
 

 

 
 
 

Near Real-time Parametric Identification for a 2-D 
Engineering Truss with Vibration Macro-Strain 
__________________________________________________________________________________________________________ 

BIN XU 
 
ABSTRACT: 
 

The increasing use of advanced sensing technologies such as optic fiber Bragg grating 
and embedded piezoelectric sensors for health monitoring of existing infrastructures 
necessitates the development of structural parametric identification methodologies using 
vibration induced strain histories. In this study, a three-step neural networks based strategy, 
called direct soft parametric identification (DSPI), is presented to identify structural 
member stiffness and damping parameters directly from free vibration-induced strain time 
series measurements. The rationality of the strain based DSPI methodology is explained and 
the theory basis for the construction of strain-based emulator neural network (SENN) and 
parametric evaluation neural network (PENN) are described according to the discrete time 
solution of the state space equation of structural free vibration. The performance of the 
proposed strategy are examined using an engineering truss structure model with a known 
mass distribution.  
 
 
INTRODUCTION 
 
Due to aging, misuse, lacking proper mainte-nance, and, in some cases, overstressing as 
a result of increasing load demands and changing envi-ronments, many of civil 
infrastructures are now deteriorating. Structural health monitoring (SHM) with the 
ability to continuingly report performance of a civil infrastructure is an emerging 
technology that could play an essential role in realizing a sustainable society.  
The main research interests are the advanced sensing technologies and inverse analysis 
for structural parameters identification and damage detection.The most widely used 
global identification methodology is based on dynamic vibration measurements[1,2]. 
On one hand, from long-term vibration measurements under unknown/assumed 
stationary zero-mean Gaussian white noise ambient excitation, structural free vibration 
responses can be extracted using the Random Decrement (RD) technique by averaging 
time segments of the measurements. The implementation of a RD technique is simple 
and the estimation time for structural properties is short[3]. Therefore, developing a 
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free vibration-based identification strategy is critical for long-term monitoring of civil 
infrastructures. On the other hand, to make fiber Bragg grating (FBG) sensor that is one 
of the widely used opticfiber sensing techniques less susceptible to local damages such 
as cracks that widely exist in civil infrastructures, the gauge length of a FBG sensor can 
be extended from several millimeters to centimeters or even meters for macro-strain 
measurements[4, 5]. The rapid development of strain sensing techniques necessitates 
the development of a new identification methodology based on strain measurements.  
Neural networks have recently drawn considerable attention in civil engineering 
community due mainly to their ability to approximate an arbitrary continuous function 
and mapping. Indeed, modeling a linear or nonlinear structural system with neural 
networks has been increasingly recognized as one of the system identification 
paradigms[6-8]. Although several neural-network-based strategies are available for 
qualitative evaluation of damages that may have taken place in a structure[9, 10], it was 
not until recently that a quantitative way of detecting damage with neural networks has 
been proposed[11]. Unlike any conventional system identification technique that 
involves the inverse analysis with an optimization process, the strategies using dynamic 
responses can give the identification results in a substantially faster way and thus 
provide a viable tool for the on-line identification for a near real-time monitoring 
system[12-14].  
This study is aimed at the development of a strain-based identification strategy, namely 
direct soft parametric identification (DSPI), for the monitoring of an engineering truss 
structure model. The performance of the three-step DSPI methodology are evaluated 
with a truss structure with a known mass distribution. 
 
 
2. NOVEL DSPI STRATEGY BASED ON STRAIN MEASUREMENTS 

2.1 General Methodology 

Consider an N DOF viscously damped linear structural system. Under an initial 
displacement and a zero velocity, the free vibration of the structure can be described by,  

0=++ KxxCxM &&& , 00 xxt == , 00 ==tx&                     (1) 

in which the matrices M, C and K are the mass, damping, and stiffness matrix of the 

structure, respectively; x&& , x&  and x are the acceleration, velocity, and displacement 
vector of the structure, respectively; xt=0=x0 indicates the initial displacement at time 
t=t0 for the free vibration; and 0 is a zero vector. 
The discrete time solution of the state equation (1) can be written as  

1−= k
AT

k ZeZ , ( )Kk ,,1L=                         (2) 
in which kZ  and 1−kZ are the state vectors at time instants, kT and (k-1)T, respectively. 
Consider a linear, viscously-damped object truss structure shown in Figure 1 whose 
parameters are to be identified. To facilitate the whole parametric identification process, 
a reference structure and a number of associated structures that have the same overall 
dimension and topology as the object structure are created, and the SENN and PENN 
are established and trained based on the reference structure and associated structures. 
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The proposed DSPI strategy is carried out in three steps. In Step 1, the SENN is 
constructed and trained using the time series of free vibration-induced macro-strain 
responses of the reference structure under a certain predetermined initial condition.  
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Fig. 1. Truss structure and macro-strain measurement. 

 
Equation (2) indicates that, for the reference structure, the displacement response at time 
step k is uniquely and completely determined by the displacement and velocity at time 
step k-1. Moreover, the velocity response at time step k-1 is related to the displacement 
change over the time interval from time steps k-2 to k-1. Since the strain response at a 
certain time step is definitely determined by the displacement response at the same time 
step, the strain response at time step k is fully determined by the strain responses and at 
time steps k-1 and k-2. Therefore, if the strain vectors kε  and 1−kε , 2−kε  are selected as 
the output and input of the SENN, respectively, the mapping between the input and 
output is unique. The SENN trained to represent the mapping between the strain vector at 
time steps k-2, k-1 and k of the reference structure is a non-parametric modeling for the 
reference structure and can be used to forecast the strain vector of the reference structure 
step by step as described in the following equation, 

                    ( )12 , −−= kk
f

k SENN εεε ε   ,   ( )Kk ,,2 L=            (3) 

where SENNε means the SENN for the non-parametric identification of the reference 
structure; f

kε  is the forecast strain at time step k  by the trained SENN.  
In Step 2, consider M associated structures that have different structural parameters 
from the reference structure in Step 1. On one hand, the free vibration-induced strain 
responses of an associated structure under the same initial condition as used in Step 1 
can be calculated with the numerical integration. On the other hand, the strain responses 
can be predicted from the SENN trained for the reference structure according to 
Equation (3). Since the parameters of the associated structure differ from those of the 
reference structure, the predicted strain responses are quite different from those 
computed by numerical integration. In this paper, an evaluation index called the 
root-mean-square prediction difference vector (RMSPDV) of strain according to each 
associated structure is employed[13, 14]. Similar to the considerations on mass in most 
of the common identification studies in civil engineering, in this study, the mass of the 
structure assumed to be known and constant. Therefore, the evaluation index is then 
completely determined by the stiffness and damping matrix of the associated structure 
and can be described by the following functional relation:  

( )mmm CKfRMSPDV ,=                        (4) 
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So if the inverse of the function in equation (4) is known, structural parameters can be 
determined according to the evaluation index mEI . For this purpose, the PENN is 
constructed and trained to describe the inverse relation between the evaluation index 
and the structural parameters:  

( ) ( )mmm RMSPDVPENNCK =,                   (5) 
Data patterns consisting of structural parameters of those associated structures and the 
corresponding RMSPDVs are used to train the PENN. After the PENN has been 
successfully trained, it will be applied in Step 3 into the object structure to forecast the 
structural parameters with RMSPDV of strain as the input. The macro-strain 
measurements of the reference structure, associated structures are determined by 
numerical integration. In practice, the strain measurements of the object structure can be 
measured with long-gauge FBG strain sensors or other sensors mounted on the structure 
members with sampling rate of 100 Hz, which is consistent with most of the current 
FBG interrogation systems. They are considered available in this numerical simulation 
study by Newmark integration with integration time step of 0.002 sec. 
 
2.2 Implementation Scheme 
In this study, it is assumed that the damping matrix of the reference structure, associated 
structures and object structure can all be characterized by the Rayleigh damping theory. 
The damping matrix of a structure m can then be expressed in the following form, 

 mmmmm KbMaC +=                                (6) 
where ma  and mb  are the Rayleigh damping coefficients of the structure m.  
In general, direct stiffness identification of the N members will usually reduce the total 
number of unknowns of the stiffness matrix of a structure. In the case of a truss structure, 
Equation (5) can be rewritten in the following form, 

( )( ) ( )mmmmNn RMSPDVPENNbakkk =,,,,,1 LL , ),,1( mNm L=     (7) 

 
 
3. NUMERICAL ILLUSTRATION 
 
3.1 Description of the Object Structure 
The two-dimensional truss structure with 11 members and 7 joints shown in Figure 1 is 
treated as the object structure with a total of 11 degrees of freedom. For parametric 
identification of the object structure, the strain response under a predetermined strain 
initial condition can be calculated from strain measurements by FBG sensors or other 
strain sensors from monitoring system. Suppose one sensor is mounted on the surface of 
each member, a total of 11 strain measurement time series can be provided. For the sake 
of discussions, the stiffness scaling factor (SSF) and damping coefficient scaling factors 
(DCSFs) are defined as the ratios of the stiffness and damping coefficients of the object 
structure to those of the reference structure. One object structure is investigated here. 
The SSFs and DCSFs of the object structure are given in Table 1.  
The parameters of a reference structure can be estimated from the as-built design 
drawings of the object structures. The modulus of elasticity, area of cross section and 
density of all members of the reference structure are 229.8GPa, 1.935×10-3m2 and 
7800kg/m3, respectively. The lumped mass at joints 2, 3, 5, 6 and 7 is 15,000 kg, 
respectively. The first two natural frequencies of the reference structure are 2.651Hz and 
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5.577Hz, respectively. The first two mode damping ratios of the reference structure are 
assumed to be 0.1% and 0.2%, respectively. The Rayleigh damping coefficients can be 
respectively calculated to be 310122.2 −×=a sec-1 and 410124.1 −×=b  sec.  
 

Table 1. Parameters of the object structure 
SSF DCSF 

1 2 3 4 5 6 7 8 9 10 11 α β 
0.8 0.9 1.0 0.9 1.0 0.9 0.9 1.0 0.9 1.0 1.0 0.9 1.0 

 
Without loss of any generality, the initial displacements at 11 degrees of freedom are 
assumed to be  

{ } { } )(111111111110005.00 mX T−−−−−×= .       (9) 

The corresponding strain initial conditions of the 11 members are as follows, 100, -200, 0, 
200, -200, 0, 200, 0, 0, 200 and 100 µε.  
 
3.2 Nonparametric Identification for the Reference Structure with SENN 
As described above, the structural macro-strain response at time step k can be completely 
determined by those at time step k-2 and k-1. The input layer of the SENN includes the 
macro-strain responses at time step k-2 and k-1 for every member of the truss structure. 
The number of neurons in the hidden layer is the same as that in the input layer. The 
neuron in output layer represents the forecast macro-strain responses at time step k. 
Therefore, for the truss structure with 11 members, the input, hidden and output layers 
have 22, 22 and 11 neurons. SENN is off-line trained with the training data sets 
composed of the simulated macro-strain responses of the reference structure.  
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(d) Member 9 

Fig. 2. Exact versus predicted strain time histories of the reference structure. 
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From the first 2 seconds of free vibration-induced strain responses under the initial 
displacement, 198 patterns of training data sets are constructed. The entire off-line 
training process takes 30,000 epochs. To examine the accuracy of the SENN in time 
domain, comparisons for member 2, 5, 8 and 9 are made in Figure 2 between the 
macro-strain responses from 0.03 to 2.0 seconds determined from the Newmark-  
method and those predicted by the above trained SENN. It is clearly seen that the two 
series of time histories match very well. 
To provide a quantifiable measure for the prediction by the SENN, the root-mean-square 
(RMS) error of macro-strain corresponding to each truss member are given in Table 2. It 
is demonstrated from Table 2 and Figure 2 that the maximum RMS error is within 3.5% 
the RMS value of the macro-strain response. Neural network provides a novel way to 
model the reference structure using strain measurements. 
 

Table 2. RMS error of macro-strain of each truss member of the reference structure 
Member RMS value of strain by 

Newmark-β(10-6) 
Absolute error in RMS 

(10-6) 
Relative error in 

RMS (%) 
1 32.91 0.80 2.43 
2 46.90 0.83 1.77 
3 43.16 0.47 1.09 
4 45.90 0.75 1.63 
5 66.91 1.12 1.67 
6 28.93 0.78 2.71 
7 67.50 2.35 3.48 
8 30.25 0.59 1.94 
9 73.73 2.26 3.07 
10 61.59 0.88 1.43 
11 60.67 0.78 1.29 

 
3.3 Training of PENN for Stiffness and Damping Coefficients Identification 
The input to the PENN is the components of the RMSPDV corresponding to the 
macro-strain measurement of each truss member, and the output is the stiffness of each 
truss member and the damping coefficients of the object truss structure. For the object 
structure with 11 truss members, the PENN thus has 11 input neurons and 13 output 
neurons representing the stiffness of each member and the structural damping coefficients. 
The number of neurons in the hidden layer is selected to be four times the number of the 
neurons in the input layer.  
To generate training patterns, a significant number of associated structures with different 
structural properties are considered and their free vibration responses under the initial 
displacement are computed with the Newmark integration method. The RMSPDV of 
macro-strains between each associated structure and the output of the SENN can then be 
obtained. Because neural networks can describe complex mapping with satisfied 
accuracy within a certain space that is covered by the training patterns by interpolation 
and the performance of neural networks for extrapolation is not guaranteed, it is 
important to determine the possible range of the interested parameters. Suppose 
stiffness decrease of each truss element is within 20% of it of the reference structure and 
damping coefficients have a change within 20% of the reference structure.  
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The number of the possible structures with different structural parameters within the 
assumed interested space is infinite. It is critically important to prepare training patterns 
or data sets with proper sizes from the interested space. Selection of a suitable number of 
the training patterns from an interested space that includes unlimited points is still an 
open problem. In this study, 800 associated structures other than the object truss structure 
shown in Table 1 are randomly selected from the interested space to construct training 
patterns for PENN training. Each training pattern is composed of a RMSPDV and its 
corresponding structural parameters. The training process took 30,000 epochs using the 
adaptive error back-propagation algorithm.  
 
3.4 Parametric identification results with DSPI strategy 
After having been trained, the PENN can be adopted to identify the structural parameters 
directly from 2 seconds of the time series of macro-strain responses. Two seconds of the 
free vibration-induced macro-strain measurements from the object structure are directly 
inputted to the SENN and the PENN. The rations of exact stiffness of each truss member 
and damping coefficients to them of the reference structure and the relative error are 
shown in Figure 3. The average relative error for the entire structure is less than 4% even 
though the object structure is not included in the training patterns. 
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Fig. 3. Parametric identification results for the object structure 
 
 
4. CONCLUDING REMARKS 
 
The performance of the strategy was illustrated with an engineering truss structure. 
Based on numerical simulations, the following conclusions can be drawn: 

1. The free vibration-induced macro-strain response at current time step can be 
successfully forecast by a non-parametric identification model, strain-based emulator 
neural network, using the strain responses at the two previous time steps.  

2. The parametric evaluation neural network trained with a number of training patterns 
that are randomly selected from the interested space can accurately identify the 
parameters of object structures, even if the object structures are not included in the 
selected training patterns. The average relative error in identified parameters is less than 
3% when strain measurement is not contaminated with noise.  

3. The proposed strategy does not involve any formulation of eigenvalue analysis, 
eigenvalue or mode shape extraction from the measurements. Use of directly-measured 
strain responses and the parametric evaluation neural network allows the parameters of 
engineering truss structures to be identified using 2 seconds of macro-strain 
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measurements. Therefore, the proposed strategy provides a viable tool for near real-time 
parametric identification for structural health monitoring.  
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