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ABSTRACT 

Structural health monitoring offers the opportunity to revolutionize the maintenance and 
management of civil infrastructure.  To achieve the full potential of this technology, dense 
arrays of multi-scale sensors are expected to be required.  However, a densely distributed 
sensor network deployed on a large-scale civil engineering structure will produce excessive 
amounts of data that need to be processed.  Using a hierarchical computing framework that 
organizes the sensors into groups and processes the data locally, will greatly reduce the data 
that needs to be broadcast, as well as the associated power consumed, and the time it takes to 
get results.  This paper proposes damage detection algorithms based on changes in the 
structure’s Power Spectral Density (PSD) using a hierarchical, distributed computing 
approach.  The proposed algorithms are model-independent and require only output 
measurement, making them appropriate for use in full-scale applications employing 
ambient vibration.  Numerical studies are presented for several cases for multiple damage 
sites with varying hierarchical organization.  The results show that the proposed 
hierarchical computing algorithm is effective for detecting damage. 

INTRODUCTION 

Structural Health Monitoring (SHM) allows for continuous monitoring of the condition 
and performance of civil infrastructure.  This ability is increasingly important as natural 
and engineering elements continue to adversely affect the performance and capacity of 
ageing civil infrastructure.  The continual ageing and decay processes of the 
infrastructure requires heavy investments in inspections and repairs to ensure the public’s 
safety in using the infrastructure.  An installed SHM system offers the possibility for 
increased confidence in the safety of the structure, as well as reduced inspection and 
repair costs [1, 2].  Of course, the effectiveness of a SHM system will depend on the type 
of sensor network installed and the damage detection algorithm employed. 

Two types of sensor networks are available or are being developed: wired and wireless 
networks.  With a traditional wired sensor network, a given bridge would typically 
require wire many times its length to densely instrument it for SHM.  These wires would 
all lead to a base station where the system is controlled, the damage detection algorithm is 
implemented, and the data is stored.  Such a centralized approach has little redundancy; 
damage to the central computing base station or the wires from the sensors could easily 
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render the system ineffective.  Simple wireless sensor networks have similar problems.  
Alternatively, a smart sensor network where each sensor node has an on-board 
microprocessor in addition to being wireless can provide a more fault-tolerant approach 
to SHM, among other advantages.  However, such a network also presents its own 
unique challenges.  A principal task is to develop effective algorithms that can be 
deployed in the distributed computing environment intrinsic to smart sensor networks.  
Such algorithms require that damage detection be implemented in a hierarchical manner 
where information is only shared locally, and computation occurs on the sensors 
themselves [3, 4]. 

This paper proposes a model-independent, hierarchical, damage detection algorithm that 
can be implemented in a distributed computing environment.  Several numerical 
examples are presented to explore the effects of group size, multiple damage locations, 
and group overlap on the algorithm. 

POWER SPECTRAL DENSITY METHODS 

The proposed approach is an extension of the work of Beskhyroun et al. (2004, 2005) 
which examined the changes in the Power Spectral Density (PSD) of the structure 
induced by damage [5, 6, 7].  For completeness, this work is summarized in this section. 

The theory behind the PSD damage detection algorithms holds that changes in the 
operational mode shapes, or changes in their curvatures, can be attributed to changes in 
the structure due to damage.  Beskhyroun et al. (2005, 2006) presented two variations on 
the PSD methods.  Both the Absolute Difference PSD (ADPSD) Method and the 
Curvature Difference PSD (CDPSD) Method have the same initial calculations.  The 
first step is to calculate the PSD, ( )iG f , via 

 22( ) ( )iG f E X f
T

⎡ ⎤= ⎣ ⎦  (1) 

where ( )X f  is the Fourier transform of the measured acceleration, f is frequency in 
Hertz, [ ]E ⋅  is the expected value operator, T is the measured record length, and i is the 
sensor node number.  Subsequently, the two algorithms normalize the PSD using the 
sum of the squares of the PSD values evaluated at each frequency  
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where ( )P f is the normalized PSD and n is the number of nodes.  Normalizing the PSD 
serves a dual purpose.  First, it allows for the use of different excitation events in the 
analysis.  Second, it equalizes the importance of each mode shape by effectively 
eliminating the modal contribution factors.  Thus, a change in the first and subsequent 
mode shapes has an equal influence in determining where damage has occurred.  This 
normalization of the modal contributions suggests that the more modes shapes included 
in the analysis, the more accurate the algorithm will become. 

Absolute Difference PSD Method 

After normalization, the ADPSD and the CDPSD have divergent calculation paths.  The 
ADPSD immediately determines the change in the normalized PSD, ( )iP fΔ , using the 
undamaged normalized PSD, ( )u

iP f , and the damaged normalized PSD, ( )d
iP f  via 

 ( ) ( ) ( )u d
i i iP f P f P fΔ = −  (3) 
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Thresholding then eliminates all but the maximum change in the normalized PSD value 
for each frequency.  Thus, the matrix MAXPΔ , representing the maximum change in the 
normalized PSDs, has a single non-zero value for each frequency but may have many 
non-zero values for each node, to wit 
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where m is the frequency index. At the same time as the thresholding, a counting matrix, 
PCΔ , is established by replacing each non-zero value in MAXPΔ  with a 1.  These matrices 

are then summed for each node to create a vector with length equal to the group size.  
After computing the standard deviation for each vector, twice the respective standard 
deviation is subtracted from each value to form a normalized nodal damage quality vector, 
P̂ , and a normalized nodal damage quantity vector, Ĉ , where all negative values are 
eliminated via 

(5) 

where mf  is the last frequency in the PSD, Pσ  is the standard deviation of MAXPΔ , and 
Cσ  is the standard deviation of PCΔ .  The Accumulated Damage Index (ADI), D , is 

then computed by multiplying the nodal values of the P̂  and Ĉ  values together. 
 ˆˆ

i i iD PC=  (6) 

Curvature Difference Method 

After the normalization in (2), the CDPSD fits the normalized PSD, ( )P f , to a series of 
cubic splines with periodic end conditions for each frequency.  This step allows the 
second derivative of the PSD – the curvature of the operational mode shapes – to be 
determined.  After computing the undamaged and damaged curvatures, they are used to 
compute ( )P f′′Δ , the change in the curvature of the normalized PSD via 
 ( ) ( ) ( )u d

i i iP f P f P f′′ ′′ ′′Δ = −   (7) 
where uP ′′  is the undamaged normalized PSD curvature and dP ′′  is the damaged 
normalized PSD curvature. Before thresholding, ( )P f′′Δ  is normalized as a sample 
population using the mean and standard deviation of the sample, to wit 

 ( ) ( )( )
( )

i
i

P
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where ( )P f%  is the renormalized PSD curvature difference matrix, ( )P fΔ is the mean of 
nodal values for each frequency, and ( )P fσ  is the standard deviation for each frequency.  

( )iP f%  is then thresholded and counted by eliminating all values that are less than a 
percentage, α , of the maximum ( )iP f%  value, max ( )P f% .  A counting matrix, ( )C f , is 
also formed at this point as in (4). 
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In this paper, α was set to 57.5% to achieve suitable results.  The ( )P f%  and ( )C f  
matrices are then summed for each nodal value to create vectors with length equal to the 
group size. 
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(10) 

Finally, these values are multiplied together at each node to produce the ADI, D ,. 
 i i iD AO=  (11) 

Proposed Algorithm 

The proposed algorithm is an extension of the ADPSD and CDPSD to accommodate 
implementation on a network of smart sensors.  When the unaltered methods are applied 
to the structure in the clusters that are the basis of hierarchical computing, the magnitudes 
of the ADI vary significantly making it difficult to determine whether damage or noise is 
responsible for the given results.  To rectify this difficulty, the ADIs for both the ADPSD 
and CDPSD are normalized by dividing each iD  from (6) and (11) by the respective sum 
of iD  for the group.  This normalization eliminates the variation in magnitude and 
allows a single set of criteria to be programmed into each cluster head to detect damage 
regardless of group size.  A single set of damage criteria allows the clusters in the 
network to be assigned dynamically which increases the robustness and improves the 
fault tolerance of the smart sensor network.  For damage to be indicated in the ADPSD, 
one condition must be met: 

1. max 0.02D >  where maxD  is the maximum value excluding the iD  at the end 
nodes 

For the CDPSD, damage is indicated when the following two conditions are satisfied: 
1. max 1.5/D n>  where n is the length of the group 
2. 1.5 /endD n<  where n is the length of the group and endD  is either end node. 

Note that the end nodes in the cluster are necessarily excluded from the calculations 
because the end nodes return false positives for damage.  The false positives on the end 
nodes are remnants of the clustering process and its affect on the normalization constants 
and different virtual boundary conditions for the group. 

Furthermore, the proposed algorithm uses the ADPSD and CDPSD in sequence to locate 
damage in the structure.  For the algorithm to give a positive damaged result, both the 
APSD and CPSD must indicate damage in turn.  Doing so takes advantage of their 
unique characteristics and abilities. The ADPSD requires less calculation as it does not 
require spline fitting and differentiation.  The less intensive damage detection 
calculations allow the node to return to a less power intensive state.  However, the 
ADPSD often gives a singular strong damage indication on one sensor even when 
damage is located between two sensors.  Therefore, once damage is indicated using the 
ADPSD, the more calculation intensive CDPSD is used to both confirm the damage and 
better locate it between two sensors.  As a final step, the two normalized ADIs from both 
algorithms are incorporated into a Combined ADI by averaging the values to give the 
final indication of damage location.  All the calculations are performed locally on the 
cluster head without need for communication with nodes outside the cluster.  However, 
once damage is detected, confirmed, and located, the message broadcast could consist 
only of a bit indicating damage and the sensor numbers of the affected nodes.  By 
transmitting information only when damage has been confirmed by both sensors 
improves the power efficiency of the network and the confidence in the reported results. 
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NUMERICAL EXAMPLES 

To investigate the proposed method, a MATLAB finite element model of a planar truss 
was used.  The truss, illustrated in Figure 1, consists of 53 frame elements arranged in 
fourteen bays with simple supports.  The structure was excited using a band-limited 
white noise applied in the vertical direction at node 7, and the vertical acceleration at the 
13 numbered sensor locations given in Figure 3 was recorded.  Different seeds in the 
random number generator were used in the undamaged and damaged cases to simulate 
different ambient vibrations.  Analysis led to the selection of a cutoff frequency of 190 
Hz and 1024 FFT points were used in the calculations. 

Damage Cases 

Several damage cases were analyzed to test the ability of the method. Damage was 
simulated by altering the cross-sectional area of the selected member in the MATLAB 
model.  A 5% reduction in cross-sectional area was chosen for the analysis.  For each 

damage case, the size and overlap of 
the groupings were varied to determine 
how each affected the performance of 
the proposed method.  In the damage 
cases, groups are numbered from left to 
right and include the indicated number 
of sensors and the overlap indicates 
how many of the sequential sensors are 

shared with the previous group.  For example, in Case III in Table 1, the first group 
contains sensors {1 2 3 4} and the second group contains sensors {2 3 4 5}.  Table 1 lists 
all damage cases presented in this paper. 

ANALYSIS AND RESULTS 

Case I 

Case I tested the ability of the method to detect multiple 
damage sites in a given group.  There is only a 5% 
reduction in the cross-sectional area, and yet both damage 
sites are detected with only minor false positives as 
shown in Figure 2.  Because these false positives are 
grouped around the actual damage sites, they are of little 
consequence and the averaging that leads to the proposed 
approach eliminates them further.  This case also 
illustrates the differences in the abilities of the ADPSD 
and the CDPSD.  The small amount of damage caused 

Table 1: Selected Damage Cases 
Damage Grouping Case 

Mbr # % Red Qty Size Overlap
I 9, 33 5% 1 15 0 
II 9, 33 5% 3 7 3 
III 9, 33 5% 12 4 3 

Figure 1: 14-Bay Planar Truss 

Figure 2: Case I - Group 1 
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the ADPSD to indicate the presence of damage but not clearly indicate the proper bay that 
is affected.  The CDPSD still is able to indicate the damaged bay.  It should also be 
noted that the normalization that allows for damage pattern recognition in the groups 
eliminates the potential of the PSD methods to indicate the severity of damage that has 
occurred.  Even though all sensors were used in this case, the results indicate that that the 
methods would detect multiple damage sites if they all appeared in a group of any size in 
a distributed computing sensor network. 

Case II 

In this case, the sensors have been divided into three groups with seven sensors and three 
overlapping sensors in the group.  Effectively this separates the two damage locations 
into two different groups.   As seen in Figure 3, damage is successfully located at the 
first damage location, element 9, with a 5% cross-sectional area reduction.  The damage 
location appears in the middle of this group and can be thought of as an independent truss 
with damage near its center. The sensors near the second damage location, element 33, 
are not included in the group so no information about the second damage location is 
returned as expected due to the local nature of damage. 

Figure 4 shows that in Group 2, the method detected the damage of element 33 with a 5% 
cross-sectional area reduction.  Again, this group does not include the first damage 
location, and so no information about damage at that site is included in the figure.  The 
usefulness of the CDPSD as a check to the damage state is illustrated here because the 
ADPSD indicates damage only at sensor 9.  This result could indicate that there is 
damage only on the vertical member attached to sensor 9 or equal damage on either side.  
Either case should still have an effect on the neighboring sensors due to the asymmetric 
nature of the bays next to them. 

However, Figure 5 shows the problem of using the CPDSD on its own.  When the 
damage locations are near the ends of the group, the methods have a difficult time 
detecting it.  In this case, the ADPSD does not detect damage because the ends are 
eliminated from the analysis.  Eliminating the end values from the analysis is done 
because the ends always include a large amount of indicated damage as a result of the 
virtual cut in the truss and the change in end condition assumptions for each group’s 
operational mode shapes.  As such, these values are set to zero in the graphs for easier 
readability of the ADIs.  The CDPSD still detects damage between sensors 9 and 10 but 
the false positives have increased to a significant level.  Based on the algorithm’s 
methodology, no damage would be reported in this last group.  This result indicates that 
at least three nodes should overlap in each group so that a damage case in never between 
the two sensors on the ends of both overlapping groups. 

Figure 3: Case II - Group 1 
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Figure 4: Case II - Group 2
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Figure 5: Case II - Group 3
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Case III 

Case III illustrates what happens when the group sizes are 
too small for proper normalization of the PSD and 
subsequent spline fitting to determine the derivatives.  
The method properly indicates damage when the two 
damage cases are the center two nodes in the group as 
shown in Figure 7 for damage in element 9 and Figure 10 
for damage in element 33.  Damage is also indicated in 
three of four groups (Figures 6, 8, 9) where the nodes around the damaged member are the 
end nodes of the group.  Figure 11 shows group 9 where the nodes around damaged 
element 33 are on the end of the group but no damage was indicated.  When compared 
with Figures 9 and 10, the strong indication of damage at node 9 is missing because the 
damage criterion does not allow the maximum to be on the end of the group.  Arranging 
a group where the nodes nearest the damage location are one of the end nodes of the 
group should be avoided.  Preventing this situation is accomplished by properly 
choosing the group overlap to be at least three nodes, meaning that each pair of sensors 
will not be an end pair in both overlapping groups.  In addition, for Case III note the false 
positive indicated by both methods in the group 12 as shown in Figure 12.  This group is 
far from either damage location, yet it falsely indicates damage between sensors 13 and 
14.  The false positive is a result of minimal differences in the small group being 
amplified through the normalization processes.  Increasing the group size ensures that 
the normalization does not amplify the small changes due to different excitation records 
when damage is not included in the group.  Having a minimum group size of five 
eliminates the presence of false positives as shown in this case.  The proposed algorithm 
does not report any false positives, even when no damage is present anywhere in the 
structure, as long as the group size is above the minimum of five. 

Figure 6: Case III - Group 1 
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Figure 7: Case III - Group 2
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Figure 8: Case III - Group 3
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Figure 9: Case III - Group 7 
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Figure 10: Case III - Group 8
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Figure 11: Case III - Group 9
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Figure 12: Case III - Group 12

12 13 14 15
0

0.25
0.5

0.75
1

N
O

R
M

AL
IZ

ED
 D

AM
AG

E 
IN

D
EX

C
D

PS
D **DAMAGED**

12 13 14 15
0

0.25
0.5

0.75
1

Case III - Group Twelve

 
AD

PS
D **DAMAGED**

12 13 14 15
0

0.25
0.5

0.75
1

SENSOR

 
C

O
M

BI
N

ED **DAMAGED**

460



 

 

CONCLUSIONS 

The methods introduced by Beskhyroun et al. (2004, 2005) have been ext ended to 
improve their performance and to facilitate implementation in the distributed computing 
environment intrinsic to a network of smart sensors. The proposed approach has been 
shown through numerical examples to be effective in damage detection and localization.  
Damage at multiple sites with a small damage severity is successfully detected in an 
arbitrary location.  Care has to be taken when establishing the sensing clusters to ensure 
that there are adequate numbers of sensors and proper overlap to increase the likelihood 
that damage can be detected properly in all members.  Overlap should be a minimum of 
three sensors and group size should be no smaller than five.  Through the normalization 
of the ADI and the use of a universal damage criterion, programs to determine clusters 
dynamically can be included to maintain the appropriate size and overlap should a sensor 
malfunction without the need to alter the damage detection algorithm.  Thus the fault 
tolerance of the smart sensor network is improved by using the proposed algorithm by 
allowing for the dynamic cluster assignments.  Another advantage to the proposed 
method is that large acceleration records do not have to be transmitted within the network.  
By computing the PSD on the local sensor, only it needs to be transmitted to the cluster 
head for additional calculation.  The PSD represents an aggregated and compressed form 
of the structural information derived from the acceleration record.  This affects not only 
the transmission speed and therefore power consumption, but it also reduces the data that 
needs to be stored on the sensor node.  By reducing power consumption and operating 
effectively in a distributed computing environment, the proposed combined PSD method 
will be useful in SHM applications.  Further analytical and physical experiments are 
underway to prove confirm the results presented heretofore. 
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