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ABSTRACT: 
 
A new damage indicator, denoted by cepstral metric for ARMA models, is proposed for 
application of damage detection in civil engineering. Two approaches calculating this 
cepstral metric by using either the poles and zeroes or subspace angles are introduced. 
The verification simulation indicates that the cepstral metric is qualified for a sensitive 
damage indicator both on damage location and damage level. 
 
 
 
1. INTRODUCTION 
 
Over the past two decades, structural health monitoring (SHM) has been getting strong 
attention for maintaining proper performance of building structures against natural 
hazards such as large earthquakes and strong winds [1]. To seek for a sensitive damage 
indicator that can accurately distinguish a damaged structure from an undamaged one is 
the focus of most SHM technical literature. Many researchers have proposed the modal 
parameters, such as modal frequency or modal shape, as the primary damage indicator 
due to the observation that changes in structural properties, such as mass, damping and 
stiffness, will cause changes in modal parameters. However, the modal parameters are 
often less sensitive to local change in structure [2], which in some cases becomes a 
major limitation for the vibration-based methods which rely on identifying these 
parameters to locate and assess damage. 
Alternatively, a statistical pattern recognition methodology, which utilize linear time 
series model fitting vibration measurements for the identification of damage in civil 
structures, was given in [3]. Sohn and Farrar proposed a two-stage linear prediction 
model, combining Auto-Regressive (AR) model and Auto-Regressive model with 
exogenous inputs (ARX). The residual error, which is the difference between the actual 
acceleration measurements and the prediction from the AR-ARX model, is defined as 
the damage indicator. In their method, the Euclidean metric for measuring difference of 
AR coefficients is used to determine if there is strong agreement between two time 
series models.  
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In fact, the AR-ARX modeling is similar to a linear approximation method of an 
Auto-Regressive Moving-Average (ARMA) model. ARMA model is a useful 
single-input single-output linear time invariant (SISO-LTI) model for the representation 
of discrete-time signals [1]. It is apparent that ARMA estimation can be used for time 
series classification. For classification, we need find a metric measuring the distance 
between ARMA models. Concentrating on the AR case, we might use the metric in 
terms of AR coefficients mentioned above. This approach would raise some problems, 
that is, this metric does not have any system-theoretic and mathematical properties. To 
overcome this difficulty, a new metric for ARMA models in terms of cepstrum has been 
proposed by Martin [4]. As a complementation, De Cock [5] proposed the subspace 
angle between ARMA models and related it to the cepstral metric defined by Martin. 
In this paper, we attempt to explore a new application of the cepstrum to damage 
detection in civil engineering by taking the cepstral metric defined by Martin as the 
damage indicator. We begin with introducing two approaches to calculate the cepstral 
metric using either the poles and zeroes or subspace angles of ARMA models. The 
equivalent relation between these two approaches is introduced then. For SHM, whether 
a structure is damaged or not and how seriously the damage occurred are determined by 
using this cepstral metric to measure the distance between modeled time series from 
reference and unknown structures. A numerical five-story shear building is used to 
examine the performance of this damage indicator expressed by cepstral metric, which 
is verified to be qualified for a sensitive damage indicator both on damage location and 
damage level. 
 
2. CEPSTRAL METRIC FOR ARMA MODELS 
 
The cepstrum (natural pronunciation would be kepstrum) was firstly introduced by 
Bogert, Healy and Tukey, who used it for the detection of echoes. Cepstrum has been 
applied in a variety of areas including audio processing, speech processing, geophysics, 
medical imaging, and others [6]. In this section, we will discuss two approaches of 
calculating the cepstral metric ARMA models proposed by Martin. It will be shown that 
these two methods have a skillful equivalence. 
 
2.1. Cepstral Metric in terms of Poles and Zeroes 
 
The power cepstrum of a SISO-LTI model with transfer function  is the inverse 
Fourier transform of the logarithm of its power spectrum
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where are the cepstrum coefficients.  nC
An autoregressive moving-average (ARMA) model, which is a general parametric 
description of SISO-LTI process, is given by 
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where and are the AR and MA coefficients, respectively. ia ib p and  are the model q
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orders of the AR and MA processes, respectively, and is a white noise process with 
zero mean and variance . The transfer function of a stable, minimum ARMA process 
has the form in the z domain 

ne
2σ

( ) ( )
( )∏

∏
∑
∑

=
−

=
−

=
−

=
−

−

−
== p

i i

q

i i
p

i
i

i

q

i
i

i

z

z

za

zb
zH

1
1

1
1

0

0

1

1

α

β
    (3) 

Where iα  and iβ  are the poles and zeros of the ARMA model. If we compute the 
logarithm of the power spectrum 
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by combining (1) with (4), the power cepstrum can be expressed by the poles and zeroes 
of the ARMA model as following 
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Martin defined the metric for the set of SISO LTI ARMA models, which is based on the 
cepstrum [4]. For ARMA models ( )1M  and ( )2M  with cepstrum coefficients defined 
as  and , the cepstral metric is   ( )1

nC ( )2
nC
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This is a Euclidean metric, which induces the following property on the set of ARMA 
models: 

( ) ( ) ( ) ( )( ) ( ) ( )( )213231 ,, MMDMMMMD =    (7) 

In other words, if two models ( )1M  and ( )2M are passed through the same linear filter 
with model ( )3M , their mutual distance is unaltered.  
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Consequently, we have then  
( ) ( )( ) ( ) ( )( )2121 ,, NNDMMD = ,   (9) 
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That’s to say, it is sufficient to deal with ARMA models by considering AR models only. 
Thus, for two stable AR models ( )1M , ( )2M  with order ( )1p , ( )2p and poles , , the 
cepstral metric can be expressed by the poles of AR models as following: 
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2.2. Cepstral Metric in terms of Subspace Angles 
 
A SISO-LTI stable, minimum phase ARMA model can be described in the forward 
innovation state space form: 
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where , the output of the model, is the stochastic process that is being modeled, 
 is the innovation process of

( )ky
( )ke ( )ky  and ( )kx  is the state process. The matrix  is 

called the system matrix, is the output matrix and 
A

C K is the Kalman gain. This model 
can also be denoted by the threesome ( )CKA ,, , the poles of which are the eigenvalues 
of the system matrix A . We may define the associated infinite observability matrix: 

[ ]TCACAC 2=∞O    (12) 

From the above model (12), we can immediately derive the state space equations of the 
inverse model: 
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The zeroes of the model  are consequently equal to the eigenvalues 
of ( . The infinite observability matrix of the inverse model is denoted by  

( CKA ,, )
)KCA −

( ) ( )[ ]Ti KCACKCACC 2−−−−−=∞O    (14) 

Let ( )1M  and ( )2M  be two stable, minimum phase ARMA models of order n . ( )1
∞O  

and ( )2
∞O  are the observability matrices of two models, and ( )1

∞iO  and  are the 
observability matrices of the inverse models, respectively. De Cork defined the 
subspace angles between

( )2
∞iO

( )1M  and ( )2M  as the principal angles ( )nii 2,,1=θ  
between the ranges of ( ) ( )( )21

∞∞ iOO and ( ) ( )( )12
∞∞ iOO  [5].  

Note that, the cepstral metric of ARMA models defined by Martin can be related to the 
subspace angles between ARMA models. For two ARMA models ( )1M  and ( )2M  of 
order and subspace anglesn ( nii 2,,1 )=θ  between them, the metric in terms of 
subspace angles is equal to  
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Analogously, assume two stable and observable AR models ( )1M  and ( )2M are 
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characterized in state space form by their system matrices ( )1A and and output 
matrices  and

( )2A
( )1C ( )2C , respectively. The associated infinite observability matrices are 

( )1
∞O  and ( )2

∞O , respectively. If we define the subspace angles between ( )1M  and ( )2M  
as the principal angles ( nii 2,,1= )θ  between the ranges of ( )1

∞O  and ( )2
∞O , we may 

also relate the cepstral metric in terms of poles of AR models (11) to subspace angles 
between AR models. For two AR models ( )1M  of order ( )1n  and ( )2M  of order ( )2n  
with subspace angles ( nii 2,,1= )θ , the metric in terms of subspace angles is equal to 
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where ( ) ( )( )21 ,max nnn =   

 
3. CEPSTRAL METRIC FOR DAMAGE DETECTION 
 
In this section, a new damage indicator denoted by the cepstral metric described above 
is proposed to identify the structural damage for SHM. This methodology is applied to a 
numerical model of five-story shear building, as shown in Figure 1, for evaluating the 
performance of this damage indicator.  
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

0

50

1st
 F

lo
or

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20

40

2nd
 F

lo
or

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

0

50

3rd
 F

lo
or

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20

40

4th
 F

lo
or

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20

40

5th
 F

lo
or

Acceleration (m/s2)

 
Figure 1: A five-story building modeled as a 5-MOF system 

 
3. 1. Cepstral Metric as Damage Indicator 
 
To illustrate the relationship between cepstral metric and damage occurred in structure 
as well its location and level, we consider five damage levels, , , ,  
and , of stiffness reduction on each story, hence total 25 damage scenarios. This 
structure can be modeled as a 5 degree-of-freedom (DOF) system, and the excitations 

%10 %20 %30 %40
%50

490



are filtered Gaussian white noise applied on every story. For each damage case, we 
simulated the dynamical responses of every DOF including acceleration, velocity, and 
displacement. In this paper, we only use the acceleration response, as shown in Figure 1, 
as time series for modeling despite the velocity and displacement can also be adopted.  
The undamaged and unknown structures are referred to the reference and new models 
respectively, the distance between which is measured by the cepstral metric to 
determine if the unknown structure has been damaged, if so, to identify the location and 
level of damage. We have simulated 26251 =+  datasets of acceleration time series, in 
which one is from the undamaged, and 25 are from the damaged of different scenarios. 
Consequently, for each damage scenario, we can obtain one corresponding cepstral 
metric, which is considered as the damage indicator, and hence totally obtain 25 cepstral 
metrics in different damage cases. 
The cepstral metrics were calculated by the two approaches given in section 2. Figure 2 
shows the cepstral metrics calculated by (10) and (16) using poles and subspace angles 
of AR models, respectively. From the figure, it is clear that the cepstral metric can detect 
the damage occurring in structure and tell which story the damage is near to. It is also 
clear that the magnitude of cepstral metric seems proportional to the damage level 
denoted by reduction of stiffness. Hence, the cepstral metric can act competently as an 
ideal damage indicator due to its change does strongly consist with damage both on 
location and level. Comparing these two cepstral metrics, the metric in terms of 
subspace angle performs a little better than that in terms of AR poles. However, it is not 
always be true since the calculation accuracy of cepstral metric depends on varieties of 
factors, such as identification method, the model order, and so on, although these two 
descriptions of cepstral metric are equivalent and they can be derived from each other. 
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Figure 2: Cepstral metric from acceleration 

 
3. 2. Interstory Acceleration 
 
In this section, the acceleration of every story used above is replaced by the interstory 
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acceleration, the difference of two adjacent stories, as the time series to build the model 
of dynamic system. The interstory acceleration is defined as following 

( )( ) ( )( ) ( )( )tACCtACCtACC iii 1−−= ,   (22) 
where  is the story number, hence, we can obtain five new time seriesi ( )1ACC , 

, ( ) ( )12 ACCACC − ( ) ( )23 ACCACC − , ( ) ( )34 ACCACC −  and  for 
every damage case.  

( ) ( )45 ACCACC −

Figure 3 shows the cepstral metrics from the interstory accelerations by (10) and (16), 
respectively. Compared with the result of section 3.1, it is observed that the cepstral 
metric from the interstory acceleration is a better damage indicator since it is more 
clearly to tell which story is damaged according to its maximum value.  
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Figure 3: Cepstral metric from interstory acceleration 

 
3. 3. Compare with Frequency Shift 
 
The amount of literature related to damage detection using frequency shift is quite large 
due to the observation that changes in structural properties cause changes in vibration 
frequencies. It is known that for a multi-DOF vibration system, one single frequency 
shift associated with a certain mode does not provide the spatial information of 
structural damage. However, multiple frequency shifts can provide the spatial 
information of the damage location, and the magnitudes of frequency shifts 
proportionally imply the damage level. 
The frequency shift is defined by ii ωω∆ , where iω  is the natural frequency of -th 
mode for undamaged structure, and

i
iω∆  is the frequency change as a result of a certain 

damage scenario. Figure 4 shows the frequency shifts for the 25 different damage cases 
described in 3.1. It is clear that the frequency shift can’t intuitively imply the damage 
location without the help of pattern recognition tools like support vector machine. 
Hence, the damage detection method using frequency shift as the damage indicator 
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should be a two-step procedure. Alternatively, the cepstral metric, as the damage 
indicator, can directly succeed in doing so. 
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Figure 4: Frequency shift 

 
4. CONCLUSIONS 
 
In this paper, a new damage indicator, which is denoted by cepstral metric, is proposed 
for application of damage detection in civil engineering. This cepstral metric can be 
obtained by two approaches using either the poles and zeroes or the subspace angles of 
ARMA models, the equivalent relationship between which has been approved 
theoretically and numerically.  
This methodology was tested on a numerical five-story shear building. Results show 
that the cepstral metric between the ARMA models from damage and undamaged 
structures can intuitively and clearly detect the damage location and damage level. It is 
worth noting that using interstory responses as time series for modeling can improve the 
performance of damage indicator especially for damage localization. Compared with 
other damage indicators for example the frequency shift, this methodology is a 
conveniently one-step procedure without the help of pattern recognition tool. These 
encouraging results indicate that the damage indicator expressed by cepstral metric is 
competent to be a sensitive damage indicator for structural health monitoring. 
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