, and excitation frequency ω are 
arbitrary values. Separating the complex parameters into real and imaginary parts, and 
choosing l different sets of i, j, ω, this relationship can be written as a set of simultaneous 
equations; 
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Thus, l different FRF may give 2l equations for 2n unknowns. By solving Eq.(9), the 
structural parameters can be updated.  

This model provides an updating technique for both intact and damaged structures, and 
identifies i

ekδ  (intact structure) and d
ekδ  (damaged structure). The model is updated such 

that the FRFs from updated model match the measured FRFs.  
This is the deterministic model updating technique. If the same measurements are 

conducted many times, and different values are identified, they can be assumed to be 
random variables for statistical identification. 
 
 
STATISTICAL PROCEDURE FOR DAMAGE ESTIMATION 
 
Bootstrap method 

The bootstrap method is a resampling technique formulated by Bradley Efron in 1979 
[3]. It is a computer intensive method in applied statistics, and a type of Monte Carlo 
method based on observed data. It obtains the distribution of sample statistic by iterative 
random selection. Its advantages are that it can be applied to data which do not have a 
normal distribution, and it constructs all types of probabilistic density functions 
automatically by means of data resampling. 
 
Hypothesis test based on the bootstrap method 

Hypothesis testing is a statistical approach to judge whether measured data are 
contradictory to the assumed hypothesis. Two random variables ),,( 1 mxxX L=  and 

),,( 1 myyY L=  are assumed with μx and μy as their respective means. m is the number of 
samples. A problem to test that the X equals Y is considered. The null hypothesis and an 
alternative hypothesis becomes 

yxH μμ =:0        yxAH μμ >:                      (10) 
The statistical test uses a test statistic, T, that measures the discrepancy between the data 
and the null hypothesis;  

)1()1(/)(),( 22 −+−−= mSmSYXYXT yx                    (11) 
where X and Y  are sample means, and 2

xS  and 2
yS  sample variances; 
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Let obst denote the observed test statistic value. Whether the observed value of the test 
statistic, obst , is large can be judged from the  p-value; 

}|Pr{ 0HtTp obs≥=                           (13) 
If the p-value is below the level of significance, α, the null hypothesis parameter value is 
outside of the confidence set. The distribution of ),( YXT  must be calculated under the 
null hypothesis. Traditional statistical analysis assumes that the distribution is 
approximately independent and the distributions of X and Y are normal, but actually, 
these distributions are unknown. The bootstrap method does not require such 
assumptions. It automatically generates the distribution under the null hypothesis using 
only the measured data.  

In this study the distribution of ),( YXT  was obtained based by the position 
arrangement method [4]. First, the observed data, X and Y, are transformed, then 
pseud-data which are assumed to fit the null hypothesis are obtained; 

miZXxx ii ,,1,* L=+−=      miZYyy ii ,,1,* L=+−=       2/)( YXZ +=           (14) 
where Z  is the sample mean of all the variables belonging to X and Y. 
The empirical distribution is obtained from pseud-data 
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Here )(⋅δ  is the indicator function, where 
Next, samples are generated randomly, { }b

n
b

i
b xxX *** ,,L=  and { }b

n
b

i
b yyY *** ,,L= , from the 

distribution, )(xFm  and )(yGm , and the value of the bootstrap statistical test bt *  is 
calculated. By iterating the above procedure B times, the approximation of p-value is; 

Bttp obs
bB

b /)( *
1 ≥Σ= = δ                               (16) 

where B is called the bootstrap replication number. 
If α>p , the null hypothesis is adopted, otherwise it is rejected. α is the level of 
significance that must be decided in advance. With a large α, the number of undamaged 
elements remaining as damage candidates becomes large, requiring more iterations. In 
contrast, the possibility of judging a damaged element as being undamaged becomes 
large with a small α. In this study 5% was chosen for α, as often is adopted in statistics. 
 
Procedure to estimate damage existence 

In this study, elements whose stiffness is reduced are modeled as damaged elements. 
The null hypothesis and the alternative hypothesis are 

i
e

d
e kk δδ =       i

e
d
e kk δδ >                            (17) 

If the null hypotheses are accepted, it indicates that the element is not damaged. 
The procedure proposed in this study is: 

Step1: Obtain m groups of measurement data.  
Step2: Identify stiffness changes for each element m times using the m data groups. 
Step3: Apply bootstrap hypothesis testing for each element.  
Step 4. Check if the null hypothesis is accepted for stiffness. If yes, the element is 

identified as undamaged and excluded as a damage candidate, otherwise 
damage is still suspected. 

Step 5. Check if any elements were excluded in Step 4. If yes, identify the stiffness 
changes for the remaining elements m times using the m data groups, then go 
back to step 4, otherwise stop here. 
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Bootstrap hypothesis testing detects undamaged elements. It iteratively zooms in on 
damaged elements by step by step excluding those elements assessed as undamaged 
from the damage candidates.  
 
 
EXPERIMENTAL VERIFICATION 
 
Description of the 3-story steel frame structure 
The validity of the proposed method was tested based on field measurements for a 
3-story steel frame structure constructed at the Disaster Prevention Research Institute, 
Kyoto University, Japan. The elevation view is shown in Fig. 1.  
The structure’s dimensions were 7m (width) × 9m (height) × 4m (depth), and each floor 
was 3m high. This structure was modeled with 2-dimensional beam elements. It had 6 
columns, 3 floors, and 6 braces. All the members had rigid connections. 
As for the columns, the section area and geometric moment of inertia respectively were 
2.02×10-2 m2 and 1.4313×10-4 m4. As for the braces, respectively the values are 3.81
×10-4m2 and 1.6028×10-7cm4. Both the columns and braces were made of steel which 
had a Young's modulus of 2.1×1011 N/m2 and a mass density of 7.1 t/m3. Two column 
members were combined in the longitudinal direction as one finite element to model the 
column. Similarly, to model the brace, two brace members were combined in the 
longitudinal direction as one finite element. The floors consisted of two steel beams and 
a reinforced concrete slab. The beams had a section area of 2.72×10-2 m2, and a 
geometric moment of inertia of 2.098×10-3 m4. The concrete slab had a section area of 
1.2 m2, a geometric moment of inertia of 0.09 m4, a Young’s modulus of 2.0×1010 

N/m2, and a mass density of 2.6t/m3. To model the floor, the beams and concrete slab in 
the longitudinal direction were combined as one element.  
Because a 2ton shaker was set at the center of the top floor (Fig. 1), a node was set at 
the position of the shaker. Therefore, the number of nodes is 9, and the number of 
elements 16. The number of elements assumed for identification, however, was 15 due 
to combining the two elements at the top floor on the presumption that they have the 
same properties. Numbering of the nodes and elements is shown in Fig. 2. 
As this time only 6 measurements could be obtained, the structure was modeled with 15 
elements; the minimum number that describe a structure with finite element modeling. 

 
Fig.1 3-story frame structure 
 

 
  (a)nodal number      (b)element number 

 
Fig.2 Analytical model of the 3-story frame structure 
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Damage models 
 Damage was modeled by extracting braces. Two damage models were assumed (Fig. 
3). The first is a model without element No.7 (a brace at the first floor), meaning that 
the stiffness reduction of this element is 1.0 (100%). The second is the model without 
elements Nos. 7 and 8 (two braces at the first floor), meaning that the stiffness reduction 
of these elements is 1.0 (100%).  
 
Experiment condition 

Node No. 9 is the excitation point at which a 7.936kN harmonic excitation force is 
applied at the frequency of 2Hz. The excitation direction was horizontal, and 
acceleration responses in its direction measured at 6 nodes (Nos. 2, 3, 4, 6,7,8), 
provided 6 measurements for 15 elements (Fig.1). We measured 15 FRF combinations. 

 
(a)damage model 1      (b)damage model 2 

 
Fig.3 Damage model of the 3-story frame structure 

 
Deterministic damage identification results 

The baseline finite element model must be defined to identify damage. We created it 
from a draft of the structure. Because damping was very small, we modeled the 
structure with un-damped beam elements. Damage therefore is expressed only by the 
stiffness reduction. 
Stiffness parameters were updated to match those of intact model, damage model 1, and 
damage model 2 based on the stiffness properties of the baseline model. Stiffness 
reduction due to damage then could be obtained. Identification results for the two 
damage models are shown in Fig. 4. 
 

 
(a) damage model 1           (b) damage model 2 

 
Fig. 4 Deterministic damage identification results 
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For damage model 1, the stiffness reduction identified for the 100% damaged element 
No.7 was only 38%. Moreover, the results show that undamaged elements Nos.10 and 
12 have the possibility to be damaged and that the stiffnesses of elements Nos. 9 and 11 
are greatly increased. This overestimation of elements No.9 and 11 is balanced by the 
underestimation of elements Nos. 10 and 12. 

For damage model 2, the identified stiffness reductions for the two extracted braces 
are smaller than the actual values, and some undamaged elements are identified as 
damaged. The findings for the two cases are not good. 

These results show the limitation of the deterministic damage identification technique. 
This is why we propose a statistical damage identification technique that prevents this 
type of identification failure by means of bootstrap hypothesis testing. 
 
Statistical damage identification results 

Hypothesis testing using the bootstrap method was conducted. In this case, the 
number of data, m, is 15, the bootstrap replication number, B, is 10000, and the level of 
significance is assumed to be 5%. Results are shown in Figs. 10 and 11. The vertical 
axis shows the bootstrap estimator of the mean values of ekδ  of the elements for whom 
the null hypothesis was rejected. 
 

 
(a) 1st calculation           (b) 2nd calculation 

 
Fig. 5 Statistical damage identification results; damage model 1 

 

 
(a) 1st calculation           (b) 2nd calculation 

 
Fig. 6 Statistical damage identification results; damage model 2 

 
For damage model 1, final results were obtained after 2 calculations. The first, 

narrowed suspicious elements to 2 elements, Nos. 7 and 12 (Fig.5(a)). The second, 
excluded element No. 12, the final result being that element No.7 was damaged 100% 
(Fig.5(b)), showing perfect accuracy. 
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For damage model 2, identification required 2 steps. In the first, suspicious elements 
were narrowed to 4; Nos. 3, 7, 8, and 12 (Fig.6(a)). In the second, two undamaged 
elements were excluded. The final results showed that element No.7 was about 84% 
damaged and element No.8 about 92% (Fig.6(b)). The stiffness reduction identified is not 
perfect, but the method succeeded in detecting the two damaged elements and in 
improving identification accuracy. The feasibility of bootstrap hypothesis testing also 
was validated by the experimental results. 
 
 
CONCLUSION 
 
A statistical damage identification technique for structures was presented that uses 
harmonic excitation force, which deals with uncertainty due to measurement noise and 
modeling errors in the baseline model. It combines the deterministic damage 
identification technique with hypothesis testing based on the bootstrap method. The 
deterministic damage identification method is derived from the fact that structural 
damage usually causes a reduction in structural stiffness, and these are accompanied by 
changes in vibration characteristics. The changes in vibration responses provide 
information about the locations and magnitudes of damage. This method detects 
damage perfectly for the ideal case of no measurement or modeling errors, but no such 
case actually exists. To deal with the effects of these errors, hypothesis testing using the 
bootstrap method was introduced. It enables statistical judgment of whether an element 
is damaged.  
An experiment on a 3-story steel frame structure was conducted to verify the proposed 
technique. Damage was expressed by extracting braces. The proposed method correctly 
detected the damaged elements.  
We have a plan to use a small portable shaker to excite the structure for easy 
experimentation. As compared to ambient vibration, use of a shaker has the advantage 
that the exact input force is known. Damage can be detected from both input and output 
data, making identification accuracy high. The problem with using a small shaker is that 
the excitation force is weak and measurements might be contaminated by ambient 
vibrations. To deal with this problem, we now developing a technique with which to 
extract the responses to harmonic excitation. The combination of the response extraction 
technique and proposed damage identification method will make possible the use a small 
shaker on a real structure. 
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