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ABSTRACT: 
 

This paper addresses analytical research work performed on impact location in an 
anisotropic multilayered thermal protection structure.  The propagation of elastodynamic 
waves through the multilayer structure and the possibility that the layers are transversely 
isotropic are two complications that are addressed.  The method used is an extension of 
classical triangulation based on the use of the fixed geometry of the multilayer plate 
structure, quasi-longitudinal modes, and the generalized Snell’s law for transversely 
isotropic materials. The impact localization problem is recast as a minimization problem 
whose objective function is the sum of the distances between all combination pairs of 
constant time difference curves for the sensor pairs. An initial estimate is made for the 
parameter values for the collection of constant time difference curves. The 
Newton-Kantorovich algorithm is then used to generate a sequence of iterations which 
converge to the minimum of the objective function. This generates a point on each curve in 
the collection. The centroid of this point set is calculated and used as an estimate of the 
impact point.  
 
 
INTRODUCTION  
 
Thermal protection systems on aerospace vehicles are exposed to possible damage by 
impact from debris, maintenance equipment, etc. The ability would exist in an ideal system 
to detect that an impact event has occurred, where the impact has occurred, quantify the 
impact energy, and determine the extent to which damage has occurred. A passive system to 
accomplish these goals using the acoustic energy generated by the impact itself would be 
desirable. The subject of the current work is the second level: impact localization.  

  
A thermal protection system (TPS) is usually composed of an outer refractory layer with 
intermediate bonding or strain isolation layers which tie it to the vehicle outer surface.  
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Due to the extreme environment on the exterior of the TPS the use of backside sensing is 
considered to be practical. Thus the signals that will be detected from an impact will have 
to pass thru this layered structure. Some of the materials in this structure may also be 
anisotropic. The ceramic foam tile used in some TPS is transversely isotropic. This leads 
to the problem illustrated in Figure 1 and 2. 

 
It is assumed that the impact generates signals that propagate out from the location of 
impact through the outermost layer media. The impact signals detected by the sensors 
have a propagation delay and the actual time an impact has occurred is unknown.This 
problem is similar in character to the classic location problem in an isotropic medium 
where two propagation observations are required if the time of signal initiation is known 
or three are required if the initiation time of the signal is unknown. In this case, the 
propagation time is directly proportional to the propagation distance and may be directly 
solved for. The layered structure and anisotropic material properties make the explicit 
analytic statement of the relationship between propagation time and distance difficult, if 
not impossible. This makes a numerical approach for finding a solution very attractive. 
This formulation may be viewed as a Model Based Inverse problem. If the location of 
impact and initial propagation direction is specified then the time to propagate through 
the layer assembly and exit point on the backside surface may be calculated. This would 
be the forward problem. The inverse problem consists of finding the coordinates of the 
impact location from knowledge of the relative arrival times at various monitoring points 
on the backside surface.  
 
THEORY 
 
A method of finding the forward solution must be generated first. The approach taken 
assumes that ray tracing is applicable and, as previously mentioned, that the impact 
signals move out in all half space directions. It is instructive to consider a series of  

layer 1      [cij]1               ρ1       Δz1 
layer 2      [cij]2                ρ2           Δz2 
layer 3      [cij]3                ρ3       Δz3 
layer 4      [cij]4                ρ4  

layer N – 2   [cij]N-2           ρN-2      

layer N       [cij]N             ρN    
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Figure 1. Multilayer Transversely Isotropic 
Plate(side). 

Figure 2. Multilayer Transversely Isotropic 
Plate(bottom). 
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problems of increasing difficulty to understand the complications added to the isotropic 
location problem. These are the thick isotropic plate problem, the multilayer thick 
isotropic plate problem, the thick anisotropic plate problem, and the multilayer thick 
anisotropic plate problem. The thick isotropic plate problem is directly solvable 
analytically. An alternate method, however, may be used. It is noticed that, once the 
thickness is fixed, the propagation time is a function of  

( ) ( )22
sisi yyxxr −+−=  

only, where (xi, yi) and (xs, ys) are the coordinates of the impact location and a sensor 
location, respectively. This information is used to generate a curve of the propagation time, t, 
versus the radial distance, r, from the impact axis to the sensing location. This t(r) curve, 
shown in figure 3, has a non-zero value of t for a zero radial propagation distance. Also, the 
slope of the curve is not constant even though the material is isotropic. 

Once the t(r) function is found, the inverse function r(t) can be generated. If the transit times 
of the impact signal to two sensors were known then the backward problem could be solved 
by using r(t) and using triangulation. Additional information is required since the initial 
impact time is unknown. What may be found from the relative arrival times for the two 
sensors is the locus of possible impact points. The constant time difference curves are 
constructed in the sensor pair local coordinate system shown in figure 4 in the parametric 
form 

)('' sxx = ,  sy =' . 

The curve for a particular time difference is created by assuming a propagation time to one 
of the sensors. The minimal value of this propagation time, t(r1), is determined by the 
distance, 2c, between sensors. The point of possible impact on the line connecting the 
sensors is 
 

( ) ( )*
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where r1
* is the minimum value of r1. Once r1

* is found, other points on the curve may be 
found by gradually increasing r1 and solving: 
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Figure 3 Time versus radial distance curve           Figure 4 Local Geometry for Sensor Pair 
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When the curves are transformed into the global coordinate system (figure 5) the parametric 
equations become 
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By adding a third sensor there are three unique sensor pairs. Two of the sensor pairs may be 
used for the solution and the intersection of their possible impact curves is the impact point. 
If timing information is without error then the third sensor pair is redundant information 
because all of the curves will intersect at the same point. Otherwise, the third sensor may be 
used to improve the estimate of the impact point. If a point is selected on each curve as an 
estimate of the actual impact point, then one measure of the merit of the estimate would be 
the sum of the distances between the estimate points on these curves. This leads to an 
objective function 
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Minimizing this function will yield the point on each curve which is the best impact point 
estimate. A global best estimate can be found by taking the centroid of the set of curve 
estimate points. This approach allows additional sensors to be added for redundancy in a 
natural manner. For N sensors there will be N(N-1)/2 unique sensor pairs. Using an 
explicitly differentiable representation for these curves allows the use of a gradient search 
method to minimize the objective function.  

 
Adding one or more isotropic layers to the problem requires the calculation of an intercept 
point at the interface between the layers and the transmission angle for each consecutive 
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Figure 5. Family of constant time difference curves 
for a Sensor Pair. 

Figure 6. Relationship of Sensor Local 
Coordinates to Global Coordinates. 
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layer. A point on the t(r) curve may be calculated for multiple isotropic layers by assuming 
an initial propagation angle. Using this propagation angle, the radial propagation distance 
and transit time are calculated for the current layer and the transmission angle into the next 
layer is calculated using Snell’s Law. The transmission angle is used for calculating the 
radial propagation distance for the next layer, which is then used with Snell’s law for 
calculating the transmission angle for the subsequent layer. This process is repeated until the 
final layer is processed. A running total of the radial distance and propagation time is kept. 
By using a range of initial angles, this ‘shooting’ method allows the construction of a series 
of points on the t(r) curve. If at any stage reflection occurs at the interface then the bottom of 
the assembly cannot be reached. The largest radial distance reached by the shooting method 
is considered to be the ‘radius of observability’. The maximum ‘shooting’ angle used is 
capped at 80 deg. for practical reasons, even though 90 deg. is theoretically possible. 

 

Consideration of the anisotropic layer requires the introduction of the concepts of the 
Christoffel equations, phase slowness, phase velocity, and group velocity. In an anisotropic 
material the propagation velocity of a mode is dependent upon the propagation direction. 
There are three independent propagation modes, as in an isotropic medium, but they are no 
longer pure modes. This means that, except for certain special directions, the modes are 
neither parallel nor perpendicular to the direction of maximal phase velocity. The direction 
of energy flux, the group velocity direction, is not parallel to phase velocity as with an 
isotropic medium. The phase slowness is the reciprocal of the phase velocity. 

 

The Christoffel equations [1] allow the calculation of the phase slowness for a particular set 
of direction cosines. The Christoffel equations are: 

 

 

 

where: 
 

lij =  Cikjinknl , 
Ciklj is the stiffness tensor, 
nk is the kth component of the direction cosine. 

 

This eigenvalue problem yields three mode phase slowness magnitudes (eigenvalues) and 
directions (eigenvectors). Evaluation over all propagation directions gives a set of three 
closed surfaces as in Figure 7. Normally one surface is most closely aligned with the 
propagation direction, has the highest propagation velocity, and is known as the 
quasilongitudinal mode. There are two other modes known as quasishear. The phase 
slowness surfaces are spherical in an isotropic material. In a transversely isotropic material 
they are axisymmetric about the symmetry axis. Thus only the curves for any cross section 
passing through the symmetry axis need to be calculated. 
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The group velocity direction [2], as shown in Figure 8, is normal to the phase slowness 
surface and its projection on the phase velocity direction vector has a magnitude equal to the 
phase velocity magnitude. The perceived propagation direction in an anisotropic medium is 
the group velocity. The phase velocity and group velocity surfaces may be constructed once 
the phase slowness surface is obtained. The t(r) curve for the layer may be found using the 
‘shooting method’ with the group velocity. 

Finally, the case of multiple anisotropic layers requires the use of the generalized Snell’s law 
as shown in Figure 9. This results from the requirement that the transverse component of the 
phase slowness be equal at an interface between two dissimilar materials. The procedure for 
ray tracing through the assembly is to assume an initial propagation angle for the group 
velocity through the first layer. The radial propagation and transit time through the layer are 
then calculated. The point on the phase slowness surface corresponding to the group 
velocity direction is located. The generalized Snell’s law is used to locate the corresponding 
point on the phase slowness surface of the next layer. The group velocity in the next layer is 
found from its association with the point on the phase slowness surface. This process is 
repeated until the bottom of the last layer is reached. 
 
IMPLEMENTATION 
 
This procedure has been implemented as an application in MATLAB®. The phase slowness 
curves of the materials in the model are generated by solving the Christoffel Equations in 
range of propagation directions in the XZ plane. The x and z components of the points on 
the curves are then parameterized in terms of ψ  using nonlinear regression. This allows the 
tangent and normal vectors to be found from the derivatives of the parameterized coordinate 
equations. 

Once the regression curves for the phase slowness components are generated the phase 
velocity curves can be calculated from the inverse of the phase slowness magnitude. The 
group velocity curves are then found by use of the normal to the phase slowness surface 
and the phase velocity magnitude. This information is stored in the form of group velocity 
magnitude and direction. 

Phase Slowness, (1/V) 

Group Velocity, W 

Tangent 

Figure 7. Phase Slowness Curves in XZ Plane 
for transversely isotropic material. 

Figure 8. Relationship between Phase 
Slowness and Group Velocity Directions. 
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The group velocity information for each layer is used for determining the radial 
propagation distance and transit time. Linear interpolation is used when the propagation 
angle falls between known values. If there is more than one layer the group velocity and 
phase slowness information of touching layers is used together for solution of the 
generalized Snell’s law relation. Once again linear interpolation is used. 

Upon finishing the time versus radial distance curve, the constant time of flight difference 
curves are generated for each sensor pair. This is performed by observing which sensor has 
the smallest absolute time of arrival. This indicates which sensor is closest to the intercept of 
the constant time of flight curve and the sensor centerline. This intercept point is found using 
bisection. The other points on the constant time of flight curve within the radius of 
observability are then calculated by using linear interpolation to solve the relation between 
r1 and r2 given previously. 
 
These curves are approximated over the radius of observability using Chebyshev 
polynomials[3]. The Chebyshev polynomials are then converted to regular polynomials 
using the method outlined in [4]. The results of the approximation are shown in figure 5.  
The regular polynomials are then converted from the local sensor pair coordinates into 
global coordinates using the transformation previously given.  

These regular polynomial curves are used to construct the objective function. . The set of 
coordinate parameter values that minimize the objective function are found using the 
Newton-Kantorovich algorithm[5] as follows. An initial guess of the coordinate parameter 
for each curve is made. The Hessian matrix and gradient of the objective function are then 
evaluated at the current coordinate parameter values. The Hessian matrix inverse and the 
gradient vector are then used to create an updated coordinate parameter estimate. This is 
continued until convergence criteria are met or divergence is detected. If convergence 
occurs, then the final estimate of the impact location is found by evaluating the coordinates 
of each sensor pair curve from the current coordinate parameter values and then finding the 
centroid of this set of values as illustrated in Figure 11. 
 
RESULTS 
 
The method was evaluated using simulated timing data for layers of isotropic and 
anisotropic materials. It was also tested against experimental data gathered from impacts 
on an aluminum block. Figures 10 and 11 show graphical output from the program for a 
typical test data case.   
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Figure 9. Generalized Snell’s Law.

137



 

 

 
 

These figures show the sensor locations, the actual impact point, the constant time 
difference curves generated for the sensor pairs from the timing data, the evaluation of the 
initial estimates on the curves, the intermediate estimates, the converged impact location 
estimates, and the final impact location estimate. Figure 10 shows these entities over the 
entire observable area. Figure 11 shows a close-up of the impact location area.  
 
CONCLUSIONS 

A method of finding impact location by using timing data from sensors residing on the 
backside of an assembly composed of multiple layers of transversely isotropic material 
has been formulated. This method works by solving a model based inverse problem 
where finding the propagation time through a transversely isotropic multilayer assembly 
is the forward problem. The method has been implemented in software and tested against 
simulated data for the multilayer transversely isotropic case and actual data for the single 
layer isotropic case. 
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Figure 10. Impact Location Algorithm output for 
Observable Region. 

Figure 11. Close Up of Impact Location 
Region for Algorithm output. 
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