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ABSTRACT

Structural assessment is becoming increasingly important in civil engineering. We
present a decentralized method for local damage identification using a dense array of
wireless sensors. The method is based on second-order ARX models as an approximation
of a local model of the structure.

The method is applied to numerical data from a building finite element model similar
to that of the ASCE Benchmark. It is shown that damage on individual structural elements
can be identified and located.

INTRODUCTION

Recent developments in the wireless sensing area have opened many possibilities for
local damage detection in civil structures: when they become low-cost, it will be possible
to put numerous sensors on a structure, and identify local damage. In this regard, it is
important to embed algorithms on sensors to ensure network scalability: transmitting
only the results of local computations reduces data exchange, so that communications are
not a limiting factor.

In 2001, Sohn and Farrar [1] presented a novel procedure to identify damage from
the acceleration time histories of one sensor, using a two-stage AR-ARX model and a
damage-sensitive feature linked to the prediction error of that model. Lei et al. [2] pro-
posed a modification to this method, and Lynch et al. [3] embedded the method on their
wireless platform, thereby showing its energy efficiency.

In a previous paper [4], we presented two methods using multivariate models and
based on the method developed by Sohn and Farrar [1], and examined their effectiveness
using the ASCE Phase I Analytical Benchmark [5]. In this paper, we further investigate
the second damage identification method.

It requires using data from a few closely-spaced sensors. It is believed that more accu-
rate information about the structural dynamics can be obtained by using several channels
in the analysis, rather than only one. This method is based on the local physical model of
one structural node: using finite differences, the second-order dynamics of that node are
rewritten as a multivariate ARX(2,2) model involving the accelerations of all neighboring
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Figure 1: Lumped-mass unidimensional shear model

nodes.
The parameters of this ARX model are identified for a pool of reference acceleration

time histories when the structure is healthy. When a new time history is recorded, it is
compared to the reference model that was built under closest environmental conditions to
the current ones. If the residual error of the predicted output is greater than that of the
reference time history, then structural members to which the node belong are identified as
damaged. This analysis may be performed at various locations of the structure, providing
evaluation of existence and location of damage.

Numerical verification of this approach is performed using data from a finite element
model of a 4-story building. The model has the same structural properties as that of the
ASCE Benchmark [5].

BACKGROUND

Local Physical Model
Since details of the model have already been discussed in Monroig and Fujino [4],

only a brief presentation follows.
Consider a simple lumped mass unidimensional shear model as presented in Figure 1.

The equation of dynamics for the node i is

miẍi + ci (ẋi − ẋi−1)+ ci+1 (ẋi − ẋi+1)+ ki (xi − xi−1)+ ki+1 (xi − xi+1) = fi (1)

After differentiating twice and approximating the first and second derivatives of the ac-
celerations by finite differences

dai

dt
(t) =

ai(t)−ai(t −T )
T

,
d2ai

dt2 (t) =
ai(t +T )−2ai(t)+ai(t −T )

T 2 (2)

where T is the sampling interval, Eq (1) is reduced to an ARX(2,2) model

y(t)+A1y(t −1)+A2y(t −2) = B1u(t −1)+B2u(t −2)+ e(t) (3)
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where y(t) = ai(t) is the system output, u(t) =
[

ai−1(t)
ai+1(t)

]
is the system input and e(t)

incorporates both the second derivative of the external force at node i, and the model
and measurement errors. Here, the notation T has been replaced by 1 for convenience of
notations.

Damage Identification
Using the model, a damage identification procedure was developed similar to the one

presented by Sohn and Farrar [1]. The procedure is divided into two steps: normalization
and feature extraction.

NORMALIZATION PROCEDURE
It is assumed that for each cluster, we have collected acceleration response time his-

tories of the structure in its healthy state, into a reference database. In the cluster, the
channels are separated into input and output channels as described previously, and the
time histories as a whole is written as x(t) = (xinput(t),xout put(t)) = (xI(t),xO(t)).

For each of these signals, the mean is removed1, and then the coefficients of an
ARX(2,2) model are identified and stored in the database.

Having measured a new signal y(t) = (yI(t),yO(t)), it is also processed in the same
way, and its ARX(2,2) model also identified. The coefficients are then compared to the
database coefficients in order to select a reference signal x0(t) that is closest to y(t). Al-
though we tried to use the Euclidian distance between the coefficients, some of the time
histories could not be properly matched to the correct input category. Therefore, in this
paper, we temporarily assigned to each time history a reference time history with the same
input case (I, II or III).

FEATURE EXTRACTION
Having selected the closest reference signal x0(t), the prediction error of the associ-

ated reference model is computed for the new signal y(t):

ey(t) = yO(t)+Ax0
1 yO(t −1)+Ax0

2 yO(t −2)−Bx0
1 yI(t −1)−Bx0

2 yI(t −2) , (4)

The prediction error ey(t), as well as the output time history yO(t), are multi-channel
signals. Since we did not normalize the measured accelerations, we cannot directly com-
pare this prediction error ey(t) to the reference one, ex0(t), since the excitation level might
be different. Therefore, for each output channel we first normalize the prediction error
with respect to the measured acceleration:

êy,i(t) = ey,i(t)/σ(yO,i(t)) for all channels i (5)

If the structure is damaged, the standard deviation of the now normalized prediction
error êy,i(t) should increase compared to that of êx0,i(t). The ratio of the standard devi-
ations is thus selected as damage sensitive features, and damage detection is be reduced
to a statistical test. The null hypothesis is H0 : σ2(êy,i(t)) = σ2(êx0,i(t)), the alternative
being H1 : σ2(êy,i(t)) > σ2(êx0,i(t)). The generalized F-test for the ratio of variances de-
scribed by Sohn and Farrar [1] was used, that doesn’t assume normality of the prediction
errors.

1But unlike in Monroig and Fujino [4], the signals are not normalized to have a unit variance in each
channel.
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NUMERICAL SIMULATION

Model
A finite element model of a steel frame building was developed using the general

purpose finite element software Abaqus. It is similar to the model that appears in the
ASCE Phase I Analytical Benchmark [5], in the sense that it models the same structure,
but has approximately 12600 degrees-of-freedom.

The model is a 4-story 2-bay by 2-bay steel frame structure, with four concrete slabs
on each floor. The geometrical properties of the models, as well as the mechanical prop-
erties of the beams, columns and braces were kept identical to those of the ASCE Bench-
mark model [5].

The first difference with the ASCE Benchmark model is that the concrete slabs are
modeled as linear elastic shell elements, with properties shown in Table 1. The thickness
was estimated from the mass of each slab.

The second difference is that the model has been refined, with 10 beam elements for
each beam, but only one for the cross-bracings, which are modeled as truss elements.
The objective is to be able to observe the vibrations of each element, and hence to detect
damage of individual elements.

Finally, damping was modeled as modal damping, increasing linearly with respect to
frequency from 0.02% of critical damping at 10 Hz to 0.1% at 200 Hz, and constant after
200 Hz.

In order to take into account vibrations of individual elements, the data was generated
with a sampling rate of 5000 Hz, and modes up to 5000 Hz were taken into account.

Input Excitations
Three different input cases were defined, all involving excitations modeled as inde-

pendent unfiltered Gaussian white noise, generated at a sampling rate of 5000 Hz. The
locations and amplitudes of the excitations are represented in Figure 2.

Input case (I) has one random excitation at the middle node of the fourth floor on
the North side, directed along the y axis, and modeled as Gaussian white noise with zero
mean and 106 N standard deviation.2

Input case (II) has one random excitation at the middle node of the second, third and
fourth floors on the North side, all directed along the y axis. The random excitations are
modeled as Gaussian white noise with mean 106 N and standard deviation 105 N for the

2It should be noted that the simulated model is linear, so that only the relative values of the excitation
levels are important.

Table 1: Properties of the four slabs of each floor of the FEM model
Property 1st floor 2nd ,3rd floors 4th floor

Young’s modulus E (Pa) 3.0×1010 3.0×1010 3.0×1010

Poisson ratio ν 0.15 0.15 0.15
Mass per unit volume ρ (kg/m3) 2,450 2,450 2,450

weight (kg) 800 600 400
thickness (m) 0.209 0.157 0.104
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Figure 3: Local Clusters

second and third floors, and with mean 107 N and standard deviation 106 N for the fourth
floor.

Input case (III) is the same as (II) but without the mean component, and with an
additional random excitation oriented diagonally at the center node of the fourth floor,
modeling a shaker (Figure 2 shows the components of the load). The random excitations
are modeled as Gaussian white noise with standard deviation 105 N for the second and
third floors, 106 N for the fourth floor, and 4×106 N for the shaker.

Damage Cases
We defined six damage cases similar but different to the ones in the ASCE Benchmark.

In all cases, damage is simulated by reducing the stiffness and mass of the elements.3

Damage cases 3 to 6 are subdivided into several subcases where the damage locations are
the same, but the reduction coefficients vary.

Damage cases are presented in Figure 4, and are as follows:
(1) 90 % reduction in all braces of the first floor;
(2) 90 % reduction in all braces of the third floor;
(3) 90 %, 75 %, 50 % and 25 % reduction in one brace of the third floor (west brace

on north face);
(4) 90 %, 75 %, 50 % and 25 % reduction in one column of the third floor (middle

column on north face);
(5) 90 %, 75 %, 50 % and 25 % reduction in one column of the third floor (middle

column on north face) and in one column of the fourth floor (middle column on east face);
(6) 75 %, 50 % and 25 % reduction in one brace of the second floor (south brace on

east face); 75 %, 50 % and 25 % reduction in one column of the fourth floor (middle
column on east face); 50 %, 75 % and 50 % reduction in one brace of the third floor (west
brace on north face);

Sensors
Acceleration time histories were produced for all excitation cases, for the healthy

structure and for each damage case. Accelerometers were grouped into clusters of three
sensors each, as shown in Figure 3. Only y-axis accelerations have been analyzed in this
paper.

3For braces, the cross-sectional area is reduced. For beams, the cross-sectional area, the moments of
inertia and the torsion constant are all reduced.
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Figure 4: Damage cases 1 to 6

The local clusters in Figure 3 are groups of sensors belonging to the same structural
element, defined to detect damage in individual elements. The acceleration time histories
for the local clusters are not downsampled.

20 time histories are generated for the healthy structure for each input case to build
the database, and 10 time histories are generated for each input case for each damage
pattern. In other words, there are 60 “healthy” time histories, and 30 time histories for
each damage pattern. The time histories are five seconds long, and therefore have 25000
data points each.

For all time histories, Gaussian white noise is added to all acceleration channels. The
noise level is set to be the same for all channels of one cluster, with a standard deviation
of 1 % of the highest channel standard deviation.

RESULTS

The damage identification results for both local clusters are presented in Table 2. For
each damage case from 1 to 6, the stiffness and mass reduction percentage is written
on the left side for reference. On the right side, are shown the number of times the
null hypothesis was rejected (the structure was identified as damaged) out of the 30 time
histories for each damage case. The test was conducted with a confidence interval of
97.5%.
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Table 2: Damage identification results. For each damage case from 1 to 6, the
stiffness and mass reduction percentage is written on the left side for reference.
On the right side, are shown the number of times the null hypothesis was rejected
(the structure was identified as damaged) out of the 30 time histories for each
damage case. The test was conducted with a confidence interval of 97.5%.

damage case
stiffness & mass

damage identification
reduction (%)

L1 L2 L1 L2
1 0 0 3/30 0/30
2 0 0 8/30 0/30
3a 0 0 2/30 0/30
3b 0 0 1/30 0/30
3c 0 0 2/30 0/30
3d 0 0 0/30 0/30
4a 90 0 30/30 0/30
4b 75 0 30/30 1/30
4c 50 0 18/30 0/30
4d 25 0 12/30 0/30
5a 90 90 30/30 30/30
5b 75 75 30/30 30/30
5c 50 50 20/30 30/30
5d 25 25 12/30 29/30
6a 0 75 3/30 30/30
6b 0 50 3/30 30/30
6c 0 25 1/30 29/30

For the cluster L2, all or almost all time histories were identified as damaged for
damage cases 5a, 5b, 5c, 5d, 6a, 6b and 6c. Also, there were none or very few false
positive damage identification for the other damage cases, even for damage cases 1 and 2
which are globally damaging the structure.

For the cluster L1, all time histories were identified as damaged for damage cases 4a,
4b, 5a and 5b. However, not all time histories were identified as damaged for cases 4c,
4d, 5c and 5d, which are less severe stiffness and mass reduction. False-positive damage
identification results are observed for almost all other damage patterns.

It is concluded that all damage patterns were properly identified for cluster L2. Also,
for cluster L1, damage patterns where the stiffness and mass reduction in the correspond-
ing column is 75% or greater were properly identified, but there remains some false-
positive and false-negative identification results for the other damage patterns.

SUMMARY

In this paper, a decentralized method for local damage identification was presented
and verified on numerical data. The method is based on second-order ARX models as an
approximation of a local model of the structure.
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The method was applied to numerical data from a building finite element model sim-
ilar to that of the ASCE Benchmark. It is shown that damage on individual structural
elements can be identified and localized.

Although there are false-positive and false-negative results, the method shows promise
as a simple local damage identification algorithm. Further research is underway to im-
prove it.
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