An evolutionary physics-informed deep learning model for a prediction of physical fields at an arbitrary time: Case study on transient heat conduction
dc.contributor.advisor | 村松, 眞由 / 准教授 | |
dc.contributor.author | YAMAZAKI, YUSUKE / 山嵜, 祐輔 | |
dc.date.accessioned | 2025-06-20T01:07:43Z | |
dc.date.available | 2025-06-20T01:07:43Z | |
dc.date.issued | 2024-03-26 | |
dc.description | 修士(工学), 2023, 開放環境科学専攻 | |
dc.identifier.uri | http://131.113.16.178:8181/sigma_local/handle/10721/15286 | |
dc.language | en | |
dc.publisher | 慶應義塾大学理工学研究科 | |
dc.subject | 有限要素法 | ja |
dc.subject | 熱伝導 | ja |
dc.subject | Physics-informed deep learning | en |
dc.subject | Finite element method | en |
dc.subject | Heat conduction | en |
dc.subject | Operator learning | en |
dc.title | An evolutionary physics-informed deep learning model for a prediction of physical fields at an arbitrary time: Case study on transient heat conduction | |
dc.title.alternative | Physics-informed neural networkを援用した任意時間における物理場を予測する深層学習モデルの構築:過度熱伝導問題における検討 | |
dc.type | 学位論文 |
Files
Original bundle
1 - 1 of 1