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ABSTRACT: 
 

This paper presents a model updating strategy for uncertain structures and its associated 
uncertainties by utilizing interval experimental modal data (e.g., natural frequencies and 
mode shapes). According to the eigenequation with respect to the interval parameters, the 
proposed methodology transforms model updating problem into two equivalent 
deterministic constrained optimization problems regarding the midpoint and uncertainties of 
interval parameters. Both the midpoint and associated uncertainties of the interval structural 
parameters could be obtained in iterative processes. The numerical results show the 
effectiveness of the proposed method. And the updated finite element model can generate 
reasonable interval modal data even when the experimental modal data are incomplete. 
 
 
INTRODUCTION 
 
Worldwide authorities have recognized the importance of structural management, 
damage identification, and structural health monitoring (SHM) in securing proper 
operation during the structure’s lifetime.  But even with the great advances in the field of 
structural modeling, an initial finite element model is often a poor reflection of actual 
structure. A significant discrepancy can be found when predicted dynamic properties 
from the FE model analysis are compared with the experimental results. The discrepancy 
could be attributed to several reasons[1]: (1) inaccuracy in the FE model discretization; 
(2) uncertainties in geometry and boundary conditions; (3) variations in the material 
properties; (4) environmental variability (such as temperature and wind) and (5) errors 
associated with measured signals and post processing techniques. During traditional 
model updating process, the experimental modal data is usually chosen as reference value 
which means that the experimental modal data is considered to be accurate. However, in 
most practical situation, the modal properties and mechanical properties are uncertain due 
to manufacturing errors, measurement errors and other factors. Therefore, the concept of 
uncertainty plays an important role in the investigation of various engineering problems. 
The most common approach to problems of uncertainty is to model the structural 
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parameters as random variables. Under the circumstance, all information of the structural 
parameters is provided by joint probability density function (or distribution function) of 
structural parameters. But the probabilistic modeling is not the only way to describe the 
uncertainty, and also uncertainty is not equal to randomness. Moreover, the probabilistic 
approaches are not able to deliver the reliable results at the required precision without 
sufficient experimental data regarding the joint probability densities of the random 
variables or functions involved.  

Since Moor in his monograph [2] established the basic theory for the interval analysis in 
1966, the interval analysis has become a tool in many fields in recent years [3-5]. This paper 
assumes that the experimental modal data, the structural parameters are uncertain and 
treated as interval parameters. Based on the assumption, this paper presents a model 
updating strategy for uncertain structures by using experimental interval modal data. The 
proposed methodology transforms model updating problem into two deterministic 
constrained optimization problems regarding the midpoint and radius of interval parameters. 
The numerical results show the effectiveness of the method. 
 
MATHEMATICAL FORMULATION 
 
Interval characteristic matrices for structures with interval parameters 
 

Assume that the interval parameters of structures are denoted by  
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Generally speaking, it is difficult to express the stiffness and mass matrices 
coefficients as explicit functions of design variables. The calculations 
of cjp
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Method of FE model updating for uncertain structures based on interval eigenvalue 
analysis 
 
For a discretized continuous uncertain structure, the ith eigenvalue )(piλ and the 
corresponding eigenvector (mode shape) )(pφi can be obtained from the n degrees of 
freedom finite element model by solving the eigenvalue equation 

0)()]()()([ =− pφpMppK iiλ                               (7) 

where K(p)and M(p) are the interval characteristic stiffness and mass matrices, 
respectively. p is a set of interval structural parameters including geometric and material 
properties as well as boundary conditions. Substituting Eqs.(3)(4) (the interval 
characteristic stiffness and mass matrices K(p)and M(p) into Eq.(7),one can obtain[9,10] 
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Expanding and neglecting the higher order parts 
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Multiplying Tc
i )(pφ at the left of the equation, one can obtain eigenvalue with respect 

to the interval parameters as Eq.10. The following study based on the assumption that 
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The interval experimental modal data are chosen as reference value, the model 
updating for uncertain structures based on interval analysis can be transformed into 
deterministic constrained optimization problems as follows 
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where c
eiλ and )( c

ci pλ are the ith midpoint of interval experimental and computed 
eigenvalue with respect to the mean structural parameters cp . Lp and Up are the lower and 
upper bound of the structural parameter vector p, which are large perturbation of the 
estimated value. 
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where I
eiλ and )(pI

iλ are the interval uncertainty of ith experimental and computed 
eigenvalue, cp represents the best solution of optimization problem given by Eq. (11). It 
can be seen that the predictable part and associated uncertainties of structural parameter 
vector p can be achieved by solving the former two deterministic optimization problems. 
 
NUMERICAL RESULTS 
 
The correctness of proposed model updating procedure for uncertain structures 
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In order to demonstrate the correctness of the proposed method, two numerical 
examples are considered. The results are given in the Tables 1~6, where expf and expf  are 

the lower and upper bounds of experimental frequencies; optf and optf  are the lower and 

upper frequency bounds of updated finite element model. Because of the inevitable errors 
during the model updating procedure, the δ in the Eqs.(11)(12) is given a very small value 
(0.5% in this study) to ensure the quick searching capacity and the high precision of the 
undated results. 

Example 1 Consider a frame of multistory structure shown in Fig.1. Suppose that the 
element stiffness and mass of the structure are all uncertain parameters. And all total five 
interval experimental modal parameters (frequencies and mode shapes) are chosen as 
reference value for model updating process. The bounds and updated value of the 10 
interval structural parameters are given in Table 1. The true element stiffness are as follows: 
k1= [2000, 2020]N/m, k2=[1800, 1850]N/m, k3=[1600, 1630]N/m, k4=[1400, 1420]N/m, 
k5=[1200, 1210]N/m and the true element mass were m1=[29, 31]kg, m2=[26, 28]kg, m3=[26, 
28]kg, m4=[24, 26]kg, m5=[17, 19]kg [8].  

 

k1

k2

k3

k4

k5
m5

m4

m3

m2

m1

 
Figure 1: Frame of a multistory structure 

 
Table 1: Midpoint of structural parameters for updated uncertain structures 

Parameters Initial Value 
Lower 

Bounds 

Upper 

Bounds 

Updated 

Value 

Midpoint 

error 

m1
c Rand(27.0,33.0) 27.0 33.0 29.95 -0.183% 

m2
c Rand(24.3,29.7) 24.3 29.7 26.96 -0.141% 

m3
c Rand(24.3,29.7) 24.3 29.7 26.92 -0.289% 

m4
c Rand(22.5,27.5) 22.5 27.5 24.96 -0.168% 

m5
c Rand(16.2,19.8) 16.2 19.8 17.95 -0.306% 

k1
c Rand(1809.0,2211.0) 1809.0 2211.0 2009.8 -0.010% 

k2
c Rand(1642.5,2007.5) 1642.5 2007.5 1825.3 0.016% 

k3
c Rand(1453.5,1776.5) 1453.5 1776.5 1613.8 -0.074% 

k4
c Rand(1269.0,1551.0) 1269.0 1551.0 1410.2 0.014% 

k5
c Rand(1084.5,1325.5) 1084.5 1325.5 1204.4 -0.050% 

 
Table 2: Uncertainties of parameters 
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Uncertainty Initial Value 
Lower 

Bounds

Upper 

Bounds
Updated ∆p P  error P error 

∆m1 Rand(0,2.945) 0 2.945 1.07 -0.427% 0.045% 

∆m2 Rand(0,2.662) 0 2.662 1.04 -0.307% 0.014% 

∆m3 Rand(0,2.622) 0 2.622 0.84 0.326% -0.859% 

∆m4 Rand(0,2.458) 0 2.458 1.05 -0.378% 0.025% 

∆m5 Rand(0,1.745) 0 1.745 1.04 -0.578% -0.062% 

∆k1 Rand(0,200.8) 0 200.8 7.42 0.119% -0.138% 

∆k2 Rand(0,182.2) 0 182.2 24.76 0.030% 0.003% 

∆k3 Rand(0,160.3) 0 160.3 18.25 -0.278% 0.126% 

∆k4 Rand(0,140.8) 0 140.8 6.92 0.234% -0.203% 

∆k5 Rand(0,119.9) 0 119.9 3.85 0.046% -0.145% 

 
Table 3: Frequency comparisons between the true values and computation 

Modes expf (Hz)
expf (Hz) optf (Hz)

optf (Hz)
Midpoint 

error 
f error f  error 

1 0.385 0.406 0.386 0.406 0.111% 0.112% 0.111% 

2 1.032 1.083 1.033 1.084 0.104% 0.107% 0.102% 

3 1.582 1.659 1.584 1.661 0.096% 0.101% 0.090% 

4 2.001 2.098 2.003 2.100 0.100% 0.100% 0.100% 

5 2.304 2.414 2.306 2.416 0.089% 0.087% 0.091% 

It can be seen from the results that the midpoint differences between the true and 
updated uncertain structural parameters are no more than 1% as shown in Table 1 and the 
frequency response differences are less than 0.2% as shown in Table 3. The proposed model 
updating procedure can generate frequency response close to the true values. 
 
The influence of incomplete modal properties on the model updating results 
 

The experimental modal parameters are limited in real application while the number of 
structural parameters is relatively much large. The situation that the modal parameters are 
incomplete during the finite element model updating process is very common. So it is 
important to understand the influence of incomplete modal properties on the updated results. 

In order to check the influence of incomplete modal properties on the updated results, 
the experimental modal parameters are supposed to be noise free. Tables 3-6 illustrate 
model updating results for Example 1 using only five interval frequencies as reference 
values. Only two of the midpoint errors are bigger than 1%, all the other midpoint error fall 
within 1% as shown in Table 4. The midpoint frequency differences between the 
experimental and that computed by the updated model are no more than 0.15% as shown in 
Table 6. 

Table 4: Midpoint of structural parameters for updated uncertain structures 

Parameters Initial Value 
Lower 

Bounds 

Upper 

Bounds 

Updated 

Value 

Midpoint 

error 

m1
c Rand(27.0,33.0) 27.0 33.0 29.85 -0.497% 

m2
c Rand(24.3,29.7) 24.3 29.7 27.22 0.800% 

m3
c Rand(24.3,29.7) 24.3 29.7 26.84 -0.611% 
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m4
c Rand(22.5,27.5) 22.5 27.5 25.28 1.124% 

m5
c Rand(16.2,19.8) 16.2 19.8 17.97 -0.161% 

k1
c Rand(1809.0,2211.0) 1809.0 2211.0 2021.6 0.577% 

k2
c Rand(1642.5,2007.5) 1642.5 2007.5 1850.9 1.419% 

k3
c Rand(1453.5,1776.5) 1453.5 1776.5 1602.7 -0.762% 

k4
c Rand(1269.0,1551.0) 1269.0 1551.0 1415.6 0.397% 

k5
c Rand(1084.5,1325.5) 1084.5 1325.5 1205.4 0.033% 

 
Table 5: Uncertainties of parameters 

Uncertainty Initial Value 
Lower 

Bounds

Upper 

Bounds
Updated ∆p P  error P error 

∆m1 Rand(0,2.945) 0 2.945 0.96 -0.361% -0.624% 

∆m2 Rand(0,2.662) 0 2.852 1.04 0.693% 0.899% 

∆m3 Rand(0,2.622) 0 2.484 0.92 -0.324% -0.878% 

∆m4 Rand(0,2.458) 0 2.535 1.07 0.886% 1.343% 

∆m5 Rand(0,1.745) 0 2.219 0.91 0.386% -0.650% 

∆k1 Rand(0,200.8) 0 1.771 18.01 0.179% 0.971% 

∆k2 Rand(0,182.2) 0 189.4 19.29 1.756% 1.092% 

∆k3 Rand(0,160.3) 0 156.7 20.11 -1.088% -0.441% 

∆k4 Rand(0,140.8) 0 149.2 9.81 0.414% 0.381% 

∆k5 Rand(0,119.9) 0 135.4 6.71 -0.109% 0.174% 

 
Table 6: Frequency comparisons between the true values and compututation 

Modes expf (Hz)
expf (Hz) optf (Hz)

optf (Hz)
Midpoint 

error 
f error f  error 

1 0.385 0.406 0.386 0.406 0.110% 0.117% 0.103% 

2 1.032 1.083 1.033 1.084 0.095% 0.097% 0.092% 

3 1.582 1.659 1.584 1.661 0.093% 0.082% 0.102% 

4 2.001 2.098 2.003 2.100 0.098% 0.110% 0.086% 

5 2.304 2.414 2.306 2.416 0.087% 0.091% 0.083% 

 
CONCLUSIONS 

 
In this paper, a model updating method for uncertain structures with interval parameters 

is proposed. The proposed method can generate the interval structural parameters using 
experimental modal data. Numerical results reveal that the proposed method can obtain 
precise structural interval parameters when the reference modal properties are over 
determined. Even if the reference modal properties are incomplete, the updated uncertain 
structures can generate interval modal frequencies close to the true value and reflect the real 
modal properties. The proposed method has strong numerical stability and the capacity of 
noise resistance.  

The model updating method discussed above is general enough that it can be applied to 
the model updating for real uncertain structures with interval parameters. Because the 
present approach is based on the first order Taylor expansion, the application of the 
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approach is limited to the cases where the interval uncertainties of the interval parameters 
are small compared to the midpoints. If the interval uncertainties of the interval parameters 
are fairly large, in order to obtain higher computing accuracy, the second order Taylor 
expansion should be considered. 
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