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ABSTRACT: 

 
This paper presents a fault classification method which makes use of a Takagi-Sugeno 

neuro-fuzzy model and Pseudomodal energies calculated from the vibration signals of 
cylindrical shells. The calculation of Pseudomodal Energies, for the purposes of condition 
monitoring, has previously been found to be an accurate method of extracting features from 
vibration signals. This calculation is therefore used to extract features from vibration signals 
obtained from a diverse population of cylindrical shells. Some of the cylinders in the 
population have faults in different substructures. The pseudomodal energies calculated from 
the vibration signals are then used as inputs to a neuro-fuzzy model. A leave-one-out 
cross-validation process is used to test the performance of the model. It is found that the 
neuro-fuzzy model is able to classify faults with an accuracy of 91.62%, which is higher 
than the previously used multilayer perceptron. 
 
INTRODUCTION  
 

The process of monitoring and identifying faults in structures is of great importance in 
aerospace, civil and mechanical engineering. Aircraft operators must be sure that aircraft 
are free from cracks.  Bridges and buildings nearing the end of their useful life must be 
assessed for load-bearing capacities. Cracks in turbine blades lead to catastrophic failure 
of aero-engines and must be detected early.  Many techniques have been employed in the 
past to locate and identify faults.  Some of these are visual (e.g. dye penetrant methods) 
and others use sensors to detect local faults (e.g. acoustics, magnetic field, eddy current, 
radiographs and thermal fields). These methods are time consuming and cannot indicate 
that a structure is fault-free without testing the entire structure in minute detail.  
Furthermore, if a fault is buried deep within the structure it may not be visible or 
detectable by these localised techniques. The need to detect faults in complicated 
structures has led to the development of global methods which are able to utilise changes 
in the vibration characteristics of the structure as a basis of fault detection [1]. 

There are four main methods by which vibration data may be represented: time, 
modal, frequency and time-frequency domains.  Raw data is obtained from measurement 
made in the time domain.  From the time domain, Fourier transform techniques may then 
be used to transform data into the frequency domain. 
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From the frequency domain data, and sometimes directly from the time domain, the 
modal properties may be extracted.  All of these domains theoretically contain similar 
information but in reality this is not necessarily the case.  Because the time domain data 
are relatively difficult to interpret, they have not been used extensively for fault 
identification, and for this reason, the modal properties have been widely considered. In 
this paper we use the pseudomodal, defined from the Frequency Response Function 
(FRF), together with a Takagi-Sugeno (TS) Neuro-fuzzy model to classify faults in a 
population of cylindrical shells. 

 
BACKGROUND 
 
Pseudomodal Energies 
 

In this work, Pseudomodal Energies are used for the classification of faults in 
cylinders. Pseudomodal energies have been found to allow for better classification of 
faults when compared to modal properties. Pseudomodal energy is defined as the integral 
of the frequency response function (FRF) over various frequency bandwidths [2]. The 
FRF is defined as the ratio of the Fourier transformed response to the Fourier transformed 
force. The pseudomodal energies are therefore the intergral of the real and imaginary 
parts of the FRFs over various frequency ranges that bracket the natural frequencies. 

On one hand, receptance expression of the FRF is defined as the ratio of the frequency 
response of displacement to the frequency response of force. On the other hand, inertance 
expression of the FRF is defined as the ratio of the frequency response of acceleration to 
the frequency response of force. Similarly, the pseudomodal energies can be expressed in 
terms of the receptance and inertance. The commonly used techniques of  collecting 
vibration data involve measuring the acceleration response and therefore it is more useful 
to calculate the inertance pseudomodal energies. The inertance pseudomodal energy is 
derived by integrating the inertance FRF written in terms of the modal properties by using 
the modal summation equation as follows 
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where qa and qb represent, respectively, the lower and the upper frequency bounds 

for the qth pseudomodal energy calculated from the FRF due to excitation at k and 

measurement at l. N is the number of mode and iζ is the damping ratio of mode i. For a 

detailed derivation of this equation consult [3]. Assuming the damping is low, Eq (1) 
becomes [2]: 
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The advantage in using IMEs over the use of the modal properties is that all the modes 
in the structure are taken into account as opposed to using the modal properties, which are 
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limited by the number of modes identified; and integrating the FRFs to obtain the 
pseudomodal energies smoothes out the zero-mean noise present in the FRFs. 
 
Neuro-fuzzy modelling 
 

A fuzzy inference system is a model that takes a fuzzy set as an input and performs a 
composition to arrive at the output based on the concepts of fuzzy set theory, fuzzy if-then 
rules and fuzzy reasoning [4]. Simply put, the Fuzzy inference procedure involves: the 
fuzzification of the input variables, evaluation of rules, aggregation of the rule outputs 
and finally the defuzzification of the result. There are two popular types of fuzzy models: 
the Mamdani model and the Takagi-Sugeno model. The Takagi-Sugeno model is popular 
when it comes to data-driven identification and is used in this study. In this model the 
antecedent part of the rule is a fuzzy proposition and the consequent is an affine linear 
function of the input variables as shown in (3) [5]. 

   ][ ,xa then (x)A is x If :R ii
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iiii wby +=      (3) 

Where ia  is the consequence parameter vector, ib  is a scalar offset and Ki ...,2,1= . 

The symbol K is the number of fuzzy rules in the model and ]1,0[∈iw  is the weight of 

the rule. The antecedent propositions in the model describe the fuzzy regions in the input 
space in which the consequent functions are valid and can be stated in the following 
conjunctive form: 
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The degree of fulfilment of the ith rule is calculated as the product of the individual 
membership degrees and the rule’s weight: 
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 The output y is then computed by taking a weighted average of the individual rules’ 

contributions as shown below: 
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Where )x(iβ  is the degree of fulfilment of the i th rule. The parameters ia  are then 

approximate models of the considered nonlinear system.  
Fuzzy rule-based systems with learning ability, also known as neuro-fuzzy networks 

[6], will be considered in this work. This system will be referred to as a neuro-fuzzy 
system (model) from here onwards. There are two approaches to training neuro-fuzzy 
models [7]: 
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1. Fuzzy rules may be extracted from expert knowledge and used to create an initial 
model. The parameters of the model can then be fine tuned using data collected 
from the operational system being modelled. 

2. The number of rules can be determined from collected numerical data using a 
model selection technique. The parameters of the model are also optimised using 
the existing data.  

The second approach is used in this study as there is no expert knowledge which will 
allow us to create an adequate initial model. 
 
EXPERIMENTAL SETUP 
 
Data gathering and pre-processing 
 

The data in this work is obtained by performing an experiment on a population of 
cylinders, which are supported by inserting a sponge rested on a bubble-wrap, to simulate 
a ‘free-free’ environment. This setup is illustrated in figure 1 below. The sponge is 
inserted inside the cylinders to control boundary conditions.  This will be further 
discussed below.  Conventionally, a ‘free-free’ environment is achieved by suspending a 
structure usually with light elastic bands. A ‘free-free’ environment is implemented so 
that rigid body modes, which do not exhibit bending or flexing, can be identified.  These 
modes occur at frequency of 0Hz and they can be used to calculate the mass and inertia 
properties.  In the present study, we are not interested in the rigid body modes. Testing 
the cylinders suspended is approximately the same as testing it while resting on a 
bubble-wrap, because the frequency of cylinder-on-wrap is below 100Hz.  The first 
natural frequency of cylinders being analysed is over 300Hz and this value is several 
order of magnitudes above the natural frequency of a cylinder on a bubble-wrap.  
Therefore the cylinder on the wrap is effectively decoupled from the ground. It should be 
noted that the use of a bubble-wrap adds some damping to the structure but the damping 
added is found to be small enough for the modes to be easily identified.  The impulse 
hammer test is then performed on each of the 20 steel seam-welded cylindrical shells.  
The impulse is applied at 19 different locations as indicated in Figure 1: 9 on the upper 
half of the cylinder and 10 on the lower half of the cylinder. The sponge is inserted inside 
the cylinder to control boundary conditions by rotating it every time a measurement is 
taken. The top impulse positions are located 25mm from the top edge and the bottom 
impulse positions are located 25mm from the bottom edge of the cylinder. The angle 
between two adjacent impulse positions is 36o. 

For one cylinder the first type of fault is a zero-fault scenario. This type of fault is 
given the identity [0 0 0], indicating that there are no faults in any of the three 
substructures. The second type of fault is a one-fault-scenario, where a hole may be 
located in any of the three substructures. Three possible one-fault-scenarios are [1 0 0], [0 
1 0], and [0 0 1] indicating one hole in substructures 1, 2 or 3 respectively.  The third 
type of fault is a two-fault scenario, where one hole is located in two of the three 
substructures.  Three possible two-fault-scenarios are [1 1 0], [1 0 1], and [0 1 1]. The 
final type of fault is a three-fault-scenario, where a hole is located in all three 
substructures, and the identity of this fault is [1 1 1]. There are 8 different types of 
fault-cases considered (including [0 0 0]). 
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Each cylinder is measured three times under different boundary conditions by 
changing the orientation of a rectangular sponge inserted inside the cylinder. The number 
of sets of measurements taken for undamaged population is 60 (20 cylinders X 3 for 
different boundary conditions). 

The impulse and response data are processed using the Fast Fourier Transform (FFT) 
to convert the time domain impulse history and response data into the frequency domain.  
The data in the frequency domain are used to calculate the FRFs. From the FRFs, the 
modal properties are extracted using modal analysis and the pseudo modal energies are 
calculated using the integrals under the peaks for a given frequency bandwidth using the 
trapezoidal technique.  The frequency spacing of the FRFs is 1.22Hz.  When the pseudo 
modal energies are calculated, frequency ranges spanning over 6% of the natural 
frequencies are chosen. These bandwidths are as follows in Hz: 393-418, 418-443, 
536-570, 1110-1180, 1183-1254, 1355-1440, 1450-1538, 2146-2280, 2300-2440, 
2250-2401, 2500-2656, 3140-3340, 3350-3565, 3800-4039, and 4200-4458. The 
guidelines outlined in [2] are taken into consideration when choosing these frequency 
ranges. These guidelines state that the frequency bandwidth must be: (1) sufficiently 
narrow to capture the resonance behavior, (2) sufficiently wide to capture the smoothing 
out of zero-mean noise, and (3) must not include the regions of the anti-resonance, which 
are generally noisy. The pseudo modal energies are used to train the 
pseudo-modal-energy TS neuro-fuzzy model. The numbers of pseudo-modal-energies 
identified are 646 (corresponding to 17 natural frequencies X 19 measured 
mode-shape-co-ordinates X 2 for real and imaginary parts of the pseudo modal energy). 
The Statistical Overlap Factor (SOF) and the Principal Component Analysis (PCA) are 
used to reduce the dimension of the input data from 646X167 pseudo-modal-energies to 
10X167 for both these data types.   

 
Figure 1: A schematic diagram illustrating the set up of the experiment. 

 
Neuro-fuzzy model optimisation 
 

For the optimization of the neuro-fuzzy model a 10-fold cross validation method is 
used for model selection. Once the appropriate model has been selected, the training data 
is then used to train a neuro-fuzzy model with the correct model parameters. A first order 
TS neuro-fuzzy model with a Gaussian membership function has been implemented. The 
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optimum number of rules in the model has been determined by evaluating models with 
between one and ten fuzzy rules. The optimum number of rules is found to be four as it 
gives a low prediction error together with a small standard deviation. The remaining 
parameters of the neuro-fuzzy model are optimised using a combination of the least 
squares and gradient descent methods. 
 
Threshold determination 
 

For a given input set, the neuro-fuzzy model gives an output of three decision values 
[x, y, z]. A correct classification must give the correct values of x, y and z i.e. it must 
correctly predict all the faults in one cylinder. The neuro-fuzzy model gives ouput values 
in the range [0, 1], and it is expected that the decision point will be around the halfway 
mark i.e. 0.5. In this experiment, two separate methods of determining the output have 
been tested. One simply assumes a decision point of 0.5 and the other method finds a 
decision point which minimises the error on the training set of 167. Individual thresholds 
are evaluated for each of three fault areas on the cylindrical shell. The selected threshold 
is the one that yields the maximum accuracy as defined by: 

1
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Where tpr is the true positive rate, also known as the sensitivity given by: 

)/( FNTPTPtpr +=     (8) 

In Eq 7, fpr is defined as the false positive rate also known as the specificity given by: 

)/( TNFPFPfpr +=     (9) 

TP, FN, FP and TN are all obtained from a confusion matrix and are defined as true 
positive, false negative, false positive and true negative, respectively. Parameter c  is the 
relative importance of negatives to positives. In this study the fault cases and non-fault 
cases have been given equal importance in classification, meaning c has been assigned a 
value of 1. The results obtained from using both the threshold selection techniques are 
given in the next section. It should be noted that a correct classification is one in which the 
classifier correctly predicts the condition of all the three substructures of the cylinder. 
 
Generalisation performance 
 

One of the problems experienced in machine learning is the assessment of the 
generalisation capabilities of a model. The K-fold cross-validation method has been 
shown to be an improved measure of performance over the holdout method, which 
divides the dataset into training and testing set [8]. With K-fold cross-validation, the 
dataset is divided into K approximately equal sets. The holdout method is then performed 
K times, where each time one of the unique K sets are held back as a testing set and the 
model is optimised using the combined, remaining K-1 sets. The generalisation estimate 
is then the average error of the model over all the K sets. Leave-one-out cross-validation 
is K-fold cross validation taken to its extreme. In this case K is equal to N, the number of 
instances in the given dataset. The cross-validation technique, though computationally 
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expensive, is useful especially in the cases where modelling data is very limited. 
Moreover, it has been shown that not only is the leave-one-out cross validation 
generalisation estimate is a better measure, the worst-case error of this estimate is not 
much worse than that of the training error estimate [8]. In our work, the number of data 
points we have is limited to 167. We therefore use the leave-one-out cross-validation 
method to measure the performance of the TS neuro-fuzzy model. 
 
RESULTS AND DISCUSSIONS 
 
The classification result is assessed using the leave-one-out cross validation process 
described above. The performance of the TS neuro-fuzzy model is illustrated are shown 
in Table 1 below. 
 

Table 1: The table shows the classification results that are obtained when using the 
neuro-fuzzy model 

Method Misclassified cases Accuracy 
Varied threshold 14 91.62% 

Fixed threshold (0.5) 16 90.42% 

 
From the table we can see that the method of optimising the threshold is slightly superior 
in that it allows us to classify two more fault cases. The different thresholds that were 
selected during the classification are shown in Figure 2 below. 
 

 
Figure 2: An illustration of the different thresholds that were selected for fault positions x, 

y and z. 
The method used in this paper therefore gives a slightly better accuracy than the Bayesian 
trained neural network used by Marwala [2].  
 
CONCLUSION 
 
In this paper, pseudomodal properties obtained from the FRF have been calculated from 
vibration signal measured from a population of cylindrical shells. These properties have 
been used as inputs into a TS neuro-fuzzy model. A model selection process reveals that 

377



 

 

the optimum number of fuzzy rules for accurate classification is four as it allows for a 
high accuracy with a low variance. The TS neuro-fuzzy model classifies the faults in the 
cylindrical shells with an accuracy of 91.42%, which is an improvement over what the 
probabilistic neural network has been able to do in the past. 
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