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ABSTRACT: 
 

This paper presents a method, which can be implemented under limited resources such 
as wireless sensor network devices, for damage detection of civil structures. The detection 
method consists of Haar wavelet decomposition, thresholding, quantization and 
differentiating metric. Before the differentiating metric, a target signal is compressed into 
the wavelet coefficients “signature”. The results indicate that a single measurement point 
without time synchronization of other measurement points is effective for instant damage 
detection though the case study using the ASCE SHM benchmark program. The method 
has also revealed that less than 5% data volume of an original signal is enough to detect 
both global and local structural damage. The approach illustrated in this paper implies a 
promise of wavelet-based data compression and analysis for the increasing volume of 
Structural Health Monitoring (SHM) data. 
 
 
INTRODUCTION 
 

As a number of new wireless sensor network based approaches [1], [2] have been 
explored as well as conventional monitoring systems can store and exchange data less 
expensively, the available volume of sensing data for structural health monitoring (SHM) 
of civil structures is increasing explosively. The availability of huge amount of health 
monitoring data inspires damage detection methods, precise damage estimation, and 
other SHM-related projects [3]. 

A variety of damage detection methods have been developed and discussed. A 
method based on vector autoregressive (ARV) models [4] has been proposed to provide 
an accurate diagnosis of damage condition. Wavelet-based damage detection methods [5], 
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[6] have also been developed. Development of a damage detection method is usually 
based on specific structures and environments including external forces.  

The methods for damage detection shown above assume relatively rich environments 
in terms of data acquisition and computation. Time synchronization of data sources [7] is 
usually one of the most critical issues. Wireless sensor network researches have put much 
effort on power efficiency [1]. This paper focuses on slightly different constraints from 
the other SHM projects. We assume very limited networking resources under disastrous 
situations. Some of the sensor, storage and computation units survive, but the units can 
establish several isolated network areas. This means that not all sensor data is available in 
terms of spatial and time axes. 

The objective of this paper is to develop a damage detection method that consists of a 
simple and fast computation algorithm which can be embedded on a platform with limited 
resources, that provides efficient and robust data compression, and with which a single 
sensor unit can detect both global and local damage of a structure. 
 
WAVELET DECOMPOSITION FOR DAMAGE DETECTION 
 
Signature Distillation 

The method proposed in this paper is inspired by the image processing method [8] for 
fast image querying. The fundamental idea is quite simple: compressing both target and 
reference signals to “signatures”; and comparing them. The signature distillation process is 
easily expanded to three or more dimensions and shrunk to one dimension. 

The flow of the method starts with wavelet decomposition transferring acceleration or 
other response signals to wavelet coefficients. Then, thresholding eliminates small 
amplitude coefficients. Finally, quantization converts each coefficient to either -1, 0 or +1 in 
order to generate the signatures. The difference between the signatures of the target 
(probably damaged) and reference (usually undamaged) signals provides an index of the 
similarity of the two signals, form which we can detect the existence and the severity of 
damage. 
 
Wavelet Decomposition 

Wavelet transforms are powerful tools to capture the trend of target signals. They often 
produce similar outputs with time-frequency analysis methods such as short time Fourier 
transform and Gabor transform. They are also effective in reconstructing and signal 
representation and compression. 

Haar wavelet decomposition uses two functions: the box function φ , also called scaling 

function; the mother wavelet ψ  is the difference of two half-boxes. They are defined as 
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From the mother wavelet ψ , scaled and time-shifted functions jkψ  are constructed as 

follows: 
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The subscripts j  and  k  denote the time shift and the scale respectively. A shifted 

wavelet 0kψ  is non-zero in the interval [ , 1)k k + . A rescaled wavelet 0jψ  is scaled by a 

factor 2 j−  in time and / 22 j  in amplitude. It is shown that the family ( ) 2( , )jk j k
ψ

∈
 is an 

orthonormal base of 2 ( )L , which means that any real-valued function of time f  such 

that 2 ( )f t dt
∞

−∞∫  is finite can be decomposed as 
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The coefficients jkb  are called wavelet coefficients. From the scaling function φ , 

functions jkφ  are also constructed, and scaling coefficients defined as ,jk jka f φ=< > . 

From Eq.(1), it follows that the jkφ  and jkψ  satisfy the dilation equation (5), and the 

wavelet equation (6) 

 1, ,2 ,2 1
1( ) [ ( ) ( )]
2j k j k j kt t tφ φ φ− += +  (5) 

 1, ,2 ,2 1
1 [ ( ) ( )]
2j k j k j kt tψ φ φ− += −  (6) 

By multiplying by ( )f t  and integrating, relations between the coefficients are obtained: 

 1, ,2 ,2 1
1 [ ]
2j k j k j ka a a− += +  (7) 

 1, ,2 ,2 1
1 [ ]
2j k j k j kb a a− += −  (8) 

These show that the coefficients follow a recursive algorithm. Consider the signal of 

length 2mN =  given by array 0 1[ , , , ]NA a a a= L ; its Haar wavelet decomposition 

computation is started with modifying the subscripts of each element 0 1[ , , , ]m m mNA a a a= L . 

By applying recursive algorithms shown in Eq. (7) and (8), the decomposition produces the 
Haar wavelet coefficients given by the array 100 00 01 1,2 1

[ , , , , ]mm
B a b b b −− −
= L . 
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Haar wavelets offer a simple and fast computation metric which can be embedded in the 
devices with small capabilities of computation and storage such as web-enabled phones, 
PDAs and embedded PCs. The significant results obtained with the Haar wavelet 
decomposition are described in the case study section. 
 
Thresholding, Quantization and Differenciating Metric 

Thresholding eliminates small amplitude coefficients derived by the decomposition 
shown above, and the largest coefficients remain. Quantization makes positive coefficients 
being large enough for thresholing +1, negative coefficients -1. The rest of the coefficients, 
which are eliminated through thresholding, hold the value 0. The processed (by both 

thresholding and quantization) coefficients are given by array 0 1[ , , , ]NB b b b= % % %% L  to 

simplify the notation for the differentiating metric shown bellow. The thresholed is the key 
element of the “signature” distillation. There is a trade off between the computation cost and 
the number of large amplitude coefficients. 

The differentiating metric is summarized by Eq.(9). 

 ,t r t r
j j j

j

B B w b b= −∑ % %  (9) 

where ,A B  is an index that shows a difference between sets of coefficients A  and B ; 

and jw  is a weight of jth signature element. The superscripts t  and r  denote target and 

reference signals respectively. 

A weighted sum of the difference between the signature coefficients t r
j jb b−% %  express 

the index of similarity of the two signals. The smaller the index is, the more similar the 
target signal is to the reference one. 

Eq.(9) has a range between 0 and two times the number of non-zero signature 
coefficients (each non-zero coefficient has a range between -1 and 1). 

The weights may be obtained statistically or by using machine learning techniques with 
a number of undamaged and damaged cases. They may also be analytically derived with a 
detailed knowledge of the target domain. This paper sets all the weights to 1 in the case 
study described below. 
 
Data Compression 

The signature distillation shown above functions as a lossy data compression. The 
smaller number of coefficients achieves the better data reduction. Suppose a three-axis 
accelerometer is installed and the acceleration of a structure is acquired with a 12bit A/D 
converter and a 1kHz sampling data logger, the volume rate of the measured raw data yields 
to 36kbit/sec or 16.2MByte/hour. 4,096 measurement data points of a single axis 
accelerometer are equal to 49,152 bits (12 bit resolution). By applying the distillation 
methods, the volume decreases to 8,192 bits (2 bits for each data point). If the 128 largest 
coefficients are chosen and the addresses of non-negative value are stored, the required data 
volume is reduced to only 1,664 bits (12 bits for address space, 1 space bit for positive and 
negative values for 128 data points). 
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CASE STUDY – ASCE BENCHMARK PROBLEM 
 

The ASCE Benchmark Problem [9] is used as a test case to show the performance of the 
damage detection method proposed in this paper. The benchmark structure is a 4-story 
2-bay by 2-bay steel frame structure as shown in Fig. 1. MATLAB codes are available on 
the web site hosted by ASCE Structural Health Monitoring Committee3. 

Two finite element models, a 12 degree of freedom (DOF) shear-building model and a 
120-DOF model, were developed to generate the simulated response data. Six cases were 
defined, which had different properties: degrees of freedom; mass distribution; excitation. 
Six predefined damage patterns are: (i) no stiffness in the braces in the braces of the first 
story; (ii) no stiffness in any of the braces of the first and third stories; (iii) no stiffness in one 
brace in the first story; (iv) no stiffness in one brace in the first story and one brace in the 
third story; (v) damage pattern (iv) with a floor beam at the first level partially unscrewed; 
and (vi) two thirds stiffness in one brace in the first story. 

 
Time-Scale analysis 

Only data from the 120-DOF model is used in this paper. Case 5 has an asymmetric 
mass distribution on the roof and a shaker placed diagonally on the roof. Seven simulations 
(undamaged and six damaged patterns) with default parameters except for “duration” 
modified to 41 seconds were calculated using Nigham-Jennings Algorithm. The response 
acceleration data is down sampled to 200Hz and the first 8,192 points are analyzed. 256 
coefficients are distilled in the signatures, which mean the similarity indices range from 0 to 
512. Table 1 shows the results of sensor 13.  

Table 1 illustrates the sensitivity for the damage patterns 1, 2, 4 and 5. The damage 
patterns 3 and 6 are categorized as less severe damage. Also similarities between the 
damage patterns 4-6, and 3-6 are found. 

It seems that Table 1 shows a perfect result to detect damage and to estimate the 
severities indeed, but almost the same result is derived by calculating correlation 
coefficients of each pair of the sensor responses as shown in Table 2. The reason is very 
fundamental; the same external forces are applied to every simulation. Figure 2 displays the 
time histories of acceleration acquired in the undamaged and the damage pattern 3 
computations. No difference between the two signals is distinguished at first glance. 

When different seed numbers are used for the input force generation, the 
signature-based approach cannot detect damage as shown in Table 3. The proposed method 
exhibits an ability equivalent to that of correlation coefficients with less computation when 
comparing target and reference signals in time domain analysis. 
 
Frequency-Scale Analysis 

It is straightforward to convert time histories of target signals into Fourier coefficients in 
order to capture the structural behavior. In the following, the performance of 
frequency-scale domain analysis using Haar wavelet decomposition is explained. 

The response acceleration data is down sampled to 200Hz and the first 8,192 points are 
transferred to 4,096 Fourier amplitudes through FFT. 128 non-zero coefficients are distilled 
in the signatures, which means the indices may range form 0 to 256. 

                                                 
3 http://cive.seas.wustl.edu/wusceel/asce.shm/ 
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Figure 1: Benchmark structure, and sensor 
locations and directions 
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(a) Undamaged case 
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(b) Damage pattern 3 

Figure2: Acceleration responses 
 

Table 1: Signature comparison in 
time-scale domain (case5, sensor13) 

  Damage pattern 

  0 1 2 3 4 5 6 

0 0 486 488 94 442 442 38

1  0 396 498 482 482 490

2   0 490 474 474 490

3    0 426 426 92

4     0 6 436

5      0 436

D
am
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e 

pa
tte

rn
 

6      0  

Table 2: Correlation coefficients 
(case 5, sensor 13) 

 Damage pattern 

 0 1 2 3 4 5 6 

0 1 0.26 0.22 0.98  0.53  0.53 1.00 

1  1 0.54 0.16  0.16  0.16 0.22 

2   1 0.15  0.18  0.18 0.19 

3    1 0.55  0.55 0.99 

4     1 1.00 0.53 

5      1 0.53 
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rn
 

6       1  
 

Figure 3 shows the result of frequency-scale domain analysis which means that the 
acceleration time histories are translated in frequency domain and then the signals in 
frequency domain are distilled by Haar wavelet decomposition to generate the “signatures”. 
Figure 3 illustrates the indices distributions of the predefined damage patterns in 
comparison with undamaged structure response. A boxplot consists of the largest 
non-outlier observation, upper quartile (UQ), median, lower quartile (LQ) and smallest 
non-outlier observation. Outliers are plotted as circle markers. 256 simulations with 
different seeds for random force generation were performed on each damage pattern 
including undamaged which denoted D0 in the chart. 

Similar trends to Table 1 are obtained. Damage patterns 3 and 6 are categorized as less 
severe or undamaged in comparison with the distribution of indices under undamaged 
simulations. The similarities between the damage patterns 4-5, and 3-6 are also found. 

Figures 4 to 7 represent the results of sensor 1, 2, 9 and 14 respectively. Damage pattern 
3 can be estimated to be less severe through the responses in x-direction (sensors 1, 9 and 13 
e.g. Figure 4, 6 and 3). The similarities between the damage patterns 4-5, and 3-6 are found 
in the same way with Figure 3. 
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Table3: Signature comparison of simulations 
with different seed numbers 

  Damage pattern (seed #) 

  0 

(123) 

1 

(31) 

2 

(61) 

3 

(251) 

4 

(17)

5 

(7)

6 

(191)

0 0  488 508  484  488 506 500 

1  0 496  490  494 504 496 

2   0  494  496 504 510 

3    0  514 496 500 

4     0 494 492 

5     0 490 
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Figure 3: Frequency-scale analysis 
(sensor 13) 
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Figure 4: Frequency-scale analysis (sensor 1) 
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Figure 5: Frequency-scale analysis 
(sensor 2) 

120

140

160

180

200

220

240

D0 D1 D2 D3 D4 D5 D6

S
ig

n
at

u
re

 d
if
fe

re
n
c
e

  
Figure 6: Frequency-scale analysis (sensor 9) 
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Figure 7: Frequency-scale analysis 
(sensor 14) 
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Some knowledge about damage pattern has been disclosed by combining the results of 
several sensors without time-synchronization. One sensor source can detect damage pattern 
1, 2, 4 and 5 though the investigation of Figures 3-7. That leads to the evidence that damage 
patterns 1, 2, 4 and 5 are relatively severe. The fact that sensors 1, 9 and 13 cannot detect 
damage pattern 3 implies that the introduced damage does not affect x-axis properties.  

Although the analysis developed in frequency-scale domain requires more computation 
load before distilling signature, it reduces the volume of data transmission drastically. Also 
the method proposed in frequency-scale domain analysis does not require 
time-synchronization of each sensor node. 
 
CONCLUSIONS 
 

A damage detection method using wavelet decomposition was proposed. Through the 
case study of the ASCE Benchmark Problem, it revealed a potential to skim through huge 
sensing data. It could compress raw measured data significantly. It could also detect both 
global and localized damage without time-synchronization of multiple sensor sources. 

The algorithm proposed in this paper is simple and fast enough to detect damage and 
will be a good premise of distributed sensor systems in SHM domain. The case study 
discloses that only 4 seconds of data sampled at 200Hz 128 signature coefficients are 
enough to detect all predefined damage cases in frequency-scale analysis. 
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