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ABSTRACT: 
 

In this study, an ANN-based algorithm using acceleration signals is developed for 
alarming locations of damage in beam-type structures.  First, theoretical backgrounds are 
described.  The problem addressed in this paper is defined as the stochastic process. Also, 
an ANN-algorithm using output-only acceleration responses is newly designed for damage 
detection in real time. The cross-covariance of two acceleration-signals measured at two 
different locations is selected as the feature representing the structural condition. Neural 
networks are trained for potential loading patterns and damage scenarios of the target 
structure for which its actual loadings are unknown. The feasibility and practicality of the 
proposed method are evaluated from laboratory-model tests on free-free beams for which 
accelerations were measured before and after several damage cases. 

 
 
 
INTRODUCTION 
 

Structural health monitoring (SHM) has become the important research topic for 
securing the safety of infra-structures.  Many researchers have focused on developing 
reliable vibration-based techniques that use vibration characteristics of a structure to 
detect, locate and size the damage in the structure [3-6]. Up-to-date, vibration-based 
damage detection methods are implemented by a series of signal acquisition, data 
analysis in time and frequency domains, pattern recognition and system identification 
process. In order to fulfill the existing damage detection methods which are either 
signal-based or model-based methods, at least three significant amounts of works are 
needed: (1) to obtain acceleration-response signals measured at selected multiple 
locations, (2) to extract modal parameters such as natural frequencies and mode shapes 
from the signals, and (3) to modify the measured modal information suitable for certain 
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damage detection algorithms such as damage index methods, genetic algorithm 
(GA)-based methods, and artificial neural networks (ANN)-based methods.  

Recently, ANN algorithms have been studied for vibration-based damage detection 
due to the advantage in dealing with various types of input and output and the efficient 
pattern-recognition capability with various training patterns. Many researchers have 
made efforts to develop ANN techniques for identifying the location and the extent of 
damage [11-12], to develop a substructural identification method for complex structures 
using multilayer perceptron [13], to implement the ANN techniques using modal data to 
health monitoring of bridges [1, 8-10].  

However, several problems still remain to be resolved before the ANN techniques can 
be successfully implemented for damage detection in large structures.  Most of signal 
process and modal analyses need off-line works that are time-consuming depending on 
the number of sensors involved and the amount of signals recorded. Also, errors in 
baseline FE models cause errors in modal parameters used for the input of neural 
networks and those errors have effects on the accuracy of damage detection. The error in 
the baseline model is critical since modal parameters are to be generated for various 
perturbed cases of the baseline model and used as training patterns for the neural 
networks.  Those problems hinder the implementation of on-line damage monitoring 
into real structures. For the realization of the on-line health monitoring, therefore, it is 
needed to develop a ANN-based damage detection method that uses real-time signals 
measured from a limited number of sensors, without any further frequency-domain 
data-process, to identify the changes in structural conditions.  

In this study, an ANN-based algorithm using acceleration signals is developed for 
locating and estimating severity of damage in beam-type structures. The following 
approaches are used.  Firstly, theoretical backgrounds are described.  The problem 
addressed in this paper is defined as the stochastic process. Also, an ANN-algorithm 
using output-only acceleration responses is newly designed for damage detection in real 
time.  As the feature representing the structural condition, we select the cross-covariance 
of two acceleration-signals measured at two different locations.  By means of the feature, 
neural networks are trained for potential loading patterns and damage scenarios of the 
target structure for which its actual loading histories are not available.  The feasibility 
and practicality of the proposed method are evaluated from laboratory-model tests on 
free-free beams for which a series of accelerations were measured before and after several 
damage cases. 
 
THEORITICAL BACKGROUNDS 
 
Problem Statement 

The problem addressed here may be defined as follows: Given a structural system that 
exhibits the stochasticity in some physical parameters and a set of the dynamic responses 
of that structural system; then estimate the physical parameters by knowing the dynamic 
responses [2].  Here the parameter of interest will be some form of stiffness, e.g., 
bending or axial.  In this paper, the discussion is limited to a wide sense stationary 
discrete process { })(tX k .  Each particular function )(tX k , where t is variable and k is 
fixed, is a sample function.  

For a pair of stationary random processes { })(tX k  and { })(tYk , the mean and 
variance values are defined as 
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[ ])(tXE kX =μ , [ ])(tYE kY =μ         (1) 
[ ])()(2 tXtXE kkX =σ , [ ])()(2 tYtYE kkY =σ         (2) 

where Xμ  and Yμ  are the means; 2
Xσ  and 2

Yσ  are the variances. For arbitrary fixed t 
and τ , the cross-correlation function, )(τXYR , between { })(tX k  and { })(tYk  is given 
by 

[ ])()()( ττ += tYtXER kkXY                       (3) 
Furthermore, the normalized cross-covariance function, )(τρ XY , is estimated by 
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where the function )(τρ XY  measures the linear dependency between { })(tX k  and { })(tYk  
for a displacement of τ  in { })(tYk  relative to { })(tX k . 
 
Acceleration-Based ANN Algorithm 

Suppose that we are given an arbitrary structure with NE elements and N nodes. By 
assuming that the structure behaves linearly, the acceleration response at a certain 
location (e.g., a node) evaluated at time t  for a multi-degree-of-freedom system can be 
given by  

( )][][}{][ 1 KXCXFMX ttt −−= − &&&                    (5) 
where [M], [C] and [K] are, respectively, the mass, damping and stiffness matrices of the 
system; {F} the external force vector; and tX , tX& , and tX&&  the displacement, velocity, 
and acceleration at a certain location.   

As described in Eq. (5), the dynamic responses change due to the perturbation of the 
structural parameters. With the known force vector {F}, the patterns of the dynamic 
responses at a location can be recognized as the consequence of the changes in physical 
parameters at all other locations in the structure. Consequently, the acceleration measured 
before and after damage can be used as the input for the ANN-based damage detection [8].  
However, this approach is limited only when the external forces that are applied for the 
real structure is known and identical to the ones that are used for training the neural 
networks. In order to overcome the above-mentioned limitation for the use of the 
acceleration as the direct input, the cross-covariance function is selected to represent two 
acceleration signals measured at two different locations. 

In this study, the standard back-propagation algorithm is employed. The networks 
consist of an input layer, a hidden layer, and an output layer. The input layer contains the 
cross-covariance function of two acceleration signals at two different locations measured 
before and after damage. The output layer consists of the element-level stiffness indices 
to be identified as [9] 

ujdjj kkS ,,=                            (6) 
where j denotes the element number; d damaged state; and u undamaged state.  The 
severity of the element is defined as  

jj S−= 1α                              (7) 
The acceleration-based neural networks algorithm is schematized as shown in Figure 

1. It consists of two parts: (a) Training neural networks (TNN) and (b) Alarming damage 
location (ADL) using the neural networks.  TNN is performed in the following four steps. 
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Firstly, a baseline finite element (FE) model with NE  elements is selected for the target 
structure. Secondly, N numbers of excitation patterns characterized by the intensity, 
frequency and duration are selected on the basis of potential loading scenarios of the 
structure. Thirdly, M numbers of damage patterns characterized by the loss of 
element-level stiffness are decided on the basis of the potential damaging scenarios of the 
structure. Finally, for each of the N excitation patterns, a set of neural networks are 
trained for the M damaging patterns. The cross-covariance values are computed from two 
acceleration signals measured before and after damage. The ratios of the cross-covariance 
values between before and after damage are the inputs to the neural networks. TNN is 
repeated until the N sets of neural networks are trained for the N excitation patterns, in 
which each set of neural networks is corresponding to a specific excitation pattern. 
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Figure 1: Schematic of Acceleration-Based Neural Networks for Damage Detection 

 
ADL is performed in the following procedures. First, accelerations are measured at 

two different locations before and after damage occurred in the structure. Next, the ratios 
of the cross-covariance values of the two accelerations between before and after damage 
is computed and input into the neural networks trained by TNN. Thirdly, element 
stiffness indices and severity indices are estimated for NE output elements from the soft 
computing process. ADL is repeated for the N sets of neural networks, from which 
stiffness indices and severity indices are estimated, respectively. 

We realize that the values computed for the damage indices will always contain many 
uncertainties. Here, we propose accounting for the impact of these uncertainties by using 
a statistical-based method to assign damage to an element. 

To account for all available N sets of neural networks (i.e., the N sets of excitation 
patterns) we form a single indicator (DI) for the jth element as [7]: 

21
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where ∞≤≤ jDI0  and the damage is located at element j if jDI  approaches the local 
maximum point. Next, the elements are assigned to a damage class via a statistical- 
pattern-recognition technique that utilizes hypothesis testing. The following statistical 
criteria are established for damage localization. For the given set of DI results, the 
locations of damage are selected on the basis of a rejection of hypothesis in the statistical 
sense. First, the collection of values jDI  ( NEj ,...,3,2,1= ) associated with each element 
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and each neural networks set is treated as a random variable. In other words, the 
collection of the damage indices jDI  is treated as a sample population of damage 
indices. We first normalize the damage indices jDI  according to the standard rule 

( ) DIDIjj DIZ σμ−=         (9) 
in which DIμ  and DIσ  represent, respectively, the mean and standard deviation of the 
collection of jDI  values. The null hypothesis (i.e., OH ) is taken to be that the structure 
is undamaged at the jth element and the alternate hypothesis (i.e., 1H ) is taken to be that 
the structure is damaged at the jth element. In assigning damage to a particular location, 
we utilize the following decision rule: (1) choose 1H  if oj zZ ≥ ; and (2) choose OH  if 

oj zZ < , where oz  is number which depends upon the confidence level of the 
localization test. 

 
EXPERIMETAL VERIFICATION 

 
Test Structure and Experimental Setup 

Experiments were performed to evaluate the feasibility and the practicality of the 
present acceleration-based ANN algorithm. As described in Figure 2, a free-free, 
aluminum beam was selected and dynamic responses of the structure were measured 
before and after damaging episodes. The geometrical properties of the test structure are as 
follows: the length 56=L cm and the rectangular cross-section cmcmHt 41 ×=× .  
The material properties of the test structure are as follows: the elastic modulus 

GPaE 70= , Poisson’s ratio 33.0=υ , and mass density 32700 mkg .  
The locations and arrangements of the accelerometers are shown in Figs. 2(a) and 

2(b). 7 accelerometers were selected to measure the motion of the structure in the 
z-direction and equally distanced along the longitudinal direction. Each accelerometer  
was mounted along the center line. Sampling frequency was set to 8.0 kHz and total 8,450 
discrete data were acquired for each measure. 
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(a)Free-Free Beam                 (b) Experimental Setup 

Figure 2: Experimental Setup on Free-Free Beam 
 

Training Neural Networks (TNN) for Damage Detection 
In order to train neural networks and further to utilize those for damage detection, we 

selected a baseline free-free beam model which consists of 12 beam elements with equal 
size ( 6.4=ELL cm) and with uniform bending rigidity ( 2.3.233 mNEI = ). Figure 3 shows 
the lay-out of acceleration-signal acquisition in the free-free beam model. From FE 
analyses, exciting impulses were applied to L1.0  and accelerations were obtained at 

L3214.0  (i.e., node 5) and L5.0  (i.e., node 7). Sampling frequency of accelerations was 
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set to 8 kHz and total 8,450 discrete acceleration data were numerically analyzed for each 
measure. 

Next, several excitation types were selected to simulate unknown impulse-loadings.  
As shown in Figure 4, four excitation types were selected as follows: (1) Excitation 1 is 
triangular pulse with 0~0.01 sec duration, (2) Excitation 2 is right-triangular pulse with 
0~0.01 sec duration, (3) Excitation 3 is rectangular pulse with 0~0.01 sec duration, and 
(4) Excitation 4 is rectangular pulse with 0.005~0.015 sec duration. Pulse intensity was 
set to 5 percent of self-weight of the beam model. Also, damage scenarios were selected 
to train neural networks for damage detection. Total 127 scenarios were selected as 
follows. Single-damage-location cases were selected for each of all 12 elements. For each 
case, the element stiffness loss was simulated between 0.1 and 0.5 with a step size of 0.1. 
Also, two-damage-location cases were selected for all combinations of the 12 elements.  

Neural networks should be trained for the 4 excitation types and the 127 damage 
scenarios that included an undamaged case; therefore, totally 505 training patterns were 
considered for damage detection in the test structure. As shown in Figure 5, the neural 
networks consisted of three layers.  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
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Impulse Acc. 1 Acc. 2
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Figure 3: Baseline Free-Free Beam Model 
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Figure 4: Excitation Patterns to Train for Unknown External Loads 
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Figure 5: Acceleration-Based Neural Networks 

 
Alarming Damage Location (ADL) using Neural Networks 

As shown in Figure 6, damage was inflicted by sawing two levels of cuts at two 
different locations of the beam.  Four different scenarios of damage were introduced as 
follows: (1) Case 1 is a single damage at 464.0/ =Lx  with severity 25.0/ =ta ; (2) 
Case 2 is a single damage at 464.0/ =Lx  with 5.0/ =ta ; (3) Case 3 is two damages at 

464.0/ =Lx  and 939.0/ =Lx  (3.4cm distance from the right edge) with 5.0/ =ta  
and 25.0/ =ta , respectively, and (4) Case 4 is two damages at 464.0/ =Lx  and 

939.0/ =Lx  with 5.0/ =ta  and 5.0/ =ta , respectively.  
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As described previously, accelerations were measured at the 7 locations before and 
after each damage scenarios.  The impulse was applied to a location 6cm distanced from 
the left edge by hand-hammering but not controlled or recorded. For each damage case, 
50 cross-covariance ratios of accelerations measured between before and after damage 
were input into the neural networks and stiffness indices of the 12 elements of the test 
structure were estimated as the output. 
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               (a) Damage Locations                     (b) Saw Cut 

          Figure 6: Damage Inflicted in Test Structure 
 
The elements 7 and 12 are the parallel identical elements in the free-free beam 

corresponding to the real cut locations 464.0/ =Lx  and 939.0/ =Lx , respectively.  
In each damage case, stiffness indices of 12 elements were estimated by the four different 
excitation patterns, respectively. Finally, damage indices were computed according to Eq. 
(8). On assuming the damage indices distributed normally, normalized damage indices 
were generated in accordance with Eq. (9) (note that the analysis indicates that the 
damage indices approximately fit into normal distribution by excluding the damaged 
elements which are the special causes). The confidence level for the localization 
corresponded to 5.10 =z . This criterion corresponds to a one-tailed test at a confidence 
level of 93.3%. The damage localization results for the four damage cases are shown in 
Figures. 7(a)-(d). In damage cases 1 and 2, element 7 was predicted, which is identical to 
the damaged element.  In damage case 3, elements 1 and 7 were predicted, in which the 
first one is false-alarm and the second one is correct.  Also, by setting the confidence 
level 3.10 =z  which gives 90.3% confidence level, element 11 could be also predicted, 
which shows about 8% localization error. In damage case 4, element 10 was predicted, 
which shows about 16% localization error. Damage localization was not successful in this 
case. 
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(a) Damage Case 1      (b) Damage Case 2     (c) Damage Case 3    (d) Damage Case 4 

Figure 7: Damage Localization Results for Test Structure 
 

CONCLUSIONS 
 

In this study, an ANN-based algorithm using acceleration-related features was 
developed for locating and estimating severity of damage in beam-type structures. Firstly, 
theoretical backgrounds were described.  The problem addressed in this paper was 
defined as the stochastic process. Also, an ANN-algorithm using output-only acceleration 
responses was newly designed for damage detection in real time.  As the feature 
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representing the structural condition, we selected the cross-covariance of two 
acceleration-signals measured at two different locations.  

The feasibility and practicality of the proposed method were evaluated from 
laboratory-model tests on a free-free, aluminum beam for which its actual loading 
histories were unknown.  Four (4) excitation types and 127 damage scenarios were 
selected to train neural networks of a baseline free-free beam model with 12 beam 
elements.  Initial 50 signal data measured from two accelerometers were input into the 
neural networks and stiffness indices of the 12 elements of the test structure were 
estimated as the output.  From the damage localization process, single-damage cases 
were predicted correctly but dual-damage cases resulted in relatively high localization 
errors.  
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