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ABSTRACT: 
 
The computational and wireless communication capabilities of smart sensors densely 
distributed over structures can provide rich information for structural monitoring. While 
smart sensor technology has seen substantial advances during recent years, interdisciplinary 
efforts to address issues in sensors, networks, and application specific algorithms are needed 
to realize their potential. This paper first discusses each of these issues, and then reports on 
research that combines the results to develop a structural health monitoring (SHM) system 
suitable for implementation on a network of smart sensors. Experimental verification is 
provided using Intel’s Imote2 smart sensors installed on a three-dimensional truss structure.  
The Imote2 is employed herein because it has the high computational and wireless 
communication performance required for advanced SHM applications.  This SHM system 
is then investigated from sensing, network, and SHM algorithm perspectives. 
 
 
INTRODUCTION  
 
The investment of the United States in civil infrastructure is estimated to be $20 trillion. 
Annual costs amount to between 8-15% of the GDP for most industrialized countries [1, 
2]. This investment is likely to increase. Indeed, much attention has been focused in 
recent years on the declining state of the aging infrastructure in the U.S. These concerns 
apply not only to civil engineering structures, such as the nation's bridges, highways, 
and buildings, but also to other types of structures, such as the aging fleet of aircraft 
currently in use by domestic and foreign airlines. The ability to continuously monitor 
the integrity of civil infrastructure in real-time offers the opportunity to reduce 
maintenance and inspection costs, while providing for increased safety to the public. 
Furthermore, after natural disasters, it is imperative that emergency facilities and 
evacuation routes, including bridges and highways, be assessed for safety. Addressing 
all of these issues is the objective of structural health monitoring (SHM). 
 
To efficaciously investigate damage, a dense array of sensors will be required for large 
civil engineering structures [3, 4]. Dense measurements can provide detailed 
information on civil infrastructure, which typically consists of a large number of 
components and has many degrees of freedom. Monitoring the Tsing Ma Bridge and 
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Kap Shui Mun Bridge in Hong Kong, which uses 326 channels of sensors in total and 
produces about 65 MB of data every hour, is an attempt toward in-depth monitoring [5].  
The expense of installing traditional monitoring systems, however, has limited 
significantly wider-spread implementation [6–8]. For example, the total system cost, 
including installation, of the monitoring system on the Bill Emerson Memorial Bridge 
in Cape Girardeau, Missouri, USA is about $1.3M for 86 accelerometers, which makes 
the average installed cost per sensor a little over $15,000 dollars [9].  Costs for other 
bridge installations are of a similar magnitude.  Smart sensors with wireless 
communication capability are reported to reduce installation effort to a great extent [10] 
and help to realize a dense array of sensors. 
 
Though networks of densely deployed smart sensors have the potential to improve SHM 
dramatically, limited resources on smart sensors preclude direct application of traditional 
monitoring strategies on smart sensor networks.  Consider the task of locating a few 
strategic sensors in structures such as the 2 km long Akashi-Kaikyo Bridge or the 443 m 
tall Sears Tower in Chicago so that these sensors can detect randomly occurring damage; 
such a task is intractable, if not impossible. To effectively detect arbitrary damage in 
structures, especially complicated structures, a dense array of sensors distributed over 
the entire structure will be required. However, using the traditional centralized approach 
for SHM will require a tremendous amount of data to be sent to such a central station. 
Centralized SHM strategies are not scalable to large numbers of sensors.  
 
Noting that damage in structures is an intrinsically local phenomenon, SHM applications 
using smart sensors may be realized even for such structures of substantial size. 
Responses from sensors close to the damaged site are expected to be more heavily 
influenced than those remote to the damage. If data is locally processed, communication 
requirement will remain reasonable. Similarly, smart sensor characteristics need to be 
well investigated with respect to application specific requirements. Time 
synchronization accuracy may not be suitable for some applications. Packet loss may 
severely affect the performance of SHM systems. By understanding both the structure 
and the smart sensor network, implementable SHM systems deployed on a dense array 
of smart sensors can be achieved. 
 
This paper addresses problems toward realization of SHM systems employing smart 
sensors and demonstrates such a system. Smart sensors are briefly reviewed first. 
Following description of a smart sensor system framework employed, middleware 
services such as data aggregation and reliable communication are developed. Finally, 
the SHM using smart sensors is experimentally verified by implementing the 
Distributed Computing Strategy (DCS) for SHM on Imote2s and monitoring a 
three-dimensional truss. 
 
SMART SENSORS  
 
The essential difference between a standard sensor and smart sensor is the latter’s 
flexible communication and information processing capability. Each sensor has an 
on-board microprocessor that can be used for digital signal processing, self-diagnostics, 
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self-identification, and self-adaptation functions. Furthermore, all smart sensor 
platforms have thus far employed wireless communication technology. 
 
Some of the first efforts in developing the smart sensors for application to civil 
engineering structures were presented by [11–13]. Since these first efforts, numerous 
researchers have developed smart sensing platforms. Lynch and Loh [6] cited over 150 
papers on wireless sensor networks for SHM conducted at over 50 research institutes 
worldwide.  
 
Several SHM applications with smart sensors have been studied using both scale models 
and full-scale structure [14–20]. Sensor calibration and demonstration of data acquisition 
and computational capability have been performed with the ultimate goal of life-long 
monitoring of civil infrastructure using a dense array of smart sensors.  
 
While smart sensor technology has seen substantial advances during recent years, 
interdisciplinary research efforts to address issues in sensors, networks, and application 
specific algorithms are needed to realize their potential. For example, accelerometers 
equipped with smart sensors platforms are not necessarily designed to precisely measure 
structural vibration in the low frequency range. Some of research gaps are summarized in 
Table 1. 
 

Table 1: Research gaps. 
 
network Sensor node Algorithms 

Scalability Power available Scalability 
Time synchronization Power needed to meet 

performance requirements.
Distributed 

Data loss Computational speed Data aggregation 
Power efficiency Communication bandwidth Minimize power 

Localization Environmental hardening Sensor fusion 
adaptive network Resolution/range Data protocols 
Fault tolerance Sensor type  
interoperability Digital vs analog  

middleware   
 
 
FRAMEWORK 
 
Network topology 
 
Most of the SHM applications with smart sensors can be categorized into two groups, 
neither of which has fully exploited the smart sensor's capability.  
 
In the first group, the smart sensors are employed in the same manner as traditional wired 
sensors with all data being synchronously collected for processing at a centralized 
location (see Figure 1a). Centralized SHM algorithms then can be applied to this data. 
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This approach allows for application of a wealth of traditional SHM algorithms. As the 
number of smart sensors increases, however, the measurement data to be centrally 
collected exceeds the network bandwidth, regardless of whether homerun or hopping 
communication is adopted. Forwarding data to the base station may take a prohibitively 
long time and consume a lot of power. Introducing faster communication speeds offered 
by nodes with ample power sources is one approach. Chintalapudi, et al. [21] utilizes a 
tiered approach, with lower tier nodes and powerful upper tier nodes. Assuming that the 
upper tier nodes have sufficient power, the limitation on the communication speed among 
upper tier nodes is removed; power consumption at lower tier nodes is moderate. 
Installing powerful nodes is sometimes impractical or can reduce the advantages of smart 
sensors.  The limited communication bandwidth and battery power hinders the 
application of a centralized data acquisition approach to a large smart sensor network. 
 

The second group of the algorithms 
assumes that each smart sensor 
measures and processes data 
independently without sharing 
information among the neighboring 
nodes [10, 19, 22]. Since only the 
processed data is sent back to base 
station, communication 
requirements are quite modest. 
Consequently, this approach is 
scalable to a large number of smart 
sensors (see Figure 1b). However, 
the independent approach does not 
utilize available information from 
neighboring node; all spatial 
information is discarded. For 

example, mode shape information cannot be obtained. The inability to incorporate spatial 
information limits the effectiveness of this approach. 
 
A hierarchical system is considered to resolve the limitations of these two approaches 
(see Figure 1c). Smart sensors are conceptually divided into hierarchical levels. Data 
processing is coordinated and distributed among sensors. The Distributed Computing 
Strategy for SHM (DCS) [4] is an example of such a hierarchical SHM system. 
Communication and data processing in DCS take place mainly in local sensor 
communities, reducing requirements on transmission of large amounts of data. Structural 
analysis of DCS takes into account measurements at multiple locations, making use of 
available spatial information. The DCS has the features that make it possible to be 
deployed on a dense array of smart sensors.   
 
Proposed architecture 
 
A homogeneous configuration of hardware is chosen as opposed to tiered system 
approaches employing resource demanding upper level nodes and less powerful lower 

Figure 1: Smart sensor topologies.
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level nodes. In addition to smart sensors, a PC is needed in this architecture as interface 
to users. Homogeneous configuration results in simpler programming and deployment 
of smart sensor nodes. Systems with homogeneous configurations can be programmed 
so that failure of one node does not result in failure of the systems; roles of a 
non-functioning node can be taken over by neighboring nodes as conceptually shown in 
Figure 2.  
 
In terms of functionalities, smart sensor nodes in the proposed system are differentiated 
as the base station, the manager nodes, cluster heads, and leaf nodes. All the sensors 
deployed on a structure, in principal, work as leaf nodes. Leaf nodes receive commands 
from the other nodes and perform preprogrammed tasks such as sensing, data 
processing, and acknowledgement. The collection of leaf nodes in a neighborhood make 
a local sensor community. One of the nodes in each local sensor community is assigned 
as a cluster head and handles most of communication and data processing in the 
community. In addition to tasks inside the community, the cluster head communicates 
with the cluster heads of the neighboring communities to exchange information. One of 
cluster heads also functions as the manager sensor. When intra-cluster RF 
communication signals reach nodes in neighboring sensor communities, the manager 
deals with time sharing among sensor communities to avoid RF interference. The 
manager also exchanges packets directly with leaf nodes to manage operations in which 
all the leaf nodes participate; sensing, which is triggered by the manager sensor, is an 
example. The base station node is the gateway between the smart sensor network and 
the PC. The PC, which has the user interface, sends commands and parameters to the 
smart sensor networks via the base station. The PC also receives data and calculation 
results from the base station. While the base station can communicate directly with any 
node in communication range, most communication involving the base station is routed 
through the manager or cluster heads, with the exception being transmission of a large 
amount of data or calculation results from leaf nodes to the PC for debugging purpose.  
 

 
The smart sensor platform employed in this work is Intel’s Imote2. The Imote2 is a new 
smart sensor platform developed for data intensive applications. The main board of the 
Imote2 incorporates a low-power XScale processor, PXA271, and an 802.15.4 radio 

Figure 2: SHM system architecutre with interchangeable roles. 
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(ChipCon 2420). The processor speed may be scaled based on the application demands 
thereby improving its power usage efficiency. The Imote2 has 256 KB of SRAM, 32 MB 
of external SDRAM, and 32 MB of Strataflash memory. This memory is particularly 
important for processing the large amount of data required for dynamic monitoring of 
structures. Several issues regarding the efficacy of the Imote2 for SHM applications are 
reported by [23] 
 
TinyOS is employed as the operating system on the Imote2. This operating system has a 
small memory footprint and is well-suited for smart sensors with limited resources. 
TinyOS has a large user community and many successful smart sensor applications. 
However, from a civil engineering perspective, TinyOS imposes significant limitations 
on SHM system functionality. A critically important issue is that TinyOS does not 
support real-time operations. In other words, the operating system has only two types of 
threads of execution: tasks and hardware event handlers, leaving users little control to 
assign priority to commands; execution timing cannot be arbitrarily controlled. This 
feature of TinyOS needs to be considered carefully when designing a system 
 
MIDDLEWARE SERVICE DEVELOPMENT 
 
In this section, the basic functionalities of smart sensors essential to SHM applications are 
studied and realized. Among these functionalities are data aggregation, reliable 
communication, and synchronized sensing. These functionalities are developed on the 
Imote2 platform. 
 
Data aggregation 
 
The amount of data transferred in SHM applications is considerable. Long vibration 
records will be acquired at densely distributed smart sensors. If they are collected at a 
single sink node using multi-hop communication, communication time easily exceeds the 
time necessary for any other smart sensor task. Distributed estimation of the correlation 
function has been proposed as a type of model-based data aggregation [24]. When the 
excitation can be assumed to be broadband and the structural response stationary, the 
correlation function between the output measurements can be used to determine modal 
parameters by virtue of the Natural Excitation Technique (NExT) [25]. This data 
aggregation method is scalable to networks of a large number of smart sensors.  This 
data aggregation approach is described herein. 
 
Correlation functions are, in practice, estimated from finite length records. Power and 
cross spectral density (PSD/CSD) functions are estimated first through the following 
relation [26]:  

*

1

1( ) ( ) ( )
dn

xy i i
id

G X Y
n T

ω ω ω
=

= ∑    (1) 

where ( )xyG ω  is CSD estimation between two stationary Gaussian random process, 
( )x t  and ( )y t . ( )X ω  and ( )Y ω  are the Fourier transform of ( )x t  and ( )y t ; the * 

denotes the complex conjugate. T is time length of sample records, ( )ix t  and ( )iy t . In 
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estimating the spectral densities, windowing of the time histories is common practice to 
suppress the phenomena of spectral leakage. Window functions are multiplied by the time 
histories, ( )x t  and ( )y t , prior to the Fourier transform. When 1dn = , the estimate has a 
large random error. The random error is reduced by computing an ensemble of the 
estimates from dn  different or partially overlapped records. The normalized RMS error 

( )xyGε ω⎡ ⎤⎣ ⎦  of the spectral density function estimation is given as  

   1( )xy
xy d

G
n

ε ω
γ

⎡ ⎤ =⎣ ⎦     (2) 

xyγ  is the coherence function between ( )x t  and ( )y t , indicating the degree of linearity 
between them. Through the averaging process, the estimation error is reduced. Averaging 
of 10-20 times is common practice. The estimated spectral densities are then converted to 
correlation functions by inverse Fourier transform. 
 
An implementation of correlation function estimation for a small community of sensors 
in a centralized data collection scheme is shown in Figure 3, where node 1 works as a 
reference sensor. Assuming sn  nodes, including the reference node, are measuring 
structural responses, each node acquires data and sends to the reference node. The 
reference node 
calculates the spectral 
density. This procedure 
is repeated dn  times 
and averaged. After 
averaging, the inverse 
FFT is taken to calculate 
the correlation function. 
All the calculations take 
place at the reference nodes. When the spectral density is estimated from discrete time 
history records of length N , data to be transmitted through the radio is ( 1)d sN n n× × − . 
 
In the next scheme, data 
flow for correlation 
function estimation is 
examined and data 
transfer is reorganized 
to take advantage of 
computational 
capability on each smart 
sensor node (see Figure 
4). After the first measurement, the reference node broadcasts the time record to all the 
nodes. On receiving the record, each node calculates the cross spectral density between its 
own data and the received record. This spectral density estimate is locally stored. The 
nodes repeat this procedure dn times. After each measurement, the stored value is updated 
by taking a weighted average between the stored value and the current estimate. In this 

 Figure 3: Centralized NExT implementation. 
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Figure 4: Distributed NExT implementation. 
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way, Eq. (1) is calculated on each node. Finally the inverse FFT is applied to the spectral 
density estimate locally. The resultant correlation function is sent back to the reference 
node. Because the subsequent modal analysis such as ERA uses, at most, half of the 
correlation function data length, 2N  data is sent back to the reference node from each 
node. The total data to be transmitted in this scheme is, therefore, 2 ( 1)d sN n N n× + × −   

 
As the number of nodes increases, the advantage of the second scheme, in terms of 
communication requirements, becomes significant. The second approach requires data 
transfer of ( )( )d sO N n n⋅ + , while the first one needs to transmit to the reference sensor 
node data of the size of ( )d sO N n n⋅ ⋅ . For example, a parameter set {N,nd,ns}={1024, 
20,10} necessitates the second approach to transfer 25,088 data points while the first one 
involves transmit of 184,320 data points; the reduction factor achieved by the distributed 
implementation is more than seven. The distributed implementation leverages knowledge 
regarding the application to reduce communication requirements as well as to utilize CPU 
and memory in a smart sensor network efficiently. 
 
The data communication analysis above assumes that all the nodes are in single-hop 
range of the reference node. This assumption is not necessarily the case for a general 
SHM application. However, Gao [4] proposed a Distributed Computing Strategy (DCS) 
for SHM which supports this idea. Neighboring smart sensors within single-hop 
communication range make local sensor communities and perform SHM in the 
communities.  In such applications, the assumption of nodes being in single-hop range of 
a reference node is reasonable. 
 
Reliable communication 
 
RF communication is not reliable unless lost packets are specifically addressed. Packets 
may not be transmitted properly. When distance between nodes is too long, packets may 
not reach the destination. Multiple nodes trying to send packets at the same time cause 
packet collisions. SHM applications employing smart sensors suffer from this packet loss. 
If packets carrying commands are lost, destination nodes fail to perform certain tasks. The 
sender is unsure whether the destination nodes have received commands. If packets 
carrying measurement data are lost, destination nodes cannot fully reconstruct the 
sender’s data. Therefore, packet loss may cause a system to be in an unknown state and 
may degrade measurement signals.  
 
When smart sensor applications come to involve more and more complicated internode 
data processing and are assigned more and more tasks by commands sent through packets, 
commands needs to be reliably delivered. Otherwise, smart sensors cannot assess the 
current state of neighboring nodes without intricate logic, resulting in extremely 
complicated programs. Reliable communication of short messages is clearly a significant 
help to make a SHM system with complicated internode data processing.  
 
The need to transfer large amounts of data is not apparent. In many of SHM research 
attempts, data loss is not addressed. Loss of a few data points has often been considered 
acceptable. Some experiments luckily did not have packet loss. The effect of data loss on 

19



 

 

SHM applications are assessed by Nagayama, et al. [27]. Packet loss is shown to degrade 
signals in the same way as observation noise. Reliable communication is preferable to 
maintain data quality. Also when loss of a large block of packets is expected, such as 
when devices using same frequency range pass by, resending of data is preferable. 
 
A reliable communication protocol suitable for sending a large amount of data, as well as 
a protocol to send a single packet, is proposed. Each of these protocols supports multicast 
as well as unicast; SHM applications benefit from multicast. One example is the 
distributed correlation function estimation. Multicast of commands is commonly 
observed in smart sensor systems. Only the reliable multicast protocol for long data is 
briefly explained herein.  
 
The proposed reliable communication protocol is based on a modification of Automatic 
Repeat reQuest (ARQ) protocol. ARQ is an error control method which repeats sending 
packets based on request from the receiver. On reception of packets without error, the 
receiver replies with positive acknowledgement (ACK). If an error is detected, the 
receiver sends a negative acknowledgement (NACK) and a request for retransmission. 
There are several ARQ protocols. 
 
The radio component on the Imote2 is in either listening mode or in the transmission 
mode. During transmission, the Imote2 cannot receive packets. Without careful 
implementation of ARQ, the receiver may send acknowledgments while the sender is in 
transmission mode. Packet loss and retransmission are expected to be more frequent if 
transmission and reception are deeply interwoven. Scheduling interwoven transmission 
and reception may result in long waiting time. In the proposed protocol, the sender 
transmits all the packets without expecting an acknowledgement. The receiver stores all 
the received data in a buffer. Once the sender transmits the last packet of data, the sender 
repeatedly transmits a packet indicating the end of data until acknowledgement packets 
from the receivers are received. These acknowledgment packets also contain information 
about missing packets. Only missing packets are resent. At the end of transmitting 
missing packets, a packet requesting acknowledgment is sent again. If no receiver reports 
missing packets, the sender signals the end of data transfer to the receivers and itself, 
disengaging them from this round of reliable communication. In this way, the number of 
acknowledgement and retransmission can be greatly reduced (see Figure 5).  

 
This protocol is designed to send either 64 bit double precision data, 32 bit integers, or 16 
bit integers. Many ADCs on traditional data acquisition systems have a resolution less 
than 16 bits, supporting the need for transfer of 16 bit integer format data. Some ADCs 
have a resolution better than 16 bits, necessitating data transfer in 32 bit integer format. 
Once an acceleration record is processed, the outcome may need more bits. Onboard data 
processing such as FFTs and SVDs are usually performed in a double precision format. 
Even when the effective number of bits is smaller than 32, debugging of onboard data 
processing greatly benefits from transfer of double precision data; data processing results 
on Imote2s can be directly compared with those on a PC, which are most likely in double 
precision format. Transfer of 64 bit double precision data is supported based on such 
needs. 
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Synchronized sensing 
 
Time synchronization error in a smart sensor network can cause inaccuracy in SHM 
applications. Time synchronization is a middleware service common to smart sensor 
applications and has been widely investigated. Each smart sensor has its own local clock, 
which is not synchronized initially with the other sensor nodes. By communicating with 
the surrounding nodes, smart sensors can assess relative difference among their local 
clocks. For example, Mica2 motes employing the Timing-sync Protocol for Sensor 
Network [28] are reported to synchronize with each other to an accuracy of 50 μsec; 
different algorithms and hardware resources may result in different precision. Whereas 
time synchronization protocols have been intensely studied, requirements on 
synchronization from an application perspective have not been clearly addressed. The 
effect of time synchronization error on SHM applications is studied by [27]. In this 
section, the accuracy of Flooding Time Synchronization Protocol (FTSP) [29, 30], 
realized on the Imote2, is evaluated for the SHM application. Time synchronization 
among smart sensor does not necessarily offer synchronized measurement signals. Issues 
toward synchronized sensing are then investigated. Finally synchronized sensing is 
realized utilizing resampling. 
 
To evaluate the time synchronization error, Imote2s are programmed as follows. A 
beacon node transmits a beacon signal every four seconds. The others eight nodes 
estimate global time using the beacon packet as provided in FTSP. Two seconds after the 
beacon signal, the beacon node sends another packet requesting replies. The receivers get 
time stamps of the reception of this packet and convert them to global time stamps. The 
receivers take turns in reporting back these time stamps. Perfect time synchronization and 
time stamp of the packet reception should give the same global time stamps at all the 

Figure 5: Reliable communication protocol for long data records. 
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nodes. This procedure is repeated more than 300 times. These time stamps from the eight 
nodes are compared with each other. Figure 6 shows the difference in the global time 
stamp using one of the eight nodes as a reference. The difference is generally less than 10 
μsec, indicating the time synchronization error of about 10 μsec. Scattered peaks may 
indicate large synchronization error. However, these peaks may also be due to delays 
associated with global time stamping after the packet requesting replies is received.  
 
The time synchronization error estimated above is considered small for SHM applications. 
A delay of 10 μsec corresponds to 0.072 degree phase delay for a mode at 20 Hz. Even at 
100 Hz, the corresponding phase delay is only 0.36 degree. 
 
While global clock estimates two seconds after sending the beacon signal are found to be 
accurate, local clocks drift over time. Large clock drift necessitates frequent time 
synchronization to maintain a certain level of accuracy.  
 

  
The same program is utilized to estimate clock drift. On reception of the packet 
requesting replies, the receivers get offsets of their own instead of global time stamps. 
The offsets are sent back to the beacon node and then to a PC. If the clocks on the nodes 
are ticking at exactly the same rate, the offsets should be constant over long time. This 
experiment, however, did not show constant offsets. Figure 7 shows the offsets of nine 
receiver nodes. One of them stopped responding around 45 second, exhibiting a short  
line on the figure. Here, the maximum clock drift among this set of Imote2 nodes is 
estimated to be around 50 μsec per second. This drift is small but not negligible if 
measurement takes a long time. For example, after 200 second measurement, time 
synchronization error may become as large as 10 millisecond.  
 
One solution to address this clock drift problem is frequent time synchronization. The 
drawback of this approach is that time synchronization may not perform well when other 
tasks (e.g., sensing) are running. Time synchronization requires precise time stamping as 
previously explained. Sensing also requires precise timing and needs higher priority in 
execution. Scheduling more than one high priority tasks is challenging, especially for 
operating systems such as TinyOS which have no support for real-time control. If the 

Figure 6: Time synchronization error. 
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time synchronization interval necessary to address the clock drift is shorter than sensing 
time length, a different solution needs to be sought.  
 
Another approach is to compensate for the difference in clock rate. The slopes of the lines 
in Figure 7 approximately indicate the clock drift that needs to be compensated. If time 
synchronization offset values can be observed for a certain amount of time, the slope can 
be estimated using a least square approach. 
 
There are several issues to be addressed toward synchronized sensing. Issues observed on 
the Imote2 platform include uncertainty in sensor start-up time, difference in sampling 
rate among sensor nodes, and fluctuation in sampling frequency over time [23]. These 
issues are addressed by resampling of measured time histories based on time stamps 
marked after a fixed number of data points are collected. 
 
The polyphase implementation of resampling [31] by an arbitrary non-integer rational 
factor addresses the problem of data sampled at inaccurate frequencies. The measured 
time history x[m] is first upsampled by about hundred zeros. Then, lowpass filter h[i] is 
applied to yields upsampled signal y[j]. The outcome z[k] of the resampling process is 
calculated by interpolating this upsampled signal. 
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La is the factor of upsampling, N is the length of filter coefficients, and Mr is the 
non-integer factor of downsampling. ⎡ ⎤⎢ ⎥  and ⎣ ⎦  represent ceiling and floor function 
respectively. The initial delay, represented by li, is determined based on global timestamp 
and takes into account the inaccuracy in sampled timing. The factor, La /Mr, determines 
the rate of sampling rate conversion. The sampling rate conversion is first tested in 
Matlab as shown in Figure 8 and subsequently implemented on the Imote2. The 
resampling process implemented on Imote2 is found to yield acceleration signals with 
synchronization accuracy better than 50 μs. 
 
EXAMPLE IMPLEMENTATION 
 
The Distributed Computing Strategy (DCS) for SHM [4] is implemented on Imote2s 
using the developed middleware services. The SHM system realized on Imote2s is then 
experimentally verified using a three-dimensional truss structure. 
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Distributed Computing Strategy for SHM 
 
Gao [4] proposed a Distributed Computing Strategy (DCS) for SHM that meshes well 
with the hierarchical architecture necessary to realize the potential of a dense network of 
smart sensors. This DCS approach based on the DLV method [32] does not need to 
centrally collect the measurement data. Instead, DCS shares data among the neighboring 
nodes to utilize spatial information. Due to this local data sharing with a limited number 
of neighboring nodes, the total amount of data to be transmitted throughout the network is 
kept small. Therefore, this algorithm is scalable to a large number of sensors densely 
deployed over large structures. While DCS does not require measurements at all the 
DOFs, the method improves its performance by sensing at many DOFs; DCS benefits 
from a dense array of smart sensors. Computer analysis and experimental validation on a 
simulated wireless network showed DCS is a promising SHM scheme [4]. While DCS 
has been shown promising as an SHM algorithm for smart sensor networks, the strategy 
has not been implemented on smart sensor platforms.  
 
Gao [4] explains two methods to normalize mode shapes in DCS. One of them utilizes 
input force measurement while the other measures only vibration outputs under know 
mass perturbation. Because no Imote2 sensor board with force measurement is available 
and because input force of full-scale structure is difficult to measure, DCS employing 
mass perturbation method is chosen as the algorithm to be implemented.  Bernal [33] 
proposed a stochastic DLV (SDLV) localization approach. This variant of the DLV 
method does not require normalization of mode shapes. The absence of the need for 
normalization greatly simplifies the SHM strategy. Therefore, the SDLV approach is also 
implemented on networks of Imote2s. 
 
The DCS implementation is comprised of various steps, including numerical calculation 
functions, middleware services, and damage detection algorithm. Major numerical 
calculation functions utilized in DCS for SHM are: singular value decomposition (SVD), 
complex eigensolver, Fast Fourier transform, quick sort, and complex matrix inverse. 
These functions are either developed from scratch or functions written in C language are 
adapted. The performance of these functions is examined on the Imote2; execution of 

Figure 8: Signals before and after resampling. 
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these functions on Imote2 yields identical outputs as those from Matlab functions with the 
precision of double data type. Middleware services for DCS include: data aggregation, 
reliable communication, and synchronized sensing. Services described earlier are adapted. 
The algorithm to locate damage involves NExT, ERA, and DLV. These techniques are 
coded as C-functions and adapted to TinyOS. 
 
Implementation of DCS for SHM including these functions requires further consideration 
of the limited hardware resources. The memory space on the Imote2 is limited, and the 
CPU speed is slower than that of a PC.  Some of numerical operations involved in DCS 
for SHM cannot be directly ported to Imote2s. Examples of such points needing 
consideration and ways of coping are as follows. Firstly, the size of the Hankel matrix 
utilized in ERA may exceed the available memory space on the Imote2s. The size is 
limited so that the matrix fits in the memory space. Application of DCS on a PC to 
experiment data has shown that modal parameters can be estimated accurately with a 
reduced-size Hankel matrix. Secondly, estimation of the stresses induced by the DLVs 
may involve structural analysis of the whole truss, which requires large amounts of 
memory and calculation time. Instead, a matrix to convert input force to stress is 
calculated on a PC in advance and injected to cluster heads; cluster heads needs to simply 
compute the product of the matrix and DLVs rather than to run the entire structural 
analysis. Thus, DCS can be ported to the Imote2 with careful consideration. 
 
Imote2s are preprogrammed to autonomously accomplish the DCS. All the necessary 
parameters such as node ID, sensor direction, and data length are initially injected to the 
network from the base station. The base station sends these parameters to the manager 
sensor or cluster head sensors, which forward a part of the parameters to the leaf nodes. 
After this parameter injection, the PC connected to the base station does not need to give 
input to the Imote2 network.  Tasks are preassigned to each command which is sent by 
the reliable communication protocol. 
 
Several functionalities, which may not be necessary for complete SHM systems, are 
considered important for debugging purposes and are implemented as well. Measured 
acceleration time histories are sent back to the base station so that processing of the time 
history in the network can be compared to equivalent data processing on a PC. 
Intermediate results of DCS such as modal parameters, DLVs, and accumulated stress are 
also sent back to the base station for the same reason. Critical communication packets 
among sensor nodes are also directed to the base station using multicast reliable 
communication protocol so that important communication is logged at the base station for 
debugging. These functionalities help development and performance evaluation of the 
smart sensor system.  
 
Experimental Setup 
 
A 5.6 m long, three-dimensional truss structure at the Smart Structures Technology 
Laboratory (SSTL) of the University of Illinois at Urbana-Champaign 
(http://sst.cee.uiuc.edu/) is employed for the experimental validation (see Figure 9). The 
length of each bay of the truss is 0.4 m on each side. The truss sits on two rigid supports. 
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One end of the truss is a pinned 
support, and the other is a roller 
support. The pinned end can rotate 
freely with all three translations 
restricted. The roller end can also 
move in the longitudinal direction. 
 
The truss is excited vertically by a 
Ling Dynamic Systems permanent 
magnetic V408 shaker. A 
band-limited white noise is sent 
from the computer to the shaker to 
excite the truss structure up to 100 Hz. The shaker is connected to the bottom of the outer 
panel using a stinger.  
 
Ten Imote2s mounted on nodes of the truss measure acceleration in three directions. The 
three axes of the Imote2 accelerometers are aligned with longitudinal, transverse and 
vertical directions. Acceleration measured at about 560 Hz is resampled to 280 Hz. Six 
Imote2s mounted on six front panel nodes of two consecutive bays of the truss constitutes 
a local sensor community and monitor structural damage within the bays. The ten 
Imote2s in total make three sensor communities overlapping each other.   
 
A horizontal element on the lower cord is replaced with a thinner element to simulate 
damage to the truss. This replacement results in 52.7 % cross section loss of element 20 
and 8 in the mass perturbation based DLV experiment and SDLV experiment 
respectively (see Figure 10). The cross section loss reduces stiffness in the element and is 
expected to be detected as damage by the DLV method. 
 

 
 
Experimental Results 
 
Through the resampling process, measured acceleration signals are synchronized to each 
other. The phase of the cross spectral densities indicates the synchronization accuracy. 
The slope of the phase indicates time synchronization error. As shown in Figure 11, the 
time synchronization error is approximately 30 μsec. 
 
Modal parameters are determined from these acceleration signals. The NExT method is 
used to estimate the cross spectral densities and converts them to correlation functions. 
The Hanning window is employed in spectral density estimation. Figure 12 shows cross 
spectral densities between vertical acceleration signal of a cluster head node and its 
members’ longitudinal and vertical acceleration signals. As expected, the spectral 

Figure 10: Node and element IDs of the truss.
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Figure 9: Three dimensional truss model. 
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densities estimated on the Imote2s show clear peaks corresponding to structural modes. 
The acceleration signals are also processed on a PC to validate the numerical operation on 
Imote2s. The spectral densities estimated on the Imote2s in a distributed manner are 
found to be identical (within the numerical precision of double data type) to those 
calculated on the PC. Natural frequencies, damping ratios, mode shapes, EMAC, initial 
modal amplitude, etc. are identified from the cross spectral densities by cluster head 
nodes running ERA. These identified parameters are numerically the same as those 
identified on a PC. 

 
 
First, the mass perturbation DLV method is considered.  Here, the network of Imote2s 
installed at node 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25 (see Figure 10) estimates the mass 
normalization constants prior to commencement of monitoring by measuring the 
acceleration responses of the truss with and without known mass perturbation.  Then 
Imote2s are installed at node 8 to 13. The modal parameters identified before and after 
element replacement are input to the DLV method to locate the simulated damage.  The 
normalized accumulated stress estimated by the cluster head node, node 10, is shown in 
Figure 13.  This local sensor community monitors element 15 to 23. The DLV method 
identifies damaged elements as those with small accumulated stress. Element 20, which 
was replaced with a thinner bar, has a normalized accumulated stress smaller than a 
predetermined threshold value, 0.3. While the small normalized accumulated stress 
successfully localized damage in this experiment, false positive/negative damage 
localization is sometimes observed in other cases.  
 
The damage localization algorithm is then changed to the SDLV method and the damaged 
element is sought. 10 Imote2s are installed from node 2 to 11. Node 4, 6, and 8 become 
cluster heads and form local sensor communities around them. Each local sensor 
community consists of a cluster head and five surrounding nodes.  Figure 14 shows the 
normalized accumulated stress calculated by the three adjacent cluster heads. In this 
experiment, element 8 is replaced with the thinner element. As shown, the Imote2s in 
these local sensor communities successfully detected the damaged element. 
 
The SDLV results from the respective communities are shared among neighboring cluster 
heads to make judgment on damage. If neighboring nodes are consistent, the damage 
detection results are reported to the base station and cluster heads switches to the sleep 
mode. If inconsistency is observed, the neighbors retake data and apply the series of data 

Figure 11: Phase of spectral densities. Figure 12: Cross spectral densities. 
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processing again. Figure 15 shows the report from the cluster heads to the base station 
after applying the SDLV method and exchanging damage element information among the 
communities. Element 8 is identified as the only damaged element. The damage 
localization at the three cluster heads is consistent and the flag to indicate retaking data is 
set to zeros. 
 

 
 

 
 
CONCLUSION 
 
A hierarchical, distributed SHM system employing smart sensors has been developed and 
experimentally verified on the Imote2 platform. To realize this SHM system required 
various issues and algorithms to be addressed. Middleware services including data 
aggregation, reliable communication, and synchronized sensing are first realized on 
Imote2s. These services as well as numerical functions and algorithms are combined to 
produce the SHM system. Experimental verification using the three-dimensional truss 
demonstrated the efficacy of the SHM system developed herein. More details about this 
research can be found in Nagayama [34]. 
 
 
 
 

Figure 15: Report on damaged elements. 

Figure 14: Normalized accumulated 
stress from Stochastic DLV method. 

Figure 13: Normalized 
accumulated stress from mass 

perturbation DLV method. 

Table 2: Natural frequencies 
idnetified on Imote2s. 

Mode  Natural frequency (Hz) 

1st 19.638 

2nd 40.846 

3rd 61.888 

4th 66.714 

5th 70.344 

6th 93.606 
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