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The finite element (FE) modelling of Lead-Zirconate-Titanate (PZT) patches bonded onto 
aluminium plates for the purposes of exciting Lamb waves is investigated. Lamb wave 
propagation in plate-like structures is used as an important tool for non-destructive structural 
health monitoring. In particular this paper focuses on the PZT transduction process by 
modelling the patch as a 3D orthotropic material. Two main criteria were used to define 
successful modelling of the PZT patch to the aluminium plate. Firstly, the physical reaction of 
the PZT patch must conform to the constitutive relationships for piezoceramic materials. 
Secondly, the patch must be shown to have successfully excited Lamb waves within the plate 
structure by satisfying the wave dispersion properties. It was found that the 3D orthotropic 
model satisfied both the above conditions. The adequacy of the 3D orthotropic model was 
also further substantiated by comparing the strength of the propagated waves with results 
experimentally measured by laser vibrometry. 
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1 Introduction 
 
The use of ultrasonic guided waves in detecting defects in plate-like structures is well 
established. Some examples of earlier works include Alleyne’s seminal dissertation regarding 
The Non-destructive Testing of Plates using Ultrasonic Lamb Waves [1] and other important 
works such as [2, 3]. The feasibility of using piezoelectric materials, of which the PZT 
belongs, in order to generate Lamb waves was first demonstrated by Beard and Chang [4]. 
Furthermore, the use of Lamb waves have also been incorporated into non-destructive testing 
techniques such as ultrasonic lamb wave tomography and applied not only to isotropic 
metallic structures but also to composite plates and repair patches [5, 6]. With the increase in 
computational speeds and efficiencies over the last decade, many researchers are increasingly 
augmenting their experimental work with FE modelling and analysis. Traditionally, in order 
to study lamb wave propagation in plates by numerical methods, the wave excitation relied on 
applying point loads on the plate structure. For example, a symmetric wave mode would be 
excited by simultaneously pulling apart two nodes on the top and bottom surfaces of the plate. 
Whilst effective in exciting the required symmetric Lamb mode, the point excitation method 
is not representative of the PZT transduction process. It is the intention of this paper to 
provide a simple and clear method by which correct Lamb wave propagation can be achieved 
in the FE environment by correctly modelling the transduction from the PZT material into an 
aluminium plate.   
 
2 Constitutive Relationships: Piezo-ceramic Materials 
 
The general constitutive equations of linear piezo-electric behaviour are described by two 
tensorial relationship equations. This paper is primarily concerned with the relationship 
between mechanical strain (S) and stress (T) as given by, 
 

kijkkl
E
ijklij EdTsS +=     (1) 
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where E is the electric field, the lower case s is the compliance tensor of the material which is 
measured at zero electric field stress and d is the piezo-electric coupling between the 
mechanical and electrical variables. Reference [7] explains that if the ceramic is free to 
expand, then the T tensor in equation (1) goes to zero leaving the mechanical strain S to be 
only the products of the applied electric field E and the piezo-electric coupling constant d. 
With respect to the directions as defined by figure 1, equation (1) then becomes the following 
condition as shown in equations (2) and (3) by which we define successful physical modelling 
of the PZT patch;  
 

33121 EdSS ==  ,   (2) 

and 

3333 EdS =   .   (3) 

 
Figure 1. Reference Axis 

 
That is, the FE model of the PZT patch is said to be physically representative of a real patch if 
equations (2) and (3) hold given that for a typical soft compound PZT material d31 is (-1.75 E-
10 m/V) and d33 is (3.75 E-10 m/V) [7]. 
 
3 PZT Material Properties 
 
The PZT modelled in this study represents a special case of an orthotropic material in that it 
possesses a transverse plane which is isotropic. As such it is vitally important to correctly 
represent the material properties in the FE code. It is worth noting at this stage that certain 
commercial codes utilise slightly different convention in defining the shear stresses and as 
such care must be taken when characterising the material properties. The equation (4) shows 
the stiffness matrix necessary when modelling transversely isotropic materials; 
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where σ is stress, τ is shear stress, ε is strain and γ is shear strain. Individual elements within 
the stiffness matrix are represented by,  
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The symbol v is the poisson’s ratio and E is the young’s modulus of elasticity. The subscript 
convention used is such that vij represents the poisson’s ratio in i due to an action in j. In this 
study, the plane of isotropy is in the x-y plane such that; E1 and E2 is equal to 7.14E+10 Pa 
and v1 is equal to v2 at 0.3. Perpendicular to the plane of isotropy we define E3 as 5.26E+10 Pa 
and an initial assumption was made that v13 was equal to 0.3 and subsequently given that, 
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then, v31 is 0.221. Also, since the plane of isotropy is x-y, then E1 = E2 and v13 = v23 .  
 
4 Lamb Wave Dispersion Curves 
 
In section 2 it was described that in order for the modelled PZT patch to be physically 
representative of a real patch; its expansion-contraction behaviour under loading must 
conform to the constitutive relationships given by equations (2) and (3). Upon successfully 
modelling the mechanical action of the PZT patch under loading, the next step is to ensure the 
excitation is correctly transducted into the plate on which the patch is bonded. To confirm that 
Lamb waves are correctly excited by the PZT mechanical action, a series of equi-spaced 
nodes along the top surface of the modelled aluminium plate were probed to obtain nodal 
displacement time histories. A 2D-FFT technique was then used in order to decompose the 
received signals into its frequency and wave number domains. Excited Lamb wave modes 
should be evident by comparing against theoretically derived wave number vs. frequency 
dispersion curves. 
 
5 PZT Patch FE Model 
 
A 0.01m x 0.01m x 0.001m (40 x 40 x 4 elements) PZT patch model was generated using 
regular quad type elements. The patch was constrained along the top and bottom surfaces to 
only allow translation in the z direction. This means of constraining forces the patch to 
undergo expansion along its side walls for an applied compressive force on the top and 
bottom surface. Previously it was found that without the mentioned constraint, the edges 
along the top and bottom surfaces of the patch showed a propensity to “fold” over under 
compressive force application and thus did not represent a realistic deformation of a PZT 
patch under load. Figure 2 shows a schematic of the patch model along with its constraints 
and loading. 
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Under an arbitrary compressive load and given that E1 and E3 are constants; the poisson’s 
ratio v13 was systematically varied until the calculated stiffness matrix for the modelled PZT 
material allowed the modelled patch to compress and expand according to the relations given 
in equations (2) and (3). That is,  
 

33

31

3

1

d
d

S
S

=      (16) 

 
where S1 is equal to S2 . 

Figure 2. 3D PZT Patch Model 
 
For the PZT modelled in this study the values of the elastic constants E1 and E3 are 7.14 E+10 
Pa and 5.26 E+10 Pa. The constant v13 was initially set to 0.3. Now given d31 and d33 in 
section 2, then the theoretical mechanical expansion-compression ratio for this PZT should be 
0.467 according to equation (13). It was found that with the poisson’s ratio v13 = 0.32, the 
expansion-compression ratio as obtained by the model expansion in the x or y-axis and its 
compression in the z-axis was 0.460. This result is within 1.5% of the theoretical ratio. It was 
not yet possible to transplant the PZT patch model in its current state directly onto the 
complete PZT-adhesive-Aluminium plate model. The current PZT patch mesh must be made 
coarser to match the meshing regime defined for the plate in order to be computationally 
efficient. The above FE experiment was then repeated for a model with the same dimensions 
but coarser mesh (10 x 10 x 2 elements). It was found that the expansion-compression ratio 
for coarser mesh then become 0.430. This result is within 8% of the theoretical result and 
sufficient such that the coarser patch model could then be directly transplanted onto the 
complete plate model. 
  
6 PZT-Adhesive-Aluminium Model 
 
The complete 3D model comprises of three layers being the PZT patch, the adhesive and the 
aluminium plate. Figure 3 shows the layers and their respective material properties. The PZT 
patch itself was constrained as given in figure 2 with a compressive impulse excitation 
applied to the top and bottom surface. The impulse excitation was of duration 4.6E-6 s thus 
giving sufficient impulse energy to excite up to 600 kHz. Although impulse excitation excites 
a band of frequencies, decomposition into the wave number and frequency domains should 
see the signals separated into their respective symmetric and anti-symmetric Lamb modes. As 
introduced in section 4, in order to utilise the 2D-FFT technique for wave number – frequency 
domain decomposition, time history data must be gathered along a line of equi-spaced nodes. 
The figure 3 also indicates the line along which nodal displacement time histories were 
obtained. The derivation of the analytical curves against which the decomposed received 
signals are compared against can be found in [1, 8].    
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PZT Patch

Adhesive
E  = 2.26E+9 Pa

(10 x 10 x 1 elements)
v  = 0.35

0.01m x 0.01m x 
0.0002m 

ρ = 1160kgm-3

Aluminium
0.1m x 0.1m x 0.001m

(100 x 100 x 2 elements)
E =7.17E+10 Pa

v  = 0.3
ρ = 2800kgm-3

Line along which 64 equi-spaced 
nodal displacement time histories 

were taken

Fixed nodal constraints 
along far edge to patch

 
Figure 3. Complete FE Model of PZT Patch Bonded onto Aluminium Plate 
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Figure 4a. Decomposition of Waves in the Frequency-Wave number domain vs. 

Analytical dispersion curves (Out-of-plane)  
4b. Decomposition of Waves in the Frequency-Wave number domain vs. Analytical 

dispersion curves (Out-of-plane); truncated matrix 
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Figure 4a shows the wave number – frequency domain decomposition of the out-of-plane (z-
direction) motion along the 64 nodes. It can be seen that the presented method of PZT patch 
modelling and excitation was successful in exciting the zero-th anti-symmetric Lamb mode 
(A0) in the modelled plate. It should be noted that a dual frequency and wave number filter 
was applied as a post-process to allow frequencies between 150 kHz to 1.5MHz to and wave 
numbers above 100 to pass. A dominant A0 mode can be observed at around 500 kHz. Figure 
4b shows the dispersion plot of the same scenario but using only the latter 256 time points of 
the last 32 spatial nodes for analysis. This scenario did not require any filtering and it is clear 
that the A0 mode is evidently dominant at around 500 kHz. 
 
7 Laser Vibrometry Experiments 
 
Further to the 2D-FFT technique, a laser vibrometry experiment was also performed to verify 
that the model realisation of the Lamb waves were realistic. A PZT patch of similar 
dimensions to that modelled was bonded onto a 0.1m x 0.1m x 0.001m aluminium plate. 
Although the FE model had a cantilever style constraint along the far edge to the PZT patch, 
this physical model simply clipped the plate at 2 corners. A HP 33120A signal generator was 
used to deliver an impulse excitation into the PZT patch of similar duration to the modelled 
excitation. The out-of-plane displacement of a series of points at a constant radius of 25mm 
from the PZT patch was measured by use of a Polytec OFV505 laser vibrometer. Similarly, 
the out-of-plane displacements at the equivalent locations were also obtained from the FE 
model. Figure 5 shows part of the experimental set up and a schematic of the positions at 
which the out-of-plane displacements were read around the PZT patch. 
 

25mm  
Figure 5. Polytec OFV505 Laser vibrometer measuring out-of-plane displacements on 

aluminium plate 
    
Firstly, comparing the points directly above the PZT patch, it can be seen that the raw 
frequency response of both the FE and the experimental case share common features in terms 
of the modes excited. This is shown in figure 6. A time domain comparison also shows that 
the arriving wave packet in both the experimental and FE case show notable similarity (figure 
7). The wave strength at a given location is defined as the root mean square (RMS) value of 
the out-of-plane displacements. Thus the wave strengths of the FE and experimental scenarios 
can be compared by calculating the RMS values of those selected points at a constant radius 
around the PZT patch in both the FE and experimental cases. When a low time window was 
applied to the response data at points around the PZT the shape of the wave strength plot 
between the FE and experimental cases showed good agreement. Figure 8 show typically the 
response data at 2 corresponding points on the experimental case and the FE model. Whilst 
figure 9 show the similarity in wave strength at a constant radii around the PZT patch when 
only the low time windowed data was considered.   
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Figure 6. Frequency domain comparison of typical out-of-plane displacement signals from FE and 

Experimental setup 
 

Figure 7. Experimental vs. FE Time history comparison of input impulse and response of 
aluminium at 25mm from PZT patch centre 
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Figure 8. Low time windowed response comparison 
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Figure 9. Wave strength comparison between experimental  and FE cases 

 
8 Conclusions 
 
The transduction process is a complex problem and the presented methodology presents a 
simple method by which the PZT when properly modelled and constrained can be excited 
such that its mechanical action obeys the piezoceramic constitutive relations. Subsequently 
Lamb waves were successfully excited through the modelled aluminium plate. This paper 
successfully presents an alternative to Lamb wave excitation modelling compared to the 
traditional point excitation method. It also improves on the traditional method by showing 
that above and beyond Lamb wave generation this current methodology also successfully 
mimics the physical wave propagation characteristic in terms of wave strength. 
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