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ABSTRACT: 
 

This paper presents a practical method for an electro-mechanical impedance-based wireless 
structural health monitoring (SHM) framework, which employs the principal component analysis 
(PCA)-based data compression. An on-board active sensor system, which consists of a 
miniaturized impedance measuring chip (AD5933) and a self-sensing macro-fiber composite 
(MFC) patch, is utilized as a next-generation toolkit of the electro-mechanical impedance-based 
SHM system. The PCA algorithm is applied to the raw impedance data obtained from the MFC 
patch to enhance a local data analysis-capability of the on-board active sensor system, 
maintaining the essential vibration characteristics and eliminating the unwanted noises through 
the data compression. Then, the root-mean square-deviation (RMSD)-based damage detection 
result using the PCA-compressed impedances is compared with the result obtained from the raw 
impedance data without the PCA preprocessing. The effectiveness of the proposed methods for a 
practical use of the electro-mechanical impedance-based wireless SHM was verified through an 
experimental study inspecting loose bolts in a bolt-jointed aluminum structure. 
 
 
Introduction 
 

Damage in civil infrastructures may come from fatigues or excessive external loads such as 
strong winds, earthquakes, explosions, and vehicle impacts. Early detection of the damage or 
structural degradation prior to local failure can prevent catastrophic collapse of the civil 
infrastructures. The large physical size of the civil infrastructures may require an intensive array 
of different sensors and appropriate technologies for data acquisition/reduction for rational 
structural health monitoring (SHM) applications. At its simplest application, a risk alarm can be 
provided when the continuously measured responses at the specific locations of the civil 
infrastructures exceed the pre-set threshold level. In this sense, an automated electro-mechanical 
impedance-based SHM technique is being investigated with keen interest as a powerful and 
innovative tool for local damage detection of the civil infrastructures (Giurgiutiu and Rogers, 
1997;Park, G. et al., 2000; Tseng et al., 2000; Zagrai and Giurgiutiu, 2001; Park, G. et al., 2003; 
Park, S. et al., 2006a; Park, S. et al., 2006b). In general, the electro-mechanical impedance-based 
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SHM technique utilizes small piezoelectric ceramic (PZT) patches attached to a structure as 
self-sensing actuators to simultaneously excite the structure with high-frequency excitations, and 
monitor changes in the patch electrical impedance signature. With the current trend of structural 
health monitoring heading towards unobtrusive self-contained sensors, the first step in meeting 
the low-cost, portable, and readily combined with a wireless telemetry requirements resulted in an 
on-board active sensor system which consists of a miniaturized impedance measuring chip 
(AD5933) and a self-sensing macro-fiber composite (MFC) patch, as displayed in Figure 1 
(Mascarenas et al., 2006; Park, S. et al., 2006c). The on-board active sensor system interrogates a 
structure utilizing a self-sensing MFC patch and the low-cost impedance method, and all the 
structural interrogation and data analysis is pursued in near real-time at the sensor location. 
Moreover, a wireless telemetry that alerts the end user to any harmful changes in the structure can 
be readily installed. At this point, an adequate pre-processing module to enhance a local data 
analysis-capability of the on-board active sensor system is strongly required. If only using 
extremely selected partial frequency range of the raw impedance data, improper selection of data 
points from frequency windows may result in the loss of important structural dynamic 
information. Also, changes in the ambient noises including environmental conditions such as 
temperature, humidity, etc., boundary conditions, and impact loading conditions are known to 
provide considerable effects on impedance-based damage features (Park, G. et al., 1999). In order 
to circumvent the above difficulties, a novel method to compress the raw impedance data by the 
principal component analysis (PCA) algorithm is proposed within the framework of the on-board 
active sensor system for the electro-mechanical impedance-based wireless SHM. 
 
 
Principal Component Analysis (PCA) 
 

PCA is a statistical technique that linearly transforms an original set of variables into a 
substantially smaller set of uncorrelated variables that represents most of the information in the 
original set of variables (Jlooiffe, 1986; Dunteman, 1989). It can be viewed as a classical 
method of multivariate statistical analysis for achieving a dimensionality reduction, also known 
as Karhunen-Loeve (KL) transform (Krzanowski, 2000). Based on the fact that a small set of 
uncorrelated variables is much easier to understand and use in further analysis than a larger set 
of correlated variables, this data compression technique has been widely applied to virtually 
every substantive area including engineering, biology, medicine, chemistry, meteorology, 
geology, as well as the behavioral and social sciences. In the present study, it will be shown that 
the PCA is also very useful for data compression and noise elimination for the 
electro-mechanical impedance-based SHM technique.  

Using an orthogonal projection, the original set of variables in an N -dimensional space is 
transformed into a new set of uncorrelated variables, the so-called principal components (PCs), 
in a P -dimensional space such that P N< . In other words, it seeks to project the 
high-dimensional data into a new low-dimensional set of Cartesian coordinates ( 1 2, ,..., Pz z z ). 
The new coordinates have the following property: 1z  is the linear combination of the original 
coordinates ix  ( 1, 2,...,i N= ) with maximal variance, 2z  is the linear combination which 
explains most of the remaining variance and so on. If exist P -coordinates which are actually a 
linear combination of N (> P ) variables, then the first P  principal components will 
completely characterize the data and the remaining N P−  will be zero. The calculation is 
described as follows. Given the measurement data sets 
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1 2{ } { , ,..., }T
j j j jNx x x x= ( 1, 2,...,j M= ), where T  denotes transposition and M  is the 

total number of measurements, we form the N N× -dimension covariance matrix [ ]C  as  
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{ } { }

M
T

j j
j

C x x
=

= ∑                                  (1) 

and perform singular value decomposition of [ ]C  as 

[ ] [ ][ ][ ]TC A A= Λ                                  (2) 

where [ ]Λ  is a diagonal matrix. The transformation to principal components is then 
accomplished as  

[ ]{ } ({ } { })T
j jz A x x= −                                (3) 

where { }x is the vector of means of the x-data. From the point of view of dimensionality 
reduction, PCA works by discarding those linear combinations of the data which contribute 
least to the overall variance or range of the data set.  

In the present study, PCA is used to reduce the dimensionality and eliminate the unwanted 
noises of the raw impedance data obtained from the MFC patch. With the measured impedance 

vectors { } jx ( 1,2,...,j M= ), it is easy to calculate the principal component matrix [ ]A  and 

their transformations { } jz ( 1, 2,...,j M= ) by using the above formulae. In order to determine 

how many principal components are enough for reserving most information of the original 
impedance data, impedance reconstruction using only a few principal components will be 

conducted firstly. The projection of the original impedance matrix [ ]( )
M N

H ω
×

 which consists 

of M  impedances and has N  frequency points for each impedance, on the N  principal 
components, is given by 

[ ][ ] ( ) [ ]M N N NM N
B H Aω× ××

=                             (4) 

The projection matrix [ ]B  and the principal component matrix [ ]A  can be portioned into 

two sub-matrices with P  significant principal components and ( N P− ) insignificant principal 
components (which actually are trivial and thus not really principal) as  

1 2 ( )[ ] [ ] [ ]M N M P M N PB B B× × × −⎡ ⎤= ⎣ ⎦M                           (5a) 

1 2 ( )[ ] [ ] [ ]N N N P N N PA A A× × × −⎡ ⎤= ⎣ ⎦M                           (5b) 

The impedance matrix can therefore be reconstructed for only P  principal components as 

[ ] [ ][ ]T
RH B A=   

1 2 ( ) 1 2 ( )[ ] [ ] [ ] [ ]
T

M P M N P N P N N PB B A A× × − × × −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦M M  
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T
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By using different number of principal components, impedances are reconstructed. For this 
study, only two principal components the most sensitive due to damage can be utilized for the 
subsequent damage pattern recognition. 
 
 
Verification of the proposed methods 
 
Experimental Study 
 
In order to verify the effectiveness of the proposed approaches for the electro-mechanical 
impedance-based wireless SHM, an experimental study inspecting loose bolts in a bolt-jointed 
aluminum structure was performed. As shown in Figure 2, the MFC patch of 4 x 2.54 x 0.0267 
cm3 associated with AD5933 was surface mounted to the specimen that consists of two aluminum 
beam of dimensions 61.5 x 5 x 0.4 cm3 jointed together with four pairs of bolts and nuts of 
diameter 8mm. The MFC patch was placed at 16 cm apart from the middle of the joint section of 
the specimen. Firstly, electro-mechanical impedances for healthy and damage states were 
measured at a frequency range of 60-70 kHz from the self-sensing MFC patch, as shown in Figure 
3. The impedances contain 501 data points. 
 
PCA-data compression 
 
The present study is a promising work to wirelessly transfer the health-diagnostic information 
which indicates loose bolts in bolt-jointed structures to end user. Because the size of the raw 
impedance data is prohibitive for a direct use and the raw impedance data are usually very 
sensitive to some ambient noise effects, the PCA is applied as a preprocessing module to reduce 
the data dimensionality and eliminate the unwanted noises. The most significant principal 
components (PCs) obtained from the raw impedances contain those features which are dominant 
in most of the frequency responses. In order to determine an adequate number of the PCs which 
can represent the original impedances well, the reconstruction using a different number of the PCs 
is investigated. Firstly, a total of seven impedance matrixes corresponding to intact state and all 
damage states are generated, where each matrix has 501 columns equal to the number of data 
points in each impedance measurement. Then, by combining the above seven matrices, we yield a 
7 x 501 matrix consisting of seven impedances which represent both three healthy structures and 
four damaged structures. Subsequently, with the use of Equations (4)-(6), the PCs are calculated 
and impedances are reconstructed using two, four, and six PCs, respectively. In Figure 4, the 
results are displayed. It can be observed that when two PCs are used, considerable noises of the 
original impedance can be effectively eliminated, although the impedances reconstructed using 
six PCs are almost identical with the original ones as a whole. It is assumed that the fourth, fifth, 
sixth, and seventh PCs might be noise components. Therefore, only three PCs (the first, second, 
and third PC) will be investigated for the damage identification supposing that they are enough to 
represent most of features in the original impedance data.  
 
RMSD-based damage detection 
 
Damage is inflicted on the specimen, and the electro-mechanical impedance is recorded for each 
damage case. In Figure 5(a), it is observed that the damage not only shifts the resonant frequency, 
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but also makes appearance of new resonant peaks. PCA is applied to the impedance data. It is seen 
that the ambient noises in the original impedance data (Figure 5(a)) can be filtered effectively by 
PCA-data compression (Figure 5(b)). For damage quantification of the electro-mechanical 
impedance-based damage detection technique, root mean square deviation (RMSD) of the real 
part of the impedance signatures is utilized as a damage indicator. The RMSD metric is given as 

2
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∑
                       (7) 

where ( )iZ ω  is the post-damage impedance signature at the i-th measurement point and 

0 ( )iZ ω  is the pre-damage value at the i-th measurement point. Recently, an outlier analysis 
(novelty detection)-based damage detection method was successfully applied to the impedance 
methods using the RMSD damage metric (Park, S. et al., 2006b). Through the outlier analysis, an 
optimal threshold value which provides the damage tolerance of the RMSD metric can be 
determined. At this point, this study executes a PCA-data compression process between the 
impedance data-measurement and the RMSD metric-calculation. In other words, the 
RMSD-based damage detection is performed by using the PCA-compressed impedance data. The 
RMSD results obtained without PCA-preprocessing (Figure 5(a)) are compared with the RMSD 
results using the impedances reconstructed from one, two, and three PCs in Figures 5(b), (c), and 
(d). It is observed that the RMSD results using the impedance reconstructed from only two PCs 
show the most significant damage detectible capability. This result presents that the RMSD 
method using only a few PCs, which might be the most sensitive due to damage, extracted from 
the original impedance data will be able to reduce a false-positive damage call in real-world SHM 
applications. Even if the impedance signatures contaminated by noises are considered, the present 
approach will be able to provide a rational SHM solution showing the efficient noise elimination.  
 
 
Conclusions 
 

An experimental study inspecting loose bolts in a bolt-jointed aluminum structure has been 
conducted to examine the effectiveness of principal component analysis (PCA)-data compression 
proposed for a practical use of the electro-mechanical impedance-based wireless structural health 
monitoring (SHM) system. The key idea of this study is to apply the PCA algorithm to the raw 
impedance data for better local data analysis-capability of an on-board active sensor system. The 
PCA algorithm was then applied to the raw impedance data so that reduced the dimensionality of 
impedance data and eliminated unwanted ambient noises including environmental effects such as 
temperature, humidity, etc by extracting only essential features. The root-mean square-deviation 
(RMSD)-based damage detection results using the PCA-compressed impedances showed more 
significant damage detection capability than the RMSD results obtained from the raw impedance 
data without the PCA preprocessing. One can envision that the on-board active sensor system 
with a wireless telemetry, that wirelessly transfers only diagnostic information to end users by 
embedding the PCA-data compression, is placed on in service civil infrastructures to assess the 
structural health in real-time. 
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Figure 1. A miniaturized impedance measuring chip (AD5933) and a self-sensing MFC patch 

 

        
Figure 2. An on-board active sensor system surface mounted on a bolted joint structure 
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Figure 3. Electro-mechanical impedance data obtained from the AD5933-MFC 
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Figure 4. Reconstructed impedances using a different number of principal components 
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(a) Changes in original impedance due to damage 
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(b) Changes in reconstructed impedances using one principal component 
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(c) Changes in reconstructed impedances using two principal components 
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(d) Changes in reconstructed impedances using three principal components 

 
Figure 5. A comparison between RMSD results with and without PCA-preprocessing 

 
 

664



 

 

Acknowledgement 
 
This work was jointly supported by the Korea Research Foundation Grant funded by the Korean 
Government (MOEHRD) (KRF- 2005-213-D00092), the Smart Infra-Structure Technology 
Center (SISTeC) at KAIST sponsored by the Korea Science and Engineering Foundation 
(KOSEF), and the Infra-Structure Assessment Research Center (ISARC) sponsored by Ministry 
of Construction and Transportation (MOCT), Korea. This financial support is greatly appreciated. 
Finally, the authors would like to thank Dr. Gyuhae Park of Los Alamos National Laboratory 
(LANL) for giving a kind guidance for the experiment. 

 
References 
 
Dunteman, G. H. (1989) Principal Components Analysis, Sage Publications, London. 
Giurgiutiu, V., and Rogers, C. A. (1997) ‘Electro-mechanical (E/M) impedance method for 

structural health monitoring and nondestructive evaluation’, International Workshop on 
Structural Health Monitoring, 433-444, Stanford University, September 18-20, CA. 

Jlooiffe, I.T. (1986) Principal Component Analysis, Springer, New York. 
Krzanowski, W.J. (2000) Principals of Multivariate Analysis-A User’s Perspective, Revised ed., 

Oxford University Press, Oxford. 
Mascarenas, D. L., Todd, M. D., Park, G., and Farrar, C. R., (2006) ‘A Miniaturized 

Electromechanical Impedance-based Node for the Wireless Interrogation of Structural Health’, 
Proceeding of SPIE’s 13th Annual International Symposium on Smart Structures and 
Materials, 6177, March 28. 

Park, G., Cudney, H., and Inman, D. J. (2000) ‘Impedance-based health monitoring of civil 
structural components’, ASCE Journal of Infrastructure Systems, 6 (4), 153-160. 

Park, G., Kabeya, K., Cudney, H., and Inman, D. J. (1999) ‘Impedance-based health monitoring 
for temperature varying application’, JSME International Journal, 42, 249-258. 

Park, G., Sohn, H., Farrar, C. R. and Inman, D. J. (2003) ‘Overview of Piezoelectric 
Impedance-Based Health Monitoring and Path Forward’, The Shock and Vibration Digest, 
35(6), 451-463. 

Park, S., Ahmad, S., Yun, C.-B., and Roh, Y. (2006a) ‘Multiple Crack Detection of Concrete 
Structures Using Impedance-based Structural Health Monitoring Techniques’, Experimental 
Mechanics, accepted for publication. 

Park, S., Grisso, B. L., Inman, D. J., and Yun, C.-B. (2006c) ‘MFC-based corrosion detection 
using a miniaturized impedance measuring chip’, 4th World Conference on Structural Control 
and Monitoring, July 11-13, UC San Diego, CA.  

Park, S., Inman, D. J., and Yun, C.-B. (2006b) ‘An outlier analysis of MFC-based impedance 
sensing data for wireless structural health monitoring of railroad tracks’, Engineering 
Structures, accepted for publication. 

Tseng, K. K., Soh, C. K., Gupta, A., and Bhalla, S. (2000) ‘Health monitoring of civil 
infrastructures using smart piezoceramic transducers’, 2nd Int. Conf. on Comp. Meth. For Smart 
Str. And Mat., 153-162. 

Zagrai, A. N. and Giurgiutiu, V. (2001) ‘Electro-Mechanical Impedance Method for Crack 
Detection in Thin Wall Structures’, 3rd Int. Workshop of Structural Health Monitoring, 
Stanford Univ., CA, September 12-14. 

665


