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ABSTRACT: 
 

Vibration-based damage identification is a useful tool for structural health 
monitoring. However, the uncertainties caused by measurement noise, modeling error 
involved in an analytical model, and environmental changes such as variations in 
temperature and load conditions can impede reliability of damage identification. In this 
paper, information fusion based on D-S (Dempster-Shafer) evidence theory and 
Shannon entropy are employed for decreasing the uncertainty and improving accuracy 
of damage identification. Regarding that the multiple evidence from different 
information sources are different importance and not all the evidences are effective for 
the final decision. The different importance of the evidences is considered by assigning 
weighting coefficient. Shannon entropy is a measurement of uncertainty. In this paper it 
is employed to measure the uncertainty of damage identification results. The first step of 
the procedure is training several artificial neural networks with different input 
parameters to obtain the damage decisions respectively. Second, weighing coefficients 
are assigned to neural networks according to the reliability of the neural networks. The 
Genetic Algorithm is employed to optimize the weighing coefficients. Third, the 
weighted decisions are assigned to information fusion center. And in fusion center, a 
selective fusion method is proposed. Numerical studies on the Binzhou Yellow River 
Highway Bridge are carried out. The results indicate that the method proposed can 
improve the damage identification accuracy and increase the reliability of damage 
identification to compare with the method by neural networks alone. 
 
 
INTRODUCTION 
 

During the past two decades, many research works have been conducted in the area 
of damage detection based on dynamic characteristics with different algorithms 
(Doebling et al. 1996). Vibration-based damage identification is a useful tool for 
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structural health monitoring. But, the uncertainties caused by measurement noise, 
modeling error involved in an analytical model, and environmental changes such as 
variations in temperature and load conditions can impede reliable identification of 
damage (Farrar, 1997). Therefore, new techniques to solve this problem should be 
developed. 

In recent years information fusion technique attracts increasing attentions to 
structural health monitoring due to its inherent capabilities in extracting information 
from different sources and integrating them into a consistent, accurate and intelligible 
data set (Hall 1992, Kozinea et al. 2000). Some researchers are engaging in study of the 
damage identification methods using information fusion technique to achieve improved 
accuracies and more specific inferences. Guo (2005) use the information techniques to 
detect the damage of two-dimensional truss structure and study the effect of three main 
fusion approaches. Jiang (2005) discusses the feasibility of applying data fusion to the 
structural health monitoring and describes the complex structural damage detection 
techniques based on probabilistic neural networks and data fusion. 

In this paper, information fusion based on D-S (Dempster-Shafer) evidence theory 
and Shannon entropy are employed for improving accuracy of damage identification. 
 
 
DEMPESTER-SHAFER EVIDENCE THEORY 
 

D–S evidence theory is a mathematical theory of evidence. The work on the 
subject is Shafer in 1976, which is an expansion of Dempster. In a finite discrete space, 
D-S evidence theory can be interpreted as a generalization of probability theory where 
probabilities are assigned to sets as opposed to mutually exclusive singles. In traditional 
probability theory, evidence is associated with only one possible event. In D–S evidence 
theory, evidence can be associated with multiple possible events. 

Assume that Ω denotes the space of hypotheses. For a finite set of mutually 
exclusive and exhaustive propositions Ω, a power set 2Ω is the set of all the subsets of Ω 
including itself and a null set, Φ. The basic probability assignment (BPA) is an 
important concept of evidence theory. Generally speaking, the term “basic probability 
assignment” does not refer to probability in the classical sense. For any hypothesis A of 
2Ω, the BPA is a function m: 2 Ω→[0, 1] such that: 

 ( ) 0=φm  (1)

 ( ) 1=∑
Ω∈A

Am  (2)

From the basic probability assignment, the upper and lower bounds of an interval 
can be defined. This interval contains the precise probability of a set of interest (in the 
classical sense) and is bounded by two non-additive continuous measures called belief 
function and plausibility function as shown in equation (3) and equation (4). 
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The measures of evidence (i.e. BPA) can be combined by Dempster’s rule. Here 
multi information sources S1, S2,…, Sn are considered. Let m1(S1), m2(S2),…, mn(Sn) be 
basic probability assignment given by sources S1, S2, … Sn respectively. The 
combination rule is written as: 

 ( ) ( ) ( )∑ ∏
=∩ =

−−=
CS

n

i
ii

i

SmkCm
1

11  (5)

 ( )∑ ∏
≠∩ =

=
φiS

n

i
ii Smk

1

 (6)

where k represents basic probability mass associated with conflict. This is determined 
by the summing the products of the BPA of all sets where the intersection is null. (1-k) 
is used to compensate for the loss of non-zero probability assignments to 
non-intersecting subsets, and ensure that the probability assignments of resultant BPA 
also sum to 1. 
 
 
SHANNON ENTROPY 

 
Shannon defines entropy in terms of a discrete random event x, with possible states 

(or outcomes) n as: 
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That is, the entropy of the event x is the sum, over all possible outcomes i of x, of 
the product of the probability of outcome i times the log of the inverse of the probability 
of i. This also can be applied to a general probability distribution, rather than a 
discrete-valued event. 

Shannon shows that any definition of entropy satisfying the assumptions will be of 
the form: 

 ( ) ( ) ( )∑
=

−=
n

i
ipipKxH

1
2log  (8)

Shannon′s entropy measure came to be taken as a measure of the uncertainty about 
the realization of a random variable. Entropy has some special character as follows: In 
experiment A, if p(i)=1 and the rest equal zero, then H(x)=0. For there is no any 
uncertainty, a decisive conclusion can be made. On the contrary, if we know nothing 
about experimental results in advance, then p(i)=1/n, i=1, 2, 3,…, n, the maximum value 
of H(x) was got: 

 ( ) ( )nKxH 2logmax =  (9)
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Obviously, in this case the result has the maximal uncertainty. 
 
 
DAMAGE IDENTIFICATION PROCEDURES 

 
The first step of procedures is training several artificial neural networks with 

different input parameters to obtain the damage decisions respectively. Second, 
weighing coefficients are assigned to trained neural networks according to the reliability 
of the neural networks. The Genetic Algorithm is employed to optimize the weighing 
coefficients. Third, the weighted decisions are sent to information fusion center. In 
fusion center, a selective fusion method was presented. Initially the high weight 
coefficient decision is chosen as the original decision. Then it is combined with the 
decision which has a second high weight coefficients by D-S theory for getting the first 
fusion decision. Next, the Shannon entropy of original decision and first fusion decision 
are analyzed. And the decision which has less entropy is selected to combine with the 
third decision for getting the second fusion decision. According to this principle, the last 
result was get. This procedure of damage identification above was called as weighted 
and selective fusion method. 

Fitness function (object function) of Genetic Algorithms is set as total accuracy of 
the identification results. Some samples are needed to find the best or near best weight 
coefficients. The role of those samples is the same as the role of the training samples in 
a neural network. The function is presented in equation (10). The best identification 
results can be obtained through searching the optimal or approximate-optimal ηi (i =1, 
2,…, n). 

 ( )nfy ηηη ,,, 21 K=  (10)

where y = the total accuracy of the identification results; ηi = weight coefficients ( i＝
1,2,..., n). 

Suppose that Ω = {A1, A2,…, Am, U} is an effective frame of discernment. U is the 
uncertainty. Normalize the outputs of the neural networks and let them satisfies the 
request of the basic probability assignment function. The BPA of Ω can be get. That are 
ml(Ai), ml (U) =0 (i = 1, 2,…, m; l = 1, 2,…, n). n is the number of the neural networks 
to discern the Ω.  

Different neural networks have different weight coefficients. So the BPA are 
weighted and adjusted like equation (11) and (12). 

 ( ) ( ) jilil AmAm η×=  (11)

 ( ) ( )∑−=
m

i
ill AmUm 1  (12)

where ηl = weighting coefficients. And ηl ∈ [0, 1], l =1, 2,…, n. 

The BPA weighted and adjusted still satisfies the request of BPA. Then they can be 
combined by Dempster’s rule of combination. The combination rule is written as:  
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The equation (14) shows that we can reduce the conflict of evidence from different 
information sources when 0<ηl<1. 
 
 
NUMERICAL EXAMPLES 

 
A three-dimensional finite element model of the Binzhou Yellow River Highway 

Bridge as shown in Figure 1 is employed.  

 
Figure 1: Finite element model of whole bridge 

 
Generate the training samples for the artificial neural networks 

The finite element model of the Binzhou Yellow River Highway Bridge is divided 
into 27 segments so as to easily to locate the damage. Twenty eight damage patterns, 
including twenty seven damage patterns matching one segment of bridge damaged and 
one pattern with no damage mated to 28 outputs of the artificial neural networks. The 
segments are shown in Figure 2. 

Figure 2: Location of test points 
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So as to get training samples, 1 damage serials are produced in one segment of the 
bridge finite element model for each damage pattern. The damages are simulated by 
reducing 40% of stiffness of longitudinal girders and deck elements. The first 6 
frequencies, 4 vertical mode shapes and 2 torsional mode shapes are obtained. To 
simulate measurement uncertainties in the estimated modal parameters, the exact modal 
parameters, obtained from the analytical modal with the assumed damage, are perturbed 
with noise. More explicitly the estimated modal parameter set ( )nψ̂  is constructed as: 

 ( ) )
100

1(ˆ rn εψψ +=  (15)

where ψ = the exact modal parameter set obtained from the analytical model; r = 
normally distributed random number with zero mean and a variance of 1.0; ε = noise 
level in terms of percentage. 50 training samples were produced with noise level of 1% 
for every damage serials. There are 1400 training samples in all. 
 
Train the artificial neural networks 

Train the first artificial neural network (ANN1). The ratios of the first 7 mode 
shapes between before and after damages were used as the input to the ANN1.  
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where ϕij = ratio of the mode shape; ϕu
i,j = the value of jth mode shape at i test point 

before damage; ϕd
i,j = the value of jth mode shape at i test point after damage. 

Train the second artificial neural network (ANN2). Mode shape curvature (MSC) 
presented by Pandy et al is shown as follows: 
 { } { } { }jujdj

'''''' ϕϕϕ −=Δ   (17)

First four vertical mode shapes and two torsional mode shapes are used to calculate the 
mode shape curvatures and used as the inputs of ANN2. 

Train the third artificial neural network (ANN3). The flexibility matrix before and 
after damage can be expressed as: 
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where ωi
u = the ith frequency before damage; ωi

d = the ith frequency after damage; 
u
iφ = the ith mode shape before damage; d

iφ = the ith mode shape after damage. The 
variance of the stiffness matrix can be represented as: 
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where θj = the variance of flexibility at j. Location corresponding the maximum value of 
θj is considered as damage place. The first 3 frequencies and mode shape are taken into 
account, so the ANN3 have 26 inputs.  
 
The results 

Just like the training samples, each damage pattern has one damage serials. 
Therefore there are 28 damage serials. In order to consider the effects of noise to the 
identification accuracy of the neural networks, different noise was added with seven 
levels: 2%, 4%, 6%, 8%, 10% and 15%. 50 test samples are produced randomly with 
each noise level. Each damage pattern has 1400 test samples, so there are 8400 test 
samples totally. 

To find the optimal or approximate optimal weight coefficients, another group of 
test samples was produced under noise level of 3%, 7%. Total is 1400×2=2800 samples. 
The weight coefficients calculated by Genetic Algorithms are shown in Table 1. Each 
ANN test results and the fusion results are shown in Table 2.  

 
Table 1 Weight coefficients 

ANN ANN1 ANN2 ANN3 

Weight coefficients 9.8835000e-001 7.6020000e-001 6.6660000e-001 

 
Table 2 Each ANN test results and the fusion result 

Noise level 2% 4% 6% 8% 10% 15% Total 

ANN1 1400 1396 1297 1135 937 506 6671 

Accuracy 100% 99.71% 92.64% 81.07% 66.93% 36.14% 79.42% 

ANN2 1396 1303 1147 897 727 431 5901 

Accuracy 99.71% 93.07% 81.93% 64.07% 51.93% 30.79% 70.25% 

ANN3 1226 869 646 514 425 264 3944 

Accuracy 87.57% 62.07% 46.14% 36.71% 30.36% 18.86% 46.95% 

Direct fusion 1393 1217 985 839 707 510 5651 

Accuracy 99.50% 86.93% 70.36% 59.93% 50.50% 36.43% 67.27% 

Weighted and  

selective fusion 

1400 1399 1377 1277 1112 693 7258 

Accuracy 100% 99.93% 98.36% 91.21% 79.43% 49.50% 86.40% 

 
It is shown in Table 2 that the traditional method of damage identification based on 

artificial neural network is sensitive to the ambient noise. The accuracy is not improved 
by directly combining the results of ANN1, ANN2 and ANN3 with D-S evidence theory. 
The total accuracy of direct fusion is 67.27%, reducing 12.15% compared with ANN1 
which is best one in signal ANN. But the accuracy of weighted and selective fusion is 
86.40%, increasing 6.98% compared with ANN1. From the above analysis, the method 
of weighted and selective fusion presented in this paper is more effective than both the 
direct fusion and the single ANN. 
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CONCLUSION 
 
Taking into account the numerical investigations of the Binzhou Yellow River 

Highway Bridge, the conclusions can be drawn. First, the traditional method of damage 
identification based on artificial neural network is sensitive to the ambient noise. 
Second, it should be considered that the multiple evidence from different information 
sources are different important and not all the evidences are effective for the last 
decision. The Shannon entropy employed to measurement of uncertainty in this paper is 
appropriate. And the selective fusion strategy is useful to reduce the uncertainty of 
damage identification results. Third, the results indicate that the method proposed can 
improve the damage identification accuracy and increase the reliability of damage 
identification compare with the method by neural networks alone. 
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