
 

 

 
 
 

Time Series-Based Damage Evaluation Algorithm  
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ABSTRACT: 
 
An acceleration-based evaluation approach for building structures under earthquakes using 
artificial neural networks (ANN) is proposed in this paper. The ground acceleration is 
included into the input layer of ANN as forced vibration. The approach is modified by using 
the acceleration at later time steps as the output of the neural network. The time delay is 
considered as a tuneable band corresponding to different structures. 
Based on the numerical simulation for a 5-story shear structure, the appropriate parameter, 
generality and efficacy of the neural network are studied in. The damage index, relative root 
mean square (RRMS) error, is observed when the single structural damage occurred, 
followed by double damages at different damage locations. Variant ground motions is used 
to certify the generality of this approach. The appropriate parameter of the neural network is 
proposed according to variant values of damage index corresponding to the different 
parameters. 
The application to a 14-story real building was implemented, and the verification of the 
proposed approach was obtained as well. 

 
 
 
1. Introduction 
 
Structural health monitoring (SHM) has received great attention and interest to predict 
the onset of damage and deterioration of building structures because of the increasing 
number of aged buildings and unpredictable natural hazard.  
The amount of literature using statistical discrimination of features for damage detection 
is quite large. Cawley & Adams proposed the very first damage detection method using 
the pattern matching approach [1]. A study by Masri et al. has demonstrated that neural 
networks (NNs) are a powerful tool for the identification of system typically encountered 
in the structural dynamics fields [2]. Faravelli and Pisano made use of a feed-forward 
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neural network to detect and locate damage in a numerical simulation of a 
two-dimensional nine-bay truss structure [3]. Vanik et al. presented a Bayesian 
probabilistic methodology for structural health monitoring which uses a sequence of 
identified modal parameters to compute the probability that continually updated model 
stiffness parameters [4]. Krawczuk et al. applied a genetic algorithm (GA) to identify and 
locate damage in a laminated composite beam [5]. An approach using the support vector 
machine (SVM) to detect local damages in a building structure was proposed by Mita and 
Hagiwara [6].  
There is an approach by directly using dynamic responses in time series without 
extraction of dynamic properties proposed by Xu et al.[7], which used acceleration, 
velocity and displacement time histories as the input of the emulator neural network. And 
this approach was improved by Xu & Chen[8], which only used acceleration time 
histories as the input of the emulator neural network, called acceleration-based emulator 
neural network (AENN) for free vibration. 
In this paper, the AENN is extended to forced vibration beyond the limitation of free 
vibration. As the acceleration time histories, which are readily available in real structures, 
are only required for this method. Thus it is feasible for practical application. Furthermore, 
the accuracy of AENN is improved significantly by increasing time histories of the 
response into the input layer, and other modification. 
 
2. Identification of Structural Changes with Neural Network Based on 

Acceleration Measurement 
 
2.1 ANN Emulator Using Displacement, Velocity and Acceleration as Inputs 
 
The basic idea of identification of structural changes with neural network based on response 
time histories is to establish an emulator neural network to represent the characteristics of 
structure. The input of the neural network is the response at the time step of k, and output is 
the response at time step k+1 as in Fig.1 [7].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Neural Network to Represent the Characteristics of Structure 
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The neural network is to be trained by the response time histories under one earthquake 
excitation. The trained emulator neural network should work to the same structure under the 
later different earthquake unless there is damage in the structure. In accordance with these, 
the error between the output of the neural network and the real measurement provides the 
information of structural damage. 
Xu & Chen[8] improved this approach by only using acceleration time histories as the input 
of the emulator neural network for free vibration. We extended the study beyond the 
limitation of free vibration by consideration of including ground motion in input layer. 
 
2.2 Proposed ANN Emulator Using Acceleration Only as Inputs 
 
Here, neural networks may work as good black-box models even for nonlinear systems. 
Although ARX (Auto-Regressive eXtra input) models represent linear system dynamics, it 
could offer some revelation to application of neural networks. An ARX model[9] is given 
by 

( ) ( ) ( ) ( ) ( )tetuqBtyqA +=                        (1) 

where q  is the shift operator. Auto-Regression model ( )qA  in terms of q  is defined by  

 ( ) a

a

n
n qaqaqA −− +++= L1

11                      (2) 

Similar function is defined by  

( ) b

b

n
n qbqbqB −− ++= L1

1                         (3) 

A pragmatic and useful way to see (1) is to view it as a way of determining the next output 
value given previous observations: 
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Figure 2. Acceleration-based emulator neural network 
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Instead of ARX model, neural networks may represent the relationship of determining the 
next output value given previous observations and extra input. And the advantage of neural 
networks is that it may work for nonlinear systems, as well as linear systems. This 
representation indicates that the prediction of the response requires several previous time 
steps for response as well as inputs. 
So an acceleration-based emulator neural network (AENN) which can be trained to 
represent the mapping between the acceleration at different time steps could be established 
as in Fig.2. Here we use acceleration time histories as observations. Since they are readily 
available in real structures, that using accelerations only provides much convenience. The 
acceleration of ground is out of the consideration of neural networks’ target, so we include 
the acceleration of ground at Tk, which is already available, into the input layer of neural 
networks.  
The trained AENN is a non-parametric model for the structure and can be used to forecast 
the acceleration response under later earthquake. 
Relative root mean square (RRMS) error, e ,  is defined by  
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where, M  is the number of sampling data; f
mx&&  the output of trained neural networks at 

sampling step m ; mx&&  the acceleration corresponding which is the real dynamic response 

under earthquake excitations at sampling step m . 
RRMS shows the change between the output of the neural network and the real dynamic 
response, and provides the information of structural damage. If this value is quite large, it 
would be thought that the structure is not healthy. 
 
2.3 Modified ANN Emulator 
 
Using acceleration at time steps k-2 and k-1 to forecast the acceleration at time step k, it 
would be common that the RRMS error is too small to be regarded as the index of damage 
occurrence alarm. Therefore, the improvement of the approach was carried out by using 
the acceleration at later time steps as the output of the neural network. The accelerations of 
ground floor and the other floors in the input layer are not synchronous as shown in Fig. 3. 
The acceleration of ground has a delay of time tm ∆×  in order that the emulator neural 
network could forecast the acceleration of the each floor at later time steps. The delay 

tm ∆×  is considered as a tunable band corresponding to different structures.  
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Figure 3. Improved AENN 
 
 
3. Search for Appropriate Parameters Based on Simulation 
 
Acceleration stream number and ground delay, n and tm ∆×  in Fig.3, are to be decided. 
The necessary number of acceleration stream, n, should make the RRMS error for health 
structures be a stably small value. The appropriate ground delay tm ∆×  should make 
RRMS error difference between health structures and damage structures be a 
comparatively large value. The search for these two appropriate parameters would be 
performed in this section based on numerical simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.Five-story frame structure 
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Table 1. Structural parameters of the object structure 
DOF 1 2 3 4 5 
Mass (kg) 4000 3000 2000 1000 800
Stiffness (kN/m) 2000 2000 2000 2000 2000

Table 2. Modal parameters of the object structure 
DOF 1 2 3 4 5 

Frequency (Hz) 1.65 4.11 6.16 8.11 12.3 

Damping Ratio 0.005 0.013 0.019 0.025 0.039 
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In this study, a 5-story shear frame structure shown in Fig.4, is considered as the object 
structure. The structure is modelled as a 5 degree-of-freedom lumped mass system. The 
structural parameters of the 5-mass structure are shown in Table 1. The natural frequencies 
of the frame structure are 1.6521Hz, 4.1120Hz, 6.1565Hz, 8.1085Hz, and 12.2932Hz, as 
shown in Table 2. The damping matrix is assumed to be Rayleigh damping which can be 
expressed in the following form,  

KMC ba +=                            (6) 
where a  and b  are selected to have damping ratios 0.005 for the first mode and 0.013 for 
the second mode.. 
Using the network training function that updates weight and bias values according to 
Levenberg-Marquardt optimization, AENN is trained firstly. The output layer includes 1 
neuron. The neuron number of input layer is decided by n and tm ∆×  in Fig.4, and the 
neuron number of hidden layer is two times of that of input layer. 
Here, the acceleration time histories obtained from the top floor of the 5-story shear 
structure under the earthquake ground motion of Hachinohe earthquake (May, 16, 1968, 
Hachinohe City) was used as training data sets. And the acceleration time histories under 
the ground motion of Northridge earthquake (Jan. 17, 1994, Northridge, California) was 
used as test data sets. These two earthquake records are shown in Fig.5. The sampling time 
is 0.02 second. All of these time histories were normalized to a length of 1.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Earthquake records, Hachinohe and Northridge 
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Figure 6. Error for health structure 
changed by acceleration stream number 

Figure 7. Error difference between 
health and damage structures 

208



 

 

During the numerical simulation, acceleration stream number, n, was changed from 1 to 15. 
The delay, tm ∆×  was changed from 0.02 to 0.2second, say, 1~10 times of sampling 
time. The two values, RRMS error for health structure and difference of RRMS errors 
between health structure and damage structure, would be observed in Fig.6 and Fig.7, to 
obtain stably small value for the former one and comparatively large value for the latter 
one. The difference of RRMS errors was defined by 

healthdamage eee −=∆                          (7) 

Here, the damage structure was with stiffness reduction of 20% at each floor.  
The prediction accuracy could be raised by the increment of number of acceleration 
streams at different time steps to an appropriate value. The value of RRMS error would 
decrease to a stable value if the number of acceleration streams achieves the appropriate 
value.The error for health structure changed by acceleration stream number and delay in 
Fig.6 was observed to search for necessary acceleration stream number firstly. In Fig.6, it 
could be seen that error for health structure would be stably small with acceleration stream 
number larger than 10. Therefore the necessary acceleration stream number is ten. For 
5-story shear structure, the appropriate value of acceleration stream number should be 10, 
which is understandable and reasonable on this method bearing an analogy with ARX 
Models. 
The error difference between health and damage structures in Fig.7 was observed to search 
for appropriate ground delay secondly. In Fig.7, it could be seen that error difference 
corresponding to n=10 would be comparatively large with ground delay 7 times of 
sampling time, say, 0.14 second. So the appropriate ground delay is 0.14 second for this 
structure. The first order natural frequency of this structure is 1.6521, so the ground delay, 
which is 1/4 of structural periodic time, is suggested here.  
 
4. Discussion on Multi-Input 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. AENN with multi-input 
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The AENN as in Fig. 3 only use acceleration at one floor. Here, we consider using more 
accelerations at different floors as in Fig.8.  
It is easy to understand that with acceleration at more different floors, the necessary 
number of acceleration streams at different time steps could be decreased. In Fig. 8, n 
denotes the number of acceleration streams at different time steps. 
Still using the 5-story shear structure in Fig.4, the acceleration time histories for the 
earthquake ground motion of Hachinohe earthquake (May, 16, 1968, Hachinohe City) was 
used as training data sets. And the acceleration time histories under the ground motion of 
Northridge earthquake (Jan. 17, 1994, Northridge, California) was used as test data sets. 
These two earthquake records are shown in Fig.5. The acceleration of the 3rd floor was 
included together with top floor to consideration, followed by the 2nd, 4th and 1st floor. 
Along with more acceleration at different floors comprised, the necessary number 
corresponding to a stably small value of error could be determined from Fig.9-12. 
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Figure 9. Error changed by n with 
accelerations of the 3&5th floors 

Figure 10. Error changed by n with 
accelerations of the 2,3&5th floors 

Figure 11. Error changed by n with 
accelerations of the 2,3,4&5th floors

Figure 12. Error changed by n with 
accelerations of the 1,2,3,4&5th floors
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According to the simulation results, when the accelerations of two floors (Fig.9) were 
included in to neural networks, the necessary number of acceleration streams at different 
time steps should be 5. When the accelerations of more than two floors were included 
(Fig.10-12), the necessary number of acceleration streams at different time steps could be 
decreased to 2 only.  
 
5. Efficacy and Generality of AENN 
 
To verify the efficacy of AENN presented in Fig.8, simulation using the structure 
described in Fig.4 was performed with acceleration of each floor. The input, hidden and 
output layers of AENN include 17, 34 and 5 neurons, respectively. 
For health structure, the comparison between the output of neural network and the real 
value decided through the dynamic analysis is shown in Fig. 13. It can be seen that 
identification can be carried out with high accuracy. This improved AENN can be trained 
to achieve a desired accuracy for modelling the dynamic behaviour of the healthy 
structure. 
  
 
 
 
 
 
 
 
 
 
 
 

 
Further study was carried out considering the existence of structural damage. Firstly single 
damage of 20% stiffness reduction on the third floor was introduced. The acceleration 
from the damage structure under Northridge earthquake was as the test data sets of the 
trained neural network. Using the output of the neural network, RRMS error was 
calculated according to Eq. 5. Then, damage extended to double-damage of 20% stiffness 
reduction on the third and fifth floor was considered. Similarly, RRMS error was 
calculated too. Fig. 14 shows the different values of RRMS errors of healthy, 
single-damage and double-damage structures. RRMS error shows the change between the 
output of the neural network and the real dynamic response, providing the information of 
structural damage. If this value is quite large, it would be thought that the structure is not 
healthy. Therefore, the RRMS error could be looked on as a damage occurrence alarm 
index.  
With the purpose of verification of the generality of the proposed AENN, the results under 
the different ground motions were observed for health structure. It should be realized that 

Figure 13. Comparison between the output of 
neural network and the real value 

Figure 14. RRMS errors of healthy 
and damage structures 
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the trained AENN could achieve desired accuracy not only for the structure under one 
ground motion but also for one under others. In accordance with these, the ground motions 
of Kobe earthquake (Jan. 17, 1995, Kobe Japanese) and white-noise were used as the test 
data sets, as well as previous Northridge earthquake, to verify the generality of the trained 
AENN. These three RRMS error values were shown in Fig. 15. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
From Fig. 15, it could be seen that under the different ground motions, this trained neural 
network achieves the similar accuracy, which certifies the generality of the proposed 
AENN. 
 
6. Application to real building 
 
6.1 Description of the real building 
 
This study proposed the first application of AENN to real buildings.  
 

Table 3. Data used for structural evaluation 
Maximal value of acceleration in Y direction (cm/s2) 

 Date 
1F 5F 10F 14F 

Training data Oct. 15, 2003 22.1 26.4 22.3 18.4 
Test data 1 Nov. 12, 2003 11.9 20.4 19.7 12.4 
Test data2 Jul. 23, 2005 35.1 34.3 39.7 41.0 

 
 
The applied building, Nikken Sekkei Tokyo Building located in Iidabashi of Tokyo, was 
constructed in March, 2003 [10]. It is 60 meters high, with one-story underground and 
14-story overground. The accelerators were installed on the B1F, 1F, 5F, 10F and 14F to 
measure the acceleration time histories of horizontal two directions and vertical direction. 
Three sets of acceleration time histories shown in Table 3 would be used for evaluation. 
The first two identified natural frequencies of this building in horizontal Y direction are 
about 0.7Hz and 2.3Hz. 
 

Figure 15. RRMS errors under 
different ground motions 
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6.2 Evaluation of Structure by AENN with the Performance of Filter 
 
A proposed AENN was established for structural evaluation of this real building.  
Here, the acceleration time histories of the first floor was considered as the acceleration of 
ground which would be inputted into the AENN delayed by time T, and the acceleration of 
the 5, 10, 14th floor was considered as the normal floor, as in Fig. 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. AENN Applied to the Real Building 
 
For a real building, the measured response is unavoidably polluted by noise, which would 
decrease the accuracy of the structural evaluation. In order to handle this problem, filtering 
was performed to the measured accelerations. Firstly, lowpass Butterworth filter whose 
cutoff frequency was 0.8 Hz was applied to obtain the signal near the first-order natural 
frequency of structure. Then, bandpass Butterworth filter whose passband frequency was 
[1.8 3] Hz was applied to obtain the signal near the second-order natural frequency of 
structure. At last, the results of evaluation through these two filters were combined linearly 
to obtain the final structural evaluation, as in Fig.17. 

 
 
 
 
 
 
 
 
 
 
 
  

(a) test data1 on Nov. 12, 2003                (b) test data2 on Jul. 23, 2005 
 

Figure 17. Comparison between the output of neural network and the measured value 
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Using Eq.5, the RRMS error values were calculated for test data1 and test data2, 
respectively (Fig. 18). Due to only one-month interval between the dates of the training 
data and test data1, it is reasonable to suppose there would not be much deterioration of 
this building structure, which means the RRMS error for test data1 would be a small 
value. However, after almost two years passed, when the test data2 was measured, the 
thought of some deterioration and change occurring to the building structure could be 
acceptable and of high possibility, which means the RRMS error for test data2 would be 
a larger value than before. Therefore, the error value of test data2 should be quite larger 
than that of test data2. These are consistent with the result shown in Fig. 18. 
It is verified that the proposed acceleration-based approach could implement structural 
evaluation effectively and economically. This characteristic makes the approach very 
useful for practical application. 
 
7. Concluding Remarks 
 
In this paper, an acceleration-based evaluation approach for building structures under 
earthquake using neural networks was proposed by including the ground acceleration 
into the input layer. This approach could be applied to multi-input as well as single 
input systems. 
Based on the numerical simulation for a 5-story shear structure, the appropriate 
parameters of the neural network were searched for and suggested. The effectivity of 
this method was also studied in by comparison of structural evaluation for healthy and 
damage structures. And the generality was verified by considering the different 
earthquake acceleration. The application to a 14-story real building were performed, and 
the verification of the proposed approach was obtained as well.  
In our proposed evaluation approach, damage occurrence alarm could be obtained 
usefully and economically only using readily available acceleration time histories. 
 
 

Figure 18. RRMS errors for test 
data1 and test data2 
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